
© ISO/IEC 2013 – All rights reserved Working Group Draft – June 25, 2013

ISO/IEC JTC 1/SC 22/WG 14 N1724

Date: yyyy-mm-dd

Reference number of document: ISO/IEC TS 18661

Committee identification: ISO/IEC JTC 1/SC 22/WG 14 5

Secretariat: ANSI

Information Technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —
Part 2: Decimal floating-point arithmetic

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du logiciel 10
système — Extensions à virgule flottante pour C — Partie 2: décimal arithmétique flottante

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard. 15

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Specification
Document subtype:
Document stage: (20) Preparation
Document language: E

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

ii © ISO/IEC 2013 – All rights reserved

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the
reproduction of working drafts or committee drafts in any form for use by participants in the ISO
standards development process is permitted without prior permission from ISO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose 5
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56 CH-1211 Geneva 20 10
Tel. +41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. 15

Violators may be prosecuted.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved iii

Contents Page

Introduction.. v	

 Background.. v	

 IEC 60559 floating-point standard ... v	

 C support for IEC 60559... vi	
 5
 Purpose .. vii	

 Additional background on decimal floating-point arithmetic ... vii	

1	
 Scope ... 1	

2	
 Conformance ... 1	

3	
 Normative references ... 2	
 10

4	
 Terms and definitions... 2	

5	
 C standard conformance.. 2	

5.1	
 Freestanding implementations ... 2	

5.2	
 Predefined macros... 2	

5.3	
 Standard headers... 3	
 15

6	
 Decimal floating types .. 3	

7	
 Characteristics of decimal floating types <float.h>... 4	

8	
 Operation binding ... 8	

9	
 Conversions .. 9	

9.1	
 Conversions between decimal floating and integer types... 9	
 20
9.2	
 Conversions among decimal floating types, and between decimal floating and standard

floating types .. 10	

9.3	
 Conversions between decimal floating and complex types .. 10	

9.4	
 Usual arithmetic conversions ... 10	

9.5	
 Default argument promotion... 11	
 25

10	
 Constants... 11	

11	
 Arithmetic operations ... 12	

11.1	
 Operators .. 12	

11.2	
 Functions .. 12	

11.3	
 Conversions ... 13	
 30
11.4	
 Expression transformations ... 13	

12	
 Library .. 14	

12.1	
 Standard headers... 14	

12.2	
 Floating-point environment <fenv.h> .. 14	

12.3	
 Decimal mathematics <math.h> .. 16	
 35
12.4	
 New <math.h> functions .. 25	

12.4.1	
 Quantum and quantum exponent functions .. 25	

12.4.2	
 Decimal re-encoding functions ... 27	

12.5	
 Formatted input/output specifiers.. 28	

12.6	
 strtod32, strtod64, and strtod128 functions <stdlib.h> .. 30	
 40
12.7	
 wcstod32, wcstod64, and wcstod128 functions <wchar.h> .. 33	

12.8	
 strfromd32, strfromd64, and strfromd128 functions <stdlib.h> ... 35	

12.9	
 Type-generic macros <tgmath.h> .. 36	

Bibliography... 39	

 45

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

iv © ISO/IEC 2013 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been 5
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards 10
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18661 was prepared by Technical Committee ISO JTC 1, Information Technology, Subcommittee 15
SC 22, Programming languages, their environments, and system software interfaces.

ISO/IEC TS 18661 consists of the following parts, under the general title Floating-point extensions for C:

⎯ Part 1: Binary floating-point arithmetic

⎯ Part 2: Decimal floating-point arithmetic

⎯ Part 3: Interchange and extended types 20

⎯ Part 4: Supplemental functions

⎯ Part 5: Supplemental attributes

Part 1 updates ISO/IEC 9899:2011 (Information technology — Programming languages, their environments
and system software interfaces — Programming Language C), Annex F in particular, to support all required
features of ISO/IEC/IEEE 60559:2011 (Information technology — Microprocessor Systems — Floating-point 25
arithmetic).

Part 2 supersedes ISO/IEC TR 24732:2009 (Information technology – Programming languages, their
environments and system software interfaces – Extension for the programming language C to support decimal
floating-point arithmetic). 30

Parts 3-5 specify extensions to ISO/IEC 9899:2011 for features recommended in ISO/IEC/IEEE 60559:2011.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved v

Introduction

Background

IEC 60559 floating-point standard

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding diversity in
floating-point data representation and arithmetic, which made writing robust programs, debugging, and moving 5
programs between systems exceedingly difficult. Now the great majority of systems provide data formats and
arithmetic operations according to this standard. The IEC 60559:1989 international standard was equivalent to
the IEEE 754-1985 standard. Its stated goals were:

1 Facilitate movement of existing programs from diverse computers to those that adhere to this
standard. 10

2 Enhance the capabilities and safety available to programmers who, though not expert in
numerical methods, may well be attempting to produce numerically sophisticated programs.
However, we recognize that utility and safety are sometimes antagonists.

3 Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this 15
standard and possesses adequate capacity. When restricted to a declared subset of the
standard, these programs should produce identical results on all conforming systems.

4 Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions 20

c. Interval arithmetic at a reasonable cost

5 Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation 25

6 Enable rather than preclude further refinements and extensions.

To these ends, the standard specified a floating-point model comprising:

formats – for binary floating-point data, including representations for Not-a-Number (NaN) and signed
infinities and zeros

operations – basic arithmetic operations (addition, multiplication, etc.) on the format data to compose a 30
well-defined, closed arithmetic system (It also specified conversions between floating-point formats and
decimal character sequences, and a few auxiliary operations.)

context – status flags for detecting exceptional conditions (invalid operation, division by zero, overflow,
underflow, and inexact) and controls for choosing different rounding methods

The IEC 60559:2011 international standard is equivalent to the IEEE 754-2008 standard for floating-point 35
arithmetic, which is a major revision to IEEE 754-1985.

The revised standard specifies more formats, including decimal as well as binary. It adds a 128-bit binary
format to its basic formats. It defines extended formats for all of its basic formats. It specifies data interchange

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

vi © ISO/IEC 2013 – All rights reserved

formats (which may or may not be arithmetic), including a 16-bit binary format and an unbounded tower of
wider formats. To conform to the floating-point standard, an implementation must provide at least one of the
basic formats, along with the required operations.

The revised standard specifies more operations. New requirements include -- among others -- arithmetic
operations that round their result to a narrower format than the operands (with just one rounding), more 5
conversions with integer types, more classifications and comparisons, and more operations for managing
flags and modes. New recommendations include an extensive set of mathematical functions and seven
reduction functions for sums and scaled products.

The revised standard places more emphasis on reproducible results, which is reflected in its standardization
of more operations. For the most part, behaviors are completely specified. The standard requires conversions 10
between floating-point formats and decimal character sequences to be correctly rounded for at least three
more decimal digits than is required to distinguish all numbers in the widest supported binary format; it fully
specifies conversions involving any number of decimal digits. It recommends that transcendental functions be
correctly rounded.

The revised standard requires a way to specify a constant rounding direction for a static portion of code, with 15
details left to programming language standards. This feature potentially allows rounding control without
incurring the overhead of runtime access to a global (or thread) rounding mode.

Other features recommended by the revised standard include alternate methods for exception handling,
controls for expression evaluation (allowing or disallowing various optimizations), support for fully reproducible
results, and support for program debugging. 20

The revised standard, like its predecessor, defines it model of floating-point arithmetic in the abstract. It
neither defines the way in which operations are expressed (which might vary depending on the computer
language or other interface being used), nor does it define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context, except that it does define specific
encodings that are to be used for data that may be exchanged between different implementations that 25
conform to the specification.

IEC 60559 does not include bindings of its floating-point model for particular programming languages.
However, the revised standard does include guidance for programming language standards, in recognition of
the fact that features of the floating-point standard, even if well supported in the hardware, are not available to
users unless the programming language provides a commensurate level of support. The implementation’s 30
combination of both hardware and software determines conformance to the floating-point standard.

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a floating-
point number is specified in an abstract form where the constituent components (sign, exponent, significand)
of the representation are defined but not the internals of these components. In particular, the exponent range, 35
significand size, and the base (or radix) are implementation defined. This allows flexibility for an
implementation to take advantage of its underlying hardware architecture. Furthermore, certain behaviors of
operations are also implementation defined, for example in the area of handling of special numbers and in
exceptions.

The reason for this approach is historical. At the time when C was first standardized, before the floating-point 40
standard was established, there were various hardware implementations of floating-point arithmetic in
common use. Specifying the exact details of a representation would have made most of the existing
implementations at the time not conforming.

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative Annex F, introduced 45
nearly complete support for the IEC 60559:1989 standard for binary floating-point arithmetic. Also, C99’s
informative Annex G offered a specification of complex arithmetic that is compatible with IEC 60559:1989.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved vii

ISO/IEC 9899:2011 (C11) includes refinements to the C99 floating-point specification, though is still based on
IEC 60559:1989. C11 upgrades Annex G from “informative” to “conditionally normative”.

ISO/IEC Technical Report 24732:2009 introduced partial C support for the decimal floating-point arithmetic in
IEC 60559:2011. TR 24732, for which technical content was completed while IEEE 754-2008 was still in the
later stages of development, specifies decimal types based on IEC 60559:2011 decimal formats, though it 5
does not include all of the operations required by IEC 60559:2011.

Purpose

The purpose of this Technical Specification is to provide a C language binding for IEC 60559:2011, based on
the C11 standard, that delivers the goals of IEC 60559 to users and is feasible to implement. It is organized
into five Parts. 10

Part 1, this document, provides changes to C11 that cover all the requirements, plus some basic
recommendations, of IEC 60559:2011 for binary floating-point arithmetic. C implementations intending to
support IEC 60559:2011 are expected to conform to conditionally normative Annex F as enhanced by the
changes in Part 1.

Part 2 enhances TR 24732 to cover all the requirements, plus some basic recommendations, of IEC 15
60559:2011 for decimal floating-point arithmetic. C implementations intending to provide an extension for
decimal floating-point arithmetic supporting IEC 60559-2011 are expected to conform to Part 2.

Part 3 (Interchange and extended types), Part 4 (Supplementary functions), and Part 5 (Supplementary
attributes) cover recommended features of IEC 60559-2011. C implementations intending to provide
extensions for these features are expected to conform to the corresponding Parts. 20

Additional background on decimal floating-point arithmetic

Most of today's general-purpose computing architectures provide binary floating-point arithmetic in hardware.
Binary floating point is an efficient representation that minimizes memory use, and is simpler to implement
than floating-point arithmetic using other bases. It has therefore become the norm for scientific computations,
with almost all implementations following the IEEE 754 standard for binary floating-point arithmetic (and the 25
equivalent international ISO/IEC 60559 standard).

However, human computation and communication of numeric values almost always uses decimal arithmetic
and decimal notations. Laboratory notes, scientific papers, legal documents, business reports and financial
statements all record numeric values in decimal form. When numeric data are given to a program or are
displayed to a user, conversion between binary and decimal is required. There are inherent rounding errors 30
involved in such conversions; decimal fractions cannot, in general, be represented exactly by binary floating-
point values. These errors often cause usability and efficiency problems, depending on the application.

These problems are minor when the application domain accepts, or requires results to have, associated error
estimates (as is the case with scientific applications). However, in business and financial applications,
computations are either required to be exact (with no rounding errors) unless explicitly rounded, or be 35
supported by detailed analyses that are auditable to be correct. Such applications therefore have to take
special care in handling any rounding errors introduced by the computations.

The most efficient way to avoid conversion error is to use decimal arithmetic. Currently, the IBM z/Architecture
(and its predecessors since System/360) is a widely used system that supports built-in decimal arithmetic.
Prior to the IBM System z10 processor, however, this provided integer arithmetic only, meaning that every 40
number and computation has to have separate scale information preserved and computed in order to maintain
the required precision and value range. Such scaling is difficult to code and is error-prone; it affects execution
time significantly, and the resulting program is often difficult to maintain and enhance.

