
WG14 N2949

Meeting notes

C Floating Point Study Group Teleconference
2022-03-16
8 AM PDT / 10 PM EDT / 3 PM UTC

 Attendees: Rajan, Jim, Fred, David H., Ian

 New agenda items (https://wiki.edg.com/pub/CFP/WebHome/n2943.pdf):
 None.

 Next Meeting(s):
 March 30th, 2022, 3 PM UTC
 ISO Zoom teleconference
 Please notify the group if this time slot does not work.

 WG14 meeting: See CFP2387
 N2931: Accepted without issue.

 C++ Liaison:
 Nothing new.

 C23 Integration:
 Nothing new.

 Carry-over action items:
 Fred: Ask C++ what their issues with *HAS_SUBFORM are and if they are OK with obsoleting
it. - Still open
 Fred: Have to rewrite our current paper (remove the part already in C23) and submit it to
WG21.

 Last meeting action items (done unless specified otherwise, details below):
 Fred: Expand the individual items so they are self contained in C26.TXT.
 Fred: Ensure that CFP2350 was sent to the C editor.
 Jim: Respond to Vincent's CFP2368 message regarding the floating-point model.
 Jim: Reply to CFP2371 saying it is in the Annex we proposed and WG14 voted in.

 New action items:
 Rajan: Put it into the WG14 CFP report the outside request to make 7.12.13 and F<x>'s titles
"Floating"->"Fused" that is editorial.
 Fred: Post to CFP the WG14 schedule for C23: N2864. - Done.
 Fred: Post the decisions on *HAS_SUBNORM by WG14 minutes to Jim.
 Fred: Look at updating the C26.TXT file to follow what Mike is doing for 754.
 David H: Get an example for the scaled reduction functions (perhaps by asking Jason or Jim or
looking into the IEEE references).
 David H: Get an example for the augmented arithmetic functions (perhaps by asking Jason or
Jim or looking into the IEEE references).

 Upcoming WG14 meetings:

https://wiki.edg.com/pub/CFP/WebHome/n2943.pdf

 May 16-20 virtual
 July 18-22 virtual

 Action item resolutions:
 Fred: Expand the individual items so they are self contained in C26.TXT.
 Fred: This item does not ring a bell.
 Jim: The action item was to have a statement on what the issue was in the errata or the future
issues list.
 Fred: It was updated and posted on the wiki.
 ^Jim: I looked at that. Mike is doing a similar thing for 754. It may be helpful to look at how he
is presenting that.

 Fred: Ensure that CFP2350 was sent to the C editor.
 Fred: Not sure if I did it. Even if I did, the editor has never responded to any of my emails.
 Jim: This was just to confirm you sent it.
 Fred: I'll check. Otherwise, carry over.
 Fred: I sent it on January 19th.

 Jim: Respond to Vincent's CFP2368 message regarding the floating-point model. See
CFP{2368-2386} interspersed.
 Jim: Vincent said we have made it explicitly allowed that subnormals can be treated as zero
by the implementation in defined cases. If there are subnormals in the model, they should be
treated as non-zero. I said it is to allow existing implementations to continue doing what they are
doing.

 Jim: Reply to CFP2371 saying it is in the Annex we proposed and WG14 voted in. See
CFP2371,CFP2373
 Jim: I did respond on this.

 Other issues
 N2823 (freestanding) revision
 Rajan: Still in progress. Should be done by next meeting.

 fma subclause title [Cfp-interest 2388]
 David H: We called it fused since there were implementations that had fused and unfused
multiply-add's.
 Jim: In C it is fused in the sense of only one rounding. The title says "Floating" though and
Pavel wants it changed to "Fused".
 Fred: The ARM hardware does double rounding.
 Rajan: So they are already non-conforming?
 Fred: Yes.
 Jim: Is this our paper to do?
 Fred: Can we make this an editorial change?
 ^Rajan: I can put it into the CFP report as an outside request that is editorial. I can ask WG14
what they want to do there.

 TS 18661-4 update [Cfp-interest 2390]
 Jim: Comments (labelled "[ISSUE") throughout the document.
 Jim: For the title, all that is left is the augmented arithmetic and reduction functions so it is
very different from the original version of part 4.
 Fred: The IEC 559 should be IEC 60559. (1989 version)
 Jim: No, that was what it was named.
 Fred: It was renamed.
 Jim: It was the name on the website, but if you have something official showing an updated
name, I can use that.

