N2624: Introduction for discussion of N2577
Provenance-aware Memory Object Model for C
Draft Technical Specification

adapted from N2378

Jens Gustedt! Peter Sewell> Kayvan Memarian?

Victor B. F. Gomes?* Martin Uecker?

LINRIA and ICube, Université de Strasbourg, France
2University of Cambridge, UK *when this work was done
3University Medical Center, Géttingen, Germany

2020-12-02 1/67

Context: previous discussions (selected)

'WG14 online meeting, 2020-11
N2577: Provenance-aware Memory Object Model for C, Draft Technical Specification: Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Martin Uecker

WG21 Cologne meeting, 2019-07
C/C++ Memory Object Model Papers - Introduction (P1797R0): Peter Sewell
Effective Types: Examples (P1796R0): Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, Hubert Tong

WG14 London meeting, 2019-04

N2378: C provenance semantics: slides (extracts from N2363): Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Martin Uecker

N2362: Moving to a provenance-aware memory object model for C: Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, and Martin Uecker

N236 c provenance semantics: examples: Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Martin Uscker

N236 detailed ics (for PNVI-plain, PNVI add; posed, PNVI P ion, and PVI models): Peter Sewell, Kayvan Memarian, and Victor B. F. Gomes
N2360: Pomter lifetime-end zap: Paul E. McKenney, Maged Michael, and Peter Sewell

WG14 Pittsburgh meeting, 2018-10
n2204: C Memory Object Model Study Group: Progress ReportPeter Sewell
n2263: Clarifying Pointer Provenance v4Kayvan Memarian, Victor Gomes, Peter Sewell

WG14 Brno meeting, 2018-04 (CMOM SG created)

n2223: Clarifying the C Memory Object Model: ion to N2219 - N2222K ian, Victor Gomes, Peter Sewell superseded by v4
n2219: Clarifying Pointer Provenance (Q1-Q20) v3Kayvan Memanar\ Victor Gomes, Peter Sewell superseded by v

n2220: Clarifying Trap Representations (Q47) v3Kayvan Memarian, Victor Gomes, Peter Sewell superseded by the bove va

n2221: Clarifying Unspecified Values (Q48-Q59) v3Kayvan Memarian, Victor Gomes, Peter Sewell superseded by v4

n2222: Further Pointer Issues (Q21-Q46)Kayvan Memarian, Victor Gomes, Peter Sewell superseded by v4

WG14 Pittsburgh meeting, 2016-10

n2089: Clarifying Unspecified Values (Draft Defect Report or Proposal for C2x)Kayvan Memarian and Peter Sewell
n2090: Clarifying Pointer Provenance (Draft Defect Report or Proposal for C2x)Kayvan Memarian and Peter Sewell
n2091: Clarifying Trap Representations (Draft Defect Report or Proposal for C2x)Kayvan Memarian and Peter Sewell

WG14 London meeting, 2016-04

n2012: Clarifying the C memory object modelKayvan Memarian and Peter Sewell

n2013: C Memory Object and Value Semantics: The Space of de facto and ISO StandardsDavid Chisnall, Justus Matthiesen, Kayvan Memarian, Peter Sewell, Robert N. M. Watson
n2014: What is C in Practice? (Cerberus Survey v2): Analysis of ResponseKayvan Memarian and Peter Sewell

n2015: What is C in practice? (Cerberus survey v2): Analysis of - with C and Peter Sewell

Academic papers
Exploring C Semantics and Pointer Provenance (in POPL 2019, and as n2311)
Into the depths of C: elaborating the de facto standards (in PLDI 2016)

Elsewhere and Previously

WG21 p0137r1: Core Issue 1776: Replacement of class objects containing reference members (in C++17) (2016-06)
WG21 p0593r3: Implicit creation of objects for low-level object manipulation (2019-01)

In OOPSLA 2018: Reconciling High-level Optimizations and Low-level Code in LLVM (2018-11)

n1818 / DRA451: Defect Report 451 (2014-04)

n1637: Subtleties of the ANSI/ISO C standard (2012-09)

DR260: indeterminate values and identical representations (2004-09)

mail 9350: What is an Object in C Terms? (2001-09) 2/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1797r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1796r0.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2378.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2294.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm
https://www.cl.cam.ac.uk/~pes20/cerberus/notes96-2018-04-21-clarifying-introduction-v4.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2219.htm
http://www.cl.cam.ac.uk/users/pes20/cerberus/notes97-2018-04-21-provenance-v4.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2220.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2221.htm
http://www.cl.cam.ac.uk/users/pes20/cerberus/notes98-2018-04-21-uninit-v4.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2222.htm
http://www.cl.cam.ac.uk/users/pes20/cerberus/notes99-2018-04-21-further-v4.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2089.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2091.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2012.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2013.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2014.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2311.pdf
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0137r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0593r3.html
https://sf.snu.ac.kr/publications/llvmtwin.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1818.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/9350

This meeting (WG14 online, 2020-11)

Previously established a well-developed proposal for pointer provenance:, presented in WG14 London 2019-04, WG21
Pittsburgh 2018-10, GCC Cauldron 2018, and EuroLLVM 2018

Here, following earlier WG14 discussion: we have a draft Technical Specification

N2577: Provenance-aware Memory Object Model for C, Draft Technical Specification.Jens Gustedt, Peter Sewell, Kayvan
Memarian, Victor B. F. Gomes, Martin Uecker

Incorporates the content of
> Examples:
N2363: C provenance semantics: examples. Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and
Martin Uecker [these slides are mostly extracts from this]
»> Mathematical semantics:
N2364: C provenance semantics: detailed semantics (for PNVI-plain, PNVI address-exposed, PNVI address-exposed
user-disambiguation, and PVI models). Peter Sewell, Kayvan Memarian, and Victor B. F. Gomes
> Proposed standard text diff:
N2362: Moving to a provenance-aware memory object model for C. Jens Gustedt, Peter Sewell, Kayvan Memarian,
Victor B. F. Gomes, and Martin Uecker
First two exactly as before; the last updated as a change-highlighted diff w.r.t. ISO/IEC 9899:2018
Also:
»> Executable Web-GUI semantics in Cerberus:
http://cerberus.cl.cam.ac.uk/cerberus

3/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2577.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2363.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
http://cerberus.cl.cam.ac.uk/cerberus

Scope

The draft TS only addresses basic pointer provenance.