Even though the hardware may not provide decimal arithmetic operations, the support can still be emulated by
software. Programming languages used for business applications either have native decimal types (such as 45
PL/I, COBOL, REXX, C#, or Visual Basic) or provide decimal arithmetic libraries (such as the BigDecimal
class in Java). The arithmetic used in business applications, nowadays, is almost invariably decimal floating-

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

viii © ISO/IEC 2013 – All rights reserved

point; the COBOL 2002 ISO standard, for example, requires that all standard decimal arithmetic calculations
use 32-digit decimal floating-point.

The IEEE has recognized the importance of this. Decimal floating-point formats and arithmetic are major new
features in the IEEE 754:2008 standard and its international equivalent IEC 60559:2011.

WORKING DRAFT ISO/IEC/WD 18661

© ISO/IEC 2012 – All rights reserved 1

Information Technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C — Part 2: Decimal floating-point arithmetic

1 Scope 5

This document, Part 2 of ISO/IEC Technical Specification 18661, extends programming language C, as
specified in IEC 9899:2011 (C11), to support decimal floating-point arithmetic conforming to ISO/IEC/IEEE
60559:2011. It covers all requirements of IEC 60559 as they pertain to C decimal floating types.

This document supersedes ISO/IEC TR 24732:2009 (Information technology – Programming languages, their
environments and system software interfaces – Extension for the programming language C to support decimal 10
floating-point arithmetic).

This document does not cover binary floating-point arithmetic (which is covered in Part 1 of ISO/IEC TS
18661), nor most other optional features of IEC 60559.

2 Conformance

An implementation conforms to Part 2 of Technical Specification 18661 if all the following are true: 15

a) It meets the requirements for a conforming implementation of C11 with all the changes to C11
specified in Part 2 of Technical Specification 18661.

b) It meets the requirements of the following clauses of C11 Annex F as modified by the changes
specified in Parts 1 and 2 of Technical Specification 18661:	
 20

— F.2.1 Infinities and NaNs
— F.3 Operations (see clause 8 below)
— F.4 Floating to integer conversions
— F.6 The return statement 25
— F.7 Contracted expressions
— F.8 Floating-point environment
— F.9 Optimization
— F.10 Mathematics <math.h> (see clause 8 below)	

 30
For the purpose of specifying these conformance requirements, the macros, functions, and values
mentioned in the clauses listed above are understood to refer to the corresponding macros, functions,
and values defined in this document for decimal floating types. Likewise, the “rounding direction
mode” is understood to refer to the rounding direction mode for decimal floating-point arithmetic.
 35

c) It defines __STDC_IEC_60559_DFP__ to 201ymmL.	

NOTE Conformance to Part 2 of Technical Specification 18661 does not include all the requirements of Part
1. An implementation may conform to either or both of Parts 1 and 2.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

2 © ISO/IEC 2013 – All rights reserved

3 Normative references

The following referenced documents are indispensable for the application of this document. Only the editions
cited apply.

ISO/IEC 9899:2011, Information technology — Programming languages, their environments and system
software interfaces — Programming Language C 5

ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point arithmetic
(with identical content to IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 2008)

ISO/IEC TS 18661-1:yyyy, Information technology – Programming languages, their environments and system 10
software interfaces – Floating-point extension for C – Part 1: Binary floating-point arithmetic

4 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2011 and ISO/IEC/IEEE
60559:2011 and the following apply.

4.1 15
C11
standard ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C, including Technical Corrigendum 1 (ISO/IEC
9899:2011/Cor. 1:2012)

5 C standard conformance 20

5.1 Freestanding implementations

The following change to C11 expands the conformance requirements for freestanding implements so that they
might conform to this Part of Technical Specification18661

Change to C11:

Append to the third sentence of 4#6: 25

The strictly conforming programs that shall be accepted by a conforming freestanding implementation
that defines __STDC_IEC_60559_DFP__ may also use features in the contents of the standard
headers <fenv.h> and <math.h> and the numeric conversion functions (7.22.1) of the standard
header <stdlib.h>.

5.2 Predefined macros 30

The following change to C11 replaces __STDC_DEC_FP__, the conformance macro for decimal floating-point
arithmetic specified in TR 24732, with __STDC_IEC_60559_DFP__, for consistency with the conformance
macro for Part 1 of Technical Specification 18661. Note that an implementation may continue to define
__STDC_DEC_FP__, so that programs that use __STDC_DEC_FP__ may remain valid under the changes in
Part 2 of Technical Specification 18661. 35

Change to C11:

In 6.10.8.3#1, add:

__STDC_IEC_60559_DFP__ The integer constant 201ymmL, intended to indicate support of
decimal floating-point arithmetic according to IEC 60559.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 3

5.3 Standard headers

The library functions, macros, and types defined in this Part of Technical Specification 18661 are defined by
their respective headers if the macro __STDC_WANT_IEC_18661_EXT2__ is defined at the point in the
source file where the appropriate header is first included.

6 Decimal floating types 5

This Part of Technical Specification 18661 introduces three decimal floating types, designated as
_Decimal32, _Decimal64 and _Decimal128. These types support the IEC60559 decimal formats:
decimal32, decimal64, and decimal128.

Within the type hierarchy, decimal floating types are basic types, real types and arithmetic types.

This part of Technical Specification 18661 introduces the term standard floating types to refer to the types 10
float, double, and long double, which are the floating types the C Standard requires unconditionally.

NOTE C does not specify a radix for float, double, and long double. An implementation can choose
the representation of float, double, and long double to be the same as the decimal floating types. In
any case, the decimal floating types are distinct from float, double, and long double regardless of the
representation. 15

NOTE This Part of Technical Specification 18661 does not define decimal complex types or decimal
imaginary types. The three complex types remain as float _Complex, double _Complex, and long
double _Complex, and the three imaginary types remain as float _Imaginary, double _Imaginary,
and long double _Imaginary.

Changes to C11: 20

Change the first sentence of 6.2.5#10 from:

[10] There are three real floating types, designated as float, double, and long double

to:

[10] There are three standard floating types, designated as float, double, and long double.

Add the following paragraphs after 6.2.5#10: 25

[10a] There are three decimal floating types, designated as _Decimal32, _Decimal64, and
_Decimal128. The set of values of the type _Decimal32 is a subset of the set of values of the type
_Decimal64; the set of values of the type _Decimal64 is a subset of the set of values of the type
_Decimal128. Decimal floating types are real floating types.

[10b] Together, the standard floating types and the decimal floating types comprise the real floating 30
types.

In 6.2.5#10a, attach a footnote to the wording:

The set of values of the type _Decimal32

where the footnote is:

*) The 32-bit format is a storage-only format in IEC 60559. 35

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

4 © ISO/IEC 2013 – All rights reserved

Add the following to 6.4.1 Keywords:

keyword:
_Decimal32
_Decimal64
_Decimal128 5

Add the following to 6.7.2 Type specifiers:

type-specifier:
_Decimal32
_Decimal64 10
_Decimal128

Add the following bullets in 6.7.2#2 Constraints:

— _Decimal32

— _Decimal64 15

— _Decimal128

Add the following after 6.7.2#3:

[3a] The type specifiers _Decimal32, _Decimal64, and _Decimal128 shall not be used if the
implementation does not support decimal floating types (see 6.10.8.3).

Add the following after 6.5#8: 20

[8a] Expressions involving decimal floating types are evaluated according to the semantics of IEC
60559, including production of results with the preferred quantum exponent as specified in IEC
60559.

7 Characteristics of decimal floating types <float.h>

IEC 60559 defines a general model for floating-point data, specifies formats (both binary and decimal) for the 25
data, and defines encodings for the formats.

The three decimal floating types correspond to decimal formats defined in IEC 60559 as follows:

⎯ _Decimal32 is a decimal32 format, which is encoded in 32 bits

⎯ _Decimal64 is a decimal64 format, which is encoded in 64 bits

⎯ _Decimal128 is a decimal128 format, which is encoded in 128 bits 30

The value of a finite number is given by (−1)sign x significand x 10exponent. Refer to IEC 60559 for details of the
format.

These formats are characterized by the length of the significand and the maximum exponent. Note that, for
decimal IEC 60559 decimal formats, trailing zeros in the significand are significant; i.e., 1.0 is equal to but can
be distinguished from 1.00. Table 1 below shows these characteristics by type: 35

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 5

Table 1 – Format characteristics

Type _Decimal32 _Decimal64 _Decimal128
Significand length in digits 7 16 34
Maximum Exponent (Emax) 97 385 6145
Minimum Exponent (Emin) −94 −382 −6142

The maximum and minimum exponents in Table 1 are for floating-point numbers expressed with significands
less than 1, as in the C11 model (5.2.4.2.2). They differ (by 1) from the maximum and minimum exponents in
the IEC 60559 standard, where normalized floating-point numbers are expressed with one significant digit to 5
the left of the radix point.

If the macro __STDC_WANT_IEC_18661_EXT2__ is defined at the point in the source file where the header
<float.h> is first included, the header <float.h> shall define several macros that expand to various limits
and parameters of the decimal floating types. The names and meaning of these macros are similar to the
corresponding macros for standard floating types. 10

Change to C11:

Add the following after 5.2.4.2.2:

5.2.4.2.2a Characteristics of decimal floating types <float.h>

[1] Macros in <float.h> provide characteristics of floating types in terms of the model presented in
5.2.4.2.2. The prefixes DEC32_, DEC64_, and DEC128_ denote the types _Decimal32, 15
_Decimal64, and _Decimal128 respectively.

 [2] Except for assignment and casts, the values of operations with decimal floating operands and
values subject to the usual arithmetic conversions and of decimal floating constants are evaluated to
a format whose range and precision may be greater than required by the type. The use of evaluation
formats is characterized by the implementation-defined value of DEC_EVAL_METHOD: 20

−1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the type;

1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range and
precision of the _Decimal64 type, evaluate _Decimal128 operations and constants to the
range and precision of the _Decimal128 type; 25

2 evaluate all operations and constants to the range and precision of the _Decimal128 type.

[3] The integer values given in the following lists shall be replaced by constant expressions suitable
for use in #if preprocessing directives:

• radix of exponent representation, b(=10)
 30
For the standard floating-point types, this value is implementation-defined and is specified by
the macro FLT_RADIX. For the decimal floating-point types there is no corresponding macro,
since the value 10 is an inherent property of the types. Wherever FLT_RADIX appears in a
description of a function that has versions that operate on decimal floating-point types, it is
noted that for the decimal floating-point versions the value used is implicitly 10, rather than 35
FLT_RADIX.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

6 © ISO/IEC 2013 – All rights reserved

• number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34 5

• minimum exponent

DEC32_MIN_EXP -94
DEC64_MIN_EXP -382 10
DEC128_MIN_EXP -6142

• maximum exponent

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385 15
DEC128_MAX_EXP 6145

• maximum representable finite decimal floating number (there are 6, 15 and 33 9's after the
decimal points respectively)
 20
DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

• the difference between 1 and the least value greater than 1 that is representable in the given 25

floating-point type

DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL 30

• minimum normalized positive decimal floating number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD 35
DEC128_MIN 1E-6143DL

• minimum positive subnormal decimal floating number

DEC32_TRUE_MIN 0.000001E-95DF 40
DEC62_TRUE_MIN 0.000000000000001E-383DD
DEC128_TRUE_MIN 0.000000000000000000000000000000001E-6143DL

[4] For decimal floating-point arithmetic, it is often convenient to consider an alternate equivalent
model where the significand is represented with integer rather than fraction digits: a floating-point 45
number (x) is defined by the model

where s, b, e, p, and fk are as defined in 5.2.4.2.2, and b = 10.

