Restartable and Non-Restartable
Functions for Efficient Character
Conversions | r4

JeanHeyd Meneide <phdofthehouse@gmail.com>

Shepherd (Shepherd’s Oasis) <shepherd@soasis.org>

October 27th, 2020

— 1 Changelog
— 1.1 Revision 3 - October 27th, 2020
— 1.2 Revision 0-2 - March 2nd, 2020
— 2 Introduction and Motivation
— 2.1 Problem 1: Lack of Portability
— 2.2 Problem 2: What is the Encoding?
— 2.3 Problem 3: Performance
— 2.4 Problem 4: wchar_t Cannot Roundtrip
— 2.5 Problem 5: The C Standard Cannot Handle Existing Practice
— 2.6 In Summary
— 3 Prior Art
— 3.1 Standard C
— 3.2 Win32
— 3.3 nl_langinfo
— 3.4 SDCC
— 3.5 iconv/ICU
— 4 Solution
— 4.1 What about UTF{X} <> UTF{Y} functions?
— 5 Conclusion
— 6 Wording
— 7 Acknowledgements
— 8 References

Document. n2595

Previous Revisions: n2440, n2431, n2500

Audience: WG14

Proposal Category: New Library Features

Target Audience: General Developers, Text Processing Developers

Latest Revision: https://thephd.github.io/vendor/future_cxx/papers/source/n2595.html

Abstract:

Implementations firmly control what both the Wide Character and Multibyte Character

literals are interpreted as for the encoding, as well as how they are treated at runtime
by the Standard Library. While this control is fine, users of the Standard Library have
no portability guarantees about how these library functions may behave, especially in
the face of encodings that do not support each other’s full codepage. And, despite
additions to C11 for maybe-UTF16 and maybe-UTF32 encoded types, these functions
only offer conversions of a single unit of information at a time, leaving orders of
magnitude of performance on the table.

This paper proposes and explores additional library functionality to allow users to
retrieve multibyte and wide character into a statically known encoding to enhance the
ability to work with text.

1 Changelog

1.1 Revision 3 - October 27th, 2020

— Completely Reformulate Paper based on community, musl-libc, and glibc
feedback.

— Completely rewrite every section past Proposed Changes, and change many
more.

1.2 Revision 0-2 - March 2nd, 2020

— Introduce new functions and gather consensus to move forward.
— Attempt to implement in other standard libraries and gather feedback.

2 Introduction and Motivation

C adopted conversion routines for the current active locale-derived/LC_TYPE-
controlled/implementation-defined encoding for Multibyte (mb) Strings and Wide (wc)
Strings. While the rationale for having such conversion routines to and from Multibyte
and Wide strings in the C library are not explicitly stated in the documents, it is easy to
derive the many benefits of a full ecosystem of both restarting (r) and non-restarting
conversion routines for both single units and string-based bulk conversions for mb and
wc strings. From ease of use with string literals to performance optimizations from bulk
processing with vectorization and SIMD operations, the mbs(r)towcs — and vice-
versa — granted a rich and fertile ground upon which C library developers took
advantage of platform amenities, encoding specifics, and hardware support to provide
useful and fast abstractions upon which encoding-aware applications could build.

Unfortunately, none of these API designs were granted to charl6_t (c16) or
char32_t (c32) conversion functions. Nor were they given a way to work with a well-
defined 8-bit multibyte encoding such as UTF8 without having to first pin it down with
platform-specific setlocale(...) calls. This has resulted in a series of extremely
vexing problems when trying to write a portable, reliable C library code that is not
locked to a specific vendor.

This paper looks at the problems, and then proposes a solution (without C Standard
wording) with the goal of hoping to arrive at a solution that is worth implementing for
the C Standard Library.

