
JeanHeyd Meneide <phdofthehouse@gmail.com>

January 13th, 20120

Document: WG14 n2470 | WG21 p1967
Previous Revisions: n/a
Audience: WG14, WG21
Proposal Category: New Features
Target Audience: General Developers, Application Developers, Compiler/Tooling Developers
Latest Revision: https://thephd.github.io/vendor/future_cxx/papers/source/C - embed.html

Abstract:

Pulling binary data into a program often involves external tools and build system coordination. Many
programs need binary data such as images, encoded text, icons and other data in a specific format. Current
state of the art for working with such static data in C includes creating files which contain solely string
literals, directly invoking the linker to create data blobs to access through carefully named extern variables, or
generating large brace-delimited lists of integers to place into arrays. As binary data has grown larger, these
approaches have begun to have drawbacks and issues scaling. From parsing 5 megabytes worth of integer
literal expressions into AST nodes to arbitrary string literal length limits in compilers, portably putting binary
data in a C program has become an arduous task that taxes build infrastructure and compilation memory and
time.

This proposal provides a flexible preprocessor directive for making this data available to the user in a
straightforward manner.

For well over 40 years, people have been trying to plant data into executables for varying reasons. Whether it
is to provide a base image with which to flash hardware in a hard reset, icons that get packaged with an
application, or scripts that are intrinsically tied to the program at compilation time, there has always been a
strong need to couple and ship binary data with an application.

C does not make this easy for users to do, resulting in many individuals reaching for utilities such as xxd,
writing python scripts, or engaging in highly platform-specific linker calls to set up extern variables pointing
at their data. Each of these approaches come with benefits and drawbacks. For example, while working with
the linker directly allows injection of vary large amounts of data (5 MB and upwards), it does not allow
accessing that data at any other point except runtime. Conversely, Doing all of these things portably across
systems and additionally maintaining the dependencies of all these resources and files in build systems both
like and unlike make is a tedious task.

Thusly, we propose a new preprocessor directive whose sole purpose is to be #include, but for binary data:
#embed.

The reason this needs a new language feature is simple: at present we currently poorly indicate the intent of
the compiler to “produce”

Many different options as opposed to this proposal were seriously evaluated. Implementations were
attempted in at least 2 production-use compilers, and more in private. To give an idea of usage and size, here
are results for various compilers on a machine with the following specification:

— Intel Core i7 @ 2.60 GHz
— 24.0 GB RAM
— Debian Sid or Windows 10
— Method: Execute command hundreds of times, stare extremely hard at htop/Task Manager

While time and Measure-Command work well for getting accurate timing information and can be run several
times in a loop to produce a good average value, tracking memory consumption without intrusive efforts was
much harder and thusly relied on OS reporting with fixed-interval probes. Memory usage is therefore
approximate and may not represent the actual maximum of consumed memory. All of these are using the
latest compiler built from source if available, or the latest technology preview if available. Optimizations at
-O2 (GCC & Clang style)//O2 /Ob2 or equivalent were employed to generate the final executable.

1.1.1 Speed Size

Strategy 40 kilobytes 400 kilobytes 4 megabytes 40 megabytes

#embed GCC 0.236 s 0.231 s 0.300 s 1.069 s

xxd-generated GCC 0.406 s 2.135 s 23.567 s 225.290 s

xxd-generated Clang 0.366 s 1.063 s 8.309 s 83.250 s

xxd-generated MSVC 0.552 s 3.806 s 52.397 s Out of Memory

1.1.2 Memory Size

Strategy 40 kilobytes 400 kilobytes 4 megabytes 40 megabytes

#embed GCC 17.26 MB 17.96 MB 53.42 MB 341.72 MB

xxd-generated GCC 24.85 MB 134.34 MB 1,347.00 MB 12,622.00 MB

xxd-generated Clang 41.83 MB 103.76 MB 718.00 MB 7,116.00 MB

xxd-generated MSVC ~48.60 MB ~477.30 MB ~5,280.00 MB Out of Memory

1.1.3 Analysis

The numbers here are not particularly reassuring. Furthermore, privately owned compilers and other static
analysis tools perform almost exponentially poorly here, taking vastly more memory and thrashing CPUs to
100% for several minutes (to sometimes several hours if e.g. the Swap is engaged due to lack of main
memory). Every compiler must always consume a certain amount of memory in a relationship directly linear
to the number of tokens produced. After that, it is largely implementation-dependent what happens to the
data.

