
C23 proposal: formatted input/output of binary integer numbers (rev. 3)

WG14 N2630

Title: Formatted input/output of binary integer numbers
Author: Jörg Wunsch <j.gnu@uriah.heep.sax.de>

Date: 2021-01-01
Proposal category: New feature
Reference: N2596 C2x Working Draft; N2612 (rev. 1), N2618 (rev. 2)

Abstract:

As a logical counterpart to allowing for binary constants in source code (N2549), it seems a logical consequence
to also provide a method for formatted input/output of binary integer numbers.

While there is not much prior art known in this respect for C (or C++) implementations, other languages (Python,
Rust, Perl) already offer this feature.

Revision history:

2020-11-10 N2612 (rev. 1) Initial document
2020-11-26 N2618 (rev. 2) Changes in response to SC22WG14.18606:

• fix number typo in N2573 reference

• supply three wording options for ’B’

• fixed fscanf (hexadecimal → binary)

• add fwprintf, fwscanf

2021-01-01 N2630 (rev. 3) Changes resulting from WG14 meeting on
2020-12-04:

• remove old options #1 and #2

• add non-normative paragraph for
’%B’

• update for N2596 working draft

1

Background

When adopting N2549 (binary integer constants in C source code), a request arose to also consider the ability to
allow for formatted input/output of binary integer numbers in the C language. So, in particular, printf should
be able to e.g. output 101010 for an integer constant 42, and scanf is supposed to be able to parse 0b11 as
number 3.

State of the Art

There are no major C (or C++) implementations known (as the time of this writing) that implement these
features.

However, other languages implement it. There appears to be an agreement to use the format specifier b for it.

$ python -c ’print("{:b}".format(42))’

101010

$ perl -e ’printf("%b\n", 42);’

101010

$ cat main.rs

fn main() {

println!("{:b}", 42);

}

$ rustc main.rs

$./main

101010

printf- and scanf-like functions

In addition to the standard number formatting, printf and relatives offer an alternate formatting option, desig-
nated by the modifier #. This causes the resulting string to be preceded by 0x (for hexadecimal output), or 0b

(in the binary case).

If the value to be printed is 0, the hexadecimal formatting does not print the prefix though. Python and Rust
handle that differently, and always print the prefix, which might seem more useful. For C, it is too late to change
this behaviour as it would cause existing code to break – at least for hexadecimal output. For binary output,
it could be handled differently, but that would make it inconsistent with the hexadecimal option. Thus, it is
proposed to have the #b formatting behave similar to #x, and do not print the prefix.

Likewise, using an uppercase #X instead of #x causes the prefix (and, in the hexadecimal case, the digits A through
F) to be printed in uppercase letters.

Ideally, the same would be done for an uppercase #B specifier for binary numbers. However, §7.31.13 only reserves
lowercase letters for future library use; thus, an implementation could have been using uppercase B for their own
extension already right now.

According to the opinion voted in the WG14 meeting on 2020-12-04, the proposal thus leaves out an uppercase
B from the normative description. A paragraph in Recommended practice suggests that implementations which
did not use an uppercase B as extension before are encouraged to implement it as the logical counterpart to b,
resulting in a 0B when using the alternative conversion (#B).

2

For scanf-like functions, there is no need to add the uppercase B specifier. Prefixes like 0x or 0B are always
allowed (for the respective formats), without distinguishing whether the format specifier is given in lower or
upper case.

strto* functions

It is proposed to extend these functions in a similar way. That is, if the conversion base is 0, an initial 0b or 0B

prefix causes the number to be interpreted as a binary format. If the conversion base is 2, the prefix is allowed
but not necessary. For any base of 12 or above, an initial 0b or 0B string would be interpreted as digit 0, followed
by digit B (with value 11).

Suggested changes:

Additions are marked in green.

§7.21.6.1 The fprintf function

(4) third list item

An optional precision that gives the minimum number of digits to appear for the b, d, i, o, u, x, and X conversions,
. . .

