ISO/IEC JTC1 SC22 WG14 WG14/N1193

Date: 2006-10-03
Reference number of documel80/IEC WDTR 24731-2
Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —
Programming languages, their environments and system softwainterfaces —
Specification for Safer C Library Functions —

Part 1l: Dynamic Allocation Functions

Warning

This document is an ISO/IEC draft Technical Report. Itis not an ISO/IEC International Technical Repott. It is
distributed for revier and comment. It is subject to change without notice and shall not be referred to as jan
International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notificatioryatmant patent rights of
which they are avare and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (2) Working Draft

Document language: E

WG14/N1193

Wrking Draft — Oct 3, 2006

Contents

iii Working Draft — Oct 3, 2006 WG14/N1193

Contents

(=00 (=170] (o IO 1

I o o] o1 PP 2

2. R B BIBINCES ..o e e 2
2.1 NOIMANE T O N CES ..nivieeeeee et ettt e e e e e e e e e e e e e eeaaeeeneanaees 2
2.2 Relationship to other standards.........cccccooeeeeiiiiiiiieieee e 3

3. Terms, definitions, and SYMDOIS..........ooiiiiiii e 3
4. PredefiNe0 MaACIO NMAIMIES e ettt et e e e e e e e e e e e e e e e e e e eeaeaennenaaes 4

LS T IR o > o PSS 5
00 R [1o To 11 [ox i [o PSSP PPPPUPPPPPPPR 5
5.1.1 Standard NEAUEIS........uuiiiie i 5
5.1.2 Reserved identifiers..........ooouiiiiiiiiiiiiieeeeeeee e 5
5.1.3 USE OFf BITNO .eeiiiiiiiie ettt e e e e e e e e 6
5.2 Input/outpuKSst di 0. N> o 7
5.2.1 SITEAIMS ..ottt ettt e e e e e e e e e e e e e e e e e e eaene 7
5.2.2 Operations 0N DUEIS......cooii i 7
5.2.3 Formatted input/output TUNCLIONS.........coooeiiiiiiiiiieeeeeeee e 12
5.2.4 Character input/output fUNCLIONS............cuvviiiiiiiiiieeeeeeee, 13
5.3 String handlinggst ri Ng. h> 15
5.3.1 CopYiNg fUNCHONSuuiiiiiiiiiiiiiieeee e e e 15
5.4 Extended multibyte and wide character utilit@ghar . h> 17
5.4.1 Operations 0N DUEIS.........oiiiiii s 17
5.4.2 Formatted wide character input/output functions................ccccvvvneee. 18
5.4.3 Wide character input/output functions..............cccooviiviiiiiiiiicicceeeen. 19

Contents

WG14/N1193 Wrking Draft — Oct 3, 2006 iV

Foreword

ISO (the International @enization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system foorldwide
standardization. Nationdbodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respectre aganization to deal with particular fields of technical aityi. SO and IEC
technical committees collaborate in fields of mutual interegdther international
organizations, gegernmental and non-gernmental, in liaison with 1ISO and IEC, also
take part in the work.

Technical Reports are drafted in accordance with the rulgengin the ISO/IEC
Directives, Part 3.In the field of information technologiSO and IEC hee established a
joint technical committee, ISO/IEC JTIC Draft Technical Reports adopted by the joint
technical committee are circulated to national bodies fating. Publicationas a
Technical Report requires apma by at least 75% of the member bodies casting a vote.

The main task of technical committees is to prepare International Standards, but in
exceptional circumstances a technical committee may propose the publication of a
Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an
International Standard, despite repeated efforts;

— type 2, when the subiject is still under technicalkeltgpment or where for gnother
reason there is the futurautbnot immediate possibility of an agreement on an
International Standard;

— type 3, when a technical committee has collected data of a different kind from that
which is normally published as an International Standard ("state of the art”, for
example).

Technical Reports of types 1 and 2 are subjectunewithin three years of publication,
to decide whether tgecan be transformed into International Standardschmical
Reports of type 3 do not necessarilwéd be eviewed until the data tlyeprovide are
considered to be no longer valid or useful.

