
Proposal for C23

WG14 N2848

Title: Contradiction about INFINITY macro

Author, affiliation: C FP group
Date: 2021-10-13
Proposal category: Editorial
Reference: N2596

This proposal is based on issues reported to CFP by Vincent Lefevre and others.

5.2.4.2.2#16 says

[16] The macro INFINITY expands to a constant expression of type float
representing positive or unsigned infinity, if available; else to a positive
constant of type float that overflows at translation time. 29)

29)In this case, using INFINITY will violate the constraint in 6.4.4 and thus
require a diagnostic.

There are two problems specifically with the “else” case.

Problem 1. The constraint in 6.4.4 is

[2] Each constant shall have a type and the value of a constant shall be in the

range of representable values for its type.

If the type does not have infinities, a constant must be in the range of finite
representable numbers and would not overflow, making it impossible to define
INFINITY as a constant that overflows.

Problem 2. Wide expression evaluation methods evaluate float constants to a
format wider than float. To assure an “overflow” constraint violation, the number
represented must exceed the range of the evaluation format.

There is also a more fundamental problem.

Problem 3. The “else” case gives a constraint violation, which could be useful only in
implementation-specific ways. And, any “else” case definition means the INFINITY
macro cannot be used for a feature test. This is unlike the NAN macro, which is
defined if and only if quiet NaNs are supported in type float.

With the recommended change below, the INFINITY macro (analagous to the NAN
macro) is defined if and only if infinity is supported in type float. This removes
the “else” case and resolves all three problems.

The recommended change could break code that depended on the way an
implementation treated the constraint violation.

In case the recommend change is not acceptable, we provide an alternate change
that is intended to resolve the first two problems and retain the intended meaning
of the current specification.

Suggested change:

In 5.2.4.2.2 change:

[16] The macro INFINITY is defined if and only if the implementation
supports an infinity for the type float. It expands to a constant expression
of type float representing positive or unsigned infinity, if available; else to
a positive constant of type float that overflows at translation time. 29)

29)In this case, using INFINITY will violate the constraint in 6.4.4 and thus
require a diagnostic.

 Alternate change:

In 5.2.4.2.2 change:

 [16] The macro INFINITY expands to a constant expression of type float
representing positive or unsigned infinity, if available; else to a positive
constant of type float that overflows at translation time character

sequence in the form of a constant of type float (6.4.4.2) and representing
a positive number beyond the range of representable values in the evaluation
format for type float. 29)

29)In this case, using INFINITY will violate the constraint in 6.4.4 and thus
require a diagnostic.

	WG14 N2848
	Proposal category: Editorial

