
ISO/IEC JTC 1/SC 22/WG14 N1264

Potential Extensions For Inclusion In a Revision of ISO/IEC 9899

Introduction

In London, WG14 tasked me with coming up with a proposed list of Microsoft extensions
that the committee could consider for standardization. This document contains that
list. In general, I’ve provided a link to the product documentation rather than cutting
and pasting relevant sections.

1. __declspec (http://msdn2.microsoft.com/en-us/library/dabb5z75(VS.80).aspx)

__declspec is a general mechanism for applying an attribute to a declarator. In
general, it behaves as a storage class specificer. There are several specific
attributes that might make sense for standardization; they’re described in
subsequent sections.

Examples:

 __declspec(attribute) int i;

 __declspec(attribute) void f();

 __declspec(attribute) struct X { int m; };

2. __declspec(noreturn) (http://msdn2.microsoft.com/en-
us/library/k6ktzx3s(VS.80).aspx)

noreturn indicates that a function does not return, avoiding an error or warning
message.

Example:

__declspec(noreturn) void fatal();

int f(int arg)
{

if(arg > 5)

return 1;

 else

 fatal();

}

3. __declspec(align(alignment)) (http://msdn2.microsoft.com/en-
us/library/83ythb65(VS.80).aspx)

align(alignment) specifies that data is to be aligned on a particular memory
boundary. alignment is an integer power of 2 from 1 to 8192. There are fairly
complex interactions with the compiler’s default alignment and structure
packing; see the link for more details.

Example:

__declspec(align(8)) struct S2 { int a, b, c, d; };

4. __declspec(thread) (http://msdn2.microsoft.com/en-
us/library/9w1sdazb(VS.71).aspx)

thread specifies that data is thread-local. Note that in the Microsoft
implementation, this can’t be used with delay-loaded DLLs.

Example:

 __declspec(thread) int x;

5. __declspec(deprecated) (http://msdn2.microsoft.com/en-
us/library/044swk7y(VS.80).aspx)

deprecated provides a way for library writers to mark functions as deprecated, at
translation time. In the Microsoft compiler, a warning is issued for the
deprecation.

Example:

 __declspec(deprecated) void f();

6. Structured exception handling (__try/__except, __try/__finally)
(http://msdn2.microsoft.com/en-us/library/swezty51(VS.71).aspx)

Nick Stoughton has covered this in some detail in N1229. try-except allows the
application to gain control when an interrupt occurs. Its use is coupled with a
few compiler intrinsics (GetExceptionCode, GetExceptionInformation) that allow
decision making based on the type of interrupt.

Example:

 __try

{

 *p = i;

}

/* handle the exception if it’s an access violation; otherwise,
continue search for other exception handlers active on the stack */

__except(GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)

{

/* handle the exception */
}

try-finally allows an application to guarantee execution of cleanup code when an
interrupt occurs.

7. SAL (Structured Annotation Language) ((a)
http://msdn2.microsoft.com/en-us/library/ms235402(VS.80).aspx, (b)
http://blogs.msdn.com/michael_howard/attachment/602077.ashx)

SAL is a language to annotate functions in a way that describes how their
parameters are related to each other. This allows static analysis tools to verify
callsites of the functions to prevent common programming mistakes. SAL is
usually used in a way that is focused on the prevention of security vulnerabilities
(e.g. ensuring buffer lengths are passed with buffers).

A simple introduction is provided in link (b) above.

Example:

void FillString(__out_ecount(cchBuf) TCHAR* buf, size_t cchBuf,
char ch);

The annotation (in bold) informs the compiler as to the relationship between the
parameters buf and cchBuf. The compiler can therefore issue warnings on this
code:

TCHAR *b = (TCHAR*)malloc(200*sizeof(TCHAR));
FillString(b,210,'x');

Other relationships that SAL can describe include:

• In parameters vs. out parameters

• Optional parameters

• Buffer sizes and counts

• Pointers to buffers of a certain size

• Required return value checks

8. __unaligned (http://msdn2.microsoft.com/en-us/library/ms253978(VS.80).aspx)

Used to declare data as unaligned. This can be useful on architectures where
code generation must be done specially for unaligned data.