ISO/IEC TR 24731 which is a Technical Report of type 2, was prepared by Joint
Technical Committee ISO/IEC JTC Information tetinology Subcommittee S@2,
Programming languges, their environments and system softwiaterfaces

Foreword

1 Working Draft — Oct 3, 2006 WG14/N1193

1. Scope

This Technical Report specifies a series of extensions of the programming language C,
specified by International Standard ISO/IEC 9899:1999.

International Standard ISO/IEC 9899:1999 yides important context and specification

for this Technical Report. Clause 4 of this Technical Report should be read as if it were
meimged into Subclause 6.10.8 of ISO/IEC 9899:1999. Clause 5 of this Technical Report
should be read as if it were nged into the parallel structure of named Subclauses of
Clause 7 of ISO/IEC 9899:1999.

2. Refeences

2.1 Normative references

The following normatre documents contain provisions which, through reference in this
text, constitute provisions of this Technical RepoRor dated references, subsequent
amendments to, orvisions of, ay of these publications do not applidoweve, parties

to agreements based on this Technical Report are encourageestmate the possibility

of applying the most recent editions of the norwetbcuments indicated belo For
undated references, the latest edition of the nommatbcument referred to applies.
Members of ISO and IEC maintain registers of currently valid International Standards.

ISO/IEC 9899:1999, Information tebnolagy — Pogramming languges, their
environments and system softevarterfaces — Rigramming Languge C

ISO/IEC 9899:1999/Cor 1:2001nformation tebnolagy — Pogramming languges,
their ervironments and system soft@anterfaces — Rigramming Languge C —
Technical Corrigendum 1

ISO/IEC 9945:2003including Technical Corrigendum 1)nformation tebnology —
Programming languges, their emironments and system softe@anterfaces — @&table
Operating System Interface (POSIX®)

ISO/IEC DIS 23360:2005|nformation tebnolagy — Pogramming languges, their
environments and system softearterfaces — Linux StandhBase

ISO 31-11:1992Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technalogy

ISO/IEC 646,Information tebinology —1SO 7-bit coded haracter set for information
interchange

81 General §2.1

10

11

12

WG14/N1193 V@rking Draft — Oct 3, 2006 2

ISO/IEC 2382-1:1993|nformation tebinolagy — Vcahlulary — Part 1: Fundamental
terms

ISO 4217 Codes for the representation of currencies and funds

ISO 8601, Data elements and intemlange formats — Information intehange —
Representation of dates and times

ISO/IEC 10646all parts), Information teénology — Universal Multiple-Octet Coded
Character Set (UCS)

IEC 60559:198RBinary floating-point arithmetic for mioprocessor systengpreviously
designated IEC 559:1989).

2.2 Relationshipto other standards

Mary of the interfaces in this specification are dedifrom interfaces specified in other
ISO/IEC specifications, and in particular:

— ISO/IEC 9945:2003including Technical Corrigendum l1kformation tetinology
— Programming languges, their erironments and system soft@anterfaces —
Portable Operating System Interface (POSIX®)

— ISO/IEC DIS 23360:2003nformation tebinology — Pogramming languges, their
environments and system softevarterfaces — Linux StandhBase

Where an interface is described as beingvedrirom either of these standards, the
functionality described on this reference page is intended to be aligned with that standard.
Any conflict between the requirements described here and the referenced standard is
unintentional. This technical report defers to the underlying standard.

3. Terms, definitions, and symbols

Terms are defined where theppear initalic type. Terms explicitly defined in this
Technical Report are not to be presumed to refer implicitly to similar terms defined
elsavhere. Brms not defined in this Technical Report are to be interpreted according to
ISO/IEC 9899:199%nd ISO/IEC2382-1. Mathematicabymbols not defined in this
Technical Report are to be interpreted according to ISO 31-11.

