
Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

C Language Constructs for Parallel
Programming

Robert Geva

10/23/12 1

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Today’s objective

• Present a proposal for addition of language
constructs for parallel programming to C

• Get feedback:
–  Is there an interest in adding parallel programming to C?
– Possible next steps

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Parallel Programming Required for Current HW

Vectors
Array Notation

Vector loops

Tasks
Multiple

cores

SIMD
instructions

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Virtually all computers today contain multiple cores
and vector instruction sets,
– Even mobile devices are rapidly catching up.

• Many-core architectures such as Intel’s MIC and
modern GPUs are being tapped for computation.

• It is more power efficient to use multiple compute
elements than to increase the clock rate of a single
element.

• These developments will continue/accelerate

Why Parallelism?

10/23/12 4

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Why Add Parallelism Constructs to C

• Parallel programming is Hard!
• Without standard support, parallel programming

often falls back on error-prone, ad-hoc protocols.
• Programming directly with threads often leads to

undesirable non-determinism

• Treads and locks are not composable: Combining
components introduces errors (e.g., deadlocks) or
performance problems (e.g., oversubscription).

• C is behind other languages: OpenMP, OpenCL etc

Multicore and vector parallelism technologies
have matured. It is time that we give C
programmers access to them.

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Parallelism versus Concurrency

Parallel computing
A form of computing in
which computations are
broken into many pieces
that are executed
simultaneously.

Concurrent computing
A form of computing in
which computations are
designed as collections of
interacting processes.

10/23/12 6

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Characteristics of the Proposal

1.  Standardize existing practices
–  Codify what users are actually doing

2.  Based on existing implementations
–  Intel compiler, GCC, similar concepts in other languages,

many years of Cilk research

3.  A composable tasking model

4.  Parallelism is not mandatory, can be turned off,
with serial equivalence

5.  Vector programming

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Cilk Plus

•  Easy to learn: 3 keywords
•  Tasks, not threads • Load balancing Parallel tasks

• Mitigate data races on non-local
variables Hyper Objects

• Data-parallel array operations
•  Targets SIMD, GPU Array notations

• Data-parallel function mapping
Elemental
Functions

•  Vectorization annotation for loops
•  Single threaded vector parallelism SIMD Loops

8 10/23/12 8

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

cilk_spawn and cilk_sync Keywords

#include	
 <cilk/cilk.h>	

int	
 tree_walk(node	
 *nodep)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (nodep-­‐>left)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 cilk_spawn	
 tree_walk(nodep-­‐>left);	

	
 	
 	
 	
 if	
 (nodep-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 cilk_spawn	
 tree_walk(nodep-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(nodep-­‐>value);	

	
 	
 	
 	
 cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

Call to f() can run in parallel
with recursive tree walks

Implicit sync at the end of every
function keeps code well structured

10/23/12 9

Asynchronous recursive
call to tree_wak

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Spawning is not Thread Creation

• Spawns and syncs describe the parallel structure of
the code.
– Code is processor oblivious: the number of cores is not

specified.
– Expressed parallelism usually exceeds actual parallelism

• A cilk_spawn gives the runtime permission to
continue in parallel.
– No new threads are created
– Low cost (5x to 10x cost of a function call)

• A cilk_sync is a local synchronization point
– No global barrier is implied
– Threads do not stall on a sync.

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

“Serialization” of Tree-walk Example

10/23/12 11

int	
 tree_walk(node	
 *n)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (n-­‐>left)	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 cilk_spawn	
 tree_walk(n-­‐>left);	

	
 	
 	
 	
 if	
 (n-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 cilk_spawn	
 tree_walk(n-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(n-­‐>value);	

	
 	
 	
 	
 cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

int	
 tree_walk(node	
 *n)	

{	

	
 	
 	
 	
 int	
 a	
 =	
 0,	
 b	
 =	
 0;	

	
 	
 	
 	
 if	
 (n-­‐>left)	

	
 	
 	
 	
 	
 	
 	
 	
 a	
 =	
 cilk_spawn	
 tree_walk(n-­‐>left);	

	
 	
 	
 	
 if	
 (n-­‐>right)	

	
 	
 	
 	
 	
 	
 	
 	
 b	
 =	
 cilk_spawn	
 tree_walk(n-­‐>right);	

	
 	
 	
 	
 int	
 c	
 =	
 f(n-­‐>value);	

	
 	
 	
 	
 cilk_sync;	

	
 	
 	
 	
 return	
 a	
 +	
 b	
 +	
 c;	

}	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Why Work Stealing?