2.1 Problem 1: Lack of Portability

Already, Windows, z/0S, and POSIX platforms greatly differ in what they offer for
char-typed, Multibyte string encodings. EBCDIC is still in play after many decades.
Windows'’s Active Code Page functionality on its machine prevents portability even
within its own ecosystem. Platforms where LANG environment variables control
functionality make communication between even processes on the same hardware a
silent and often unforeseen gamble for library developers. Using functions which
convert to/from mbs make it impossible to have stability guarantees not only between

platforms, but for individual machines. Sometimes even cross-process communication
becomes exceedingly problematic without opting into a serious amount of platform-
specific or vendor-specific code and functionality to lock encodings in, harming the
portability of C code greatly.

wchar_t does not fare better. By definition, a wide character type must be capable of
holding the entire character set in a single unit of wchar_t. Reality, however, is
different: this has been a fundamental impossibility for decades for implementers that
switched to 16-bit UCS-2 early. IBM machines persist with this issue for all 32-bit
builds, though some IBM platforms took advantage of the 64-bit change to do an ABI
break and use UTF32 like other Linux distributions settled on. Even if one were to
know this knowledge about IBM and program exclusively on their machines, certain
IBM platforms can still end up in a situation where wchar_t is neither 32-bit UTF32 or
16-bit UCS-2/UTF16: the encoding can change to something else in certain Chinese
locales, becoming completely different.

Windows is permanently stuck on having to explicitly detail that its implementation is
“16-bit, UCS-2 as per the standard”, before explicitly informing developers to use
vendor-specific WideCharToMultibyte/MultibyteToWideChar to handle UTF16-
encoded characters in wchar_t.

These solutions provide ways to achieve a local maxima for a specific vendor or
platform. Unfortunately, this comes at the extreme cost of portability: the code has no
guarantee it will work anywhere but your machine, and in a world that is increasingly
interconnected by devices that interface with networks it makes sharing both data
and code troublesome and hard to work with.

2.2 Problem 2: What is the Encoding?

With setlocale and getlocale only responding to and returning implementation-
defined (const)charx, there is no way to portably determine what the locale (and
any associated encoding) should or should not be. The typical solution for this has
been to code and program only for what is guaranteed by the Standard as what is in
the Basic Character Set. While this works fine for source code itself, this produces an
extremely hostile environment:

— conversion functions in the standard mangle and truncate data in (sometimes
troubling, sometimes hilarious) fashion;

— programs which are not careful to meticulously track encoding of incoming text
often lose the ability to understand that text;

— programmers can never trust the platform will support even the Latin characters
in any representation of data beyond the 7th bit of a byte;

— and, interchange between cultures with different default encodings makes it
impossible to communicate with others without entirely forsaking the standard
library.

Abandoning the C Standard Library — to get standard behavior across platforms —is
an exceedingly bitter pill to have to swallow as an enthusiastic C developer.

2.3 Problem 3: Performance

The current version of the C Standard includes functions which attempt to alleviate
Problems 1 and 2 by providing conversions from the per-process (and sometimes per-
thread), locale-sensitive black box encoding of multibyte char* strings. They do this
by providing conversions to charl6_t units or char32_t units with mbrtoc(16|32)
and c(16]32)rtomb functions. We will for a brief moment ignore the presence of the
__STD_C_UTF16_ and _STD_C_UTF32__ macros and assume the two types mean
that string literals and library functions convert to and from UTF16 and UTF32
respectively. We will also ignore that wchar_t's encoding — which is just as locale-
sensitive and unknown at compile and runtime as char’s encoding is — has no such
conversion functions. These givens make it possible to say that we, as C
programmers, have 2 known encodings which we can use to shepherd data into a
stable state for manipulation and processing as library developers.

Even with that knowledge, these one-unit-at-a-time conversions functions are slower
than they should be.

On many platforms, these one-at-a-time function calls come from the operating
system, dynamically loaded libraries, or other places which otherwise inhibit compiler
observation and optimizer inspection. Attempts to vectorize code or unroll loops built
around these functions is thoroughly thwarted by this. Building static libraries or from
source is very often a non-starter for many platforms. Since the encoding used for
multibyte strings and wide strings are controlled by the implementation, it becomes
increasingly difficult to provide the functionality to convert long segments of data with
decent performance characteristics without needing to opt into vendor or platform
specific tricks.

2.4 Problem 4: wchar_t Cannot Roundtrip

With no wctoc32 or wctocl6 functions, the only way to convert a wide character or
wide character string to a program-controlled, statically known encoding UTF
encoding is to first invoke the wide character to multibyte function, and then invoke
the multibyte function to either charl6_t or char32_t.