81 General 83

3 Working Draft — Oct 3, 2006 WG14/N1193

4. Predefined macb names

1 The following macro name is conditionally defined by the implementation:

__STDC ALLOC LI B__The integer constant200509L, intended to indicate
conformance to this technical repétt.

1) The intention is that this will remain an iger constant of typeong i nt that is increased with
each revision of this technical report.

84 General 84

WG14/N1193 V@rking Draft — Oct 3, 2006 4

5. Library

5.1 Introduction

5.1.1 Standardheaders

The functions, macros, and types defined in Clause 5 and its subclauses are not defined
by their respectie headers if STDC WANT_ALLOC LI B__is defined as a macro

which expands to the integer const@nbr is not defined as a macro at the point in the
source file where the appropriate header is included.

The functions, macros, and types defined in Clause 5 and its subclauses are defined by
their respectie headers if _STDC WANT_ALLCOC LI B_ _is defined as a macro which
expands to the ingger constantl at the point in the source file where the appropriate
header is include®.

Within a preprocessing translation unit, STDC WANT_ALLOC LI B__shall be
defined identically for all inclusions of wn headers from Clause 5.If
__STDC WANT_ALLCC LI B__is defined differently for an such inclusion, the
implementation shall issue a diagnostic as if a preprocessor erronaineai used.

5.1.2 Reseved identifiers

Each macro name in amf the following subclauses is reserved for use as specified if it
is defined by ayn of its associated headers when included; unless explicitly stated
otherwise (see ISO/IEC 9899:1999 Subclause 7.1.4).

All identifiers with external linkage in gnof the folloving subclauses are reserved for
use as identifiers with external linkage ifyasf them are used by the program. None of
them are reserved if none of them are used.

Each identifier with file scope listed inyaaf the following subclauses is reserved for use
as a macro name and as an identifier with file scope in the same name space if it is
defined by ayof its associated headers when included.

2) Future reisions of this technical report may define meanings for other values of
__STDC WANT_ALLOC LIB_.

85 Library 85.1.2

5 Working Draft — Oct 3, 2006 WG14/N1193

5.1.3 Useof errno

An implementation may seir r no for the functions defined in this technical repotit b
is not required to.

85.1.3 Library 85.1.3

WG14/N1193 V@rking Draft — Oct 3, 2006 6

5.2 Input/output <st di 0. h>

5.2.1 Steams

In addition to the requirements of ISO/IEC 9899:1999, clause 7.19.2, streams may be
associated with memory buffers.

A stream associated with a memonyffer has the same mapping operations for text files
that a stream associated with axteenal file would hee. In addition, the stream
orientation is determined in exactly the same fashion.

Input and output operations on a stream associated with a menney by a call to

f menopen or open_mnenst r eamare constrained to tekgdace within the bounds of

the memory bffer. In the case of a stream openeddpen_nenst r eamthe memory

area may gne dynamically to accomodate write operations as necedsaryutput, data

are mwed from the luffer provided byset vbuf to the memory stream during a flush or

close operation. If there is indigient memory to gre the memory area, or the
operation requires access outside of the associated memory area, the associated operation
shall fail.

5.2.2 Operationson buffers

5.2.2.1 Thef menopen function

Synopsis

#define _ STDC WANT_ALLOC LIB__1
#i ncl ude <stdi o. h>
FI LE *f menopen(void *restrict buf,
size_t size, const char *restrict node);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

The f nenopen function shall associate theufter given by the buf and size
arguments with a stream. Thouf argument shall be either a null pointer or point to a
buffer that is at least size bytes long.

85.2 Library §5.2.2.1

7 Working Draft — Oct 3, 2006 WG14/N1193

Thenode argument is a character string having one of the following values:

r Open text stream for reading.

w Open text stream for writing.

a Append; open text stream for writing at the first null byte.

r+ Open text stream for update (reading and writing).

