WG14 Response to WG14 N942

WG14 Document N954

Response to WG14 N942

31-May-2001

This document is just the committee responses to the Japanese concerns listed in WG14 Document N942. These responses were voted on at the Copenhagen meeting and reflect the consensus of the Committee. Items a, j, l and o are defect report candidates. The Committee would like the Japanese C committee to review these responses.

a. Page 38, 6.2.6.2
In paragraph 1, change sentence 2 to:

… this is known as the value representation.
b.
The function definition is enclosing the hypothetical declaration of __func__.

c.
This paragraph is what specifies that the string

 "abc'\"\x23"

 has the same characters in it as the array:

 'a', 'b', 'c', '\'', '"', '\x23'

 Without it there's no guarantee that the q in 'q' and "q" are to be treated the same.

d.
Actually, i, j, and k are the dimensions; separating them with Xs rather than commas is traditional, probably to denote the outer product. Note that the symbol "X" is the multiplication sign, not the letter.

 Note: The same notation is also used in paragraph 4 of Standard.

e.
That doesn't parse in the context of the entire sentence -- the clause would then read "the type qualifiers pointed to by the right" which doesn't make sense since pointers point to types, not type qualifiers. The existing wording is correct and should not be changed.

f.
Normally, semantics rules only apply to the section that contain them. However, note that 6.5.16.2 paragraph 3 says that compound assignment is like simple assignment, and so this semantics rule applies to compound assignment as well. Rules for overlap for other contexts are given elsewhere in the Standard

g. The types are consistent if, and only if, they would be valid operands to the corresponding binary operator in the nearly equivalent simple assignment expression.

Note: The corresponding binary operator is specified in 6.5.16.2 paragraph 3.

h.

1. struct s {
 int a[2];
};

struct s f();
int *p;

p = f().a;
*p = 2;

This violates both provisions — it attempts to modify the result of the function call and it attempts to access it after the next sequence point. (This should be added to the Rationale if it isn't already there.)

2. The interpretation is:
 {to modify the result of XXX} or {to access it after the next sequence point}

3. Because the result of && and || can't include a non-lvalue array, the situation cannot occur.

See also N813 from the post-Colorado mailing.

i.
Unless the implementation produces a result that is mathematically correct, the expression is not a constant expression. If overflow prevents the correct evaluation of the expression, the constraint is violated, and a diagnostic must be issued. The implementation is under no obligation to continue translating the program. A conforming compiler must issue a diagnostic or evaluate the expression correctly

j. Page 96, 6.6
In paragraph 9, change sentence 1 to

An address constant is a null pointer, the address of an lvalue designating an object of static storage duration, or the address of a function designator;

k. It is a structure that replaces the flexible array member with a regular fixed-size array where the specific size of the array is up to the implementation -- the size is not specified by the standard, nor is the implementation required to document what it is.

For example:

It means that:

 struct fred
 {
 double d;
 char c;
 int flex [];
 }

has the same alignment and padding as:

 struct fred
 {
 double d;
 char c;
 int flex [42];
 }

with some number chosen by the implementer in the place of 42, but the actual structure ends immediately before the start of the array flex.

l. Page 98, 6.7
In paragraph 7, change sentence 1 to

If an identifier for an object is declared with no linkage, the type for the object shall be complete by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of function parameters (including in prototypes), it is the adjusted type (see 6.7.5.3) that is required to be complete.
m.

1. The phrase "modify an object" is equivalent to the longer
phrase "modify the value of an object" that is used in 3.1:

1. access, (execution-time action) to read or modify the value of an
 object
2. Where only one of these two actions is meant, "read" or "modify" is used.
3. "Modify" includes the case where the new value being stored is the same as

 the previous value.
4. Expressions that are not evaluated do not access objects.

The longer and shorter forms are used interchangeably throughout
the standard. In particular, the shorter form is used earlier
in the "parent" section 6.7.3, Type qualifiers:

5. If an attempt is made to modify an object defined with a const-qualified type ...
6. An object that has volatile-qualified type may be modified ...

It should not be confused with the usage of "modify" for types rather than objects, also in 6.7.3:

11 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers modify an aggregate type:

Consider the following example:

 struct tag {
 int X;
 int Y;
 } S = { 1, 2 };

 void g(int * restrict P);

 void f(void) {
 g(&S.X)
 }

 void g(int * restrict P) {
 int *q = P; // q is based on P

 S.X = 11; // S.X is *not* based on P - error
 *P += 10; // OK
 *q += 20; // OK
 }

In this example, the pointer P is P and the lvalue L is *q and the object X is the first member of structure S. The lvalue *q refers to the object S.X and q is based on the restricted pointer P. The formal definition allows *q to access object X.

