
ISO/IEC JTC 1/SC 22/WG14

October 24, 2019

N2393

v 2
Make false and true first-class language features v.2
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

In its London 2019 meeting, WG14 has found consensus to elevate false and true to proper keywords. This

is only a first step to make these constants first-class language features and to achieve a full compatibility
with C++. Therefore we need also to change their type, namely to change them from int to bool.

Changes in v2: WG14 was not sympathetic to force these keywords also to be macros, so we remove
the text corresponding to this idea. WG14 also was not in favor of the parts that proposed to introduce

recommended practice and to add future language directions, so these are also removed.

1. INTRODUCTION

The Boolean constants false and true are a bit ambivalent because in C17 they expand
to integer constants 0 and 1 that have type int and not _Bool. This is unfortunate when
they are used as arguments to type-generic macros, because there they could trigger an
unexpected expansion, namely for int instead of _Bool. Since for C++, these constants are
of type bool, we propose to do it the same.
The integration of these constants as proper language constructs, also allows to provide
a better feedback to programmers, where such constants seem to be used erroneously. In
particular, diagnostics may be provided when they are used in arithmetic or used contrary
to the intent, e.g as null pointer constants.

2. IMPACT

The change should not have a big impact on user code. In most contexts where these
constants are used (assignment, arithmetic, comparison, non-prototyped function call), bool
values will be promoted to int, anyhow. So in these “regular” contexts the result after
promotion would be exactly the same, namely int values 0 and 1, respectively. As arguments
to function calls that provide a prototype, there is no change either, since the values 0 and
1 are valid for any arithmetic type and so the value and type received by the function are
exactly the same.
The change can have marginal impact on existing code, when the constants are used in
sizeof, alignas or _Generic expressions. All should be relatively rare. The latter, _Generic,
is a sought effect of this change, because we think that choosing bool for these constants is a
much more natural choice and will surprise less. In any case, these usages are compile-time
detectable and we expect that quality implementations can provide diagnostics during the
transition phase to C2x.

3. CHANGES

On top of the “keywords” paper, the changes for this feature are quite minimal, in essence
it is the replacement of the token int by bool in one place.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License



ISO/IEC 9899:202x (E) working draft — October 24, 2019 kw..truefalse N2393

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants
Syntax

1 predefined-constant:
false
true

Description
Some keywords represent constants of a specific value and type.

6.4.4.5.1 The false and true constants
Description

1 The keywords false and true represent constants of type int
::::
bool

:
that are suitable for use as are

integer literals. Their values are 0 for false and 1 for true.86)

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

encoding-prefix:
u8
u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF–8

string literal.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF–8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF–8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

86)Thus, the keywords false and true are usable in preprocessor directives.

58 Language § 6.4.5



N2393 kw..truefalse working draft — October 24, 2019 ISO/IEC 9899:202x (E)

Annex M
(informative)

Change History

M.1 Fifth Edition
1 Major changes in this fifth edition (__STDC_VERSION__ yyyymmL) include:

— add a one-argument version of static_assert, make it a keyword and deprecate the
underscore-capital form

— harmonization with ISO/IEC 9945 (POSIX):

• extended month name formats for strftime

• integration of functions: memccpy, strdup, strndup

— harmonization with floating point standard IEC 60559:

• integration of binary floating-point technical specification TS 18661-1

• integration of decimal floating-point technical specification TS 18661-2

• integration of decimal floating-point technical specification TS 18661-4a

— the macro DECIMAL_DIG is declared obsolescent

— added version test macros to certain library headers

— added the attributes feature

— added nodiscard, maybe_unused and deprecated attributes

— change bool, false and true to keywords
::::
and

:::::
make

:::::
them

::::
type

:::::
bool

:

— change alignas, alignof and thread_local to be keywords and deprecate the underscore-
capital forms

M.2 Fourth Edition
1 There were no major changes in the fourth edition (__STDC_VERSION__ 201710L), only technical

corrections and clarifications.

M.3 Third Edition
1 Major changes in the third edition (__STDC_VERSION__ 201112L) included:

— conditional (optional) features (including some that were previously mandatory)

— support for multiple threads of execution including an improved memory sequencing model,
atomic objects, and thread-local storage (<stdatomic.h> and <threads.h>)

— additional floating-point characteristic macros (<float.h>)

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>)

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 19769:2004)

— type-generic expressions

— static assertions

— anonymous structures and unions

— no-return functions

§ M.3 Change History 565


	Introduction
	Impact
	Changes