This means that even if we have a well-behaved wchar_t that is not sensitive to the
locale (e.g., on Windows machines), we lose data if the locale-controlled char
encoding is not set to something that can handle all incoming code unit sequences.
The locale-based encoding in a program can thus tank what is simply meant to be a
pass-through encoding from wchar_t to charl6_t/char32_t, all because the only
Standards-compliant conversion channels data through the locale-based multibyte
encoding mb(s) (r)toX(s) functions.

For example, it was fundamentally impossible to engage in a successful conversion
from wchar_t strings to char multibyte strings on Windows using the C Standard
Library. Until a very recent Windows 10 update, UTF8 could not be set as the active
system codepage either programmatically or through an experimental, deeply-buried
setting. This has changed with Windows Version 1903 (May 2019 Update), but the
problems do not stop there.

No dedicated UTF-8 support (the standard mandates no specific encodings or
charsets) leaves developers to write the routines themselves. Sometimes worse,

roundtrip it through the locale after forcing a change to a UTF-8 locale, which may not
be supported. While the non-restartable functions can save quite a bit of code size,
unfortunately there are many encodings which are not as nice and require state to be
processed correctly (e.g., Shift JIS and other ISO-2022 encodings). Not being able to
retain that state between potential calls in a mbstate_t is detrimental to the ability to
move forward with any encoding endeavor that wishes to bridge the gap between
these disparate platform encodings and the current locale.

Because other library functions can be used to change or alter the locale in some
manner, it once again becomes impossible to have a portable, compliant program with
deterministic behavior if just one library changes the locale of the program, let alone if
the encoding or locale is unexpected by the developer because they do not know of
that culture or its locale setting. This hidden state is nearly impossible to account for:
the result is software systems that cannot properly handle text in a meaningful way
without abandoning C’s encoding facilities, relying on vendor-specific
extensions/encodings/tools, or confining one’s program to only the 7-bit plane of
existence.

2.5 Problem 5: The C Standard Cannot Handle Existing
Practice

The C standard does not allow a wide variety of encodings that implementations have
already crammed into their backing locale blocks to work, resulting in the
abandonment of locale-related text facilities by those with double-byte character sets,
primarily from East Asia. For example, there is a serious bug that cannot be fixed

without non-conforming, broken behavior:

This call writes the second Unicode code point, but does not consume any
input. O is returned since no input is consumed. According to the C
standard, a return of O is reserved for when a null character is written, but
since the C standard doesn’'t acknowledge the existence of characters that
can’t be represented in a single wchar_t, we're already operating outside
the scope of the standard.

The standard cannot handle encodings that must return two or more wchar_t for
however many — up to MB_MAX_LEN - it consumes. This is even for when the target
wchar_t “wide execution” encoding is UTF-32; this is a fundamental limitation of the
C Standard Library that is absolutely insurmountable by the current specification.
This is exacerbated by the standard’s insistence that a single wchar_t must be
capable of representing all characters as a single element, a philosophy which has
been bled into the relevant interfaces such as mbrtowc and other *wc* related types.
As the values cannot be properly represented in the standard, this leaves people to
either make stuff up or abandon it altogether:

2.6 In Summary

The problems C developers face today with respect to encoding and dealing with

vendor and platform-specific black boxes is a staggering trifecta: non-portability
between processes running on the same physical hardware, performance degradation
from using standard facilities, and potentially having a locale changed out from under
your program to prevent roundtripping.

This serves as the core motivation for this proposal.

3 Prior Art

There are many sources of prior art for the desired feature set. Some functions (with
fixes) were implemented directly in implementations, embedded and otherwise.
Others rely exclusively platform-specific code in both Windows and POSIX
implementations. Others have cross-platform libraries that work across a myriad of
platforms, such as ICU or iconv. We discuss the most diverse and exemplary
implementations.

3.1 Standard C

To understand what this paper proposes, an explanation of the current landscape is
necessary. The below table is meant to be read as being {row}to{column}. The
symbols provide the following information:

— «: Function exists in both its restartable (function name has the indicative r in
it) and its canonical non-restartable form ({row}to{column} and
{row}rto{column}).

— [3: Function exists only in its “restartable” form ({row}rto{column}).

— ¥ : Function does not exist at all.

