
Proposal	for	C23	
WG14	N2747	
	
Title:	 	 	 Annex	F	overflow	and	underflow	
Author,	affiliation:	 C	FP	group	
Date:	 	 	 2021-05-20	
Proposal	category:	 Editorial	
Reference:	 	 N2596	
	
F.10	characterizes	when	floating-point	“underflow”	and	“overflow”	exceptions	are	
raised:	
	

[8]	The	"overflow"	floating-point	exception	is	raised	whenever	an	infinity	—	
or,	because	of	rounding	direction,	a	maximal-magnitude	finite	number	—	is	
returned	in	lieu	of	a	value	whose	magnitude	is	too	large.		
	
[9]	The	"underflow"	floating-point	exception	is	raised	whenever	a	result	is	
tiny	(essentially	subnormal	or	zero)	and	suffers	loss	of	accuracy.402)		
	
…	
	
[11]	Whether	or	when	library	functions	raise	an	undeserved	"underflow"	
floating-point	exception	is	unspecified.403)	Otherwise,	as	implied	by	F.8.6,	
these	functions	do	not	raise	spurious	floating-point	exceptions	(detectable	by	
the	user),	other	than	the	"inexact"	floating-point	exception.	
	
403)It	is	intended	that	undeserved	"underflow"	and	"inexact"	floating-point	
exceptions	are	raised	only	if	avoiding	them	would	be	too	costly.	

	
Problem	1:	The	underflow	characterization	in	#9	is	from	IEEE	754-1985	and	does	
not	correctly	reflect	the	current	IEC	60559	specification	for	underflow.		
	
Problem	2:	#11	is	missing	the	qualification	“not	bound	to	operations	in	IEC	60559”	
which	was	recently	added	in	similar	contexts.	
	
Problem	3:	#11	allows	spurious	“underflow”	floating-point	exceptions.	However,	C	
(7.12.1)	does	not	allow	spurious	underflow	range	errors.	Therefore,	
implementations	supporting	range	errors	via	floating-point	exceptions	must	avoid	
raising	spurious	“underflow”	floating-point	exceptions	that	do	not	meet	the	C	
definition	of	underflow.	It	would	be	helpful	to	note	this	in	Annex	F.	
	
Problem	4:	Footnote	403)	to	#11	uses	“underserved”	instead	of	“spurious”	which	is	
used	in	similar	contexts	in	C.		
	



Problem	5:	The	overflow	characterization	in	F.10	#8	might	erroneously	suggest	that	
raising	an	“overflow”	floating-point	exception	would	be	appropriate	for	the	
computation	of	an	exact	infinity.		
	
The	suggested	changes	below	address	these	problems.	They	can	be	regarded	as	
editorial	since	Annex	F	adopts	IEC	60559	by	reference.	We	do	not	suggest	including	
the	complete	definition	of	IEC	60559	underflow	because	the	details	are	esoteric	and	
so	rarely	matter	to	users.		
	
Suggested	change:	
	
Changes	in	F.10:	
	

[8]	The	"overflow"	floating-point	exception	is	raised	whenever	an	infinity	—	
or,	because	of	rounding	direction,	a	maximal-magnitude	finite	number	—	is	
returned	in	lieu	of	a	finite	value	whose	magnitude	is	too	large.		
		
[9]	The	"underflow"	floating-point	exception	is	raised	whenever	a	computed	
result	is	tiny	(essentially	subnormal	or	zero)	and	suffers	loss	of	
accuracy.402)	and	the	returned	result	is	inexact.	
	
…	
	
	[11]	Whether	or	when	library	functions	not	bound	to	operations	in	IEC	
60559	(F.3)	raise	an	undeserved	a	spurious	"underflow"	floating-point	
exception	is	unspecified	not	specified	by	this	annex.403)	Otherwise,	as	
implied	by	F.8.6,	these	functions	do	not	raise	spurious	floating-point	
exceptions	(detectable	by	the	user),	other	than	the	"inexact"	floating-point	
exception.	
	
	[11a]	As	implied	by	F.8.6,	library	functions	do	not	raise	spurious	“invalid”,	
““overflow”,	or	“divide-by-zero”	floating-point	exceptions	(detectable	by	the	
user).	

	
402)	IEC	60559	allows	different	definitions	of	underflow.	They	all	result	in	
the	same	values,	but	differ	on	when	the	floatingpoint	exception	is	raised.Tiny	
generally	indicates	having	a	magnitude	in	the	subnormal	range.	See	IEC	
60559	for	details	about	detecting	tininess.	
	
403)It	is	intended	that	undeserved	spurious	"underflow"	and	"inexact"	
floating-point	exceptions	are	raised	only	if	avoiding	them	would	be	too	
costly.	7.12.1	specifies	that	if	math_errhandling & MATH_ERREXCEPT	
is	nonzero,	then	an	“underflow”	floating-point	exception	shall	not	be	raised	
unless	an	underflow	range	error	occurs.	
	



	