• A work-stealing scheduler can be shown
mathematically to be within a factor of 2 of optimal,
for a program with sufficient parallelism.
–  In practice, it is usually very close to optimal.
– Gracefully handles control-flow and data divergence.
– Used by most modern parallel programming systems

• Intel® Cilk™ Plus implements lazy task creation
– Scheduler performs parent stealing, not child stealing
– Serial semantics, even when using futures or the like.
– Deterministic memory use

• Any C++ parallel extension should support (though
not necessarily require) a work stealing scheduler
that uses lazy task creation.

10/23/12 12

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

cilk_for Loop

cilk_for	
 (int	
 i	
 =	
 start;	
 i	
 <	
 finish;	
 i	
 +=	
 stride)	

	
 	
 	
 	
 {	
 /*	
 Body of loop uses i	
 */	
 }	

f();	

The	
 loops	
 has	
 to	
 be	
 a	
 countable	
 loop	

Multiple	
 linear	
 increments	
 allowed	

Iterations can
execute in parallel.

All iterations complete
before f() execute

•  A high-quality implementation will use dynamic
load-balancing for unbalanced iterations.

•  Iterations are independent -- compiler can apply
data-parallel optimizations such as vectorization.

10/23/12 13

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Reducer Hyperobjects

•  “Traditional” reduction on a parallel for loop:
long	
 a[sz];	

reducer_opadd<int>	
 sum	
 =	
 0;	

cilk_for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 sz;	
 ++i)	

	
 	
 	
 	
 sum	
 +=	
 a[i];	

• Generalized reduction for any code executing in parallel:
reducer_opadd<int>	
 sum	
 =	
 0;	

void	
 sum_tree(node*	
 nodep)	
 {	

	
 	
 if	
 (nodep-­‐>left)	
 cilk_spawn	
 sum_tree(nodep-­‐>left);	

	
 	
 if	
 (nodep-­‐>right)	
 cilk_spawn	
 sum_tree(nodep-­‐>right);	

	
 	
 sum	
 	
 +=	
 nodep-­‐>value;	

}	

Parallel accesses each
get their own “view”

10/23/12 14

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Cilk Plus

•  Easy to learn: 3 keywords
•  Tasks, not threads • Load balancing Parallel tasks

• Mitigate data races on non-local
variables Hyper Objects

• Data-parallel array operations
•  Targets SIMD, GPU Array notations

• Data-parallel function mapping
Elemental
Functions

•  Vectorization annotation for loops
•  Single threaded vector parallelism SIMD Loops

15 10/23/12 15

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Significance of vectorization - RTM stencil

1	
 2	
 4	
 8	
 16	
 32	
 64	

Cilk	
 65.64	
 33.18	
 16.83	
 9.13	
 13.17	
 5.04	
 5.76	

Cilk+vec	
 12.96	
 6.4	
 3.38	
 2.06	
 2.23	
 1.56	
 1.73	

OpenCL	
 17.72	
 9.5	
 4.73	
 2.51	
 2.84	
 1.65	
 1.89	

TBB	
 74.66	
 32.93	
 16.91	
 8.88	
 12.42	
 6.26	
 6.29	

TBB+	

vec	
 17.49	
 8.64	
 4.38	
 2.29	
 2.78	
 1.81	
 2.09	

• In both Cilk+vec and TBB+vec, significant speed up
over tasking alone, at all thread counts

• Without vectorizaiton, OpenCL (SPMD model) wins
over C/C++

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

And now with pictures

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	
 2	
 4	
 8	
 16	
 32	
 64	

Cilk	

Cilk+Cean	

OpenCL	

TBB	

TBB+SIMD	

0	

1	

2	

3	

4	

5	

6	

7	

T1	
 T2	
 T4	
 T8	
 T16	
 T32	
 T64	

vect/cilk	

vect/tbb	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Significance of vectorization – Track Fitting

Vector level parallelism provides significant
improvement over thread level parallelism

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Array Notations

• Concise data-parallel notation encourages effective
exploitation of vectors

• The [:] operator delineates an array section:
array-expression[lower-bound : length : stride]

• Each argument to [:] may be omitted:
– Default lower-bound is 0
– Default length is the length of the array (if known)
– Default stride is 1 (second colon may be omitted)

• Array sections can be used with unary and binary
operators for element-by-element computation:
a[10:count]	
 =	
 b[0:count]	
 +	
 c[0:count:2];	