The GNU Compiler Collection (GCC) uses a tree representation and has many places where it spawns extra
“garbage”, as its called in the various bug reports and work items from implementers. There has been a 16+
year effort on the part of GCC to reduce its memory usage and speed up initializers (C Bug Report and C++
Bug Report). Significant improvements have been made and there is plenty of room for GCC to improve here
with respect to compiler and memory size.

LLVM’s Clang, on the other hand, is much more optimized. They maintain a much better scaling and ratio
but still suffer the pain of their token overhead and Abstract Syntax Tree representation, though to a much
lesser degree than GCC. A bug report was filed but talk from two prominent LLVM/Clang developers made
it clear that optimizing things any further would require an extremely large refactor and functionality add of
parser internals, with potentially dubious gains.

Microsoft Visual C (MSVC) scales the worst of all the compilers, even when given the benefit of being on its
native operating system. Both Clang and GCC outperform MSVC on Windows 10 or WINE as of the time of
writing.

Linker tricks on all platforms perform better with time (though slower than #embed implementation), but
force the data to be optimizer-opaque (even on the most aggressive “Link Time Optimization” or “Whole
Program Optimization” modes compilers had). Linker tricks are also exceptionally non-portable: whether it is
the incbin assembly command supported by certain compilers, specific invocations of rc.exe/objcopy or
others, non-portability plagues their usefulness in writing Cross-Platform C (see Appendix for listing of
techniques). This makes C decidedly unlike the “portable assembler” advertised by its proponents (and my
Professors and co-workers).

There are two design goals at play here, sculpted to specifically cover industry standard practices with build
systems and C programs. The first is to enable developers to get binary content quickly and easily into their
applications. This can be icons/images, scripts, tiny sound effects, hardcoded firmware binaries, and more. In
order to support this use case, this feature was designed for simplicity and builds upon widespread existing
practice.

Providing a directive that mirrors #include makes it natural and easy to understand and use this new
directive. It accepts both chevron-delimited (<>) and quote-delimited ("") strings like #include does. This
matches the way people have been generating files to #include in their programs, libraries and applications:
matching the semantics here preserves the same mental model. This makes it easy to teach and use, since it
follows the same principles:

Because of its design, it also lends itself to being usable in a wide variety of contexts and with a wide variety
of vendor extensions. For example:

The above code obeys the alignment requirements for an implementation that understands GCC directives,
without needing to add special support in the #embed directive for it: it is just another array initializer, like
everything else.

2.1.1 Type Flexibility

As hinted at in previous sections’s code snippets, a type can be specified after the #embed to view the data in
a very specific manner. This allows data to initialized as exactly that type.

The contents of the resource are mapped in an implementation-defined manner to the data, such that it will
use sizeof(type-name) * CHAR_BIT bits for each element. If the file does not have enough bits to fill out a
multiple of sizeof(type-name) * CHAR_BIT bits, then a diagnostic is required.

2.1.2 Existing Practice - Search Paths

It follows the same implementation experience guidelines as #include by leaving the search paths
implementation defined, with the understand that implementations are not monsters and will generally
provide -fembed-path/-fembed-path= and other related flags as their users require for their systems. This
gives implementers the space they need to serve the needs of their constituency.