 Jim: I want careful review on the introduction background both for the floating point and the C
part. I was particularly hoping, David, that you would check the floating point part.
 Jim: Should annex F conformance be required? The original part 4 did require it for binary or
decimal or both.
 Rajan: Is there anything remaining that has something that would not work on known floating
point implementations (outside IEEE)?
 Jim: The way this is written we have parts that do not need Annex F, and additional
specification that does. For augmented arithmetic, the formats are the same as for 754 in that
errors are report by floating point exceptions.
 Rajan: The safest approach is to still require Annex F as implementations can do this without
Annex F support if they want, and it won't break anything.
 Jim: N2274 included tgmath macros for the augmented arithmetic. Should that be include in
this document?
 Rajan: I would suggest not having the tgmath functions but ask WG14 if they want it.
 Jim: Should intermediate overflow/underflow be prohibited for non-IEC 60559
Implementations? We say "should".
 David H: Is it useful to have these interfaces even if they are not going to do it any way other
than what is fastest? We could have a pragma type construct to allow ignoring intermediate
over/underflows with the default being not to ignore it.
 Jim: FE_ENV_ACCESS OFF won't let you test for that so we already have it. If it overflows
though it may not be appropriate for the final result. The pragma does not address that.
 David H: The reduction functions were there to guarantee the operations were done a certain
way even if inefficient. Maybe make it prohibited for all implementations but have a note about
adding a method to allow it for all implementations without necessarily proposing it. Another
proposal for that though. If you are doing this in a non-IEEE system presumably you are doing it
this way due to the properties in the specification vs some other way.
 Jim: 6.8 has the 60559 things like exceptions and NaNs and Infinities.
 Jim: Is there enough prior art/intention to implement and use this feature? David, I remember
you asked about this before. Any ideas?
 David H: There was definite intention to use, and written up in some ARITH meetings.
Someone did say they wanted to implement it in actual hardware, but whether or not it happened
I need to ask again.
 Jim: Section 7: Should these be there for non-60559? My sense is that these are there for
reproducible results. And the proof of that depends on the subtleties of the format.
 David H: I don't know how non-IEEE implementations would do this. I suspect they would
relax a lot of places.
 Fred: Without subnormals, I don't see how you could do it.
 Jim: This is not whether you support Annex F or not, more if you support certain features. I
think we're agreeing that we are requiring IEEE formats and more since subnormals have to
work.
 Jim: Examples of each (scaled reduction, and one for augmented arithmetic) would be useful.
 Fred: How about a sum of two products. Needed for complex multiply and divide.
 David H: More for larger arrays. Quotients of products of factorials. Important for physics.
Mention this is a small part of a larger calculation and have a pair of factorials. The factorials
would be computed in a scaled fashion. For augmented, we can reference papers since the
examples would be too big.
 Jim: For the scaled reduction functions, can you (David H) do that?
 ^David H: Yeah, I can do that and then you can correct the C syntax errors.
 Jim: For the augmented arithmetic, could they be tools for double-double?
 David H: Yes, that was part of the intention. We can ask Jason if we need to come up with
something.
 Jim: Can we use them for sum of products?
 David H: If you wanted to do the equivalent of dot product then rounding to single, that could
be done. I thought we addressed this in one of the reference papers for 754 (obviously not in C
syntax).

 Jim: I didn't see anything in the ARITH papers that Jason or Jim wrote and could not see it.
But I may have missed something. Can you (David H.) ask them about it?
 ^David H: Yes, I can.
 Fred: For complex multiply and divide, you need the sum of two products. These functions
seem the right way to do it.
 David H: Yes, that would be a small compact example.

 Using the 'i' suffix for imaginary numbers [Cfp-interest 2374,2375,2389]
 Jim: I haven't seen a proposal for this.
 Fred: It's an idea someone mentioned. If an implementation did not support imaginary types,
what does it do for this suffix?
 Jim: My sense was that it gives prettier syntax. 1.23i vs 1.23*I.
 Fred: You can't suffix a NaN or an Infinity.
 Jim: No proposal so nothing for us to respond to here.
 Fred: Does this remain binary or add in decimal?
 Jim: 754 only did binary.
 David H: Traditionally decimal doesn't need these. Mainly for scientific computing.

 Others?
 None

Rajan Bhakta

	WG14 N2949
	Meeting notes
	C Floating Point Study Group Teleconference