It does not address many other open memory-object-model questions:
» uninitialised values

padding

effective types

subobject provenance

vVvyVvVyy

pointer lifetime-end zap
» ...various

All those are important, and we've considered them in detail in other papers (not all yet with clear
solutions). But to work within WG14 bandwidth limits, we've focussed on the basic provenance for now.

Open question: will we stick with just that for the TS, or incorporate more?
Depends how quickly we can process this.

Upcoming planned memory object model study group work on uninitialised values and padding. 4/67

Process

New Work Item Proposal ballot closed yesterday and passed (needed five countries; got seven) —
thanks to David K. and all for navigating that.

Now WG14 has two years, until December 1, 2022, to submit a final draft for ballot (DTS, Draft
Technical Specification). Ballot can be earlier if we choose.

The publication deadline is one year after that, which gives us time to navigate the ISO
publication process.

5/67

Basic pointer provenance
Recall: pointers are typically simple concrete addresses at runtime, but compilers do
provenance-based alias analysis:

==
WNHFRFOOONOOITRWN -

// provenance_basic_global_yx.c
#include <stdio.h>
#include <string.h>
int y=2, x=1;
int main() {

}

int xp = &x;
int xq = &y;
p=p+1;

printf("Addresses: p=%p gq=%p\n", (voidx*)p, (voidx)q);

if (memcmp(&p, &g, sizeof(p)) == 0) {

}

*p = 11; // does this have undefined behaviour?

printf("x=%d y=%d *p=%d *q=%d\n",X,y,*p,*q);

Clang 6.0 -02
GCC8.1-02
ICC 19 -02

x=1 y=11 *p=11 xg=11
x=1 y=2 x*p=11 *q=2
x=1 y=2 *p=11 *q=11

(with x and y swapped)

6/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

Basic pointer provenance

To make that GCC and ICC compiler optimisation legal w.r.t. the standard, this program has to
be deemed to have UB, so we have to recognise that the p in xp=11 is a one-past pointer, even
though it has the same numeric address as &y.

DR260 CR (2001) hints at this:

“Implementations are permitted to track the origins of a bit-pattern [...]. They may also
treat pointers based on different origins as distinct even though they are bitwise identical.”

but it was never incorporated in the standard text, and it gives no more detail. That leaves
unclear whether some programming idioms are allowed or not, and what compiler alias analysis
and optimisation are allowed to do.

7/67

Our proposal

Our proposal clarifies this. It reconciles existing C programming practice, compiler
implementation practice, and the standard text, as best we can, with a well-defined and
reasonably simple semantics.

We aim to be conservative with respect to all those — as far as possible, the proposal is capturing
the status quo in the specification. The proposal doesn't involve any new features or change to
the language syntax.

8/67

Our proposal: the basic idea

We associate a provenance @i with every pointer value in the abstract machine, identifying the
original storage instance it's derived from
(if any, or @empty otherwise).

» On every allocation (for static, thread, automatic, and allocated storage durations), the
abstract machine chooses a fresh storage instance ID i (unique across the entire execution),
and the resulting pointer value carries that as its provenance @j.

» Provenance is preserved by pointer arithmetic that adds or subtracts an integer to a pointer.

> At any access via a pointer value, its numeric address must be consistent with its
provenance, with undefined behaviour otherwise

That UB is what licences compilers to do provenance-aware alias analysis.

9/67

Our proposal: the basic idea

Cerberus > | provenance basic_global yx.c ¥ | File ¥ Model ¥ Views ¥ | Step: 12 Forward Back Restart | Search ¥~ Comp
provenance_basic_global_yx.c a Memory x [m}

1 #include <stdio.h> ® QU —e——
2 #include <string.h>

3 int y=2, x=1; p: signed int* [@4, OxfHFdO]
4 int main() {
5 int *p = &x;
6 int *q = &y;
7
8
9
0

Q
&

x: signed int [@2, Oxfffftfe0]
@2, Oxfiftffe0 | |

4

if (m:amcmp(&p, &q, sizeof(p)) == 0) {
*p = 11; // does this have UB?

1 printf ("x=%d y=%d *p=%d q: signed int* [@5, Oxfffffcs)]
*a=%d\n",x,y,*p,*q); u
11} u y: signed int [@1, Oxffffffe4]
12 } n @1, Oxfiftffed _>H
H 2 |
13 H

Note the storage instance IDs @i of the allocations and as part of the pointer values.

(try it live at https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance,basic,global,yx.c)

10/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

Our proposal: the basic idea

Cerberus ¥ | provenance_basic_global yx.c ¥ | File ~

provenance_basic_global_yx.c m]
1 #include <stdio.h>

2 #include <string.h>

3 int y=2, x=1;

4 int main() {

Model ~

Views ~ | Step: 14

x: signed int [@2, Oxffffffe0]

Forward

1

D signed int* [@4, OxfHFfd0]

5 int *p = &x;

6 int *q = &y;

7 p=p+1;

8 if (memcmp(&p, &g, sizeof(p)) == 0) {
9 *p = 11; // does this have UB?