• Intrinsic functions operate on entire array sections

10/23/12 19

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Array Notation Example

• Serial Example
float	
 dot_product(unsigned	
 int	
 sz,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 A[],	
 float	
 B[])	
 {	

	
 	
 	
 	
 float	
 dp=0.0f;	

	
 	
 	
 	
 for	
 (int	
 i=0;	
 i<size;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 dp	
 +=	
 A[i]	
 *	
 B[i];	

	
 	
 	
 	
 return	
 dp;	

}	

• Array Notation Version
float	
 dot_product(unsigned	
 int	
 sz,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 A[],	
 float	
 B[])	
 {	

	
 	
 	
 	
 return	
 __sec_reduce_add(A[0:sz]	
 *	
 B[0:sz]);	

}	

Array
Section

Element-wise
multiplication

Intrinsic reduction

10/23/12 20

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Rank and Shape

• An array section doesn't have a new kind of type
–  the type of an array section is exactly that of the analogous

subscript expression.
– Additionally, an array section has rank and shape.

• A section implicitly iterates over some elements of
an array.
– Rank is the number of levels of loop nesting (i.e.

dimensions) in the iteration space.
– Shape is a (mathematical) vector of lengths. (The rank is

the same as the length of the shape vector.)

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Rank and Shape (continued)

• The rank of an expression is determined statically.
In general the shape of a section is determined
dynamically.

Expression	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Rank	
 	
 	
 	
 	
 	
 Shape	

a[0]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	

a[0:n]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 n	

a[0][i:10]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 10	

a[i:n][j:m]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 n×m	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Array Notations  Vector Operations

• Selection of array elements
–  “vector” refers to a 1D array. Current implementation is

does not allow [:] to be overloaded, e.g., for std::vector.

• Masked vector operations

A[:]	
 	
 	
 	
 	
 //	
 All of vector A
B[2:6]	
 	
 	
 //	
 Elements 2 to 7 of vector B
C[:][5]	
 	
 //	
 Column 5 of matrix C
D[0:3:2]	
 //	
 Elements 0,2,4 of vector D

if	
 (a[:]	
 >	
 b[:])	
 {	
 	
 	
 	
 	
 	
 	
 //	
 Create a (logical) bit-mask, M
	
 	
 	
 	
 c[:]	
 =	
 d[:]	
 *	
 e[:];	
 	
 //	
 For elements where M contains 1
}	
 else	
 {	

	
 	
 	
 	
 c[:]	
 =	
 d[:]	
 *	
 2;	
 	
 	
 	
 	
 //	
 For elements where M contains 0	

}	

Array x scalar operation

10/23/12 23

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Elemental Functions

• A general construct to express data parallelism:
– Write a function to describe the operation on a single element
–  Invoke the function across a parallel data structure (arrays)
–  Implementation: A high-quality compiler vectorizes across

consecutive invocations of the function

• Polymorphic: a vectorizing compiler may create both
array and scalar versions of the function.

• Function parameters can be varying, uniform, linear	

–  Allows mapping to the most efficient load/store available.
–  Allows optimization of address computations.

• Authoring the function is independent of its invocation
–  The function can invoked on scalars, within serial for or

cilk_for loops, using array notation, etc..

10/23/12 24

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Elemental Functions - Example

• Defining an elemental function:
__declspec	
 (vector)	
 double	
 option_price_call_black_scholes(

	
 	
 	
 	
 double	
 S,	
 double	
 K,	
 double	
 r,	
 double	
 sigma,	
 double	
 time)	

{	

	
 	
 	
 	
 double	
 time_sqrt	
 =	
 sqrt(time);	

	
 	
 	
 	
 double	
 d1	
 =	
 (log(S/K)+r*time)/(sigma*time_sqrt)	
 +	

	
 	
 	
 	
 	
 	
 	
 	
 0.5*sigma*time_sqrt;	

	
 	
 	
 	
 double	
 d2	
 =	
 d1-­‐(sigma*time_sqrt);	

	
 	
 	
 	
 return	
 S*N(d1)	
 -­‐	
 K*exp(-­‐r*time)*N(d2);	

}	

• Invoking the elemental function:
//	
 The	
 following	
 loop	
 can	
 also	
 use	
 cilk_for	

for	
 (int	
 i=0;	
 i<NUM_OPTIONS;	
 i++)	

	
 	
 	
 	
 call[i]	
 =	
 option_price_call_black_scholes(S[i],	
 K[i],	
 r,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 sigma,	
 time[i]);	