W+ Open text stream for update (reading and writing). Truncate the
buffer contents.

a+ Append; open ¢ stream for update (reading and writing); the
initial position is at the first null byte.

rb Open binary stream for reading.

wb Open binary stream for writing.

ab Append; open binary stream for writing at the first null byte.

rb+ or r+b Open binary stream for update (reading and writing).

whb+ or w+b Open binary stream for update (reading and writingiin¢ate

the buffer contents.

abt or at+b Append; open binary stream for update (reading and writing);
the initial position is at the first null byte.

If a null pointer is specified as theif argumentf menopenshall allocatesi ze bytes

of memory as if by a call toal | oc. This luffer shall be automatically freed when the
stream is closed. Because this feature is only useful when the stream is opened for
updating (because there is no way to get a pointer toutiferbothef menopen call may

fail if the nrode argument does not includeta

The stream maintains a current position in thfdn. This position is initially set to either

the begining of theudfer (for r andw modes) or to the first null byte in theffer (for a
modes). If no null byte is found in append mode, the initial position is set to one byte
after the end of the buffer.

The stream also maintains the size of the currefiebcontents. For modesandr+ the
size is set to the valuevgn by thesi ze argument. Br modesv andw+ the initial size

Is zero and for modesanda+ the initial size is either the position of the first null byte in
the buffer or the value of the size argument if no null byte is found.

A read operation on the stream cannot advance the cuwé@at position behind the
current luffer size. Reaching theuffer size in a read operation counts as "end of file".
Null bytes in the bffer have o special meaning for reads. The write operation starts at
the current buffer position of the stream.

§5.2 Library §5.2.2.1

10

11

12

13

14

WG14/N1193 V@rking Draft — Oct 3, 2006 8

A write operation starts either at the current position of the stream (if mode has not
specified a as the first character) or at the current size of the stream (if mode had a as the
first character). If the current position at the end of the write getathan the current

buffer size, the currentuffer size is set to the current positioA.write operation on the
stream cannot advance the current buffer size behind the s&raigihe size argument.

When a stream open for writing is flushed or closed, a null byte is written at the end of
the huffer if it fits. If a stream open for update is flushed or closed and the last write has
advanced the current buffer size, a null byte is written at the end of the buffer if it fits.

An attempt to seek a memoryfter stream to a mtive position or to a position lger
than the buffer size gén in thesi ze argument shall fail.

Note that when writing to a text stream, line endings may gcowpe than one character
in the buffer.

Returns

Upon successful completiohjrenopen shall return a pointer to the object controlling
the stream.Otherwise, a null pointer shall be returned, and an implementation-defined
value shall be stored iarrno.

Examples

#i ncl ude <stdio. h>
static char buffer[] = "foobar";

i nt
mai n (voi d)
{
int ch;
FI LE *stream

stream = fnenopen(buffer, strlen (buffer), "r");
if (stream == NULL)
/* handl e error */;

while ((ch = fgetc(strean)) != EOF)
printf("Got %\n", ch);

fcl ose(stream;
return (0);

85.2 Library §5.2.2.1

9 Working Draft — Oct 3, 2006 WG14/N1193

15 This program produces the following output:

CGot f
Got
Got
Got
Got
Got

- © T O O

5.2.2.2 Theopen_nenst r eamfunction

Synopsis

#define _ STDC WANT ALLOCC LIB 1
#i ncl ude <stdi o. h>

FI LE *open_nenstreanm(char ** restrict bufp,
size t * restrict sizep);

Description

2 This interface is deved from POSIX. Aty conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

3 The open_nenst r eamfunction shall create a stream that is associated with a
dynamically allocated uffer. The huffer is obtained as if by calls toal | oc and
real | oc and expanded as necessarfie huffer should be freed by the caller after
successfully closing the stream, by means of a cdllre. The stream is opened for
writing and shall be seekable.

4 The stream maintains a current position in the allocaiéfdroand a currentuifer length.
The position is initially set to zero (the beginning of théfdr). Each write starts at the
current position and nwves this position by the number of successfully written byfElse
length is initially set to zero. If a write mes the position to a value larger than the
current length, the current length is set to this position. In this case a null byte shall be
appended to the current buffer (but not accounted for in the buffer length).