2.1.3 Existing Practice - Discoverable and Distributable

Build systems today understand the make dependency format, typically through use of the compiler flags
-(M)MD and friends. This sees widespread support, from CMake, Meson and Bazel to ninja and make. Even

/* default is unsigned char */
const unsigned char icon_display_data[] =

#embed "art.png"
;

/* specify a type-name to change array type */
const char reset_blob[] =

#embed char "data.bin"
;

/* attributes work just as well */
const signed char aligned_data_str[] __attribute__ ((aligned (8))) =

#embed signed char "attributes.xml"
;

/* specify a type-name to change array type */
const int shorten_flac[] =

#embed int "stripped_music.flac"
;

VC++ has a version of this flag – /showIncludes – that gets parsed by build systems.

This preprocessor directive fits perfectly into existing build architecture by being discoverable in the same
way with the same tooling formats. It also blends perfectly with existing distributed build systems which
preprocess their files with -frewrite-includes before sending it up to the build farm, as distcc and icecc
do.

The second principle guiding the design of this feature is facing the increasing problems with #include and
typical source-style rewriting of binary data. Array literals do not scale. Processing large comma-delimited,
brace-init-lists of data-as-numbers produces excessive compilation times. Compiler memory usage reaches
extraordinary levels that are often ten to twenty times (or more) of the original desired data file (see above
tables in the Motivation section). Part of this is endemic to the compiler: the preprocessor demands that
tokens be

String literals do not suffer the same compilation times or memory scaling issues, but the C Standard has
limits on the maximum size of string literals (§5.2.4.1, “— 4095 characters in a string literal (after
concatenation)”). One implementation takes the C Standard quite almost exactly at face value: it allows 4095
bytes in a single string piece, so multiple quoted pieces each no larger than 4095 bytes must be used to create
large enough string literals to handle the work.

#embed’s specification is such that it behaves “as if” it expands to a brace-delimited, comma-separated
sequence of integral literals. This means an implementation does not have to run the full gamut of producing
an abstract syntax tree of an expression. It does not need a fully generic expression list that spans several
AST nodes for what is logically just a sequence of numeric literals. A more direct representation can be used
internally in the compiler, drastically speeding up processing and embedding of the binary data into the
translation unit for use by the program. One of the test implementations uses such a direct representation and
achieves drastically reduced memory and compile time footprint, making large binary data accessible in C
programs in an affordable manner.

2.2.1 Infinity Files

The earliest adopters and testers of the implementation reported problems when trying to access POSIX-style
char devices and pseudo-files that do not have a logical limitation. These “infinity files” served as the
motivation for introducing the “limit” parameter; there are a number of resources which are logically infinite
and thusly having a compiler read all of the data would result an Out of Memory error, much like with
#include if someone did #include "/dev/urandom".

The limit parameter is specified before the resource name in #embed, like so:

This prevents locking compilers in an infinite loop of reading from potentially limitless resources. Note the
parameter is a hard upper bound, and not an exact requirement. A resource may expand to 16 elements and
not the maximum of 32.

const int please_dont_oom_kill_me[] =
#embed int 32 "/dev/urandom"

;

An implementation of this functionality is available in branches of both GCC and Clang, accessible right now
with an internet connection through the online utility Compiler Explorer. The Clang compiler with this
functionality is called “x86-64 clang (std::embed)” and the GCC compiler is called “x86-64 gcc
(std::embed)” in the Compiler Explorer UI.

There has been concerns expressed about the form of this feature – whether or not it could be a preprocessor
directive itself, or a magical macro introduced in the language, or a special pragma. Each of these has their
own specific syntax tradeoffs. The primary choice and the one advocated for is the syntax as shown above: a
plain preprocessor directive analogous to #include. It is written as #embed, but other names (previously
recommended by the Community) are #include_bin, #include_binary, or #load_binary.

The syntax can also be adjusted. A preprocessor directive is preferred because that allows it to be findable by
the end of Preprocessor.

This wording is relative to C’s N2454.

The intent of the wording is to provide a preprocessing directive that:

— takes a string literal identifier – potentially from the expansion of a macro – and uses it to find a unique
resource on the command line;

— maps the contents of the file in an implementation-defined manner to a sequence of integer literals,
each whose value is no greater than the maximum representable value of a single unsigned char;

— and, present such contents as if by a brace-enclosed list of integer literals, such that it can be used to
initialize arrays of known and unknown bound.