Compiler can break
data into SIMD
vectors and call
function on each

vector

10/23/12 25

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Vector loops

• Loop annotation informs the compiler that
vectorized loop will have same semantics as serial
loop:
void	
 f(float	
 *a,	
 const	
 float	
 *b,	
 const	
 int	
 *e,	
 int	
 n)	

{	

	
 	
 	
 	
 simd_for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 n;	
 ++i)	

	
 	
 	
 	
 	
 	
 	
 	
 a[i]	
 =	
 2	
 *	
 b[e[i]];	

}	

• The loop has to be countable
• Multiple linear increments allowed
• Semantics: relaxed order of evaluation to allow

vectorization
– But vectorization is not mandatory

Potential aliasing and
loop-carried

dependencies would
thwart auto-vectorization

10/23/12 26

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Vector Loops vs. Parallel Loops

• Both are countable
• Parallel loops

–  are multi threaded
–  Iterations can execute in any order
–  Admit synchronization (e.g. critical sections)
– No data dependence

• Vector Loops
–  Are single threaded
–  Allow forward data dependence
– No synchronization

• Prevalent use case: manage parallelism at the outer
level, vectorize at the inner level
–  in a deep loop hierarchy
– Divide and conquer algorithms

28

29

30

One word change to sequential version
Compiler support hides complexity

cilk_for (int i = 0; i < max_row; i++){
 for (int j = 0; j < max_col; j++) {
 p[i][j] = mandel(complex(scale(i), scale(j)), depth);
 }
}

int mandel(complex c, int max_count) {
 int count = 0; complex z = 0;
 for (int i = 0; i < max_count; ++i) {
 if (abs(z) >= 2.0) break;
 z = z*z + c; count++;
 }
 return count;
}

30

31

Split range...

.. recursively...

...until ≤
grainsize.

cilk_for recursively divides a loop into tasks
31

32

simd_for	
 <chunk=N>	
 (init	
 ;	
 compare;	
 increment-­‐list)	
 statement	

33

34

simd_for (i=0; i<n; i++) {
 S1;
 S2;
 S3;
 S4;
}

S1(0)

S2(0)

S3(0)

S4(0)

S1(1)

S2(1)

S3(1)

S4(1)

S1(2)

S2(2)

S3(2)

S4(2)

S1(3)

S2(3)

S3(3)

S4(3)

S1(4)

S2(4)

S3(4)

S4(4)

 Parallel execution
 No colored dependences allowed

 Vector execution
 Red dependence not allowed (backward)
 Green dependence allowed (forward)
 Refinement with explicit chunk size

  Red dependence allowed if dependence distance is >= chunk

Stencils	

• For	
 a	
 given	
 point,	
 a	
 stencil	
 is	
 a	

fixed	
 subset	
 of	
 nearby	
 neighbors.	

• A	
 stencil	
 code	
 updates	
 every	

point	
 in	
 an	
 d-­‐dimensional	
 spaSal	

grid	
 at	
 Sme	
 t	
 as	
 a	
 funcSon	
 of	

nearby	
 grid	
 points	
 at	
 Smes	
 t–1,	

t–2,	
 …,	
 t–k.	

• Stencils	
 are	
 used	
 in	
 iteraSve	
 PDE	

solvers	
 such	
 as	
 Jacobi,	
 mulSgrid,	

and	
 AMR,	
 as	
 well	
 as	
 for	
 image	

processing	
 and	
 geometric	

modeling.	

35	

x

t

Looping	
 ImplementaSon	

A	
 nested	
 loop	
 implementaSon	
 is	
 straigh[orward:	

for (t = 1; t≤T, ++t) {
 for (i0 = 0, i0<n0, ++i0) {
 for (i1 = 0, i1<n1, ++i1) {
 for (i2 = 0, i2<n2, ++i2) {
 〈〈 update A[t%k,i0,i1,i2] according to stencil 〉〉
} } } }

Conven&onal	
 Op&miza&on:	
 Loop	
 Tiling	

36	

Issues	
 in	
 Looping	
 ImplementaSon	

Issue:	
 	
 Looping	
 is	
 memory	
 intensive,	
 especially	
 for	

parallel	
 implementaSons,	
 and	
 it	
 uses	
 caches	
 poorly.	

Assuming	
 data-­‐set	
 size	
 N,	
 cache-­‐block	
 size	
 B,	
 cache	
 size	

M	
 <	
 N,	
 the	
 number	
 of	
 cache	
 misses	
 is	
 Θ(N/B) . 	