10 printf("x=%d y=%d *p=%d

*g=%d\n",x,y,*p, *q);
}

@2, Oxfifffied

12 }
13

q: signed int* [@5, Oxfffficg]

Back

Restart | Search -

y: signed int [@ 1, Oxffffffed]

Comyj

2

@1, Oxfffftfe4

after the p=p+1, p has the address of y (in this execution), but it still has the provenance (@2) of x

11/67

Our proposal: the basic idea

Cerberus ~ Model ~

provenance_basic_global_yx.c ¥ | File ~ Views ~ | Step: 26 Forward Back Restart | Search ¥ Comf

provenance_basic_global_yx.c m]

1 #include <stdio.h>
2 #include <string.h>
3 int y=2, x=1; x: signed int [@2 exp, OxfTfiffe0]
4 int main() { H
int *p = &x;
int *q = &y;
p=p+1;
if (memcmp (&p, &g, sizeof(p)) == 0) { p: signed int* [@4, Oxfifffd0]
*p = 11; // does this have UB?
printf("x=%d y=%d *p=%d
*q=%d\n",x,y,*p,*q);
}

1

Vo~ oum

=

@2, Oxfifffed

11
12 } ¥y: signed int [@1 exp, Oxffffffed]
13

Console x =[5

q: signed int* [@5, OxfFEfcS] 2

1 Unsuccessful termination of this executi
2 Undefined: [out of bounds pointer at m

@1, Oxfiffffed

at the *p=11 access, the address is not within the footprint of the allocation with that provenance,
so the access is UB, as required 12/67

So far so good, but...

C provides many other ways to construct pointer values:

> casts of pointers to integer types and back, possibly with integer arithmetic

» copying pointer values with memcpy

» manipulation of the representation bytes of pointers, e.g. via charx accesses
> type punning between pointer and integer values
>

I/O, using either fprintf/fscanf and the %p format, fwrite/fread on the pointer
representation bytes, or pointer/integer casts and integer |/O

v

copying pointer values with realloc

P constructing pointer values that embody knowledge established from linking, and from
constants that represent the addresses of memory-mapped devices.

We have to address all these, and the impact on optimisation.

13/67

Design options

» PVI: track provenance via integer computation (n2090, n2263)
Complex, poor algebraic properties, not good fit with implementation

14/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options

» PVI: track provenance via integer computation (n2090, n2263)
Complex, poor algebraic properties, not good fit with implementation

» PNVI-plain: don't track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

15/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options

» PVI: track provenance via integer computation (n2090, n2263)
Complex, poor algebraic properties, not good fit with implementation

» PNVI-plain: don't track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

» PNVl-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

16/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Design options

» PVI: track provenance via integer computation (n2090, n2263)
Complex, poor algebraic properties, not good fit with implementation

» PNVI-plain: don't track provenance via integers. Instead, at integer-to-pointer cast points,
check whether the given address points within a live object and, if so, recreate the
corresponding provenance.

» PNVl-exposed-address (PNVI-ae): allow integer-to-pointer casts to recreate provenance
only for storage instances that have previously been exposed, by a cast of a pointer to it to
an integer type, by a read (at non-pointer type) of the representation of such a pointer, or by
an output of such a pointer using %p.

» PNVI exposed-address user-disambiguation (PNVI-ae-udi): a further refinement to
support roundtrip casts, pointer to integer and back, of one-past pointers.
Clear preference for this option from WG14 and WG21 UB group in previous meetings

17/67

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm

Next

vy

vVvyVvyyvyy

Idioms: checking that various desirable idioms work

Implications for optimisation: checking that various cases are UB, e.g. that function
arguments can't alias its local variables

PNVI-plain vs PNVI-ae-*: is the “exposed” machinery needed?

PNVI-ae vs PNVI-ae-udi: what about one-past integers?

Experimental checks: running the examples in an executable model and in GCC/Clang/ICC
The proposed text diff (Jens)

Precise semantics

18/67

ldioms

19/67

integer casts

provenance_roundtrip_via_intptr_t.c ~

Pointer

Cerberus ~

File ~ Model ¥ Views - | Step: 9 Forward Back Restart

provenance_roundtrip_via_intptr_t.c =] Memory X

1 #include <stdio.h>
2 #include <inttypes.h>

3 int x=1; q: signed int* [@5, OXfHFF0]
4 int main() { n

5 int *p = &x; M

6 intptr_t i = [(intptr_t)p; M unspecified

7 int *q = (int *)i; M

8 *q = 11; // is this free of UB?

9 printf("#p=%d *q=%d\n",*p,*q);

10

11 ’ i: intptr_t [@4, OxfFfiffd8]

unspecified

P: signed int* [@3, Oxffffffe0]

x: signed int [@ 1, Oxffffffec]

@1, Oxfifftfec —DH |
1

This is a simple pointer-to-integer-to-pointer roundtrip; the result should be usable for access2

0/67

Pointer/integer casts

Cerberus ~

provenance_roundtrip_via_intptr_t.c m]

1 #include <stdio.h>
2 #include <inttypes.h>

3 int x=1;

4 int main() {

5 int *p = &x;

6 intptr t i = (intptr_t)p;

7 int *gq = (int *)i;

8 *q = 11; // is this free of UB?
9 printf("*p=%d *g=S%d\n",*p,*q);
10}

11

provenance_roundtrip_via_intptr_t.c ~

File ¥ Model ¥ Views ~
Memory X

q: signed int* [@5, Oxfitttfd0]

Step: 10 Forward Back Restart

unspecified

p: signed int* [@3, Oxffffffe0]

@1, Oxfffiffec

i: intptr_t [@4, OXfFiTds]

x: signed int [@1 exp, Oxfiffffec]

Search ~

1

Oxffffffec

After the pointer-to-integer cast

(intptr_t)p, the x allocation is marked as exposed.