(6) item #

The result is converted to an ”alternative form”. For o conversion, it increases the precision, if and only if
necessary, to force the first digit of the result to be a zero (if the value and precision are both 0, a single 0 is
printed). For b conversion, a nonzero result has 0b prefixed to it. For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. . . .

(6) item 0

For b, d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or base)
are used to pad to the field width rather than performing space padding, except when converting an infinity or
NaN. If the 0 and - flags both appear, the 0 flag is ignored. For b, d, i, o, u, x, and X conversions, if a precision
is specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

(7) items hh, h, l, ll, j, z, t

Specifies that a following b, d, i, o, u, x, or X conversion . . .

3

(8) second item

b, o, u, x, X The unsigned int argument is converted to unsigned binary
(b), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x or X) in the style dddd ; the letters
abcdef are used for x conversion and the letters ABCDEF for
X conversion. . . .

New (14) (in Recommended practice)

An uppercase B format specifier is not covered by the description above, because it used to be available for
extensions in previous versions of this standard.

Implementations that did not use an uppercase B as their own extension before are encouraged to implement it
similar to conversion specifier b as standardized above, with the alternative form (#B) generating 0B as prefix for
nonzero values.

§7.21.6.2 The fscanf function

(11) items hh, h, l, ll, j, z, t

Specifies that a following b, d, i, o, u, x, X, or n conversion . . .

(12) new first item

b Matches an optionally signed binary integer, whose format is
the same as expected for the subject sequence of the strtoul
function with the value 2 for the base argument. Unless
a length modifier is specified, the corresponding argument
shall be a pointer to unsigned int.

§7.22.1.7 The strtol, strtoll, strtoul, and strtoull functions

(3)

. . . The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters and digits whose
ascribed values are less than that of base are permitted. If the value of base is 2, the characters 0b or 0B may
optionally precede the sequence of letters and digits, following the sign if present. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if present.

§7.29.2.1 The fwprintf function

(4) third list item

An optional precision that gives the minimum number of digits to appear for the b, d, i, o, u, x, and X conversions,
. . .

4

(6) item #

The result is converted to an ”alternative form”. For o conversion, it increases the precision, if and only if
necessary, to force the first digit of the result to be a zero (if the value and precision are both 0, a single 0 is
printed). For b conversion, a nonzero result has 0b prefixed to it. For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. . . .

(6) item 0

For b, d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or base)
are used to pad to the field width rather than performing space padding, except when converting an infinity or
NaN. If the 0 and - flags both appear, the 0 flag is ignored. For b, d, i, o, u, x, and X conversions, if a precision
is specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

(7) items hh, h, l, ll, j, z, t

Specifies that a following b, d, i, o, u, x, or X conversion . . .

(8) second item

b, o, u, x, X The unsigned int argument is converted to unsigned binary
(b), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x or X) in the style dddd ; the letters
abcdef are used for x conversion and the letters ABCDEF for
X conversion. . . .

New (14) (in Recommended practice)

An uppercase B format specifier is not covered by the description above, because it used to be available for
extensions in previous versions of this standard.

Implementations that did not use an uppercase B as their own extension before are encouraged to implement it
similar to conversion specifier b as standardized above, with the alternative form (#B) generating 0B as prefix for
nonzero values.

§7.29.2.2 The fwscanf function

(11) items hh, h, l, ll, j, z, t

Specifies that a following b, d, i, o, u, x, X, or n conversion . . .

(12) new first item

b Matches an optionally signed binary integer, whose format is
the same as expected for the subject sequence of the wcstoul
function with the value 2 for the base argument. Unless
a length modifier is specified, the corresponding argument
shall be a pointer to unsigned int.

5

§7.29.4.1.3 The wcstol, wcstoll, wcstoul, and wcstoull functions

(3)

. . . The letters from a (or A) through z (or Z) are ascribed the values 10 through 35; only letters and digits whose
ascribed values are less than that of base are permitted. If the value of base is 2, the characters 0b or 0B may
optionally precede the sequence of letters and digits, following the sign if present. If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and digits, following the sign if present.

6

