

Proposal for C2x

WG14 N2511

Title: Specific bit-width length modifier

Author, affiliation: Robert C. Seacord, NCC Group

Date: 2020-07-16

Proposal category: Feature

Target audience: Implementers supporting fixed-width and extended integer types

Abstract: Add specific bit-width length modifier to formatted IO functions

Prior art: C

Specific bit-width length modifier
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N2511

Reference Document: N2465

Date: 2020-07-16

Proposal N2465 “intmax_t, a way forward” was presented at the Spring 2020 meeting, but failed to

gain support. However, there was support for specific bit-width length modifier that was a small

component of the broader proposal. This paper brings forward this idea from the original proposal.

1. PROBLEM DESCRIPTION

Section 7.20.1.1 of the C Standard defines exact-width integer types. The typedef name intN_t

designates a signed integer type with width N, no padding bits, and a two’s complement representation.
Thus, int8_t denotes such a signed integer type with a width of exactly 8 bits. The typedef name

uintN_t designates an unsigned integer type with width N and no padding. However, there is no

portable mechanism for specifying the width of these types when passing them as arguments to
formatted input and output functions. Similarly, extended integer types lack portable length modifiers.

2. SUGGESTED CHANGES

The exact width of the type can be specified using a specific bit-width length modifier in a manner that

can be understood by both the implementation and the library. If the library doesn’t support the

specified width, the formatted input or output function can return an error.

The length modifier uses a lowercase letter because uppercase letters are reserved for implementation

extensions. Avoiding the letters used in the standard and various TRs leaves bqvw. In this case, we

decided to use 'w' to denote the width of the value and to reserve 'b' to support binary output in future.

128-bit integers, for example, will look like this:

uint128_t all = -1;

printf("the largest set is %w128d\n", all);

A w followed by a decimal number following d, i, o, u, x, or X conversion specifier specifies that the

conversion specifier applies to an exact-width integer type argument of exactly N bits; or that a

following n conversion specifier applies to a pointer to an exact-width integer type argument of exactly

N bits.

There is some relevant implementation experience. Microsoft printf has I32 and I64 for this purpose.

The use of I is in the space reserved for implementation extensions and other implementations use I for

other things, but it's still relevant experience should we wish to support w<width> for that purpose.

Microsoft also uses 'w' in extensions, but only with string and character formats so that wouldn't conflict

in any way with a standard use of 'w'.

Small types that are subject to integer promotions will work correctly. Consider the following code

fragment:

uint8_t i = 1;

printf("%w8d", i);

The argument i is promoted to an int when passed to the formatted output function. The

implementation must anticipate this and correctly process promoted arguments.

7.21.6.1 The fprintf function
Add the following to paragraph 7:

…

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or the

corresponding unsigned integer type argument; or that a following n conversion specifier applies to a

pointer to a ptrdiff_t argument.

wN Specifies that a following d, i, o, u, x, or X conversion specifier applies to an exact-width integer type

argument of exactly N bits where N is a decimal constant; or that a following n conversion specifier

applies to a pointer to an exact-width integer type (7.20.1.1) argument of exactly N bits. Supported

values of N are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double

argument.

…

Modify paragraph 14 as follows:

The fprintf function returns the number of characters transmitted, or a negative value if an output or

encoding error occurred or if the implementation does not support a specified exact width length modifier.

7.21.6.2 The fscanf function
Add the following to paragraph 11:

…

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with

type pointer to ptrdiff_t or the corresponding unsigned integer type.

wN Specifies that a following d, i, o, u, x, or X, or n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits where N is a decimal constant. Supported values of N

are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument

with type pointer to long double.

…

Modify paragraph 16 as follows:

The fscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items

assigned, which can be fewer than provided for, or even zero, in the event of an early matching

failure or if the implementation does not support a specified exact width length modifier.

7.29.2.1 The fwprintf function
Add the following to paragraph 7:

…

t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or the

corresponding unsigned integer type argument; or that a following n conversion specifier

applies to a pointer to a ptrdiff_t argument.

wN Specifies that a following d, i, o, u, x, or X conversion specifier applies to an exact-width integer type

argument of exactly N bits where N is a decimal constant; or that a following n conversion specifier

applies to a pointer to an exact-width integer type argument of exactly N bits. Supported values of N

are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long double

argument.

…

Modify paragraph 14 as follows:

The fwprintf function returns the number of wide characters transmitted, or a negative value if an output or

encoding error occurred or if the implementation does not support a specified exact width length modifier.

7.29.2.2 The fwscanf function
Add the following to paragraph 11:

…

t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with

type pointer to ptrdiff_t or the corresponding unsigned integer type.

wN Specifies that a following d, i, o, u, x, or X, or n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits where N is a decimal constant. Supported values of N

are implementation-defined.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an argument

with type pointer to long double.

…

The fwscanf function returns the value of the macro EOF if an input failure occurs before the first

conversion (if any) has completed. Otherwise, the function returns the number of input items

assigned, which can be fewer than provided for, or even zero, in the event of an early matching

failure or if the implementation does not support a specified exact width length modifier.

4.0 Acknowledgements

I would like to recognize the following people for their help with this work: Joseph S. Myers, Aaron

Ballman.

5.0 References

N2465 Seacord, intmax_t, a way forward

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2465.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2465.pdf