21/67

Pointer/integer casts

Cerberus ¥ | provenance _roundtrip via_intptr t.c ¥ | File ¥ Model ¥ Views ~

Step: 12 Forward Back Restart | Search -

provenance_roundtrip_via_intptr_t.c [E] Memory x
1 #include <stdio.h>
2 #include <inttypes.h>
3 int x=1; p: signed int* [@3, Oxffttfe0]
4 int main() { m|
5 int *p = &x; m
6 intptr t i = (intptr t)p; = @1, Oxffffffec
7 int *q = (int *)i; H
8 *q = 11; // is this free of UB?
9 printf("*p=%d *q=%d\n",*p,*q);
%? ¥ i intptr_t [@4, Ox{ftftfd8]
E x: signed int [@1 exp, Oxffffffec]
n Oxfiffffec == - |
q: signed int* [@5, Oxffftffd0] j
H @1, Oxfiffffec

so the integer-to-pointer cast (int*)i, of an integer within the footprint of x, will recover the
provenance (@1) of x 22/67

integer casts

provenance_roundtrip_via_intptr_t.c ¥

Pointer

Cerberus ~

File ¥ Model ¥ Views ¥ | Step: 15 Forward Back Restart | Search ~

provenance_roundtrip_via_intptr_t.c m] Memory X

1 #include <stdio.h>
2 #include <inttypes.h>

3 int x=1; p: signed int* [@3, Oxfffffe0)
4 int main() { M
5 int *p = &x; H
6 intptr_t i = (intptr_t)p; u @1, Oxfiffftec
7 int *q = (int *)i; H
8 #q =11, // is this free of UB?
9 printf("*p=%d *g=%d\n",*p,*q);
%? ¥ i intptr_t [@4, OxfFffffd8]
E x: signed int [@1 exp, Oxfffftfec]
H Oxfffiffec ~ pF=--- ==
H 11
q signed int* [@5, OxffffffdO] j
@ |, Oxffiiffec

and the access *g=11 is defined behaviour.
23/67

Pointer provenance for pointer bit manipulations

Common in practice. For example, assuming int has alignment at least 4, the low-order pointer

bits are unused, and the implementation-defined pointer/integer conversions are as expected:

OCO~NOCITAWN -

// provenance_tag_bits_via_ uintptr_t_1l.c
#include <stdio.h>

#include <stdint.h>

int x=1;

int main() {

}

int xp = &x;

// cast & to an integer

uintptr_t i = (uintptr_t) p;

// set low-order bit

i=1i] 1u;

// cast back to a pointer

int xq = (int %) i; // does this have UB?

// cast to integer and mask out low-order bits
uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
// cast back to a pointer

int *r = (int *) j;
// are r and p now equivalent?
*r = 11; // does this have UB?

_Bool b = (r==p); // 1is this true?
printf("x=%i *r=%i (r==p)=%s\n",x,x*r,b?"t":"f");

As before, (uintptr_t)x will expose x, so the (intx)j cast will recover the correct provenance,
making the access *r=11 legal.

24/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c

Inter-object integer arithmetic

Can one move between objects with pointer arithmetic? No.
Can one move between objects with integer arithmetic? Debatable whether this must be
supported — we get conflicting reports as to how important it is in practice, e.g. for XOR linked

lists.

PNVI-* naturally allows it (if the implementation-defined pointer/integer conversions do).

25/67

Inter-object integer arithmetic

// pointer_offset_from_int_subtraction_global_yx.c
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y=2, x=1;
int main() {
uintptr_t ux (uintptr_t)&x;
uintptr_t uy (uintptr_t)&y;
uintptr_t offset = uy - ux;
printf("Addresses: &x=%"PRIUPTR" &y=%"PRIUPTR\
" offset=%"PRIUPTR" \n", (unsigned long)ux, (unsigned long)uy, (unsigned long)offset);
int *p = (int *)(ux + offset);
int *q = &y;
if (memcmp(&p, &q, sizeof(p)) == 0) {
*p = 11; // is this free of UB?
printf("x=%d y=%d *p=%d *q=%d\n",X,y,*p,*q);
}

ol el sl e Ly
O~NOOCOITPRWNHOOONOOTA~AWN -

}

As before: the cast (uintptr_t)&y marks y as exposed, so the cast p=(int*) (ux+offset) can

recover the provenance of y and make the access xp=11 legal. /
26/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_yx.c

Copying pointer values bytewise, with user-memcpy
C supports manipulation of object representations, e.g. as in the following naive user

implementation of memcpy:

ol el sl e ey
O~NOOCOITPRWNHEHOOONOOITA~AWN

which constructs a pointer value from copied bytes. This too should be allowed.

// pointer_copy_user_dataflow_direct_bytewise.c
#include <stdio.h>
#include <string.h>
int x=1;
void user_memcpy(unsigned charx dest,
unsigned char xsrc, size_t n) {
while (n > 0) {
xdest = *src;

src += 1; dest += 1; n -= 1;
}
}
int main() {
int *p = &x;
int xq;

user_memcpy ((unsigned charx)é&q,
(unsigned charx)&p, sizeof(int x));
*q = 11; // is this free of undefined behaviour?
printf("xp=%d *q=%d\n",*p,*q);
}

27/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c

Copying pointer values bytewise, with user-memcpy

q: signed int* [@4, Ox{fffffdS]

unspecified

p: signed int* [@3, Oxffffffe0]

x: signed int [@ 1, Oxffffffec]

@1, Oxffffffec —>>

1

28/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxffffffd8

q: signed int* [@4, Oxffffffd8]

src: unsigned char* [@6, Oxffffffc8]