5 The maximum value of theuBfer length and position is \gn by the smaller of
SI ZE_MAXand ay implementation-defined maximum allowed file offset.

6 After a successful f | ush or f cl ose the locations pointed to blyuf p andsi zep
contain the address of thafter and the currentuffer length and theuifer is guaranteed
to be terminated by a null byte (which is not accounted for in the length).

85.2 Library §5.2.2.2

10

11

WG14/N1193 V@rking Draft — Oct 3, 2006 10

After a successful f | ush the pointer referenced bdyuf p and the variable referenced
by si zep remain valid only until the next write operation on the stream or a call to
fcl ose.

An attempt to seek a dynamiofter stream to a rygtive position or to a position lger
than the minimum o8l ZE_MAXand the implementation-defined maximum allowed file
offset shall return an error.

Returns

Upon successful completiompen_nenst r eamshall return a pointer to the object
controlling the stream. Otherwise, a null pointer shall be returned, and an
implementation-defined value shall be storedrimo.

Examples

#i ncl ude <stdi o. h>
int main (void)

{
FI LE *stream
char *buf;
size t len;
stream = open_nenstrean(&uf, &l en);
if (stream == NULL)

/* handl e error */;
fprintf(stream "hello nmy world");
fflush(stream;
printf("buf=%, |en=%u\n", buf, len);
fseek(stream 0, SEEK SET);
fprintf(stream "good-bye cruel world");
fcl ose(stream;
printf("buf=%, |en=%u\n", buf, len);
free(buf);
return O,

}

This program produces the following output:

§5.2 Library §5.2.2.2

11 Working Draft — Oct 3, 2006 WG14/N1193

buf =hello ny world, |en=14
buf =good- bye cruel world, |en=20

5.2.3 Formatted input/output functions
5.2.3.1 Theaspri ntf function
Synopsis

#define _ STDC WANT_ALLOC LIB__
#i ncl ude <stdio. h>
Int asprintf(char ** restrict ptr,
const char * restrict format, ...);

Description

This interface is deved from LSB. Ary conflict between the requirements described here
and LSB is unintentional. This technical report defers to LSB.

Theaspri nt f function shall beh&e asspri nt f, except that the output string shall be
dynamically allocated space, as if by a calhtd | oc, of sufficient length to hold the
resulting string. The address of this dynamically allocated string shall be stored in the
location referenced byt r .

5.2.3.2 Thef scanf function

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

In addition to the requirements in ISO/IEC 9899:1999 clause 7.19.6.4,sthanf
function shall support the following requirements foresion specifications.

For the string cowmersion specifiers and[, the optionafield widththat specifies the size
of the receiving object may fa e \aluem® In this case, the receiving argument should
be of typechar **, and shall receie a winter to a dynamically allocatecufber,
allocated as if by a call toal | oc, that contains the ceerted string. The string shall
always be null terminated. If there was infstient memory to allocate auffer, the
receving argument shall reoe? a pinter to a null alue. Thebuffer should be freed by
the caller by means of a call for ee when the application no longer requires the

85.2 Library §5.2.3.2

WG14/N1193 V@rking Draft — Oct 3, 2006 12

contents.

5.2.3.3 Thevaspri ntf function

Synopsis

#define _ STDC WANT _ALLOC LIB 1
#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
int vasprintf(char * * restrict ptr,
const char * restrict format, va list arg);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

Thevaspri nt f function is equaent toaspri nt f, with the variable argument list
replaced byar g, which shall hae keen initialized by theva_st art macro (and
possibly subsequenta_ar g calls). Thevaspri ntf function does not woke te
va_endmacro.

