

N1210 describes possible defects in ISO/IEC TR 24731-1 Extensions to the C Library, —
Part I: Bounds-checking interfaces, document N1199.

Issue #1

The fopen_s() and freopen_s() functions are missing a mode character that will
cause fopen() to fail rather than open a file that already exists. This is necessary to
eliminate a time-of-creation to time-of-use race condition vulnerability caused when a
programmer first problem caused by a .

The ISO/IEC 9899-1999 C standard function fopen() is typically used to open an
existing file or create a new one. However, fopen() does not indicate if an existing file
has been opened for writing or a new file has been created. This may lead to a program
overwriting or accessing an unintended file.

In the following example, an attempt is made to check whether a file exists before
opening it for writing by trying to open the file for reading.

...
FILE *fp = fopen("foo.txt","r");
if(!fp) { /* file does not exist */
 fp = fopen("foo.txt","w");
 ...
 fclose(fp);
} else {
 /* file exists */
 fclose(fp);
}
...

However, this code suffers from a Time of Check, Time of Use (or TOCTOU)
vulnerability. On a shared multitasking system there is a window of opportunity between
the first call of fopen() and the second call for a malicious attacker to, for example,
create a link with the given filename to an existing file, so that the existing file is
overwritten by the second call of fopen() and the subsequent writing to the file.

The fopen_s() function defined in ISO/IEC TR 24731-1 is designed to improve the
security of the fopen() function. However, like fopen(), fopen_s() provides no
mechanism to determine if an existing file has been opened for writing or a new file has
been created. The code below contains the same TOCTOU race condition as in the
fopen() example above.

...
FILE *fptr;
errno_t res = fopen_s(&fptr,"foo.txt", "r");
if (res != 0) { /* file does not exist */
 res = fopen_s(&fptr,"foo.txt", "w");

 ...
 fclose(fptr);
} else {
 fclose(fptr);
}
...

The fopen() function does not indicate if an existing file has been opened for writing
or a new file has been created. However, the open() function as defined in the Open
Group Base Specifications Issue 6 [Open Group 04] provides such a mechanism. If the
O_CREAT and O_EXCL flags are used together, the open() function fails when the file
specified by file_name already exists.

...
int fd = open(file_name, O_CREAT | O_EXCL | O_WRONLY, new_file_mode);
if (fd == -1) {
 /* Handle Error */
}
...

The GCC compiler has implemented this suggestion by adding the 'x' mode character
as documented at:

http://www.gnu.org/software/libc/manual/html_mono/libc.html#Opening%20S
treams

"The GNU C library defines one additional character for use in
opentype: the character x insists on creating a new file--if a file
filename already exists, fopen fails rather than opening it. If you use
x you are guaranteed that you will not clobber an existing file. This
is equivalent to the O_EXCL option to the open function (see Opening
and Closing Files)."

Issue #2

The tmpnam_s() function should be removed from TR 24731-1 as it cannot be used
securely and replaced with a function that can be used to create a temporary directory.
TR 24731-1 currently provides the following rationale for including this function under
“Recommended practice”:

One situation that requires the use of the tmpnam_s() function is when the program
needs to create a temporary directory rather than a temporary file.

This capability can be more securely provided by creating a function that is equivalent to
the Linux mkdtemp() function, for example:

errno_t tmpdir_s(FILE * restrict * restrict streamptr);

If the directory is successfully created, the pointer to FILE pointed to by streamptr
is set to the pointer to the object controlling the opened directory. Otherwise, the pointer
to FILE pointed to by streamptr is set to a null pointer.

Issue #3

There is currently no requirement that tmpfile_s() and tmpnam_s() functions
produce unpredictable names. An attacker who is able to predict the name of a temporary
file can often create a file or a link with the same name to a protected file. If the process
which is manipulating the sensitive process has elevated privileges, this could result in an
attacker obtaining elevated permissions on a system, or removing or truncating sensitive
files. If the process is running with normal user privileges, these vulnerabilities can still
be exploited on multi-user systems to trick a user into removing or truncating files that
are normally only accessible by the user and system administrators.

The following techniques, which have all been used in various implementations, result in
predictable filenames:

• Use the process ID
• Use the user ID
• Use the time of day
• Use a counter
• Use a bad random number generator

The current minimum value of the macro TMP_MAX_S needs to be increased from 25 to
a reasonable limit which would prevent or inhibit the ability of an attacker to create
temporary links for every possible filename. In addition, there should be a requirement
that the sequence of names be generated in an unpredictable fashion.

TR 24731-1 also provides the following advice in non-normative text:

“Implementations should take care in choosing the patterns used for names returned by
tmpnam_s. For example, making a thread id part of the names avoids the race condition
and possible conflict when multiple programs run simultaneously by the same user
generate the same temporary file names.”

If this suggestion is followed, it reduces the possible name space for temporary file
names, making these names more predictable.