[5] The term quantum exponent refers to q = e − p and coefficient to c = f1f2...fp, an integer between 0
and bp − 1 inclusive. Thus, x = s * c * bq is represented by the triple of integers (s, c, q). The term 50
quantum refers to the value of a unit in the last place of the coefficient. Thus, the quantum of x is bq.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 7

Table 2 – Quantum exponent ranges

Type _Decimal32 _Decimal64 _Decimal128
Maximum Quantum Exponent (qmax) 90 369 6111
Minimum Quantum Exponent (qmin) −101 −398 −6176

[6] For binary floating-point arithmetic following IEC 60559, representations in the model described in
5.2.4.2.2 that have the same numerical value are indistinguishable in the arithmetic. However, for
decimal floating-point arithmetic, representations that have the same numerical value but different 5
quantum exponents, e.g., (1, 10, −1) representing 1.0 and (1, 100, −2) representing 1.00 are
distinguishable. To facilitate exact fixed-point calculation, operation results that are of decimal floating
type have a preferred quantum exponent, as specified in IEC 60559, which is determined by the
quantum exponents of the operands if they have decimal floating types (or by specific rules for
conversions from other types). Table 3 below gives rules for determining preferred quantum 10
exponents for results of IEC 60559 operations, and for other operations specified in this document.
When exact, these operations produce a result with their preferred quantum exponent, or as close to
it as possible within the limitations of the type. When inexact, these operations produce a result with
the least possible quantum exponent. For example, the preferred quantum exponent for addition is
the minimum of the quantum exponents of the operands. Hence (1, 123, −2) + (1, 4000, −3) = (1, 15
5230, −3) or 1.23 + 4.000 = 5.230.

[7] Table 3 shows, for each operation, how the preferred quantum exponents (5.2.4.2.2a) of the
operands, Q(x), Q(y), etc., determine the preferred quantum exponent of the operation result.

Table 3 – Preferred quantum exponents

Operation Preferred quantum exponent of result
roundeven, round, trunc, ceil, floor,
rint, nearbyint

max(Q(x),0)

nextup, nextdown, nextafter, nexttoward least possible
remainder min(Q(x),Q(y))
fmin, fmax, fminmag, fmaxmag Q(x) if x gives the result,

Q(y) if y gives the result
scalbn, scalbln, ldexp Q(x)+y
logb 0
+, fadd, faddl, daddl min(Q(x),Q(y))
-, fsub, fsubl, dsubl min(Q(x),Q(y))
*, fmul, fmull, dmull Q(x)+Q(y)
/, fdiv, fdivl, ddivl Q(x)−Q(y)
sqrt, fsqrt, fsqrtl, dsqrtl floor(Q(x)/2)
fma, ffma, ffmal, dfmal min(Q(x)+Q(y),Q(z))
conversion from integer type 0
exact conversion from non-decimal floating type 0
inexact conversion from non-decimal floating
type

least possible

conversion between decimal floating types Q(x)
canonicalize Q(x)
strtod, wcstod, scanf, decimal floating
constants

see 7.22.1.5

-(x) Q(x)
fabs Q(x)
copysign Q(x)

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

8 © ISO/IEC 2013 – All rights reserved

quantize Q(y)
quantum Q(x)
encodedec, decodedec, encodebin,
decodebin

Q(x)

fmod min(Q(x),Q(y))
fdim min((Q(x),Q(y)) if x>y,

0 if x≤y
cbrt floor(Q(x)/3)
hypot min(Q(x),Q(y))
pow floor(y×Q(x))
modf Q(value)
*iptr returned by modf max(Q(value),0)
frexp Q(value) if value=0,

− (length of coefficient of value) otherwise
*res returned by setpayload,
setpayloadsig

0 if pl does not represent a valid payload,
not applicable otherwise (NaN returned)

getpayload 0 if *x is a NaN,
unspecified otherwise

transcendental functions 0

8 Operation binding

Table 1 and subsequent text in F.3 as specified in Part 1 of Technical Specification 18661, with the further
change below, show how the C decimal operations specified in this document, Part 2 of Technical
Specification 18661, provide the operations required by IEC 60559 for decimal floating-point arithmetic. 5

Change to C11:

After F.3#9 (see Part 1 of Technical Specification 18661), append the following:

[10] Decimal versions of the C remquo function are not provided. (The C decimal remainder
functions provide the remainder operation defined by IEC 60559.)

[11] The C quantize functions (7.12.11.5) provide the quantize operation defined in IEC 60559 for 10
decimal floating-point arithmetic.

[12] The binding for the convertFormat operation applies to all conversions among IEC 60559
formats. Therefore, for implementations that conform to Annex F, conversions between decimal
floating types and standard floating types with IEC 60559 formats are correctly rounded and raise
floating-point exceptions as specified in IEC 60559. 15

[13] IEC 60559 specifies the convertFromHexCharacter and convertToHexCharacter operations only
for binary floating-point arithmetic.

[14] The C integer constant 10 provides the radix operation defined in IEC 60559 for decimal
floating-point arithmetic.

[15] The C samequantum functions (7.12.11.6) provide the sameQuantum operation defined in IEC 20
60559 for decimal floating-point arithmetic.

[16] The C fe_dec_getround (7.6.3.3) and fe_dec_setround (7.6.3.4) functions provide the
getDecimalRoundingDirection and setDecimalRoundingDirection operations defined in IEC 60559 for
decimal floating-point arithmetic.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 9

[17] The C quantum (7.12.11.7) and llquantexp (7.12.11.8) functions compute the quantum and
the (quantum) exponent q defined in IEC 60559 for decimal numbers viewed as having integer
significands.

[18] The C encodedec (7.12.11.9) and decodedec (7.12.11.10) functions provide the
encodeDecimal and decodeDecimal operations defined in IEC 60559 for decimal floating-point 5
arithmetic.

[19] The C encodebin (7.12.11.11) and decodebin (7.12.11.12) functions provide the
encodeBinary and decodeBinary operations defined in IEC 60559 for decimal floating-point
arithmetic.

9 Conversions 10

9.1 Conversions between decimal floating and integer types

For conversions between real floating and integer types, C11 6.3.1.4 leaves the behavior undefined if the
conversion result cannot be represented (Annex F.3 and F.4 define the behavior). To help writing portable
code, this Part of Technical Specification 18661 provides defined behavior for decimal floating types.

Changes to C11: 15

Change the first sentence of 6.3.1.4#1 from:

[1] When a finite value of real floating type is converted to an integer type …

to:

[1] When a finite value of standard floating type is converted to an integer type …

Add the follow paragraph after 6.3.1.4#1: 20

[1a] When a finite value of decimal floating type is converted to an integer type other than _Bool, the
fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral part
cannot be represented by the integer type, the “invalid” floating-point exception shall be raised and
the result of the conversion is unspecified.

Change the first sentence of 6.3.1.4#2 from: 25

[2] When a value of integer type is converted to a real floating type, …

to:

[2] When a value of integer type is converted to a standard floating type, …

Add the following paragraph after 6.3.1.4#2:

[2a] When a value of integer type is converted to a decimal floating type, if the value being converted 30
can be represented exactly in the new type, it is unchanged. If the value being converted cannot be
represented exactly, the result shall be correctly rounded with exceptions raised as specified in IEC
60559.

9.2 Conversions among decimal floating types, and between decimal floating and standard
floating types 35

The specification of conversions among decimal floating types is similar to the existing one for float,
double, and long double, except that when the result cannot be represented exactly, correct rounding is
required. Correct rounding is also required for conversions from standard to decimal floating types. Correct

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

10 © ISO/IEC 2013 – All rights reserved

rounding for conversions from decimal to standard floating types is required only in Annex F for standard
types conforming to IEC 60559.

Change to C11:

Replace 6.3.1.5#1:

[1] When a value of real floating type is converted to a real floating type, if the value being converted 5
can be represented exactly in the new type, it is unchanged. If the value being converted is in the
range of values that can be represented but cannot be represented exactly, the result is either the
nearest higher or nearest lower representable value, chosen in an implementation-defined manner. If
the value being converted is outside the range of values that can be represented, the behavior is
undefined. Results of some implicit conversions (6.3.1.8, 6.8.6.4) may be represented in greater 10
range and precision than that required by the new type.

with:

[1] When a value of real floating type is converted to a real floating type, if the value being converted
can be represented exactly in the new type, it is unchanged.

[2] When a value of real floating type is converted to a standard floating type, if the value being 15
converted is in the range of values that can be represented but cannot be represented exactly, the
result is either the nearest higher or nearest lower representable value, chosen in an implementation-
defined manner. If the value being converted is outside the range of values that can be represented,
the behavior is undefined.

[3] When a value of real floating type is converted to a decimal floating type, if the value being 20
converted cannot be represented exactly, the result is correctly rounded with exceptions raised as
specified in IEC 60559

[4] Results of some implicit conversions (6.3.1.8, 6.8.6.4) may be represented in greater range and
precision than that required by the new type.

9.3 Conversions between decimal floating and complex types 25

This is covered by C11 6.3.1.7.

 9.4 Usual arithmetic conversions

In an application that is written using decimal floating-point arithmetic, mixed operations between decimal and
other real types are likely to occur only when interfacing with other languages, calling existing libraries written
for binary floating-point arithmetic, or accessing existing data. Determining the common type for mixed 30
operations is difficult because ranges overlap; therefore, mixed mode operations are not allowed and the
programmer must use explicit casts. Implicit conversions are allowed only for simple assignment, return
statement, and in argument passing involving prototyped functions.

Change to C11:

Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:" 35

If one operand has decimal floating type, all other operands shall not have standard floating, complex,
or imaginary type.

First, if the type of either operand is _Decimal128, the other operand is converted to _Decimal128.

Otherwise, if the type of either operand is _Decimal64, the other operand is converted to
_Decimal64. 40

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 11

Otherwise, if the type of either operand is _Decimal32, the other operand is converted to
_Decimal32.

If there are no decimal floating types in the operands:

First, if the corresponding real type of either operand is long double, the other operand is
converted, without ... <the rest of 6.3.1.8#1 remains the same> 5

 9.5 Default argument promotion

There is no default argument promotion specified for the decimal floating types. Default argument promotion
covered in C11 6.5.2.2 [6] and [7] remains unchanged, and applies to standard floating types only.

10 Constants

New suffixes are added to denote decimal floating constants: DF for _Decimal32, DD for _Decimal64, and 10
DL for _Decimal128.

This specification does not carry forward two features introduced in TR 24732: the
FLOAT_CONST_DECIMAL64 pragma and the d and D suffixes for floating constants. The pragma changed the
interpretation of unsuffixed floating constants between double and _Decimal46. The suffixes provided a
way to designate double floating constants so that the pragma would not affect them. The pragma is not 15
included because of its potential for inadvertently reinterpreting constants. Without the pragma, the suffixes
are no longer needed. Also, significant implementations use the d and D suffixes for other purposes.

Changes to C11:

Change floating-suffix in 6.4.4.2 from:

 floating-suffix: one of 20
f l F L

to:

floating-suffix: one of
f l F L df dd dl DF DD DL

Add the following paragraph after 6.4.4.2#2: 25

 [2a] Constraints

A floating-suffix df, dd, dl, DF, DD, or DL shall not be used in a hexadecimal-floating-constant.

Add the following paragraph after 6.4.4.2#4:

[4a] If a floating constant is suffixed by df or DF, it has type _Decimal32. If suffixed by dd or DD, it
has type _Decimal64. If suffixed by dl or DL, it has type _Decimal128. 30

Add the following paragraph after 6.4.4.2#5:

[5a] Decimal floating-point constants that have the same numerical value but different quantum
exponents have distinguishable internal representations. The quantum exponent is specified to be the
same as for the corresponding strtod32, strtod64, or strtod128 function for the same numeric
string. 35

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

12 © ISO/IEC 2013 – All rights reserved

11 Arithmetic operations

11.1 Operators

The operators Add (C11 6.5.6), Subtract (C11 6.5.6), Multiply (C11 6.5.5), Divide (C11 6.5.5), Relational
operators (C11 6.5.8), Equality operators (C11 6.5.9), Unary Arithmetic operators (C11 6.5.3.3), and
Compound Assignment operators (C11 6.5.16.2) when applied to decimal floating type operands shall follow 5
the semantics as defined in IEC 60559.