Add another control-line production and a new parenthesized-non-header to §6.10 Preprocessing Directives,
Syntax, paragraph 1:

control-line:
      …
     # embed pp-tokens new-line

parenthesized-non-header:
     (opt pp-tokens)opt

Add a new sub clause as §6.10.� (� is a stand-in character to be replaced by the editor) to §6.10
Preprocessing Directives, preferably after §6.10.2 Source file inclusion:

§6.10.�     Resource embedding

Constraints

1A #embed directive shall identify a resource that can be processed by the implementation as a
sequence of binary data.

Semantics

2 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the < and >. The named resource is searched for in an
implementation-defined manner.

3 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt “ q-char-sequence ” new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the ", or < and >, delimiters. The named resource is searched for in
an implementation-defined manner. If this search is not supported, or if the search fails, the
directive is reprocessed as if it read

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

with the identical contained q-char-sequence (including > characters, if any) from the original
directive.

4 If a parenthesized-non-header is not specified, then the directive behaves as if the tokens of the
parenthesized-non-header are unsigned char. If a parenthesized-non-header is specified, outer
parenthesis must be present if it contains one or more of ", < or >.

5 Let the parenthesized-non-header tokens be T. Either form of the #embed directive specified
previously behave as if it is replaced by the contents of the resource a { and } delimited
initializer-list. The initializer-list represents an implementation-defined mapping from the
contents of the resource to the elements of the initializer-list.

6 If a digit-sequence is specified, it shall be an unsigned integer-constant. The implementation-
defined mapping from the contents of the resource to the elements of the initializer-list shall
produce no more than digit-sequence elements.

7 A preprocessing directive of the form

    # embed pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after
embed in the directive are processed just as in normal text. (Each identifier currently defined as
a macro name is replaced by its replacement list of preprocessing tokens.) The directive resulting

after all replacements shall match one of the two previous forms18�. The method by which a
sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of "
characters is combined into a single resource name preprocessing token is implementation-
defined.

Add 2 new Example paragraphs below the above text in §6.10.� Resource embedding:

8 EXAMPLE 1 Placing a small image resource.

9 EXAMPLE 2 Checking the first 4 elements of a sound resource.

18�)
 Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in

5.1.1.2); thus, an expansion that results in two string literals is an invalid directive. Forward references:

macro replacement (6.10.�).

#include <stddef.h>

void have_you_any_wool(const unsigned char*, size_t);

int main (int, char*[]) {
const unsigned char baa_baa[] =

#embed "black_sheep.ico"
 ;

 have_you_any_wool(baa_baa,
sizeof(baa_baa) / sizeof(*baa_baa));

return 0;
}

#include <assert.h>

int main (int, char*[]) {
const char sound_signature[] =

#embed char 4 <sdk/jump.wav>
 ;

// PCM WAV resource?
assert(sound_signature[0] == 'R');
assert(sound_signature[1] == 'I');
assert(sound_signature[2] == 'F');
assert(sound_signature[3] == 'F');

return 0;
}

This wording is relative to C++’s N4835.

The intent of the wording is to provide a preprocessing directive that:

— takes a string literal enclosed in <> or "" – potentially from the expansion of a macro – and use it to
find a unique resource on implementation-defined search paths;

— maps the contents of the file in an implementation-defined manner to a sequence of type-name values;
— produces a diagnostic if the contents do not have enough data to fill out the binary representation of

type-name values;
— and, present such contents as if by a brace-enclosed list of integer literals, such that it can be used to

initialize arrays of known and unknown bound.

The proposed feature test macro is __cpp_pp_embed for the preprocessor functionality.