37	

t

x B
M

N

Cache-­‐Oblivious	
 Algorithms	

x	

t	

Divide-­‐and-­‐conquer	
 cache-­‐oblivious	
 techniques,	
 based	
 on	

trapezoidal	
 decomposi0ons	
 are	
 known	
 to	
 be	
 effecSve.	
 	

DnC	
 is	
 a	
 recursive	
 algorithm	
 that	
 cuts	
 the	
 grid	

The	
 recursion	
 is	
 parallelized	

The	
 base	
 case	
 is	
 the	
 original	
 loop.	

It	
 should	
 also	
 be	
 vectorized.	
 It	
 cannot	
 be	
 a	
 parallel	
 loop.	

x	

t	

38	

No 1:1 correspondence between source
code and vector code

int	
 A[1000];	
 double	
 B[1000];	

void	
 foo(int	
 n){	

	
 	
 int	
 i;	

	
 	
 simd_for	
 (i=0;	
 i<n;	
 i++){	

	
 	
 	
 	
 B[i]	
 +=	
 ABS(A[i]);	

	
 	
 }	

}	

vpabsd	
 	
 	
 	
 xmm0,	
 [A+r9+rax*4]	

vcvtdq2pd	
 ymm1,	
 xmm0	

vaddpd	
 	
 	
 	
 ymm2,	
 ymm1,	
 [B+r9+rax*8]	

vmovupd	
 	
 	
 [B+r9+rax*8],	
 ymm2	

add	
 	
 	
 	
 	
 	
 	
 rax,	
 4	

cmp	
 	
 	
 	
 	
 	
 	
 rax,	
 rcx	

jb	
 	
 	
 	
 	
 	
 	
 	
 .B1.4	

movq	
 	
 	
 	
 	
 	
 xmm1,	
 [A+r9+rax*4]	

pxor	
 	
 	
 	
 	
 	
 xmm0,	
 xmm0	

pcmpgtd	
 	
 	
 xmm0,	
 xmm1	

pxor	
 	
 	
 	
 	
 	
 xmm1,	
 xmm0	

psubd	
 	
 	
 	
 	
 xmm1,	
 xmm0	

cvtdq2pd	
 	
 xmm2,	
 xmm1	

addpd	
 	
 	
 	
 	
 xmm2,	
 [B+r9+rax*8]	

movaps	
 	
 	
 	
 [B+r9+rax*8],	
 xmm2	

add	
 	
 	
 	
 	
 	
 	
 rax,	
 2	

cmp	
 	
 	
 	
 	
 	
 	
 rax,	
 rcx	

jb	
 	
 	
 	
 	
 	
 	
 	
 .B1.4	

-­‐SSE2	

AVX	

ABS
sequence

4 elements

2 elements

movq xmm0, [A+r9+rax*4]
pabsd xmm1, xmm0
cvtdq2pd xmm2, xmm1
addpd xmm2, [B+r9+rax*8]
movaps [B+r9+rax*8], xmm2
add rax, 2
cmp rax, rcx
jb .B1.4

ABS
instruction

2 elements

Outer Loop Example: Mandelbrot

40	
 10/23/12	

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Cilk™ Plus Implementation Experience

• Current features available in Intel compiler
– For CPU, Many integrated cores (MIC), and integrated GPU
– Run-time library is open source

• Partial implementation in Gnu compiler – ongoing
• At least three approaches have been used

successfully for the work-stealing cactus stack
– Heap-based (Cilk 5 from MIT, Cilk++ from Cilk Arts)
– Multiple stacks (Intel® Cilk™ Plus)
– Per-core memory-mapped stacks (Cilk M from MIT)

• Specification for Intel® Cilk™ Plus is available at:
http://software.intel.com/en-us/articles/intel-cilk-
plus-specification/

10/23/12 41

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. 10/23/12 42

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization Notice

10/23/12 43

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that
optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD
instruction sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler
options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for
Intel microprocessors. For a detailed description of Intel compiler options, including the instruction sets and
specific microprocessors they implicate, please refer to the “Intel® Compiler User and Reference Guides” under
“Compiler Options." Many library routines that are part of Intel® compiler products are more highly optimized
for Intel microprocessors than for other microprocessors. While the compilers and libraries in Intel® compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending on the options
you select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same
degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3
(Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers
and libraries to determine which best meet your requirements. We hope to win your business by striving to
offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101

Software & Services Group
Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Legal Disclaimer

10/23/12 44

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