5.2.4 Characterinput/output functions

5.2.4.1 Theget del i mfunction

Synopsis

#define _ STDC WANT_ALLOC LIB__1

#i ncl ude <stdi o. h>

ssize t getdelimchar **restrict lineptr,
size t *restrict n,
int delimter, FILE *stream;

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

§5.2 Library §5.2.4.1

13 Working Draft — Oct 3, 2006 WG14/N1193

Theget del i mfunction shall read fronstreamuntil it encounters a character matching
thedel i m t er character The agumentdelimiter (when conerted to anunsi gned
char) shall specify the character that terminates the input text.

Thedel i m t er agument is an nt, the \alue of which the application shall ensure is
a character representable asamsi gned char or equal value to the maciCF. If
thedel i m t er argument has grother value, the behavior is undefined.

The application shall ensure thdti nept r is a valid argument that could be passed to
thef r ee function. If * n is nonzero, the application shall ensure that nept r points
to an object containing at lea&st characters.

The size of the object pointed to By i nept r shall be increased to fit the incoming
line, if it isn't aready large enough. The characters read shall be stored in the string
pointed to by the argumeht nept r.%

Returns

Upon successful completion thget del i m function shall return the number of
characters written into the uffer, including the delimiter character if oneasv
encountered beforeOF. Otherwise it shall retural.

5.2.4.2 Theget | i ne function
Synopsis

#define _ STDC WANT_ALLOC LIB_ 1

#i ncl ude <stdio. h>

ssize_t getline(char **lineptr, size_t *n,
FI LE *strean);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

The get | i ne function shall be equalent to the get del i mfunction with the
del i m t er character equal to the newline character.

4) Setting*l i neptr to a null pointer and n to zero are allowed and a recommended way to start
parsing a file.

85.2 Library §5.2.4.2

WG14/N1193 V@rking Draft — Oct 3, 2006 14

5.3 Stringhandling <stri ng. h>

5.3.1 Copyingfunctions

5.3.1.1 Thest r dup function

Synopsis

#define _ STDC WANT_ALLOC LIB_ 1
#i ncl ude <string. h>
char *strdup(const char *strl);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POBiX st r dup
function shall return a pointer to ametring, which is a duplicate of the string pointed to
by s1. The returned pointer can be passetitee. A null pointer is returned if the me
string cannot be created.

5.3.1.2 Thest r ndup function

Synopsis

#define _ STDC WANT_ALLOC LIB__1
#i ncl ude <string. h>
char *strndup(const char *string, size t n);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to LSB.

Thest r ndup function copies not more thancharacters (characters that feli@ null
character are not copied) frogt ri ng to a dynamically allocateduffer. The copied
string shall alvays be null terminated.

85.3 Library §5.3.1.2

15 Working Draft — Oct 3, 2006 WG14/N1193

Returns

The st r ndup function returns a pointer to the allocated stringNok_L if there was
insufficient space. The application should ensure that the space is subsequently freed by a
call tof r ee.

§5.3.1.2 Library §5.3.1.2

WG14/N1193 V@rking Draft — Oct 3, 2006 16

5.4 Extendedmultibyte and wide character utilities <wchar . h>

5.4.1 Operationson buffers

5.4.1.1 Theopen_wnenst r eamfunction

Synopsis

#define _ STDC WANT_ALLOC LIB_ 1
#i ncl ude <wchar. h>
FI LE *open_wrenstrean(wchar _t **bufp, size_t *sizep);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

The open_wnenstream function shall create a wide oriented stream that is
associated with a dynamically allocatedffer. The huffer is obtained as if by calls to
mal | oc andr eal | oc and expanded as necessarye luffer should be freed by the
caller after successfully closing the stream, by means of a chide. The stream is
opened for writing and shall be seekable.

The stream maintains a current position in the allocatéférand a currentdsfer length,

in wide characters. The position is initially set to zero (thgartveng of the hffer). Each

write starts at the current position andvethis position by the number of successfully
written wide charactersThe length is initially set to zero. If a write nes the position to
a\value larger than the current length, the current length is set to this position. In this case
a rull wide character shall be appended to the currefiieb(but not accounted for in the
buffer length).