Append to §14.8.1 Predefined macro names [cpp.predefined]’s Table 16 with one additional entry:

Macro name Value

__cpp_pp_embed 202006L

Add a new control-line production to §15.1 Preamble [cpp.pre] and a new grammar production:

control-line:
    …
    # embed pp-tokens new-line

…

parenthesized-non-header:
    (opt pp-tokens opt)

Add a new sub-clause §15.4 Resource inclusion [cpp.res]:

15.4 Resource inclusion [cpp.res]

1 A #embed directive shall identify a resource file that can be processed by the implementation.

2 A preprocessing directive of the form

    # embed parenthesized-non-headeropt digit-sequenceopt < h-char-sequence > new-line

or

    # embed parenthesized-non-headeropt digit-sequenceopt “ q-char-sequence ” new-line

searches a sequence of implementation-defined places for a resource identified uniquely by the
specified sequence between the < and > or the “ and ” delimiters. How the places are specified or
the resource identified is implementation-defined.

3 If there is no parenthesized-non-header, then the directive behaves as if the tokens of the
parenthesized-non-header are unsigned char. If a parenthesized-non-header is specified, outer
parenthesis must be present if the pp-tokens contains one or more of ", < or >.

4 An #embed directive behaves as-if replaced by the contents of the resource in a brace-
initializer-list. The brace-delimited initializer-list represents an implementation-defined mapping
from the contents of the resource to the elements of the initializer-list.

5 If a digit-sequence is specified, it shall be an unsigned integer-literal and the brace-initializer-
list will contain no more than digit-sequence elements.

6 Let T be the parenthesized-non-header tokens. If the implemented-defined bit size of the
resource’s contents are not a multiple of sizeof(T) * CHAR_BIT or T does not denote a trivial
type, then the program is ill-formed.

Thank you to Alex Gilding for bolstering this proposal with additional ideas and motivation. Thank you to
Aaron Ballman, David Keaton, and Rhajan Bhakta for early feedback on this proposal. Thank you to the
#include<C++> for bouncing lots of ideas off the idea in their Discord.

Thank you to the Lounge<C++> for their continued support, and to Robot M. F. for the valuable early
implementation feedback.

This section categorizes some of the platform-specific techniques used to work with C++ and some of the
challenges they face. Other techniques used include pre-processing data, link-time based tooling, and
assembly-time runtime loading. They are detailed below, for a complete picture of today’s landscape of
options. They include both C and C++ options.

8.1.1 Pre-Processing Tools

1. Run the tool over the data (xxd -i xxd_data.bin > xxd_data.h) to obtain the generated file
(xxd_data.h) and add a null terminator if necessary:

2. Compile main.c:

Others still use python or other small scripting languages as part of their build process, outputting data in the
exact C++ format that they require.

There are problems with the xxd -i or similar tool-based approach. Tokenization and Parsing data-as-source-
code adds an enormous overhead to actually reading and making that data available.

Binary data as C(++) arrays provide the overhead of having to comma-delimit every single byte present, it
also requires that the compiler verify every entry in that array is a valid literal or entry according to the C++
language.

This scales poorly with larger files, and build times suffer for any non-trivial binary file, especially when it
scales into Megabytes in size (e.g., firmware and similar).

8.1.2 python

unsigned char xxd_data_bin[] = {
0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x72, 0x6c, 0x64,
0x0a, 0x00

};
unsigned int xxd_data_bin_len = 13;

#include <stdlib.h>
#include <stdio.h>

// prefix as const,
// even if it generates some warnings in g++/clang++
const
#include "xxd_data.h"

#define SIZE_OF_ARRAY (arr) (sizeof(arr) / sizeof(*arr))

int main() {
const char* data = reinterpret_cast<const char*>(xxd_data_bin);

 puts(data); // Hello, World!
return 0;

}

Other companies are forced to create their own ad-hoc tools to embed data and files into their C++ code.
MongoDB uses a custom python script, just to format their data for compiler consumption:

MongoDB were brave enough to share their code with me and make public the things they have to do: other
companies have shared many similar concerns, but do not have the same bravery. We thank MongoDB for
sharing.