@3, OxffffffeO

4

unspecified

p: signed int* [@3, OxffffffeO]

A 4

@1, Oxffffffec

x: signed int [@1 exp, Oxffffffec]

e 1

29/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, Oxffffffc0]

dest: unsigned char* [@5, Ox{fffffd0]

@4, Oxffffffd8

q: signed int* [@4, Ox{fffffd8]

src: unsigned char* [@6, Oxffffffc8]

-: Oxec @empty
- unspecified @empty

: unspecified @empty

: unspecified @empty

: unspecified @empty

-: unspecified @empty

: unspecified @empty

: unspecified @empty

@empty, unspecified

@3, OxfftttfeO

p: signed int* [@3, Oxffffffe0]

@1, Oxffffffec

x: signed int [@1 exp, Oxffffffec]

E

| |

30/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Ox{fffffd0]

@4, Oxffffffd9

q: signed int* [@4, Oxffffffd8]

src: unsigned char* [@6, Oxffffffc8]

@3, Oxffffffel

\ 4

: unspecified @empty

1= Oxec @empty
: Oxff @empty
: unspecified @empty

@empty, unspecified

: unspecified @empty

: unspecified @empty
: unspecified @empty
: unspecified @empty

p: signed int* [@3, Oxffffffe0]

A 4

@1, Oxffffffec

x: signed int [@1 exp, Oxffffffec]

i ! |

31/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxffffffda

q: signed int* [@4, Oxffffffd8]

sre: unsigned char* [@6, Oxffffffc8]

@3, Oxfffftfe2

Y

L= Oxec @empty

: Oxff @empty
-1 Oxff @empty

: unspecified @empty N

: unspecified @empty

: unspecified @empty

: unspecified @empty

: unspecified @empty

p: signed int* [@3, OxffffffeO]

\ 4

@1, Oxffffffec

»

x: signed int [@1 exp, Oxffffffec]

H

1 |

32/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxfttttfdb

q: signed int* [@4, Oxffffffd8]

src: unsigned char* [@6, Oxfttfffc8]

@3, Oxffffffe3

\

-: unspecified @empty

L= Oxec @empty
-1 Oxff @empty
-1 Oxff @empty

-1 Oxff @empt
1y @empty, unspecified

: unspecified @empty

: unspecified @empty

-: unspecified @empty

p: signed int* [@3, OxffffffeO]

A 4

@1, Oxffffffec

»

x: signed int [@1 exp, Oxffffffec]

H

1 |

33/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxffffffdc

q: signed int* [@4, Ox{fffffd8]

src: unsigned char* [@6, Oxffffffc8]

@3, Oxfffttfed

Y

-: Oxec @empty
-1 Oxff @empty

-: Oxff @empty

-1 Oxff @empty .
@empty, unspecified
-: 0x0 @empty

-: unspecified @empty

-: unspecified @empty

-: unspecified @empty

p: signed int* [@3, Oxffffffe0]

A/

@1, Oxffffffec

x: signed int [@1 exp, Oxffffffec]

H

1

34/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxffftffdd

q: signed int* [@4, Ox{fffffd8]

-: Oxec @empty

-: Oxff @empty
-1 Oxff @empty
- Oxff @empty

@empty, unspecified
-: 0x0 @empty B o

src: unsigned char* [@6, Oxffffffc8]

@3, Oxfffftfe5

A

-: 0x0 @empty

nspecified @empty

- unspecified @empty

p: signed int* [@3, Oxffffffe0]

A/

@1, Oxffffffec

x: signed int [@1 exp, Oxffffffec]

H

1

35/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxffffffcO]

dest: unsigned char* [@5, Oxffffffd0]

@4, Oxfffftfde

q: signed int* [@4, Oxffffffd8]

Oxec @empty
xff @empty
: Oxff @empty

: Oxff @empt;
Ly @empty, unspecified

src: unsigned char* [@6, Oxffffffc8]

@3, Oxfffttfe6

-: 0x0 @empty
-: 0x0 @empty
>_ -: 0x0 @empty
- unspecified @empty
p: signed int* [@3, Oxffffffe0]
H @1, Oxffffffec

»

x: signed int [@1 exp, Oxffffffec]

H

1

36/67

Copying pointer values bytewise, with user-memcpy

n: size_t [@7, OxfffftfcO]

src: unsigned char* [@6, Oxfttfffc8]

p: signed int* [@3, Oxffffffe0]

@3, Oxffffffe7

@1, Oxffffffec

dest: unsigned char* [@5, Oxffffffd0]

q: signed int* [@4, Oxffffffd8]

x: signed int [@1 exp, Oxffffffec]

-: Oxec @empty
-2 Oxff @empty

-1 Oxff @empty

ff @mpt
mrey @1, Oxffffffec

-: 0x0 @empty

@4, Oxfffffdf

-1 0x0 @empty
-: 0x0 @empty
-: 0x0 @empty

1

37/67

Copying pointer values bytewise, with user-memcpy
p: signed int* [@3, Ox{ffffffe0]

@1, Oxffffffec

q: signed int* [@4, Oxffffffd8] x: signed int [@1 exp, Oxffffffec]
1

-: Oxec @empty

-: Oxff @empty

-: Oxff @empty

- Oxff @empt:
H Py @1, Oxffffffec

-: 0x0 @empty

-: 0x0 @empty

-: 0x0 @empty
-: 0x0 @empty 38/67

Copying pointer values bytewise, with user-memcpy

p: signed int* [@3, Oxffffffe0]

@1, Oxffffffec

q: signed int* [@4, Oxffffffd8] x: signed int [@ 1 exp, Oxffffffec]

-: Oxec @empty . 11
-: Oxff @empty :

-1 Oxff @empty
WO @empy) osrreirec
-: 0x0 @empty
-1 0x0 @empty
-: 0x0 @empty
-: 0x0 @empty

The first read of a p pointer byte marked x as exposed, then the final xg=11 access follows the
integer-to-pointer cast semantics when reading a pointer value from the memory bytes, recovering

the provenance @1 that the concrete address is within.
39/67

Pointer provenance and union type punning

Pointer values can also be constructed by type punning, e.g. writing an intx union member,
reading it as a uintptr_t union member, and then casting back to a pointer type.