The maximum value of theuHer length and position is wgn by the smaller of
SI ZE_NMAXand ay implementation-defined maximum allowed file offset.

After a successful f | ush or f cl ose the locations pointed to blyuf p andsi zep
contain the address of thaffer and the currentuffer length and theuifer is guaranteed
to be terminated by a null wide character (which is not accounted for in the length).

After a successful f | ush the pointer referenced dyuf p and the variable referenced
by si zep remain valid only until the next write operation on the stream or a call to
fcl ose.

85.4 Library §5.4.1.1

17 Working Draft — Oct 3, 2006 WG14/N1193

An attempt to seek a dynamiaffer stream to a rggtive position or to a position lger
than the minimum o8l ZE_MAXand the implementation-defined maximum allowed file
offset shall return an error.

Returns

Upon successful completionpen_wnrenst r eam shall return a pointer to the object
controlling the stream. Otherwise, a null pointer shall be returned, and an
implementation-defined value shall be storedrimo.

5.4.2 Formatted wide character input/output functions

5.4.2.1 Thef wscanf function

Description

In addition to the requirements

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

In addition to the requirements in ISO/IEC 9899:1999 clause 7.24.2.2 wheanf
function shall support the following requirements foraaion specifications.

For the string cowmersion specifiers and[, the optionafield-widththat specifies the size
of the receiing object may hee the \aluem® In this case, if thé length modifier is also
specified, the corresponding argument should be ofwgar t ** and shall recefe

a pointer to a dynamically allocatecuffer, alocated as if by a call toal | oc, that
contains the comerted string. If thd length modifier is not specified, the corresponding
argument should be of typehar **, and shall recele a winter to a dynamically
allocated bffer containing characters from the input field, wated as if by repeated
calls to thewcr t onb function, with the coversion state described by amst at e_t
object initialized to zero before the first wide character iveted.

In either case, the string shalalys be null terminated. If there was insufficient memory
to allocate a buffethe receiving argument shall reeeia winter to a null value.

85.4 Library §5.4.2.1

WG14/N1193 V@rking Draft — Oct 3, 2006 18

5.4.3 Wde character input/output functions
5.4.3.1 Theget wdel i mfunction
Synopsis

#define _ STDC WANT_ALLOC LIB__1

#i ncl ude <stdio. h>

ssize_t getwdelimwchar_t **restrict lineptr, size_t *restrict n,
wint t delimter, FILE *strean);

Description

This interface is deved from POSIX. Aty conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

The get wdel i mfunction shall read fronstreamuntil it encounters a wide character
matching thedel i m t er character The agumentdel i m t er shall specify the
character that terminates the read process.

Thedel i m t er agument is av nt _t, the value of which the application shall ensure
is a wide character representable asvahar _t or equal alue to the macr®\ECF. If
thedel i m t er argument has grother value, the behavior is undefined.

The application shall ensure thdti nept r is a valid argument that could be passed to
thef r ee function. If* n is nonzero, the application shall ensure tat nept r points
to an object containing at lea&st wide characters.

The size of the object pointed to by i nept r shall be increased to fit the incoming
line, if it isn’t already large enough. The wide characters read shall be stored in the string
pointed to by the argumeht nept r.®)

Returns

Upon successful completion tiget wdel i mfunction shall return the number of wide
characters written into the uffer, including the delimiter character if oneasv
encountered before end of file. Otherwise it shall retdrn

6) Setting*l i neptr to a null pointer and n to zero are allowed and a recommended way to start
parsing a file.

85.4.3 Library §5.4.3.1

19 Working Draft — Oct 3, 2006 WG14/N1193

5.4.3.2 Theget W i ne function

Synopsis

#define _ STDC WANT_ALLOC LIB__1

#i ncl ude <stdio. h>

ssize t getwline(whar t **lineptr, size t *n,
FI LE *strean);

Description

This interface is devied from POSIX. Aly conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

The get Wl i ne function shall be equélent to theget wdel i mfunction with the
del i m t er character equal to the wide newline character.

