<ctype.h> and <wctype.h> character classification functions

Title: Return type of <ctype.h> and <wctype.h> character classification functions
Author: Andrew Banks (MISRA Liaison, LDRA Ltd)

Date: 2020-06-10

Proposal for: C2X

Document Ref: WG14 N2541

Category: Technical

References: N2458, N2522

Summary

Clause 7.4.1 states that, for the character handling functions in <ctype.h>:

The functions in this subclause return nonzero (true) if and only if the value of the argument
¢ conforms to that in the description of the function.

For legacy reasons, the return type of these functions is int — an implicit Boolean, rather than an
explicit one. Furthermore, the definition allows any non-zero return value, unlike eg the equality
and inequality operators specifying 1 for true.

Given that C has supported the Boolean type since C99, it would make sense to tweak these
functions to return bool rather than int.

Note: The same applies to the functions of <wctype.h>

The consequences of having an implicit Boolean, rather than an explicit one, mean that attempting
to enforce better type-checking produces unnecessary noise.

Furthermore, by returning int, there is potential for real-world confusion... eg, examples have been
found where developers have (incorrectly?) used bitwise operators leading to incorrect
determination:

assert (isupper('B') && islower('a')) is OK
assert(isupper('B') & islower('a')) fails on all checked implementations

Equally, given that the “true” return value is an indeterminant value, the return value cannot be
compared with true:

assert (isupper(‘A’)) is OK — implicit type conversion to
assert (isupper(‘A’) != false) is OK
assert (isupper(‘A’) == true) fails on all checked implementations

Typically, implementations implement these as macros that mask the character against the
characteristic being checked, returning the masked value. Casting to bool should be transparent to
any exiting user code.

Notes:

e This paper reflects C18 as published, and is also intended to be compatible with
Proposals N2458 and N2522 if adopted.

e Newer (C11) additions already use bool (eg atomic_is_lock free and the
atomic_compare_exchange_xxx family) so this change brings consistency.

Proposed Change

Overview

Amend the narrative text of clause 7.4.1 to clarify the return value:

The functions in this subclause return aeazere={true} if and only if the value of the argument
¢ conforms to that in the description of the function.

Amend the narrative text of clause 7.30.2.1 to clarify the return value:

The functions in this subclause return aeazere={true} if and only if the value of the argument
wc conforms to that in the description of the function.

Function Definitions

In the code segment in the Synopsis for each of the following sections, replace int with bool* as

follows:

e 74111

e 74121

e 74131

e 74141

e 74151

e 7416.1

e 74171

e 74181

e 741091

e 741101
e 741111
e 741121
e 7302111
e 7302121
e 7302131
e 7302141
e 7302151
e 7.30.2.16.1
e 7302171
e 7.30.2.1381
e 7302191

e 7302211

bool iat isalnum
bool iat isalpha
bool &t isblank
bool &t iscntrl

bool #at isdigit

bool #at isgraph
bool iat islower
bool #at isprint

bool #at ispunct
bool &t isspace
bool iat isupper
bool it isxdigit

bool &t iswalnum (wint_t wc);
bool #at iswalpha (wint_t wc);
bool #at iswblank (wint_t wc);

C'

O'

bool it iswgraph(wint_t wc);

bool #at iswlower (wint_t wc);

C'

1 Use of bool as opposed to _Bool is deliberate, as this reflects the potential change in N2522

ool iat iswentrl (wint_t wc);
ool &% iswdigit (wint_t wc);

bool st iswprint (wint_t wc);
bool st iswpunct(wint_t wc);
e 7.30.2.1.10.1 bool it iswspace (wint_t wc);
e 7.30.2.1.11.1 bool it iswupper (wint_t wc);
e 7.30.2.1.12.1 bool it iswxdigit (wint_t wc);
bool &t iswctype (wint_t wc, wctype_t desc);

Annex B (Library Summary)
Consequentially, update the Library Summary, Annex B.3

e bool #atisalnum (intc);
e boolintisalpha (intc);
e booliatisblank (intc);
e booliatiscntrl (intc);
e booliatisdigit (intc);
e booliatisgraph (intc);
e bool iatislower (intc);
e boolintisprint (intc);
e booliatispunct (intc);
e booliatisspace (intc);

. ooIm:tlsupper (intc);
ol iat isxdigit (int c);

Consequentially, update the Library Summary, Annex B.29

e bool &t iswalnum (wint_t wc);
e bool st iswalpha (wint_t wc);

e bool st iswblank (wint_t wc);

e bool #stiswentrl (wint_t wc);

e bool it iswdigit (wint_t wc);

e bool it iswgraph(wint_t wc);

e bool it iswlower(wint_t wc);

e bool #stint iswprint (wint_t wc);
e bool st iswpunct(wint_t wc);

e bool st iswspace(wint_t wc);

e bool st iswupper (wint_t wc);
o bool st iswxdigit (wint_t wc);

e bool st iswctype (wint_t wc, wctype_t desc);