Changes to C11:

Add the following after 6.5.5#2:

[2a] If either operand has decimal floating type, the other operand shall not have standard floating
type, complex type, nor imaginary type. 10

Add the following after 6.5.6#3:

[3a] If either operand has decimal floating type, the other operand shall not have standard floating
type, complex type, nor imaginary type.

Add the following after 6.5.8#2:

[2a] If either operand has decimal floating type, the other operand shall not have standard floating 15
type.

Add the following after 6.5.9#2:

[2a] If either operand has decimal floating type, the other operand shall not have standard floating
type, complex type, nor imaginary type.

Add the following bullet to 6.5.15#3: 20

— one operand has decimal floating type, and the other has arithmetic type other than standard
floating type, complex type, and imaginary type;

Add the following after 6.5.16.2#2:

[2a] If either operand has decimal floating type, the other operand shall not have standard floating
type, complex type, nor imaginary type. 25

11.2 Functions

The headers and library supply a number of functions and macros that implement support for decimal floating-
point arithmetic with the semantics specified in IEC 60559, including producing results with the preferred
quantum exponent where appropriate. That support is provided by the following:

From C11 <math.h>, with changes in Part 1 of Technical Specification 18661, the decimal floating-point 30
versions of:

sqrt, fma, fabs, fmax, fmin, ceil, floor, trunc, round, rint, lround, llround, ldexp,
frexp, ilogb, logb, scalbn, scalbln, copysign, remainder, isnan, isinf, isfinite,
isnormal, signbit, fpclassify, isunordered, isgreater, isgreaterequal, isless,
islessequal and islessgreater. 35

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 13

From the <math.h> extensions specified in Part 1 of Technical Specification 18661, the decimal floating-point
versions of:

roundeven, nextup, nextdown, fminmag, fmaxmag, llogb, fadd, faddl, daddl, fsub, fsubl,
dsubl, fmul, fmull, dmull, fdiv, fdivl, ddivl, fsqrt, fsqrtl, dsqrtl, ffma,
ffmal, dfmal, fromfp, ufromfp, fromfpx, ufromfpx, canonicalize, iseqsig, 5
issignaling, issubnormal, iscanonical, iszero, totalorder, totalordermag,
getpayload, setpayload, and setpayloadsig.

The <math.h> extensions specified below in 12.4 for the decimal-specific functions:

quantize, samequantum, quantum, llquantexp, encodedec, decodedec, encodebin, and
decodebin. 10

From C11 <fenv.h>, facilities dealing with decimal context:

feraiseexcept, feclearexcept, fetestexcept, fesetexceptflag, fegetexceptflag,
fesetenv, fegetenv, feupdateenv, and feholdexcept.

From <fenv.h> extensions specified in this Part of Technical Specification 18661, facilities dealing with
decimal context: 15

fe_dec_getround and fe_dec_setround.

From the <fenv.h> extensions specified in Part 1 of Technical Specification 18661, facilities dealing with
decimal context:

fetestexceptflag, fesetexcept, fegetmode, and fesetmode.

From <stdio.h>, decimal floating-point modified format specifiers for: 20

The printf/scanf family of functions.

From <stdlib.h> and <wchar.h>, with changes in Part 1 of Technical Specification 18661, the decimal
floating-point versions of:

strtod and wcstod.

From the <stdlib.h> extensions specified in Part 1 of Technical Specification 18661, the decimal floating-25
point versions of:

strfromd.

From <wchar.h>, decimal floating-point modified format specifiers for:

The wprintf/wscanf family of functions.

11.3 Conversions 30

Conversions between different floating types and conversions to and from integer types are covered in clause
9.

11.4 Expression transformations

The following changes to C11 alert implementors that some expression transformations must be avoided in
order to preserve the quantum exponent (7) of decimal floating-point numbers. 35

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

14 © ISO/IEC 2013 – All rights reserved

Changes to C11:

In F.9.2, insert at the beginning:

[0a] Valid expression transformations must preserve values.

[0b] The equivalences noted below apply to expressions of standard floating types.

[1] … 5

In F.9.2, append:

[2] For expressions of decimal floating types, transformations must preserve quantum exponents, as
well as numerical, infinity, and NaN values (5.4.2.2a).

[3] EXAMPLE: 1. × x -> x is valid for decimal floating-point expressions x, but 1.0 × x -> x is not:

1. × 12.34 = (1, 1, 0) x (1, 1234, −2) = (1, 1234, −2) = 12.34 10

1.0 × 12.34 = (1, 10, −1) x (1, 1234, −2) = (1, 12340, −3) = 12.340

The results are numerically equal, but have different quantum exponents, hence have different
values.

12 Library

12.1 Standard headers 15

The functions, macros, and types declared or defined in Clause 12 and its subclauses are only declared or
defined by their respective headers if the macro __STDC_WANT_IEC_18661_EXT2__ is defined at the point
in the source file where the appropriate header is first included.

12.2 Floating-point environment <fenv.h>

The floating-point environment specified in C11 7.6 applies to operations for both standard floating types and 20
decimal floating types. This is to implement the context defined in IEC 60559. The existing general C11
specification gives flexibility to an implementation on which part of the environment is accessible to programs.
Annex F requires support for all the rounding directions and exception flags (for operations for standard
floating types). This document requires support for all the rounding directions and exceptions flags for
operations for decimal floating types. 25

IEC 60559 requires separate rounding modes for binary and decimal floating-point operations. This document
requires a separate rounding mode for decimal floating-point operations if the standard floating types are not
decimal, and it allows the implementation to define whether the rounding modes are separate or the same if
the standard floating types are decimal.

Table 4 – Rounding mode macros 30

For decimal floating types For standard floating types IEC 60559
FE_DEC_TOWARDZERO FE_TOWARDZERO Toward zero
FE_DEC_TONEAREST FE_TONEAREST To nearest, ties even
FE_DEC_UPWARD FE_UPWARD Toward plus infinity
FE_DEC_DOWNWARD FE_DOWNWARD Toward minus infinity
FE_DEC_TONEARESTFROMZERO n/a To nearest, ties away from zero

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 15

Changes to C11:

Add the following after 7.6#6:

[6a] Decimal floating-point operations and IEC 60559 binary floating-point operations (Annex F)
access the same floating-point exception status flags.

Add the following after 7.6#8: 5

[8a] Each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO 10
FE_DEC_UPWARD

is defined for use with the fe_dec_getround and fe_dec_setround functions for getting and
setting the dynamic rounding direction mode, and with the FENV_ROUND rounding control pragma
(7.6.1a) for specifying a constant rounding direction, for decimal floating-point operations. The 15
decimal rounding direction affects all (inexact) operations that produce a result of decimal floating
type and all operations that produce an integer or character sequence result and have an operand of
decimal floating type. The defined macros expand to integer constant expressions whose values are
distinct nonnegative values.

[8b] During translation, constant rounding direction modes for decimal floating-point arithmetic are in 20
effect where specified. Elsewhere, during translation the decimal rounding direction mode is
FE_DEC_TONEAREST.

[8c] At program startup the dynamic rounding direction mode for decimal floating-point arithmetic is
initialized to FE_DEC_TONEAREST.

Add the following after 7.6.3.2: 25

7.6.3.3 The fe_dec_getround function

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <fenv.h>
int fe_dec_getround(void); 30

Description

[2] The fe_dec_getround function gets the current rounding direction for decimal floating-point
operations.

Returns 35

[3] The fe_dec_getround function returns the value of the rounding direction macro representing
the current rounding direction for decimal floating-point operations, or a negative value if there is no
such rounding macro or the current rounding direction is not determinable.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

16 © ISO/IEC 2013 – All rights reserved

7.6.3.4 The fe_dec_setround function

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <fenv.h>
int fe_dec_setround(int round); 5

Description

[2] The fe_dec_setround function establishes the rounding direction for decimal floating-point
operations represented by its argument round. If the argument is not equal to the value of a rounding
direction macro, the rounding direction is not changed. 10

[3] If FLT_RADIX is not 10, the rounding direction altered by the fesetround function is independent
of the rounding direction altered by the fe_dec_setround function; otherwise if FLT_RADIX is 10,
whether the fesetround and fe_dec_setround functions alter the rounding direction of both standard
and decimal floating-point operations is implementation defined.

Returns 15

[4] The fe_dec_setround function returns a zero value if and only if the argument is equal to a
rounding direction macro (that is, if and only if the requested rounding direction was established).

12.3 Decimal mathematics <math.h>

The list of functions specified in the mathematics library is extended to handle decimal floating-point types.
These include functions specified in C11 (7.12.4, 7.12.5, 7.12.6, 7.12.7, 7.12.8, 7.12.9, 7.12.10, 7.12.11, 20
7.12.12, and 7.12.13) and in Part 1 of Technical Specification 18661 (14.1, 14.2, 14.3, 14.4, 14.5, 14.8, 14.9,
and 14.0). The macros HUGE_VAL_D32, HUGE_VAL_D64, HUGE_VAL_D128, DEC_INFINITY, DEC_NAN,
SNAND32, SNAND64, and SNAND128 are defined to help using these functions. With the exception of the
decimal floating-point functions listed in 11.2, which have accuracy as specified in IEC 60559, the accuracy of
decimal floating-point results is implementation-defined. The implementation may state that the accuracy is 25
unknown. All classification macros specified in C11 (7.12.3) and in Part 1 of Technical Specification 18661
(14.7) are also extended to handle decimal floating-point types. The same applies to all comparison macros
specified in C11 (7.12.14) and in Part 1 of Technical Specification 18661 (14.6).

The names of the functions are derived by adding suffixes d32, d64, and d128 to the double version of the
function name, except for the functions that round result to narrower type (7.12.13a). 30

Changes to C11:

Add after 7.12#2:

[2a] The types

 _Decimal32_t
 _Decimal64_t 35

are decimal floating types at least as wide as _Decimal32 and _Decimal64, respectively, and such
that _Decimal64_t is at least as wide as _Decimal32_t. If DEC_EVAL_METHOD equals 0,
_Decimal32_t and _Decimal64_t are _Decimal32 and _Decimal64, respectively; if
DEC_EVAL_METHOD equals 1, they are both _Decimal64; if DEC_EVAL_METHOD equals 2, they are 40
both _Decimal128; and for other values of DEC_EVAL_METHOD, they are otherwise implementation-
defined.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 17

Add at the end of 7.12#3, the following macros:

[3] The macro

HUGE_VAL_D64

expands to a constant expression of type _Decimal64 representing positive infinity. The macros

HUGE_VAL_D32 5
HUGE_VAL_D128

are respectively _Decimal32 and _Decimal128 analogues of HUGE_VAL_D64.

Add at the end of 7.12#4, the following macro:

[4] The macro 10

DEC_INFINITY

expands to a constant expression of type _Decimal32 representing positive infinity.

Add at the end of 7.12#5, the following macros:

[5a] The macro

DEC_NAN 15

expands to a constant expression of type _Decimal32 representing a quiet NaN.

[5b] The signaling NaN macros

 SNAND32
 SNAND64
 SNAND128 20

expand into a constant expression of the respective decimal floating type representing a signaling
NaN. If a signaling NaN macro is used for initializing an object of the same type that has static or
thread-local storage duration, the object is initialized with a signaling NaN value.

Add at the end of 7.12#7, the following macros: 25

[7] The macros

 FP_FAST_FMAD32
 FP_FAST_FMAD64
 FP_FAST_FMAD128
 30
are, respectively, _Decimal32, _Decimal64, and _Decimal128 analogues of FP_FAST_FMA.