85.4.3.2 Library 8§5.4.3.2

WG14/N1193

Index

<st di 0. h>headerb.2
<string. h>header5.3
<wchar . h>headerb5.4
__STDC_ALLOC LI B__macro,4

Wrking Draft — Oct 3, 2006

ISO/IEC 9899, 2.1, 3,5.1.2
ISO/IEC 9899Cor 1, 2.1
ISO/IEC 9945, 2.1, 2.2
italic typecorvention, 3

__STDC WANT_ALLCC LI B__macro,5.1.1

aspri nt f function,5.2.3.1

buffer
operations5.2.2 5.4.1

library, 5
LSB, 2.2

macro name
predefined4
memory streams, 5.2.1

character input/output functions,2.4

copying functions
string,5.3.1

end-of-file macroseeECF macro
errnomacro, 5.1.3

file
formatted 105.2.3
f menopenfunction,5.2.2.1

open_nenst r eanfunction,5.2.2.2
open_wnenst r eanfunction,5.4.1.1
operations on buffers, 5.2.2

operations on wide character buffers, 5.4.1

POSIX, 2.2
predefined macro names,

reserved identifier§.1.2

formatted input/output functions, 5.2.3

wide character5.4.2
f scanf function,5.2.3.2
f wscanf function,5.4.2.1

get del i mfunction,5.2.4.1
get | i nefunction,5.2.4.2
get wdel i mfunction,5.4.3.1
getw i nefunction,5.4.3.2

headersee als@tandard headers

identifier
reservedb.1.2
IEC 60559, 2.1
input/output functions
characters.2.4
formatted
wide character5.4.2
wide character
formatted5.4.2
input/output headeh.2
ISO 31-11,2.1,3
ISO 4217,2.1
ISO 8601, 2.1
ISO/IEC 10646, 2.1
ISO/IEC 23360, 2.1, 2.2
ISO/IEC 2382-1, 2.13
ISO/IEC 646, 2.1

standard headers
<stdi 0. h>5.2
<string. h>5.3
<wchar. h> 5.4
st di 0. hheader5.2
st r dupfunction,5.3.1.1
streams, 5.2.1
string
copying functions5.3.1
string handling heades, 3
string. hheaders.3
st r ndupfunction,5.3.1.2
symbols,3

terms,3

vaspri nt f function,5.2.3.3
wchar . hheaderb.4

wide character

formatted input/output functions, 4.2
operations on buffer$,.4.1

Index

20

21

Wbrking Draft — Oct 3, 2006

Index

WG14/N1193

WG14/N1193

Wrking Draft — Oct 3, 2006

Index

22

Contents

	Index
	1. Scope
	2. References
	2.1 Normative references
	2.2 Relationship to other standards

	3. Terms, definitions, and symbols
	4. Predefined macro names
	5. Library
	5.1 Introduction
	5.1.1 Standard headers
	5.1.2 Reserved identifiers
	5.1.3 Use of errno

	5.2 Input/output <stdio.h>
	5.2.1 Streams
	5.2.2 Operations on buffers
	5.2.2.1 The fmemopen function
	5.2.2.2 The open_memstream function

	5.2.3 Formatted input/output functions
	5.2.3.1 The asprintf function
	5.2.3.2 The fscanf function
	5.2.3.3 The vasprintf function

	5.2.4 Character input/output functions
	5.2.4.1 The getdelim function
	5.2.4.2 The getline function

	5.3 String handling <string.h>
	5.3.1 Copying functions
	5.3.1.1 The strdup function
	5.3.1.2 The strndup function

	5.4 Extended multibyte and wide character utilities <wchar.h>
	5.4.1 Operations on buffers
	5.4.1.1 The open_wmemstream function

	5.4.2 Formatted wide character input/output functions
	5.4.2.1 The fwscanf function

	5.4.3 Wide character input/output functions
	5.4.3.1 The getwdelim function
	5.4.3.2 The getwline function