The lvalue S.X is not based on the restricted pointer P. Therefore, an access through S.X violates the sentence:

 Every other lvalue used to access the value of X shall also
 have its address based on P.

The object X is modified during the execution of block B (where B is the function body). The object X is modified each time an assignment operator is evaluated with one of the lvalue expressions:

 S.X
 *P
 *q
as its left operand. Back to the original question - the object X is modified in this example in several ways. There is also an lvalue that accesses X that is not based on P. Thus the example is not conforming.

2. These words were added to provide expected behavior for declarations like:

 int * restrict * restrict pp;

First, some background and motivation.

P is not literally modified, it is only conceptually modified. An analogy with arrays may help motivate this.

When an element of an array is modified, then the array as a whole must
also be considered to be modified in any context (such as a call to memcpy) in which its aggregate value is referenced. Similarly, for multi-dimensional arrays, a modification at one level of aggregation is also a modification of the higher levels. The phrase in question above for restricted pointers is analogous to
this property of arrays, with indirection in place of aggregation. Without it, as the following example illustrates, a reference involving two levels of indirection through restricted pointers would not be analogous, for the purpose of alias analysis, to a reference involving a two dimensional array.

The goal is to ensure that the following example is not conforming.

 extern int *ap[N];

 void gg(int * restrict * restrict pp);

 void ff(void) {
 gg(ap);
 }

 void gg(int * restrict * restrict pp) {
 pp[1][2] += 40; // OK
 ap[1][2] += 30; /* Error - pointer P (i.e., pp[1]) is also 'considered' modified and ap[1] is not based on P */
 }

Another way to say it: pp[1][2] and ap[1][2] designate the same object, which is literally modified by the assignments. pp[1] and ap[1] also designate the same object, and by the phrase in question above, pp[1] is also considered to be modified. But then the value of latter object is accessed though a
restricted pointer pp, and also through an lvalue ap[1] which is not based on pp. Therefore the call of gg in ff is not conforming. The benefit is that a compiler is free to optimize gg by, for example, issuing all loads before any stores.

3. i) is the correct interpretation

n.

1. A variable-length array with an expression specifying the size rather
than *:

int a[i];
2. It is the expression that defines the size (as explained in #1). .

Firstly:

 void ff (int n, int vec [n]);
 void ff (int n, int vec [*]);

are equivalent.

Secondly, in:

 int f (void)
 {
 int n;
 // ...
 int vec [n];

it is required that n > 0 at the point where vec is defined.

Thirdly, in:

 int f (void)
 {
 int n;
 n = 4;
 char vec [n];
 n = 8;
 char tor [n];
 n = 12;
 // point X

At point X the size of vec is 4, and the size of tor is 8, even though n is
now equal to 12.

Lastly,

 sizeof (int [n + m()])

requires n + m() to be evaluated and thus m to be called, but:

 sizeof (int (*)[n + m()])

does not, because the result is the size of a pointer, and this isn't
affected by the number of elements in the array. In this case it is
unspecified whether or not m is called.

o.
 Page 151, 6.10.3
Change paragraph 4 to:

If the identifier-list in the macro definition is not followed by an ellipsis, the number of arguments (including those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal the number of parameters in the macro definition. Otherwise, there shall be more arguments in the invocation than there are parameters in the macro definition (note the ... is not a parameter). There shall exist a) preprocessing token that terminates the invocation.

Page 152, 6.10.3

 Change paragraph 12 to:

If there is a ... following the identifier-list in the macro definition, then the trailing arguments, including any separating comma preprocessing tokens, are merged to form a single item: the variable arguments. The number of arguments so combined is such that, following merger, the number of arguments is one more than the number of parameters in the identifier list in the macro definition .

p.
Most English speakers would regard it as correct.

q.
No. That would imply that it is the statements that are undefined rather than the expressions composing them. The phrase "statement expressions" is used to indicate that it is the full expression composing each statement that is being referred to rather than some subexpression.

r.
This is a syntax error since an undeclared identifier is not a primary-expression, it will cause a syntax error somewhere in the grammar because there is no place that the grammar allows either an identifier or a primary-expression.

s.
A pointer type that points to an object type as opposed to one that points to a function type. This is normal English usage.

7