Add the following list of function prototypes to the synopsis of the respective subclauses:

7.12.4 Trigonometric functions

 _Decimal64 acosd64(_Decimal64 x);
 _Decimal32 acosd32(_Decimal32 x); 35
 _Decimal128 acosd128(_Decimal128 x);

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

18 © ISO/IEC 2013 – All rights reserved

 _Decimal64 asind64(_Decimal64 x);
 _Decimal32 asind32(_Decimal32 x);
 _Decimal128 asind128(_Decimal128 x);

 _Decimal64 atand64(_Decimal64 x); 5
 _Decimal32 atand32(_Decimal32 x);
 _Decimal128 atand128(_Decimal128 x);

 _Decimal64 atan2d64(_Decimal64 y, _Decimal64 x);
 _Decimal32 atan2d32(_Decimal32 y, _Decimal32 x); 10
 _Decimal128 atan2d128(_Decimal128 y, _Decimal128 x);

 _Decimal64 cosd64(_Decimal64 x);
 _Decimal32 cosd32(_Decimal32 x);
 _Decimal128 cosd128(_Decimal128 x); 15

 _Decimal64 sind64(_Decimal64 x);
 _Decimal32 sind32(_Decimal32 x);
 _Decimal128 sind128(_Decimal128 x);
 20
 _Decimal64 tand64(_Decimal64 x);
 _Decimal32 tand32(_Decimal32 x);
 _Decimal128 tand128(_Decimal128 x);

7.12.5 Hyperbolic functions

 _Decimal64 acoshd64(_Decimal64 x); 25
 _Decimal32 acoshd32(_Decimal32 x);
 _Decimal128 acoshd128(_Decimal128 x);

 _Decimal64 asinhd64(_Decimal64 x);
 _Decimal32 asinhd32(_Decimal32 x); 30
 _Decimal128 asinhd128(_Decimal128 x);

 _Decimal64 atanhd64(_Decimal64 x);
 _Decimal32 atanhd32(_Decimal32 x);
 _Decimal128 atanhd128(_Decimal128 x); 35

 _Decimal64 coshd64(_Decimal64 x);
 _Decimal32 coshd32(_Decimal32 x);
 _Decimal128 coshd128(_Decimal128 x);
 40
 _Decimal64 sinhd64(_Decimal64 x);
 _Decimal32 sinhd32(_Decimal32 x);
 _Decimal128 sinhd128(_Decimal128 x);

 _Decimal64 tanhd64(_Decimal64 x); 45
 _Decimal32 tanhd32(_Decimal32 x);
 _Decimal128 tanhd128(_Decimal128 x);

7.12.6 Exponential and logarithmic functions

 _Decimal64 expd64(_Decimal64 x);
 _Decimal32 expd32(_Decimal32 x); 50
 _Decimal128 expd128(_Decimal128 x);

 _Decimal64 exp2d64(_Decimal64 x);
 _Decimal32 exp2d32(_Decimal32 x);
 _Decimal128 exp2d128(_Decimal128 x); 55

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 19

 _Decimal64 expm1d64(_Decimal64 x);
 _Decimal32 expm1d32(_Decimal32 x);
 _Decimal128 expm1d128(_Decimal128 x);

 _Decimal64 frexpd64(_Decimal64 value, int *exp); 5
 _Decimal32 frexpd32(_Decimal32 value, int *exp);
 _Decimal128 frexpd128(_Decimal128 value, int *exp);

 int ilogbd64(_Decimal64 x);
 int ilogbd32(_Decimal32 x); 10
 int ilogbd128(_Decimal128 x);

 long int llogbd64(_Decimal64 x);
 long int llogbd32(_Decimal32 x);
 long int llogbd128(_Decimal128 x); 15

 _Decimal64 ldexpd64(_Decimal64 x, int exp);
 _Decimal32 ldexpd32(_Decimal32 x, int exp);
 _Decimal128 ldexpd128(_Decimal128 x, int exp);

 20
 _Decimal64 logd64(_Decimal64 x);
 _Decimal32 logd32(_Decimal32 x);
 _Decimal128 logd128(_Decimal128 x);

 _Decimal64 log10d64(_Decimal64 x); 25
 _Decimal32 log10d32(_Decimal32 x);
 _Decimal128 log10d128(_Decimal128 x);

 _Decimal64 log1pd64(_Decimal64 x);
 _Decimal32 log1pd32(_Decimal32 x); 30
 _Decimal128 log1pd128(_Decimal128 x);

 _Decimal64 log2d64(_Decimal64 x);
 _Decimal32 log2d32(_Decimal32 x);
 _Decimal128 log2d128(_Decimal128 x); 35

 _Decimal64 logbd64(_Decimal64 x);
 _Decimal32 logbd32(_Decimal32 x);
 _Decimal128 logbd128(_Decimal128 x);
 40
 _Decimal64 modfd64(_Decimal64 value, _Decimal64 *iptr);
 _Decimal32 modfd32(_Decimal32 value, _Decimal32 *iptr);
 _Decimal128 modfd128(_Decimal128 value, _Decimal128 *iptr);

 _Decimal64 scalbnd64(_Decimal64 x, int n); 45
 _Decimal32 scalbnd32(_Decimal32 x, int n);
 _Decimal128 scalbnd128(_Decimal128 x, int n);

 _Decimal64 scalblnd64(_Decimal64 x, long int n);
 _Decimal32 scalblnd32(_Decimal32 x, long int n); 50
 _Decimal128 scalblnd128(_Decimal128 x, long int n);

7.12.7 Power and absolute-value functions

 _Decimal64 cbrtd64(_Decimal64 x);
 _Decimal32 cbrtd32(_Decimal32 x);
 _Decimal128 cbrtd128(_Decimal128 x); 55

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

20 © ISO/IEC 2013 – All rights reserved

 _Decimal64 fabsd64(_Decimal64 x);
 _Decimal32 fabsd32(_Decimal32 x);
 _Decimal128 fabsd128(_Decimal128 x);

 _Decimal64 hypotd64(_Decimal64 x, _Decimal64 y); 5
 _Decimal32 hypotd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 hypotd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 powd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 powd32(_Decimal32 x, _Decimal32 y); 10
 _Decimal128 powd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 sqrtd64(_Decimal64 x);
 _Decimal32 sqrtd32(_Decimal32 x);
 _Decimal128 sqrtd128(_Decimal128 x); 15

7.12.8 Error and gamma functions

 _Decimal64 erfd64(_Decimal64 x);
 _Decimal32 erfd32(_Decimal32 x);
 _Decimal128 erfd128(_Decimal128 x);
 20
 _Decimal64 erfcd64(_Decimal64 x);
 _Decimal32 erfcd32(_Decimal32 x);
 _Decimal128 erfcd128(_Decimal128 x);

 _Decimal64 lgammad64(_Decimal64 x); 25
 _Decimal32 lgammad32(_Decimal32 x);
 _Decimal128 lgammad128(_Decimal128 x);

 _Decimal64 tgammad64(_Decimal64 x);
 _Decimal32 tgammad32(_Decimal32 x); 30
 _Decimal128 tgammad128(_Decimal128 x);

7.12.9 Nearest integer functions

 _Decimal64 ceild64(_Decimal64 x);
 _Decimal32 ceild32(_Decimal32 x);
 _Decimal128 ceild128(_Decimal128 x); 35

 _Decimal64 floord64(_Decimal64 x);
 _Decimal32 floord32(_Decimal32 x);
 _Decimal128 floord128(_Decimal128 x);
 40
 _Decimal64 nearbyintd64(_Decimal64 x);
 _Decimal32 nearbyintd32(_Decimal32 x);
 _Decimal128 nearbyintd128(_Decimal128 x);

 _Decimal64 rintd64(_Decimal64 x); 45
 _Decimal32 rintd32(_Decimal32 x);
 _Decimal128 rintd128(_Decimal128 x);

 long int lrintd64(_Decimal64 x);
 long int lrintd32(_Decimal32 x); 50
 long int lrintd128(_Decimal128 x);

 long long int llrintd64(_Decimal64 x);
 long long int llrintd32(_Decimal32 x);
 long long int llrintd128(_Decimal128 x); 55

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 21

 _Decimal64 roundd64(_Decimal64 x);
 _Decimal32 roundd32(_Decimal32 x);
 _Decimal128 roundd128(_Decimal128 x);

 long int lroundd64(_Decimal64 x); 5
 long int lroundd32(_Decimal32 x);
 long int lroundd128(_Decimal128 x);

 long long int llroundd64(_Decimal64 x);
 long long int llroundd32(_Decimal32 x); 10
 long long int llroundd128(_Decimal128 x);

 _Decimal64 truncd64(_Decimal64 x);
 _Decimal32 truncd32(_Decimal32 x);
 _Decimal128 truncd128(_Decimal128 x); 15

 _Decimal64 roundevend64(_Decimal64 x);
 _Decimal32 roundevend32(_Decimal32 x);
 _Decimal128 roundevend128(_Decimal128 x);
 20
 intmax_t fromfpd64(_Decimal64 x, int round, unsigned int width);
 intmax_t fromfpd32(_Decimal32 x, int round, unsigned int width);
 intmax_t fromfpd128(_Decimal128 x, int round, unsigned int width);
 uintmax_t ufromfpd64(_Decimal64 x, int round, unsigned int width);
 uintmax_t ufromfpd32(_Decimal32 x, int round, unsigned int width); 25
 uintmax_t ufromfpd128(_Decimal128 x, int round, unsigned int width);

 intmax_t fromfpxd64(_Decimal64 x, int round, unsigned int width);
 intmax_t fromfpxd32(_Decimal32 x, int round, unsigned int width);
 intmax_t fromfpxd128(_Decimal128 x, int round, unsigned int width); 30
 uintmax_t ufromfpxd64(_Decimal64 x, int round, unsigned int width);
 uintmax_t ufromfpxd32(_Decimal32 x, int round, unsigned int width);
 uintmax_t ufromfpxd128(_Decimal128 x, int round, unsigned int width);

7.12.10 Remainder functions

 _Decimal64 fmodd64(_Decimal64 x, _Decimal64 y); 35
 _Decimal32 fmodd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmodd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 remainderd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 remainderd32(_Decimal32 x, _Decimal32 y); 40
 _Decimal128 remainderd128(_Decimal128 x, _Decimal128 y);

7.12.11 Manipulation functions

 _Decimal64 copysignd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 copysignd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 copysignd128(_Decimal128 x, _Decimal128 y); 45

 _Decimal64 nand64(const char *tagp);
 _Decimal32 nand32(const char *tagp);
 _Decimal128 nand128(const char *tagp);
 50
 _Decimal64 nextafterd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 nextafterd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 nextafterd128(_Decimal128 x, _Decimal128 y);

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

22 © ISO/IEC 2013 – All rights reserved

 _Decimal64 nexttowardd64(_Decimal64 x, _Decimal128 y);
 _Decimal32 nexttowardd32(_Decimal32 x, _Decimal128 y);
 _Decimal128 nexttowardd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 nextupd64(_Decimal64 x); 5
 _Decimal32 nextupd32(_Decimal32 x);
 _Decimal128 nextupd128(_Decimal128 x);

 _Decimal64 nextdownd64(_Decimal64 x);
 _Decimal32 nextdownd32(_Decimal32 x); 10
 _Decimal128 nextdownd128(_Decimal128 x);

 _Decimal64 canonicalized64(_Decimal64 x);
 _Decimal32 canonicalized32(_Decimal32 x);
 _Decimal128 canonicalized128(_Decimal128 x); 15

7.12.12 Maximum, minimum, and positive difference functions

 _Decimal64 fdimd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fdimd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fdimd128(_Decimal128 x, _Decimal128 y);
 20
 _Decimal64 fmaxd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fmaxd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmaxd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 fmind64(_Decimal64 x, _Decimal64 y); 25
 _Decimal32 fmind32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fmind128(_Decimal128 x, _Decimal128 y);