(The example assumes the object representations of the pointer and the result of the cast to integer are identical. This is not

guaranteed by the standard, but holds for many implementations.)
// provenance_union_punning_3_global.c

1 #include <stdio.h>

2 #include <string.h>

3 #include <inttypes.h>

4 int x=1;

5 typedef union { uintptr_t ui; int =*up; } un;

6 int main() {

7 un u;

3 int *p = &x;

9 u.up = p;

10 uintptr_t i = u.ui;

11 int xq = (intx)i;

12 *q = 11; // does this have UB?

13 printf("x=%d *p=%d xq=%d\n",x,*p,*q);

14 return 0;

15 %

The same semantics as for representation-byte reads also permits this: x is deemed exposed by
the read of the provenanced representation bytes by the non-pointer-type read. The

integer-to-pointer cast then recreates the provenance of x. /
40/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_3_global.c

Pointer provenance via |10

Three versions:
» using fprintf/fscanf and the %p format (which the standard says should work),
> using fwrite/fread on the pointer representation bytes, and
» converting the pointer to and from uintptr_t and using fprintf/fscanf.

The first gives a syntactic indication of a potentially escaping pointer value; the others do not.

Exotic, but used in practice.
In our proposal, these just work: we mark the storage instance as exposed on the %p printf,

pointer representation-byte read, or cast, and use the same semantics as integer-to-pointer casts
at input-, read-, or cast-time to recover the original provenance.

41/67

Implications for optimisation

42/67

Can a function argument alias its local variables? (1/3)
This should be forbidden:

// pointer_from_integer_1lpg.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f(int xp) {

int j=5;

if (p==&j)

*p=7;

printf("j=%d &j=%p\n",j, (void*)&j);
}
10 int main() {
11 uintptr_t i = ADDRESS_PFI_1PG;
12 int *p = (int*)i;
13 f(p);
14 3

main() guesses the address of f()'s local variable j, passing it in as a pointer, and () checks it
before using it for an access. Here GCC -O0 optimises away the if and the write xp=7, even when
ADDRESS_PFI_1PG is the same as &j. That compiler behaviour should be permitted, so this

program should be deemed UB. In other words, code should not normally be allowed to rely on
implementation facts about the allocation addresses of C variables. 43/67

OO~NOOTAWN -

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

Can a function argument alias its local variables? (1/3)

This should be forbidden:

OO~NOOTAWN -

10
11
12
13
14

Our PNVI-* proposals correctly deems this to be UB: at the point of the (intx)i cast the j

// pointer_from_integer_1lpg.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f(int xp) {

int j=5;

if (p==&j)

*p=7;

printf("j=%d &j=%p\n",j, (void*)&j);
}
int main() {

uintptr_t i = ADDRESS_PFI_1PG;

int xp = (intx)i;

f(p);
}

storage instance does not yet even exist, so that cast gives a pointer with empty provenance; any

execution that goes into the if would thus flag UB, so the program as a whole is UB.

44 /67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

Can a function argument alias its local variables? (2/3)
Varying to do the (intx) cast after the j allocation:

OO~NOOOITAWN -

10
11
12
13
14

// pointer_from_integer_lig.c
#include <stdio.h>

#include <stdint.h>

#include "charon_address_guesses.h"
void f(uintptr_t i) {

int j=5;
int xp = (intx)i;
if (p==&j)

*p=7;

printf("j=%d &j=%p\n",j, (void*)&j);

int main() {
uintptr_t j = ADDRESS_PFI_1IG;
f(3);

}

This is still forbidden in PNVI-ae-*, as j is not exposed. It would be allowed in PNVI-plain, but
perhaps that would also be acceptable — it would just require compilers to be conservative about
the results of integer-to-pointer casts where they cannot see the source of the integer, which we
imagine is a rare case. 4567

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c

Can a function argument alias its local variables? (3/3)
Varying again to remove the conditional guard and make j exposed:

// pointer_from_integer_lie.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f(uintptr_t i) {

int j=5;

uintptr_t k = (uintptr_t)&j;

int *p = (intx)i;

*p=7;

printf("j=%d\n",j);

OoOoO~NOOITAWN

10 3

11 int main() {

12 uintptr_t j = ADDRESS_PFI_1I;
13 f(3);

14 1}

Executions in which & == ADDRESS_PFI_1I would be ok, but, because the standard does not and
should not constrain allocation addresses (beyond alignment and non-overlapping properties),

there are always (unless the address space is almost exhausted) other executions in which
ADDRESS_PFI_1I does not match any allocation. So this is still (correctly) deemed UB. 46/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c

Can a function argument alias its local variables? (3/3)
Varying again to remove the conditional guard and make j exposed:

OoOoO~NOOITAWN

10
11
12
13
14

// pointer_from_integer_lie.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f(uintptr_t i) {

int j=5;

uintptr_t k = (uintptr_t)&j;

int *p = (intx)i;

*p=7;

printf("j=%d\n",j);

int main() {
uintptr_t j = ADDRESS_PFI_1I;
f(i);

}

In other words: the fact that programmers cannot assume anything about allocation addresses
licenses the desired compiler optimisation. That's expressed in the abstract machine simply by
making allocation addresses nondeterministic.

47/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c

Can a function access local variables of its parent? (1/2)
This too should be forbidden in general.

