
Proposal for C2x

WG14 N2673

Title: __has_include for C

Author, affiliation: Aaron Ballman, Intel

 Javier Múgica

Date: 2021-03-01

Proposal category: New features

Target audience: C library authors, application programmers

Abstract: Highly portable code that needs to adapt to different translation environments

may need to query whether specific headers exist or not.

__has_include for C
Reply-to: Aaron Ballman (aaron@aaronballman.com), Javier Múgica (javier@aerotri.es)

Document No: N2673

Date: 2021-03-01

Summary of Changes
N2673

• Initial proposal

Introduction and Rationale
This paper describes the __has_include feature, which allows the programmer to determine at

preprocessing time whether the specified header file exists. This feature was standardized in C++17 and is

a commonly implemented extension in C compilers (minimally, it is supported in Clang, GCC, MSVC,

EDG, and TCC (Tiny C Compiler)). The feature is intended for highly portable code such as libraries to

adapt to different translation environments.

Adopting this proposal also serves to keep the preprocessor synchronized between C and C++.

This proposal was originally seen as WG14 N2101 at the Markham 2017 meeting where it was added to

SD-3 for inclusion in C2x.

Proposed Wording
The wording proposed is a diff from WG14 N2596. Green text is new text, while red text is deleted text.

Modify 6.10.1 to add a new Syntax section before Constraints:

Syntax

defined-macro-expression:

 defined identifier

 defined (identifier)

h-preprocessing-token:

 any preprocessing-token other than >

h-pp-tokens:

 h-preprocessing-token

 h-pp-tokens h-preprocessing-token

header-name-tokens:

 string-literal

 < h-pp-tokens >

has-include-expression:

 __has_include (header-name)

 __has_include (header-name-tokens)

mailto:aaron@aaronballman.com
mailto:javier@aerotri.es

has-attribute-expression:

 __has_c_attribute (pp-tokens)

Modify 6.10.1p1:

The expression that controls conditional inclusion shall be an integer constant expression except

that: identifiers (including those lexically identical to keywords) are interpreted as described

below180). and it may contain zero or more defined macro expressions and/or has include

expressions and/or has attribute expressions as unary operator expressions.

Modify 6.10.1p2:

It may contain unary operator expressions of the form

 defined identifier

or

 defined (identifier)

which evaluate A defined macro expression evaluates to 1 if the identifier is currently defined as

a macro name (that is, if it is predefined or if it has been the subject of a #define preprocessing

directive without an intervening #undef directive with the same subject identifier), 0 if it is not.

Insert new paragraphs after 6.10.1p2:

3 The second form of the has include expression is considered only if the first form does not

match, in which case the preprocessing tokens are processed just as in normal text.

4 The header or source file identified by the parenthesized preprocessing token sequence in each

contained has include expression is searched for as if that preprocessing token were the pp-tokens

in a #include directive, except that no further macro expansion is performed. Such a directive

shall satisfy the syntactic requirements of a #include directive. The has include expression

evaluates to 1 if the search for the source file succeeds, and to 0 if the search fails.

Modify the existing 6.10.1p3:

The conditional inclusion expression may contain unary operator expressions of the form

 __has_c_attribute (pp-tokens)

which are Each has attribute expression is replaced by a nonzero pp-number matching the form of

an integer constant if the implementation supports an attribute with the name specified by

interpreting the pp-tokens as an attribute token, and by 0 otherwise. The pp-tokens shall match

the form of an attribute token.

Modify the existing 6.10.1p5:

The #ifdef and #ifndef directives, and the defined conditional inclusion operator, shall treat

__has_include and __has_c_attribute as if it was they were the name of a defined macros.

The identifiers __has_include and __has_c_attribute shall not appear in any context not

mentioned in this subclause.

Modify the existing 6.10.1p7:

… After all replacements due to macro expansion and evaluations of the defined and

__has_c_attribute unary operators defined macro expressions, has include expressions, and

has attribute expressions have been performed, all remaining identifiers (including those lexically

identical to keywords) are replaced with the pp-number 0, and then each preprocessing token is

converted into a token. …

Add an example to 6.10.1p10 (before the __has_c_attribute example):

EXAMPLE This demonstrates a way to include a header file only if it is available.

#if __has_include(<feature.h>)

#include <feature.h>

#else

#error "support for <feature.h> is unavailable"

#endif

Acknowledgements
I would like to recognize the following people for their help with this work: Melanie Blower and Robert

Seacord.

References
[N2101]

__has_include for C. Nelson. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2101.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2101.htm