 _Decimal64 fmaxmagd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fmaxmagd32(_Decimal32 x, _Decimal32 y); 30
 _Decimal128 fmaxmagd128(_Decimal128 x, _Decimal128 y);

 _Decimal64 fminmagd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 fminmagd32(_Decimal32 x, _Decimal32 y);
 _Decimal128 fminmagd128(_Decimal128 x, _Decimal128 y); 35

7.12.13 Floating multiply-add

 _Decimal64 fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z);
 _Decimal32 fmad32(_Decimal32 x, _Decimal32 y, _Decimal32 z);
 _Decimal128 fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);

7.12.14 Functions that round result to narrower format 40

 _Decimal32 d32addd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 d32addd128(_Decimal128 x, _Decimal128 y);
 _Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);

 _Decimal32 d32subd64(_Decimal64 x, _Decimal64 y); 45
 _Decimal32 d32subd128(_Decimal128 x, _Decimal128 y);
 _Decimal64 d64addd128(_Decimal128 x, _Decimal128 y);

 _Decimal32 d32muld64(_Decimal64 x, _Decimal64 y);
 _Decimal32 d32muld128(_Decimal128 x, _Decimal128 y); 50
 _Decimal64 d64muld128(_Decimal128 x, _Decimal128 y);

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 23

 _Decimal32 d32divd64(_Decimal64 x, _Decimal64 y);
 _Decimal32 d32divd128(_Decimal128 x, _Decimal128 y);
 _Decimal64 d64divd128(_Decimal128 x, _Decimal128 y);

 _Decimal32 d32fmad64(_Decimal64 x, _Decimal64 y, _Decimal64 z); 5
 _Decimal32 d32fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);
 _Decimal64 d64fmad128(_Decimal128 x, _Decimal128 y, _Decimal128 z);

 _Decimal32 d32sqrtd64(_Decimal64 x);
 _Decimal32 d32sqrtd128(_Decimal128 x); 10
 _Decimal64 d64sqrtd128(_Decimal128 x);

F.10.13 Payload functions

 _Decimal64 getpayloadd64(const _Decimal64 *x);
 _Decimal32 getpayloadd32(const _Decimal32 *x);
 _Decimal128 getpayloadd128(const _Decimal128 *x); 15

 int setpayloadd64(_Decimal64 *res, _Decimal64 pl);
 int setpayloadd32(_Decimal32 *res, _Decimal32 pl);
 int setpayloadd128(_Decimal128 *res, _Decimal128 pl);
 20
 int setpayloadsigd64(_Decimal64 *res, _Decimal64 pl);
 int setpayloadsigd32(_Decimal32 *res, _Decimal32 pl);
 int setpayloadsigd128(_Decimal128 *res, _Decimal128 pl);

In 7.12.10.3, attach a footnote to the heading:

7.12.10.3 The remquo functions 25

where the footnote is:

*) There are no decimal floating-point versions of the remquo functions.

Add to the end of 7.12.14#1:

[1] … If either argument has decimal floating type, the other argument shall have decimal floating type
as well. 30

Replace 7.12.6.4 paragraphs 2 and 3:

[2] The frexp functions break a floating-point number into a normalized fraction and an integral
power of 2. They store the integer in the int object pointed to by exp.

[3] If value is not a floating-point number or if the integral power of 2 is outside the range of int, the
results are unspecified. Otherwise, the frexp functions return the value x, such that x has a 35
magnitude in the interval [1/2, 1) or zero, and value equals x × 2*exp. If value is zero, both parts of
the result are zero.

with the following:

[2] The frexp functions break a floating-point number into a normalized fraction and an integer
exponent. They store the integer in the int object pointed to by exp. If the type of the function is a 40
standard floating type, the exponent is an integral power of 2. If the type of the function is a decimal
floating type, the exponent is an integral power of 10.

[3] If value is not a floating-point number or the integral power is outside the range of int, the
results are unspecified. Otherwise, the frexp functions return the value x, such that: x has a

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

24 © ISO/IEC 2013 – All rights reserved

magnitude in the interval [1/2, 1) or zero, and value equals x × 2*exp, when the type of the function is
a standard floating type; or x has a magnitude in the interval [1/10, 1) or zero, and value equals x ×
10*exp, when the type of the function is a decimal floating type. If value is zero, both parts of the
result are zero.

Replace 7.12.6.6 paragraphs 2 and 3: 5

[2] The ldexp functions multiply a floating-point number by an integral power of 2. A range error may
occur.

[3] The ldexp functions return x × 2exp.

 with the following:

[2] The ldexp functions multiply a floating-point number by an integral power of 2 when the type of 10
the function is a standard floating type, or by an integral power of 10 when the type of the function is a
decimal floating type. A range error may occur.

[3] The ldexp functions return x × 2exp when the type of the function is a standard floating type, or
return x × 10exp when the type of the function is a decimal floating type.

Replace 7.12.6.11#2: 15

[2] The logb functions extract the exponent of x, as a signed integer value in floating-point format. If
x is subnormal it is treated as though it were normalized; thus, for positive finite x,

1 ≤ x × FLT_RADIX−logb(x) < FLT_RADIX

A domain error or pole error may occur if the argument is zero.

with the following: 20

[2] The logb functions extract the exponent of x, as a signed integer value in floating-point format. If
x is subnormal it is treated as though it were normalized; thus, for positive finite x,

 1 ≤ x × b−logb(x) < b

where b = FLT_RADIX if the type of the function is a standard floating type, or b = 10 if the type of the
function is a decimal floating type. A domain error or range error may occur if the argument is zero. 25

Replace 7.12.6.13 paragraphs 2 and 3:

[2] The scalbn and scalbln functions compute x × FLT_RADIXn efficiently, not normally by
computing FLT_RADIXn explicitly. A range error may occur.

[3] The scalbn and scalbln functions return x × FLT_RADIXn.

with the following: 30

[2] The scalbn and scalbln functions compute x × bn, where b = FLT_RADIX if the type of the
function is a standard floating type, or b = 10 if the type of the function is a decimal floating type. A
range error may occur.

 [3] The scalbn and scalbln functions return x × bn.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 25

12.4 New <math.h> functions

This clause adds new functions to <math.h>.

12.4.1 Quantum and quantum exponent functions

This specification does not carry forward the quantexp functions from TR 24732, which return the quantum
exponent of their argument as an int. Instead it introduces the quantum functions, which return the quantum 5
rather than the quantum exponent, and the llquantexp functions, which return the quantum exponent as a
long long, instead of int. The new interfaces offer natural extensions for support of wider IEC 60559
decimal formats in Part 3 of Technical Specification 18661.

Change to C11:

After 7.12.11.4, add: 10

7.12.11.5 The quantize functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
_Decimal32 quantized32 (_Decimal32 x, _Decimal32 y); 15
_Decimal64 quantized64 (_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128 (_Decimal128 x, _Decimal128 y);

Description

[2] The quantize functions set the quantum exponent of argument x to the quantum exponent of 20
argument y, while attempting to keep the value the same. If the quantum exponent is being
increased, the value shall be correctly rounded according to the current rounding mode; if the result
does not have the same value as x, the “inexact” floating-point exception shall be raised. If the
quantum exponent is being decreased and the significand of the result has more digits than the type
would allow, the result is NaN and the “invalid” floating-point exception shall be raised. If one or both 25
operands are NaN the result is NaN. Otherwise if only one operand is infinity, the result is NaN and
the “invalid” floating-point exception shall be raised. If both operands are infinity, the result is
DEC_INFINITY with the sign as x, converted to the type of the function. The quantize functions do
not raise the “underflow” floating-point exception.

Returns 30

[3] The quantize functions return the number which is equal in value (except for any rounding) and
sign to x, and which has a quantum exponent set to be equal to the quantum exponent of y.

7.12.11.6 The samequantum functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__ 35
#include <math.h>
_Bool samequantumd32(_Decimal32 x, _Decimal32 y);
_Bool samequantumd64(_Decimal64 x, _Decimal64 y);
_Bool samequantumd128(_Decimal128 x, _Decimal128 y);
 40

Description

[2] The samequantum functions determine if the quantum exponents of x and y are the same. If both
x and y are NaN, or infinity, they have the same quantum exponents; if exactly one operand is infinity

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

26 © ISO/IEC 2013 – All rights reserved

or exactly one operand is NaN, they do not have the same quantum exponents. The samequantum
functions raise no exception.

Returns

[3] The samequantum functions return nonzero (true) when x and y have the same quantum
exponents, zero (false) otherwise. 5

7.12.11.7 The quantum functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
_Decimal32 quantumd32(_Decimal32 x); 10
_Decimal64 quantumd64(_Decimal64 x);
_Decimal128 quantumd128(_Decimal128 x);

Description

[2] The quantum functions compute the quantum (5.2.4.2.2a) of a finite argument. If x is infinite, the 15
result is +∞. If x is NaN, the result is NaN.

Returns

[3] The quantum functions return the quantum of x.

7.12.11.8 The llquantexp functions

Synopsis 20

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
long long llquantexpd32(_Decimal32 x);
long long llquantexpd64(_Decimal64 x);
long long llquantexpd128(_Decimal128 x); 25

Description

[2] The llquantexp functions compute the quantum exponent (5.2.4.2.2a) of a finite argument. If x
is infinite or NaN, they compute LLONG_MIN and a domain error occurs.

Returns 30

[3] The llquantexp functions return the quantum exponent of x.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 27

12.4.2 Decimal re-encoding functions

Change to C11:

After 7.12.11.8, add:

7.12.11.9 The encodedec functions

Synopsis 5

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
void encodedecd32(unsigned char * restrict encptr, const _Decimal32 *

restrict xptr);
void encodedecd64(unsigned char * restrict encptr, const _Decimal64 * 10

restrict xptr);
void encodedecd128(unsigned char * restrict encptr, const _Decimal128 *

restrict xptr);

Description 15

[2] The encodedecdN functions convert *xptr into an IEC 60559 decimalN encoding in the encoding
scheme based on decimal encoding of the significand and store the resulting encoding as an N/8 element
array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes in the array is
implementation defined. These functions preserve the value of *xptr and raise no floating-point
exceptions. If *xptr is non-canonical, these functions may or may not produce a canonical encoding. 20

Returns

[3] The encodedec functions return no value.

7.12.11.10 The decodedec functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__ 25
#include <math.h>
void decodedecd32(_Decimal32 * restrict xptr, const unsigned char *

restrict encptr);
void decodedecd64(_Decimal64 * restrict xptr, const unsigned char *

restrict encptr); 30
void decodedecd128(_Decimal128 * restrict xptr, const unsigned char *

restrict encptr);

Description

[2] The decodedecdN functions interpret the N/8 element array pointed to by encptr as an IEC 60559 35
decimalN encoding, with 8 bits per array element, in the encoding scheme based on decimal encoding of
the significand. The order of bytes in the array is implementation defined. These functions convert the
given encoding into a representation in the type _DecimalN, and store the result in the object pointed to
by xptr. These functions preserve the encoded value and raise no floating-point exceptions. If the
encoding is non-canonical, these functions may or may not produce a canonical representation. 40

Returns

[3] The decodedec functions return no value.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

28 © ISO/IEC 2013 – All rights reserved

7.12.11.11 The encodebin functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
void encodebind32(unsigned char * restrict encptr, const _Decimal32 * 5

restrict xptr);
void encodebind64(unsigned char * restrict encptr, const _Decimal64 *

restrict xptr);
void encodebind128(unsigned char * restrict encptr, const _Decimal128 *

restrict xptr); 10

Description

[2] The encodebindN functions convert *xptr into an IEC 60559 decimalN encoding in the encoding
scheme based on binary encoding of the significand and store the resulting encoding as an N/8 element
array, with 8 bits per array element, in the object pointed to by encptr. The order of bytes in the array is 15
implementation defined. These functions preserve the value of *xptr and raise no floating-point
exceptions. If *xptr is non-canonical, these functions may or may not produce a canonical encoding.