// pointer_from_integer_2.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f() {
uintptr_t i=ADDRESS_PFI_2;
int *p = (intx)i;
*p=7;
}
int main() {
10 int j=5;

OO~NOOOITAWN

11 f();
12 printf("j=%d\n",j);
13 3

Here () guesses the address of main()'s local variable j.

This is similarly UB by allocation-address nondeterminism: the abstract machine allows
executions in which the guess is correct, but also executions in which it is incorrect, where the
xp=7 flags UB. So the program is UB. 48/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

Can a function access local variables of its parent? (1/2)
This too should be forbidden in general.

// pointer_from_integer_2.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f() {
uintptr_t i=ADDRESS_PFI_2;
int *p = (intx)i;
*p=7;
}
int main() {
10 int j=5;

OO~NOOOITAWN

11 f();
12 printf("j=%d\n",j);
13 3

Here () guesses the address of main()'s local variable j.

(In PNVI-ae-*, j is not exposed, so all executions flag UB, but the previous argument applies

even if j is exposed.)
49/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

Can a function access local variables of its parent? (2/2)
Varying to guard the call to f() with an address check:

// pointer_from_integer_2g.c
#include <stdio.h>
#include <stdint.h>
#include "charon_address_guesses.h"
void f() {

uintptr_t i=ADDRESS_PFI_2G;

int xp = (intx)i;

*p=7;

OO~NOOOTAWN -

int main() {

10 int j=5;

11 if ((uintptr_t)&j == ADDRESS_PFI_2G)
12 f();

13 printf("j=%d &j=%p\n",j, (voidx)&j);
14 3

This is allowed in PNVI-*, but the guard necessarily involves &j, so compilers should be able to
deem this escaped. In other words, while we don't think this example needs to be allowed, it

should be ok to make it allowed.
50/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c

Optimisations based on equality tests

In any provenance-aware semantics, p==q can hold in some cases where p and q are not
interchangeable (e.g. =p is defined but xq UB).

(Otherwise, we'd have to require implementations track provenance at runtime for == testing; not
usually practical.)

As Lee et al. observe [OOPSLA 2018], that restricts optimisations, e.g. GVN, based on pointer
equality tests.

Solution: just don't do those.

(There's no alternative, short of compilers giving up on provenance-based alias analysis
altogether, which would be worse.)

51/67

PNVI-plain vs PNVI-ae-*

52/67

Is the PNVI-ae-* “exposed’ machinery necessary?

Debatable. There's not much difference between PNVI-plain and PNVI-ae for these examples
(pointer_from_ integer_lig.c is allowed in PNVI-plain but forbidden in PNVI-ae-*).

PNVI-plain is simpler, but relies on allocation-address nondeterminism (which some people aren't
happy with) for more of the examples than PNVI-ae-*.

PNVI-ae-* is more complex, but makes some of these examples UB just by examining a single
execution path. It's also subject to...

53/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c

The problem with lost address-takens and escapes

Lol el sl e Ly
O~NOOITPRWNHEHOOONOOTA~AWN -

In PNVI-plain, this is allowed, simply because x exists at the integer-to-pointer cast.
Implementations that are conservative w.r.t. all pointers formed from integers would

// provenance_lost_escape_1l.c

#include <stdio.h>

#include <string.h>

#include <stdint.h>

#include "charon_address_guesses.h"

int x=1; // assume allocation ID @1, at ADDR_PLE_1

int main() {
int *p = &x;
uintptr_t il
uintptr_t i2

(intptr_t)p; // (@1,ADDR_PLE_1)
il & OxOO0OOOOOFFFFFFFF;//
uintptr_t i3 = i2 & OxFFFFFFFFO0000000;// (@1,0x0)
uintptr_t i4 i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)
int xq = (int *)i4;
printf("Addresses: p=%p\n", (voidx*)p);
if (memcmp(&il, &i4, sizeof(il)) == 0) {
*q = 11; // does this have defined behaviour?
printf("x=%d *p=%d *q=%d\n",X,*p,*q);

}
}

automatically be sound w.r.t. that.

54/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

The problem with lost address-takens and escapes

// provenance_lost_escape_1l.c

#include <stdio.h>

#include <string.h>

#include <stdint.h>

#include "charon_address_guesses.h"

int x=1; // assume allocation ID @1, at ADDR_PLE_1

int main() {
int *p = &x;
uintptr_t il
uintptr_t i2

(intptr_t)p; // (@1,ADDR_PLE_1)
il & OxOO0OOOOOFFFFFFFF;//
uintptr_t i3 = i2 & OxFFFFFFFFO0000000;// (@1,0x0)
uintptr_t i4 i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)
int xq = (int *)i4;
printf("Addresses: p=%p\n", (voidx*)p);
if (memcmp(&il, &i4, sizeof(il)) == 0) {
*q = 11; // does this have defined behaviour?
printf("x=%d *p=%d *q=%d\n",X,*p,*q);

}
}

Lol el sl e Ly
O~NOOITPRWNHEHOOONOOTA~AWN -

In PNVI-ae-*, in the source program x is exposed before the integer-to-pointer cast, so this is

allowed here too.
But a compiler might optimise (in its intermediate language)...

55/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

The problem with lost address-takens and escapes

FRPrEREEREEERe
OONOOCOITPRWNHOOONOOTA~AWN -

// provenance_lost_escape_1 optimised.c
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "charon_address_guesses.h"
int x=1; // assume allocation ID @1, at ADDR_PLE_1
int main() {
int *p = &x;

uintptr_t i4 = ADDR_PLE_1;

int xq = (int *)i4;

printf("Addresses: p=%p\n", (voidx*)p);

uintptr_t il = (intptr_t)p;

if (memcmp(&il, &i4, sizeof(il)) == 0) {
*q = 11; // does this have defined behaviour?
printf("x=%d *p=%d xq=%d\n",x,*p,*q);

}

}

and now x is no longer exposed before the cast. If this happens before alias analysis, the results
would be wrong.