8.1.3 ld

import os
import sys

def jsToHeader(target, source):
 outFile = target
 h = [

'#include "mongo/base/string_data.h"',
'#include "mongo/scripting/engine.h"',
'namespace mongo {',
'namespace JSFiles{',

]
def lineToChars(s):

return ','.join(str(ord(c)) for c in (s.rstrip() + '\n')) + ','
for s in source:

 filename = str(s)
 objname = os.path.split(filename)[1].split('.')[0]
 stringname = '_jscode_raw_' + objname

 h.append('constexpr char ' + stringname + "[] = {")

with open(filename, 'r') as f:
for line in f:

 h.append(lineToChars(line))

 h.append("0};")
symbols aren't exported w/o this

 h.append('extern const JSFile %s;' % objname)
 h.append('const JSFile %s = { "%s", StringData(%s, sizeof(%s) - 1) };' %
 (objname, filename.replace('\\', '/'), stringname, stringname))

 h.append("} // namespace JSFiles")
 h.append("} // namespace mongo")
 h.append("")

 text = '\n'.join(h)

with open(outFile, 'wb') as out:
try:

 out.write(text)
finally:

 out.close()

if __name__ == "__main__":
if len(sys.argv) < 3:

print "Must specify [target] [source] "
 sys.exit(1)
 jsToHeader(sys.argv[1], sys.argv[2:])

A complete example (does not compile on Visual C++):

1. Have a file ld_data.bin with the contents Hello, World!.

2. Run ld -r binary -o ld_data.o ld_data.bin.

3. Compile the following main.cpp with c++ -std=c++17 ld_data.o main.cpp:

This scales a little bit better in terms of raw compilation time but is shockingly OS, vendor and platform

#include <stdlib.h>
#include <stdio.h>

#define STRINGIZE_(x) #x
#define STRINGIZE(x) STRINGIZE_(x)

#ifdef __APPLE__
#include <mach-o/getsect.h>

#define DECLARE_LD_(LNAME) extern const unsigned char _section$__DATA__##LNAME[];
#define LD_NAME_(LNAME) _section$__DATA__##LNAME
#define LD_SIZE_(LNAME) (getsectbyLNAME("__DATA", "__" STRINGIZE(LNAME))->size)
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)

#elif (defined __MINGW32__) /* mingw */

#define DECLARE_LD(LNAME) \
extern const unsigned char binary_##LNAME##_start[]; \
extern const unsigned char binary_##LNAME##_end[];

#define LD_NAME(LNAME) binary_##LNAME##_start
#define LD_SIZE(LNAME) ((binary_##LNAME##_end) - (binary_##LNAME##_start))
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)

#else /* gnu/linux ld */

#define DECLARE_LD_(LNAME) \
extern const unsigned char _binary_##LNAME##_start[]; \
extern const unsigned char _binary_##LNAME##_end[];

#define LD_NAME_(LNAME) _binary_##LNAME##_start
#define LD_SIZE_(LNAME) ((_binary_##LNAME##_end) - (_binary_##LNAME##_start))
#define DECLARE_LD(LNAME) DECLARE_LD_(LNAME)
#define LD_NAME(LNAME) LD_NAME_(LNAME)
#define LD_SIZE(LNAME) LD_SIZE_(LNAME)
#endif

DECLARE_LD(ld_data_bin);

int main() {
const char* p_data = reinterpret_cast<const char*>(LD_NAME(ld_data_bin));
// impossible, not null-terminated
//puts(p_data);
// must copy instead
return 0;

}

specific in ways that novice developers would not be able to handle fully. The macros are required to erase
differences, lest subtle differences in name will destroy one’s ability to use these macros effectively. We
omitted the code for handling VC++ resource files because it is excessively verbose than what is present
here.

N.B.: Because these declarations are extern, the values in the array cannot be accessed at
compilation/translation-time.

8.1.4 incbin

There is a tool called incbin which is a 3rd party attempt at pulling files in at “assembly time”. Its approach
is incredibly similar to ld, with the caveat that files must be shipped with their binary. It unfortunately falls
prey to the same problems of cross-platform woes when dealing with Visual C, requiring additional pre-
processing to work out in full.