Returns

[3] The encodebin functions return no value.

7.12.11.12 The decodebin functions 20

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <math.h>
void decodebind32(_Decimal32 * restrict xptr, const unsigned char *

restrict encptr); 25
void decodebind64(_Decimal64 * restrict xptr, const unsigned char *

restrict encptr);
void decodebind128(_Decimal128 * restrict xptr, const unsigned char *

restrict encptr);
 30

Description

[2] The decodebindN functions interpret the N/8 element array pointed to by encptr as an IEC 60559
decimalN encoding, with 8 bits per array element, in the encoding scheme based on binary encoding of
the significand. The order of bytes in the array is implementation defined. These functions convert the
given encoding into a representation in the type _DecimalN, and store the result in the object pointed to 35
by xptr. These functions preserve the encoded value and raise no floating-point exceptions. If the
encoding is non-canonical, these functions may or may not produce a canonical representation.

Returns

[3] The decodebin functions return no value.

12.5 Formatted input/output specifiers 40

With the following decimal forms of the a,A format specifiers, the printf family of functions provide
conversions to decimal character sequences that preserve quantum exponents, as required by IEC 60559.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 29

Changes to C11:

Add the following to 7.21.6.1#7, 7.21.6.2#11, 7.29.2.1#7, and 7.29.2.2#11:

H Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a _Decimal32
argument.

D Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a _Decimal64 5
argument.

DD Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a _Decimal128
argument.

Add the following to 7.21.6.1#8 and 7.29.2.1#8, under a,A conversion specifiers:

If an H, D, or DD modifier is present and the precision is missing, then for a decimal floating type 10
argument represented by a triple of integers (s, c, q), where n is the number of digits in the coefficient
c,

• if 0 >= q >= −(n+5), use style f formatting with formatting precision equal to −q,
• otherwise, use style e formatting with formatting precision equal to n − 1, with the exceptions

that if c = 0 then the digit-sequence in the exponent-part shall have the value q (rather than 15
0), and that the exponent is always expressed with the minimum number of digits required to
represent its value (the exponent never contains a leading zero).

If the precision is present (in the conversion specification) and is zero or at least as large as the
precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the precision were missing. 20
If the precision is present (and nonzero) and less than the precision p of the decimal floating type, the
conversion first obtains an intermediate result by rounding the input in the type, according to the
current rounding direction for decimal floating-point operations, to the number of digits specified by
the precision, then converts the intermediate result as if the precision were missing. The length of the
coefficient of the intermediate result is the smallest number, at least as large as the formatting 25
precision, for which the quantum exponent is within the quantum exponent range of the type (see
Table 2). The intermediate rounding may overflow.

EXAMPLE 1 Following are representations of _Decimal64 arguments as triples (s, c, q) and the
corresponding character sequences printf produces with %Da:

 (1, 123, 0) 123 30
 (−1, 123, 0) -123
 (1, 123, −2) 1.23
 (1, 123, 1) 1.23e+3
 (−1, 123, 1) -1.23e+3
 (1, 123, −8) 0.00000123 35
 (1, 123, −9) 1.23e-7
 (1, 120, −8) 0.00000120
 (1, 120, −9) 1.20e-7
 (1, 1234567890123456, 0) 1234567890123456
 (1, 1234567890123456, 1) 1.234567890123456e+16 40
 (1, 1234567890123456, −1) 123456789012345.6
 (1, 1234567890123456, −21) 0.000001234567890123456
 (1, 1234567890123456, −22) 1.234567890123456e-7
 (1, 0, 0) 0
 (−1, 0, 0) -0 45
 (1, 0, −6) 0.000000
 (1, 0, −7) 0e-7
 (1, 0, 2) 0e+2

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

30 © ISO/IEC 2013 – All rights reserved

 (1, 5, −6) 0.000005
 (1, 50, −7) 0.0000050
 (1, 5, −7) 5e-7

EXAMPLE 2 To illustrate the effects of a precision specification, the sequence: 5

_Decimal32 x = 6543.00DF; // represented by the triple (1, 654300, -2)
printf(“%Ha\n”, x);
printf(“%.6Ha\n”, x);
printf(“%.5Ha\n”, x);
printf(“%.4Ha\n”, x); 10
printf(“%.3Ha\n”, x);
printf(“%.2Ha\n”, x);
printf(“%.1Ha\n”, x);
printf(“%.0Ha\n”, x);
 15

assuming default rounding, results in:

 6543.00
 6543.00
 6543.0
 6543 20
 6.54e+3
 6.5e+3
 7e+3
 6543.00
 25
EXAMPLE 3 To illustrate the effects of the exponent range, the sequence:

_Decimal32 x = 9543210e87DF; // represented by the triple (1, 9543210, 87)
_Decimal32 y = 9500000e90DF; // represented by the triple (1, 9500000, 90)
printf(“%.6Ha\n”, x);
printf(“%.5Ha\n”, x); 30
printf(“%.4Ha\n”, x);
printf(“%.3Ha\n”, x);
printf(“%.2Ha\n”, x);
printf(“%.1Ha\n”, x);
printf(“%.1Ha\n”, y); 35

assuming default rounding, results in:

9.54321e+93
9.5432e+93
9.543e+93 40
9.540e+93
9.500e+93
1.0000e+94
inf
 45

12.6 strtod32, strtod64, and strtod128 functions <stdlib.h>

The specifications of these functions are similar to those of strtod, strtof, and strtold as defined in
C11 7.22.1.3. These functions are declared in <stdlib.h>.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 31

Changes to C11:

After 7.22.1.4, add:

7.22.1.5 The strtod32, strtod64, and strtod128 functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__ 5
#include <stdlib.h>
_Decimal32 strtod32(const char * restrict nptr, char ** restrict

endptr);
_Decimal64 strtod64(const char * restrict nptr, char ** restrict

endptr); 10
_Decimal128 strtod128(const char * restrict nptr, char ** restrict

endptr);

Description

[2] The strtod32, strtod64, and strtod128 functions convert the initial portion of the string 15
pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128 representation, respectively.
First, they decompose the input string into three parts: an initial, possibly empty, sequence of white-
space characters (as specified by the isspace function), a subject sequence resembling a floating-
point constant or representing an infinity or NaN; and a final string of one or more unrecognized
characters, including the terminating null character of the input string. Then, they attempt to convert 20
the subject sequence to a floating-point number, and return the result.

[3] The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a nonempty sequence of decimal digits optionally containing a decimal-point character, then
an optional exponent part as defined in 6.4.4.2; 25

• INF or INFINITY, ignoring case
• NAN or NAN(d-char-sequenceopt), ignoring case in the NAN part, where:

d-char-sequence:

digit 30
d-char-sequence digit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form. 35

[4] If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.4.2, except that it is not a hexadecimal
floating number, that the decimal-point character is used in place of a period, and that if neither an
exponent part nor a decimal-point character appears in a decimal floating-point number, an exponent 40
part of the appropriate type with value zero is assumed to follow the last digit in the string. If the
subject sequence begins with a minus sign, the sequence is interpreted as negated (before
rounding). A character sequence INF or INFINITY is interpreted as an infinity. A character sequence
NAN or NAN(d-char-sequenceopt), is interpreted as a quiet NaN; the meaning of the d-char sequences
is implementation-defined. A pointer to the final string is stored in the object pointed to by endptr, 45
provided that endptr is not a null pointer.

[5] If the sequence is negated, the sign s is set to −1, else s is set to 1.

[6] If the subject sequence has the expected form for a floating-point number, then the result shall be
correctly rounded as specified in IEC 60559.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

32 © ISO/IEC 2013 – All rights reserved

[7] The coefficient c and the quantum exponent q of a finite converted floating-point number are
determined from the subject sequence as follows:

• The fractional-constant or digit-sequence and the exponent-part (if any) are extracted from
the subject sequence. If there is an exponent-part, then q is set to the value of signopt digit-
sequence in the exponent-part. If there is no exponent-part, q is set to 0. 5

• If there is a fractional-constant, q is decreased by the number of digits to the right of the
decimal point and the decimal point is removed to form a digit-sequence.

• c is set to the value of the digit-sequence (after any decimal point has been removed).
• Rounding required because of insufficient precision or range in the type of the result will

round c to the full precision available in the type, and will adjust q accordingly within the limits 10
of the type, provided the rounding does not yield an infinity (in which case an appropriately
signed internal representation of infinity is returned). If the full precision of the type would
require q to be smaller than the minimum for the type, then q is pinned at the minimum and c
is adjusted through the subnormal range accordingly, perhaps to zero.
 15

EXAMPLE Following are subject sequences of the decimal form and the resulting triples (s, c, q)
produced by strtod64. Note that for _Decimal64, the precision (maximum coefficient length) is 16
and the quantum exponent range is −398 <= q <= 369.

 "0" (1,0,0)
 "0.00" (1,0,−2) 20
 "123" (1,123,0)
 "−123" (−1,123,0)
 "1.23E3" (1,123,1)
 "1.23E+3" (1,123,1)
 "12.3E+7" (1,123,6) 25
 "12.0" (1,120,−1)
 "12.3" (1,123,−1)
 "0.00123" (1,123,−5)
 "−1.23E−12" (−1,123,−14)
 "1234.5E−4" (1,12345,−5) 30
 "−0" (−1,0,0)
 "−0.00" (−1,0,−2)
 "0E+7" (1,0,7)
 "−0E−7" (−1,0,−7)
 "12345678901234567890" (1, 1234567890123457, 4) or (1, 1234567890123456, 4) 35

depending on rounding mode
 "1234E−400" (1, 12, −398) or (1, 13, −398) depending on rounding mode
 "1234E−402" (1, 0, −398) or (1, 1, −398) depending on rounding mode
 "1000." (1,1000,0)
 ".0001" (1,1,−4) 40
 "1000.e0" (1,1000,0)
 ".0001e0" (1,1,−4)
 "1000.0" (1,10000,−1)
 "0.0001" (1,1,−4)
 "1000.00" (1,100000,−2) 45
 "00.0001" (1,1,−4)
 "001000." (1,1000,0)
 "001000.0" (1,10000,−1)
 "001000.00" (1,100000,−2)
 "00.00" (1,0,−2) 50
 "00." (1,0,0)
 ".00" (1,0,−2)
 "00.00e−5" (1,0,−7)
 "00.e−5" (1,0,−5)
 ".00e−5" (1,0,−7) 55
"0x1.8p+4" (1,0,0), and “x1.8p+4" is stored in the object pointed to by endptr, provided

endptr is not a null pointer

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 33

[8] In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

[9] If the subject sequence is empty or does not have the expected form, no conversion is performed;
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns 5

[10] The functions return the converted value, if any. If no conversion could be performed, the value
of the triple (1,0,0) is returned. If the correct value overflows and default rounding is in effect (7.12.1),
plus or minus HUGE_VAL_D64, HUGE_VAL_D32, or HUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the value of the macro ERANGE is stored in errno. If the result
underflows (7.12.1), the functions return a value whose magnitude is no greater than the smallest 10
normalized positive number in the return type; whether errno acquires the value ERANGE is
implementation-defined.

In 7.22.1.5#4, attach a footnote to the wording:

the meaning of the d-char sequences is implementation-defined.

where the footnote is: 15

*) An implementation may use the d-char sequence to determine extra information to be represented
in the NaN's significand.