56/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1_optimised.c

The problem with lost address-takens and escapes
Solutions: either
» simply be conservative (in alias analysis) w.r.t. all pointers formed from integers, or
» record, in optimisations that occur before alias analysis, any lost exposures, and pass those in
as an additional argument to alias analysis.

57/67

PNVI-ae vs PNVI-ae-udi

58/67

Should we allow one-past integer-to-pointer casts?
We have to decide whether casting a one-past pointer to integer and back gives a usable result.

// provenance_roundtrip_via_intptr_t_onepast.c

#include <stdio.h>
#include <inttypes.h>
int x=1;
int main() {
int xp = &x;
p=p+1;
intptr_t i = (intptr_t)p;
int *q = (int *)i;
q=q-1;
*q = 11; // is this free of undefined behaviour?
printf("*p=%d =*q=%d\n",*p,*q);
}

=
NHFRFOOONOOITRWN -

Pro: it's nice for one-past pointers to behave like in-bounds pointers

Con: if that's allowed, we have to deal with ambiguous integers, which can be regarded either
one-past one object or the start of another.

59/67

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t_onepast.c

Should we allow one-past integer-to-pointer casts?

We have to decide whether casting a one-past pointer to integer and back gives a usable result.

PNVI-plain and PNVI-ae forbid this: an integer has to be properly within an object for it to be
castable to a usable pointer.

PNVI-ae-udi (user disambiguation) permits it: it leaves the provenance of pointer values resulting
from such casts unknown until the first operation (e.g. an access, pointer arithmetic, or pointer
relational comparison) that disambiguates them. This makes examples that use the result of the
cast in one consistent way well defined.

60/67

x: signed int [@2 exp, Oxffffffe0]

1

p: signed int* [@4, Oxffffffd0]

@2, Oxffffffed

q: signed int* [@S5, Oxffffffc8]

@1, Oxffffffed

i: uintptr_t [@6, OxffffffcO]

Oxffffffed

y: signed int [@ 1 exp, Oxffffffe4]

2

j: uintptr_t [@7, Oxffffffb8]

Oxffffffed

r: signed int* [@11, Oxffffffo8]

@a=(1,2}, Oxffffffed

61/67

x: signed int [@2 exp, Ox(ffffffe0]

1

p: signed int* [@4, Oxffffffd0]

@2, Oxffffffed

q: signed int* [@S5, Ox(ffffffc8]

@1, Oxffffffed

i: uintptr_t [@6, OxffffffcO]

Oxffffffed

y: signed int [@ 1 exp, Oxffffffe4]

11

j: uintptr_t [@7, Oxffffffb8]

Oxffffffed

r: signed int* [@11, Oxffffffo8]

@a=(1}, Oxffffffed

62/67

Experimental checks

63/67

Testing the example behaviour in

We confirmed the examples behave as desired in each model by running them in Cerberus.

Cerberus

tendd behaviour observed bahaviour
Corbarus (dscreasing allocator)
PNVipiin PNVise PViseuai | PNVLpisin PNVise PNVLae-udi
ot iggred
e UB (ine9)
ot iggered
UB (e
U8 U8 (oxcaptwin i swieh)
U8 (ponter subiaction)
U8 (pointe subtracton)
UB (ou-o bound stoe win permissive_poiter._arn swich)
ot iggered
defined (NO except with st pointer equalty swich)
datinad, nondat N .
ot iggered
e
e defined
ot tiggered
datned
datined -t
defined
“Getned
defined
datined
“Getned
detined
Geined defined
Gotined setned
Getined detines
Getined defined
aeiines astnes
Getined “detned
Getine defied
astined defined
ot iggersd
dofned (o)
datined e
detned (ive)
ot iggared
Gotnod | UB (ine 16, doreh) | UB (1ne 16, stor)
ot
definod | UB (ne 16, dereh) | UB (i 16, siore)
i “Gatned

flesystem and scanf) are ot currenty supported by Cerberus.

e Eam
Gefined [= 1] UB ine 7)
—
defined (= 7)] UB (ine 7)
—
or =i
U8 (ine 10) [__deined. UB (ine 10) I
v i
: W | e o
oo i tmrpnon a1 e | vwamern ey |

(bold = tsts mentoned i the document)

Corborus behaviour matchas inent

orey = Corborus allocaor dogsn' igger th nlresting behaviour

64/67

Testing the example behaviour in mainstream C implementations

Our examples are semantic test-cases, not compiler tests, and some compilers have known bugs in
this area. But, ignoring that, we show whether the observed behaviour of GCC, Clang, and ICC,
at various optimisation levels, is consistent with each model for these tests.

Details: https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/

65/67

https://www.cl.cam.ac.uk/~pes20/cerberus/supplementary-material-pnvi-star/generated_html_pnvi_star/

Testing the example behaviour in mainstream C implementations

It doesn't seem possible to make a coherent and useful semantics that admits all the existing
observed compiler behaviour — but they do agree in many cases, and it may be that only mild
adaptions would be needed.

66/67

Pointer equality

Consider pointers p and q with different provenance. In an execution where they have the same
address (same pointer object representation), is p==q:

1. required to be true, or
2. allowed to be either true or false, or

3. undefined behaviour?

C17 6.5.9p6 says (1) “Two pointers compare equal if and only if both are [...] or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different array
object that happens to immediately follow the first array object in the address space”,

GCC follows (2).
We suspect (3) would break existing code.

Pick one...
67/67