Here is what exists in the C Standard Library so far:

mb | wc | mbs | wes | c8 | c16 | ¢32 | ¢8s | c16s | c32s
mb | = |« X 0 3
we | ¢ | = X X X
mbs = | ¢ X X X
wcs v = X X | X
c8 | X X = X | X
cle | @ | ¥ X =X
c32 | @ | X X X =
c8s X | X = X X
c16s X X X =X

e | % x| | % %] =

There is a lot of missing functionality here in this table, and it is important to note that
a large amount of this comes from both not being willing to standardize more than the
bare minimum and not having a cohesive vision for improving encoding conversions in
the C Standard. Notably, string-based {prefix}s functions are missing, leaving
performance-oriented multi-unit conversions out of the standard. There are also
severe API flaws in the C standard, as discussed above.

3.2 Win32

WideCharToMultiByte and MultiByteToWideChar are the APIs of choice for those in
Win32 environments to get to and from the run-time execution encoding and — if it
matches — the translation-time execution encoding. Unfortunately, these APIs are
locked within the Windows ecosystem entirely as they are not available as a
standalone library. Furthermore, as an operating system Windows exclusively controls
what it can and cannot convert from and to; some of these functions power the
underlying portions of the character conversion functions in their Standard Library, but
they notably truncate multi-code-unit characters for their UTF-16 wchar_t. This
produces a broken, deprecated UCS-2 encoding when e.g. mbrtowc is used instead of
directly relying on the operating system functionality, making the C standard’s
functions of dubious use.

3.3 nl_langinfo

nl_langinfo is a POSIX function that returns various pieces of information based on
an enumerated input and some extra parameters. It has been suggested that this be
standardized over anything else, to make it easier to determine what to do with a
given locale.

The first problem with this is it returns a string-based identifier that can be whatever
an implementation decides it should be. This makes nl_langinfo is no better than
setlocale(LC_CHARSET, NULL) in its design:

Specifies the name of the coded character set for which the charmap file is
defined. This value determines the value returned by the nl_langinfo
subroutine. The <code_set_name> must be specified using any character
from the portable character set, except for control and space characters.

Any name can be chosen that fits this description, and POSIX nails nothing down for
portability or identification reasons. There is no canonical list, just whatever
implementations happen to supply as their “charmap” definitions.

3.4 SDCC

The Small Device C Compiler (SDCC) has already begun some of this work. One of its
principle contributors, Dr. Philip K. Krause, wrote papers addressing exactly this

problemE. Krause’s work focuses entirely on non-restartable conversions from

Multibyte Strings to charl6_t and char32_t. There is no need for a conversion to a
UTF8 char style string for SDCC, since the Multibyte String in SDCC is always UTF8.
This means that mbstocl6s and mbstoc32s and the “reverse direction” functions
encompass an entire ecosystem of UTF8, UTF16, and UTF32.

While this is good for SDCC, this is not quite enough for other developers who attempt
to write code in a cross-platform manner.

Nevertheless, SDCC’s work is still important: it demonstrates that these functions are
implementable, even for small devices. With additional work being done to implement
them for other platforms, there is strong evidence that this can be implemented in a
cross-platform manner and thusly is suitable for the Standard Library.

3.5 iconv/ICU

The C functions presented below is motivated primarily by concepts found in a popular
POSIX library, iconv3. We do not provide the full power of iconv here but we do mimic
its interface to allow for a better definition of functions, as explained in Problem 5. The
core of the functionality can be embodied in this parameterized function signature:

size_t XstoYs(const charX** input, size_t* input_bytes, const charY*x
output, size_t* output_bytes);

In iconv’s case, an additional first parameter describing the conversion (of type
iconv_t). That is not needed for this proposal, because we are not making a generic
conversion API. This proposal is focused on doing 2 things and doing them extremely
well:

— Getting data from the current execution encoding (char) to a Unicode encoding
(unsigned char/UTF-8, charl6_t/UTF-16, char32_t/UTF-32), and the reverse.

— Getting data from the current wide execution encoding (wchar_t) to a Unicode
encoding (unsigned char/UTF-8, charl6_t/UTF-16, char32_t/UTF-32), and
the reverse.

iconv can do the above conversions, but also supports a complete list of pairwise
conversions between about 49 different encodings. It can also be extended at
translation time by programming more functionality into its library. This proposal is
focusing just in doing conversions to and from encodings that the implementation
owns to/from Unicode. This results in the design found below.

4 Solution

Given the problems before, the prior art, the implementation experience, and the
vendor experience, it is clear that we need something outside of nl_langinfo, lighter
weight than all of iconv, and more resilient and encompassing than what the C
Standard offers. Therefore, the solution to our problem of having a wide variety of
implementation encodings is to expand the contract of wchar_t for an entirely new
set of functions which avoid the problems and pitfalls of the old mechanism.

Notably, both of the multibyte string’s function design and the wide character string’s
definition of a single character is broken in terms of existing practice today. The
primary problem relies in the inability for both APIs in either direction to handle N: M
encodings, rather than N:1 or 1: M. Therefore, these new functions focus on providing
an interface to allow multi-code-unit conversions, in both directions.

To facilitate this, new headers — <stdmchar. h> - will be introduced. Each header will
contain the “multi character” (mc) and “multi wide character” (mwc) conversion routines,
respectively. To support getting data losslessly out of wchar_t and char strings
controlled firmly by the implementation — and back into those types if the code units in
the characters are supported - the following functionality is proposed using the new
multi (wide) character (m[w]c) prefixes and suffixes:

mc mwc | mcs | mwcs | c8 c16 c32 c8s | cl16s | c32s

mc = 4 Bv Bv BAv

mwc |« = Bv Bv BAv

mcs = v Bv Bv Bv
mwcs v = Bv Av Bv

c8 Hv B¢ = X X

cl6e Hv B¢ X = X

c32 Bv Bv X X =

c8s By Bv = X X
c16s By Bv X = X
c32s Bv BAv X X | =

In particular, it is imperative to recognize that the implementation is the “sole
proprietor” of the wide locale encodings and multibyte locale encodings for its string
literals (compiler) and library functions (standard library). Therefore, the mc and mwc
functions simply focus on providing a good interface for these encodings. The form of
both the individual and string conversion functions are:

size_t XntoYn(const charX** input, size_t* input_size, const charY*x
output, size_t* output_size);

size_t XnrtoYn(const charX** input, size_t* input_size, const charY#**
output, size_t* output_size, mcstate_t* state);

size_t XsntoYsn(const charXx* input, size_t* input_size, const
charY** output, size_t* output_size);

size_t XsnrtoYsn(const charX** input, size_t* input_size, const
charY** output, size_t* output_size, mcstate_t* state);

The input and output sizes are expressed in terms of the # of charXs. They take the
input/output sizes as pointers, and decrement the value by the amount of input/output
consumed. Similarly, the input/output data pointers themselves are incremented by
the amount of spaces consumed / written to. This only happens when an irreversible
and successful conversion of input data can successfully and without error be written
to the output. The s functions work on whole strings rather than just a single complete
irreversible conversion, the n stands for taking a size value.

The error codes are as follows:

— (size_t)-3 the input is correct but there is not enough output space
— (size_t)-2 an incomplete input was found after exhausting the input
— (size_t)-1 an encoding error occurred

— (size_t) 0 the operation was successful

The behaviors are as follows:

— if output is NULL, then no output will be written. *output_size will be
decremented the amount of characters that would have been written.

— if output is non-NULL and output_size is NULL, then enough space is assumed
in the output buffer.

— for the restartable (r) functions, if input is NULL, then state is set to the initial
conversion sequence and no other actions are performed; otherwise, input must
not be NULL.

Finally, it would be prudent to prevent the class of (size_t)-3 errors from showing up
in your code if you know you have enough space. For the non-string (the functions
lacking s) that perform a single conversion, a user can pre-allocate a suitably sized
static buffer in automatic duration storage space. This will be facilitated by a group of
integral constant expressions contained in macros, which would be;

— STDC_MC_MAX, which is the maximum output for a call to one of the X to multi
character functions

— STDC_MWC_MAX, which is the maximum output for a call to one of the X to multi
wide character functions

— STDC_MC8_MAX, which is the maximum output for a call to one of the X to UTF-8
character functions

— STDC_MC16_MAX, which is the maximum output for a call to one of the X to
UTF-16 character functions

— STDC_MC32_MAX, which is the maximum output for a call to one of the X to
UTF-32 character functions

these values are suitable for use as the size of an array, allowing a properly sized
buffer to hold all of the output from the non-string functions. These limits apply only to
the non-string functions, which perform a single unit of irreversible input consumption
and output (or fail with one of the error codes and outputs nothing).

Here is the full list of proposed functions:

#include <stdmchar.h>

#define STDC_C8_MAX 16
#define STDC_C16_MAX 8
#define STDC_C32_MAX U
#define STDC_MC_MAX 16
#define STDC_MWC_MAX U

enum : size_t { // N2575 - otherwise, will just use const size_t
declarations here
MCHAR_OK = (size_t)o,

MCHAR_ENCODING_ERROR = (size_t)-1,
MCHAR_INCOMPLETE_INPUT = (size_t)-2,
MCHAR_INSUFFICIENT_OUTPUT = (size_t)-3,

3

size_t mcntomwcn(const char** input, size_t* input_size, const
wchar_t** output, size_t* output_size);

size_t mcnrtomwcn(const char** input, size_t* input_size, const
wchar_t** output, size_t* output_size, mcstate_t* state);

size_t mcsntomwcsn(const char** input, size_t* input_size, const
wchar_t** output, size_t* output_size);

size_t mcsnrtomwcsn(const charx* input, size_t* input_size, const
wchar_t** output, size_t* output_size, mcstate_t* state);

size_t mcntoc8n(const char** input, size_t* input_size, const
unsigned char*x output, size_t* output_size);

size_t mcnrtoc8n(const char** input, size_t* input_size, const
unsigned char#** output, size_t* output_size, mcstate_t=*
state);

size_t mcsntoc8sn(const char** input, size_t* input_size, const
unsigned char** output, size_t* output_size);

size_t mcsnrtoc8sn(const char** input, size_t* input_size, const
unsigned char** output, size_t* output_size, mcstate_t=*
state);

size_t mcntoclén(const char** input, size_t* input_size, const
charlé_t** output, size_t* output_size);

size_t mcnrtoclén(const char** input, size_t* input_size, const
charlé_t** output, size_t* output_size, mcstate_t* state);

size_t

size_t

size_t
size_t
size_t

size_t

size_t
size_t
size_t

size_t

size_t

size_t

size_t

size_t

size_t
size_t
size_t

size_t

size_t

size_t

mcsntoclésn(const char*x input, size_t* input_size, const
charlé_t** output, size_t* output_size);

mcsnrtoclésn(const char*x input, size_t* input_size, const
charl6_t** output, size_t* output_size, mcstate_t* state);

mcntoc32n(const char*x input, size_t* input_size, const
char32_t** output, size_t* output_size);

mcnrtoc32n(const char*x input, size_t* input_size, const
char32_t** output, size_t* output_size, mcstate_t* state);

mcsntoc32sn(const char*x input, size_t* input_size, const
char32_t** output, size_t* output_size);

mcsnrtoc32sn(const char** input, size_t* input_size, const
char32_t** output, size_t* output_size, mcstate_t* state);

mwcntomcn(const wchar_t*x input, size_t* input_size, const
char** output, size_t* output_size);

mwcnrtomcn(const wchar_t**x input, size_t* input_size, const
char** output, size_t* output_size, mcstate_t* state);

mwcsntomcsn(const wchar_t*x input, size_t* input_size, const
char** output, size_t* output_size);

mwcsnrtomcsn(const wchar_t** input, size_t* input_size, const
char** output, size_t* output_size, mcstate_t* state);

mwcntoc8n(const wchar_t** input, size_t* input_size, const
unsigned char*x output, size_t* output_size);

mwcnrtoc8n(const wchar_t** input, size_t* input_size, const
unsigned char** output, size_t* output_size, mwcstate_t*
state);

mwcsntoc8sn(const wchar_t*x input, size_t* input_size, const
unsigned char#** output, size_t* output_size);

mwcsnrtoc8sn(const wchar_t** input, size_t* input_size, const
unsigned char#** output, size_t* output_size, mwcstate_t=*
state);

mwcntoclén(const wchar_t** input, size_t* input_size, const
charlé_t** output, size_t* output_size);

mwcnrtoclén(const wchar_t** input, size_t* input_size, const
charlé_t** output, size_t* output_size, mwcstate_t* state);

mwcsntoclésn(const wchar_t** input, size_t* input_size, const
charlé_t** output, size_t* output_size);

mwcsnrtoclésn(const wchar_t*x input, size_t* input_size, const
charlé_t** output, size_t* output_size, mwcstate_t* state);

mwcntoc32n(const wchar_t**x input, size_t* input_size, const
char32_t** output, size_t* output_size);

mwcnrtoc32n(const wchar_t** input, size_t* input_size, const
char32_t** output, size_t* output_size, mwcstate_t* state);

size_t mwcsntoc32sn(const wchar_t** input, size_t* input_size, const
char32_t** output, size_t* output_size);

size_t mwcsnrtoc32sn(const wchar_t** input, size_t* input_size, const
char32_t** output, size_t* output_size, mwcstate_t* state);

4.1 What about UTF{X} — UTF{Y} functions?

Function interconverting between different Unicode Transformation Formats are not
proposed here because — while useful — both sides of the encoding are statically
known by the developer. The C Standard only wants to consider functionality strictly in
the case where the implementation has more information / private information that the
developer cannot access in a well-defined and standard manner. A developer can
write their own Unicode Transformation Format conversion routines and get them
completely right, whereas a developer cannot write the Wide Character and Multibyte
Character functions without incredible heroics and/or error-prone assumptions.

This brings up an interesting point, however: if _STD_C_UTF16_ and
__STD_C_UTF32__ both exist, does that not mean the implementation controls what
cl6 and c32 mean? This is true, however: within a (admittedly limited) survey of
implementations, there has been no suggestion or report of an implementation which
does not use UTF16 and UTF32 for their charl6_t and char32_t literals, respectively.
This motivation was, in fact, why a paper percolating through the WG21 Committee -
p1041 “Make charl6_t/char32_t literals be UTF16/UTF32"4 — was accepted. If this
changes, then the conversion functions c{X}toc{Y} marked with an ¥ will become
important.

Thankfully, that does not seem to be the case at this time. If such changes or such an
implementation is demonstrated, these functions can be added to aid in portability.

5 Conclusion

The ecosystem deserves ways to get to a statically-known encoding and not rely on
implementation and locale-parameterized encodings. This allows developers a way to
perform cross-platform text processing without needing to go through fantastic
gymnastics to support different languages and platforms. An independent library
implementation, cuneicode® 6, is available upon request to the author. A patch to
major libraries will be worked on again.

6 Wording

There is no wording at the moment, because there is more implementation to do and
more approval to gain!

7 Acknowledgements

Thank you to Philipp K. Krause for responding to the e-mails of a newcomer to matters
of C and providing me with helpful guidance. Thank you to Rajan Bhakta, Daniel
Plakosh, and David Keaton for guidance on how to submit these papers and get

started in WG14. Thank you to Tom Honermann for lighting the passionate fire for
proper text handling in me for not just C++, but for our sibling language C.

8 References

May the Tower of Babel’s curse be defeated.

1. Tom Honermann and Carlos O’Donnell. mbrtowc with BigS-HKSCS returns 2
instead of 1 when consuming the second byte of certain double byte characters.
https://sourceware.org/bugzilla/show_bug.cgi?id=25744 ¢

2. Philip K. Krause. N2282: Additional multibyte/wide string conversion functions.
June 2018. Published: http://www.open-std.org/jtc1/sc22/wgl14/www
/docs/n2282.htm. <2

3. Bruno Haible and Daiki Ueno. libiconv. August 2020. Published:
https://savannah.gnu.org/git/?group=libiconv.<>

4. Robot Martinho Fernandes. p1041. February 2019. Published: https://wg21.link
[p1041.€

5. JeanHeyd Meneide. Catching [[l]: Unicode for C++ in Greater Detail". November
2019. Published Meeting C++: https://www.youtube.com
/watch?v=FQHofyOgQtM.<>

6. JeanHeyd Meneide. Deep C Diving - Fast and Scalable Text Interfaces at the
Bottom. July 2020. Published C++ On Sea: https://youtu.be/X-FLGsa8LVc.<