12.7 wcstod32, wcstod64, and wcstod128 functions <wchar.h>

The specifications of these functions are similar to those of wcstod, wcstof, and wcstold as defined in
C11 7.29.4.1.1. They are declared in <wchar.h>. 20

Change to C11:

After 7.29.4.1.2, add:

7.29.4.1.3 The wcstod32, wcstod64, and wcstod128 functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__ 25
#include <wchar.h>
_Decimal32 wcstod32(const wchar_t * restrict nptr, wchar_t ** restrict

endptr);
_Decimal64 wcstod64(const wchar_t * restrict nptr, wchar_t ** restrict

endptr); 30
_Decimal128 wcstod128(const wchar_t * restrict nptr, wchar_t **

restrict endptr);

Description

[2] The wcstod32, wcstod64, and wcstod128 functions convert the initial portion of the wide string 35
pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128 representation, respectively.
First, they decompose the input string into three parts: an initial, possibly empty, sequence of white-
space wide characters (as specified by the iswspace function), a subject sequence resembling a
floating-point constant or representing an infinity or NaN; and a final wide string of one or more
unrecognized wide characters, including the terminating null wide character of the input wide string. 40
Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

34 © ISO/IEC 2013 – All rights reserved

[3] The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a nonempty sequence of decimal digits optionally containing a decimal-point wide character,
then an optional exponent part as defined in 6.4.4.2;

• INF or INFINITY, ignoring case 5
• NAN or NAN(d-wchar-sequenceopt), ignoring case in the NAN part, where:

d-wchar-sequence:

digit
d-wchar-sequence digit 10

The subject sequence is defined as the longest initial subsequence of the input wide string, starting
with the first non-white-space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide string is not of the expected form.

[4] If the subject sequence has the expected form for a floating-point number, the sequence of wide 15
characters starting with the first digit or the decimal-point wide character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.4.2, except that it is not a hexadecimal
floating number, that the decimal-point wide character is used in place of a period, and that if neither
an exponent part nor a decimal-point wide character appears in a decimal floating-point number, an
exponent part of the appropriate type with value zero is assumed to follow the last digit in the string. If 20
the subject sequence begins with a minus sign, the sequence is interpreted as negated (before
rounding). A wide character sequence INF or INFINITY is interpreted as an infinity. A wide
character sequence NAN or NAN(d-wchar-sequenceopt), is interpreted as a quiet NaN; the meaning of
the d-wchar sequences is implementation-defined. A pointer to the final wide string is stored in the
object pointed to by endptr, provided that endptr is not a null pointer. 25

[5] If the sequence is negated, the sign s is set to −1, else s is set to 1.

[6] If the subject sequence has the expected form for a floating-point number, then the result shall be
correctly rounded as specified in IEC 60559.

[7] The coefficient c and the quantum exponent q of a finite converted floating-point number are
determined from the subject sequence as follows: 30

• The fractional-constant or digit-sequence and the exponent-part (if any) are extracted from
the subject sequence. If there is an exponent-part, then q is set to the value of signopt digit-
sequence in the exponent-part. If there is no exponent-part, q is set to 0.

• If there is a fractional-constant, q is decreased by the number of digits to the right of the
decimal point and the decimal point is removed to form a digit-sequence. 35

• c is set to the value of the digit-sequence (after any decimal point has been removed).
• Rounding required because of insufficient precision or range in the type of the result will

round c to the full precision available in the type, and will adjust q accordingly within the limits
of the type, provided the rounding does not yield an infinity (in which case an appropriately
signed internal representation of infinity is returned). If the full precision of the type would 40
require q to be smaller than the minimum for the type, then q is pinned at the minimum and c
is adjusted through the subnormal range accordingly, perhaps to zero.

[8] In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

[9] If the subject sequence is empty or does not have the expected form, no conversion is performed; 45
the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
pointer.

Returns

[10] The functions return the converted value, if any. If no conversion could be performed, the value
of the triple (1,0,0) is returned. If the correct value overflows and default rounding is in effect (7.12.1), 50

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 35

plus or minus HUGE_VAL_D64, HUGE_VAL_D32, or HUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the value of the macro ERANGE is stored in errno. If the result
underflows (7.12.1), the functions return a value whose magnitude is no greater than the smallest
normalized positive number in the return type; whether errno acquires the value ERANGE is
implementation-defined. 5

In 7.29.4.1.3#4, attach a footnote to the wording:

the meaning of the d-wchar sequences is implementation-defined.

where the footnote is:

*) An implementation may use the d-wchar sequence to determine extra information to be
represented in the NaN's significand. 10

12.8 strfromd32, strfromd64, and strfromd128 functions <stdlib.h>

The specifications of these functions are similar to those of strfromd, strfromf, and strfromld
(7.22.1.2a) as defined in Part 1 (10.2) of Technical Specification 18661. These functions are declared in
<stdlib.h>.

Change to C11: 15

After 7.22.1.5, add:

7.22.1.6 The strfromd32, strfromd64, and strfromd128 functions

Synopsis

[1] #define __STDC_WANT_IEC_18661_EXT2__
#include <stdlib.h> 20
int strfromd32(char * restrict s, size_t n, const char * restrict

format, _Decimal32 fp);
int strfromd64(char * restrict s, size_t n, const char * restrict

format, _Decimal64 fp);
int strfromd128(char * restrict s, size_t n, const char * restrict 25

format, _Decimal128 fp);

Description

[1] The strfromd32, strfromd64, and strfromd128 functions are equivalent to snprintf(s,
n, format, fp) (7.21.6.5), except the format string contains only an optional precision and one 30
of the conversion specifiers a, A, e, E, f, F, g, or G, which applies to the type (_Decimal32,
_Decimal64, or _Decimal128) indicated by the function suffix (rather than by a length modifier).
Use of these functions with any other format string results in undefined behavior.

Returns

[1] The strfromd32, strfromd64, and strfromd128 functions return the number of characters 35
that would have been written had n been sufficiently large, not counting the terminating null character,
or a negative value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than n.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

36 © ISO/IEC 2013 – All rights reserved

12.9 Type-generic macros <tgmath.h>

The following changes to C11 enhance the specification of type-generic macros in <tgmath.h> to apply to
decimal floating types, as well as standard floating types.

Changes to C11:

In 7.25, replace paragraphs 2 and 3: 5

[2] Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix,
several have one or more parameters whose corresponding real type is double. For each such
function, except modf, there is a corresponding type-generic macro.313) The parameters whose
corresponding real type is double in the function synopsis are generic parameters. Use of the macro
invokes a function whose corresponding real type and type domain are determined by the arguments 10
for the generic parameters.314)

[3] Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

— First, if any argument for generic parameters has type long double, the type determined is long
double. 15

— Otherwise, if any argument for generic parameters has type double or is of integer type, the type
determined is double.

— Otherwise, the type determined is float.

 with:

[2] This clause specifies a many-to-one correspondence of functions in <math.h> and <complex.h> 20
with a type-generic macro.313) Use of the type-generic macro invokes a corresponding function
whose type is determined by the types of the arguments for particular parameters called the generic
parameters.314)

[3] Of the <math.h> and <complex.h> functions without an f (float) or l (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function, 25
except modf, there is a corresponding type-generic macro.313) The parameters whose
corresponding real type is double in the function synopsis are generic parameters.

[3a] Some of the <math.h> functions for decimal floating types have no unsuffixed counterpart. Of
these functions with a d64 suffix, some have one or more parameters whose type is _Decimal64. For
each such function, except decodedecd64, encodedecd64, decodebind64, and encodebind64, 30
there is a corresponding type-generic macro. The parameters whose real type is _Decimal64 in the
function synopsis are generic parameters.

[3b] If arguments for generic parameters of a type-generic macro are such that some argument has a
corresponding real type that is of standard floating type and another argument is of decimal floating
type, the behavior is undefined. 35

[3c] Use of a type-generic macro invokes a function whose generic parameters have the
corresponding real type determined by the corresponding real types of the arguments as follows:

— First, if any argument for generic parameters has type _Decimal128, the type determined is
_Decimal128.

— Otherwise, if any argument for generic parameters has type _Decimal64, or if any argument for 40
generic parameters is of integer type and another argument for generic parameters has type
_Decimal32, the type determined is _Decimal64.

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 37

— Otherwise, if any argument for generic parameters has type _Decimal32, the type determined is
_Decimal32.

— Otherwise, if the corresponding real type of any argument for generic parameters is long double,
the type determined is long double.

— Otherwise, if the corresponding real type any argument for generic parameters is double or is of 5
integer type, the type determined is double.

— Otherwise, if any argument for generic parameters is of integer type, the type determined is
double.

— Otherwise, the type determined is float.

If neither <math.h> nor <complex.h> define a function whose generic parameters have the 10
determined corresponding real type, the behavior is undefined.

In 7.25#5, replace the last sentence:

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro results in undefined behavior.

with: 15

If all arguments for generic parameters are real, then use of the macro invokes a real function
(provided <math.h> defines a function of the determined type); otherwise, use of the macro results
in undefined behavior.

In 7.25#6, replace the last sentence:

Use of the macro with any real or complex argument invokes a complex function. 20

 with:

Use of the macro with any argument of standard floating or complex type invokes a complex function.
Use of the macro with an argument of a decimal floating type results in undefined behavior.

After 7.25#6, add the paragraph:

[6a] For each d64-suffixed function in <math.h>, except decodedecd64, encodedecd64, 25
decodebind64, and encodebind64, that does not have an unsuffixed counterpart, the
corresponding type-generic macro has the name of the function, but without the suffix. These type-
generic macros are:

<math.h> type-generic
function macro 30
------------------ ------------------
quantizedN quantize
samequantumdN samequantum
quantumdN quantum
llquantexpdN llquantexp 35

Use of the macro with an argument of standard floating or complex type or with only integer type
arguments results in undefined behavior.

ISO/IEC TS 18661 Working Group Draft – June 25, 2013 WG 14 N1724

38 © ISO/IEC 2013 – All rights reserved

[6b] A type-generic macro cbrt that conforms to the specification in this clause and that is affected
by constant rounding modes as specified in Part 1 of Technical Specification 18661 could be
implemented as follows:

#ifdef __STDC_WANT_IEC_18661_EXT2
#define cbrt(X) _Generic((X), \ 5

 _Decimal128: cbrtd128(X), \
 _Decimal64: cbrtd64(X), \
 _Decimal32: cbrtd32(X), \
 long double: cbrtl(X), \
 default: _Roundwise_cbrt(X), \ 10
 float: cbrtf(X) \
)
#else

#define cbrt(X) _Generic((X), \
 long double: cbrtl(X), \ 15
 default: _Roundwise_cbrt(X), \
 float: cbrtf(X) \
)
#endif
 20

where _Roundwise_cbrt() is equivalent to cbrt() invoked without macro-replacement
suppression.

In 7.25#7, insert at the beginning of the example:

#define __STDC_WANT_IEC_18661_EXT2__

In 7.25#7, append to the declarations: 25

#if __STDC_IEC_60559_DFP__ >= 201ymmL
_Decimal32 d32;
_Decimal64 d64;
_Decimal128 d128;
#endif 30

In 7.25#7, append to the table:

exp(d64) expd64(d64);
sqrt(d32) sqrtd32(d32);
fmax(d64, d128) fmaxd128(d64, d128); 35
pow(d32, n) powd64(d32, n);
remainder(d64, d) undefined behavior
creal(d64) undefined behavior
remquo(d32, d32, &n) undefined behavior
llquantexp(d) undefined behavior 40
quantize(dc) undefined behavior
samequantum(n, n) undefined behavior

 45

WG 14 N1724 Working Group Draft – June 25, 2013 ISO/IEC TS 18661

© ISO/IEC 2013 – All rights reserved 39

Bibliography

[1] ISO/IEC 9899:2011, Information technology — Programming languages, their environments and
system software interfaces — Programming Language C

[2] ISO/IEC 9899:2011/Cor.1:2012, Technical Corrigendum 1

[3] ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point 5
arithmetic

[4] ISO/IEC TR 24732:2009, Information technology – Programming languages, their environments and
system software interfaces – Extension for the programming language C to support decimal floating-
point arithmetic

[5] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems, second edition 10

[6] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

[7] IEEE 754−1985, IEEE Standard for Binary Floating-Point Arithmetic

[8] IEEE 854−1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic

