
Acknowledgements

Implementing iostreams in a multi-threaded environment 27 of 27

6.0 Acknowledgements

Most of the initial work of making libC mt-safe was done by Keith Cooley. Several of
the issues discussed here and some of the examples are taken from his design document
and code changes made by him. The information about exceptions was provided by
Kin-Man Chung. Many valuable suggestions were received from the people who
reviewed this document and provided feedback, specifically, Robert Hagmann, Steve
Kleiman, Dwight Hare, Dalibor (Dado) Vrsalovic, Wayne Gramlich, Ted Goldstein, and
Alan Sloane.

7.0 References

[Ellis 1990] Margaret A. Ellis, Bjarne Stroustrup, “The Annotated C++ Reference Man-
ual”.

[Lippman 1991] Stanley B. Lippman, “C++ Primer, second edition”.

[POSIX 1993] POSIX P1003.4a, “API Threads Extension [C Language]”, IEEE.

[Schwarz 1993] Jerry Schwarz, “Doc No. X3J16/93-0004, WG21/N0216, Input/Output
Revision 6”.

[SunOS 1993] SunOS 5.2, “Guide to Multi-Threaded Programming”, SunSoft

Interface Changes to libC

26 of 27 Implementing iostreams in a multi-threaded environment

lockp->rmutex_lock();

}

void do_lock_set(stream_rmutex *ptr, int lock_flag) {

lockp = ptr;

lock_count = 0;

if (lock_flag)

do_lock();

}

void do_unlock() {

if (lock_count) {

lockp->rmutex_unlock();

lock_count--;

}

}

public:

enum lock_choice { lock_defer=0, lock_now=1 };

stream_locker (stream_MT& obj, lock_choice flag=lock_now) {

do_lock_set(&(obj.get_rmutex()), flag);

}

stream_locker(stream_MT *ptr, lock_choice flag=lock_now) {

do_lock_set(&(ptr->get_rmutex()), flag);

}

stream_locker(stream_rmutex& mut, lock_choice flag=lock_now) {

do_lock_set(&mut, flag);

}

stream_locker(stream_rmutex *ptr, lock_choice flag=lock_now) {

do_lock_set(ptr, flag);

}

~stream_locker () { do_unlock(); }

void lock () { do_lock(); }

void unlock () { do_unlock(); }

}

#endif /* _RLOCKS_H */

Interface Changes to libC

Implementing iostreams in a multi-threaded environment 25 of 27

int count;

// Initialization is not done in a constructor because of special

// needs of static objects of this class.

void rmutex_init (); // initialization routine

void rmutex_lock ();

void rmutex_unlock ();

friend class ios;

friend class streambuf;

friend class stream_MT;

friend class stream_locker;

};

// Class stream_MT is used as a base class. It provides the interfac

// for a class that wants to be mt-safe

class stream_MT

private:

stream_rmutex mutlock;

stream_bool_t safe_flag; // safe_object or unsafe_object

protected:

stream_rmutex& get_rmutex() { return mutlock; }

public:

enum { unsafe_object=0, safe_object=1 };

stream_MT() { safe_flag = safe_object; }

stream_MT(stream_bool_t flag) { safe_flag = flag; }

void set_safe_flag(stream_bool_t flag) {

STREAM_REENTRANT(mutlock.rmutex_lock());

safe_flag = flag;

STREAM_REENTRANT(mutlock.rmutex_unlock());

}

friend class stream_locker; // to provide access to get_rmutex()

};

class stream_locker {

private:

rmutex_t *lockp;

int lock_count;

void do_lock() {

lock_count++;

Interface Changes to libC

24 of 27 Implementing iostreams in a multi-threaded environment

unsafe_istream& ws(unsafe_istream&);

unsafe_ios& dec(unsafe_ios&);

unsafe_ios& hex(unsafe_ios&);

unsafe_ios& oct(unsafe_ios&);

char *dec_r(char*, int, long, int = 0);

char *hex_r(char*, int, long, int = 0);

char *oct_r(char*, int, long, int = 0);

char *chr_r(char*, int, int, int = 0);

char *str_r(char*, int, const char *, int = 0);

char *form_r(char*, int, const char *, ...);

5.4 New header file, rlocks.h

This file is included in iostream.h.

#ifndef _RLOCKS_H

#define _RLOCKS_H

#include <synch.h>

#include <thread.h>

#ifdef _REENTRANT

#define STREAM_REENTRANT(x) x

#define STREAM_RMUTEX_LOCK(m, sym) \

stream_locker sym(m, stream_locker::lock_defer); \

if (test_safe_flag()) sym.lock();

#else

#define STREAM_REENTRANT(x)

#define STREAM_RMUTEX_LOCK(m, sym)

#endif

typedef char stream_bool_t;

// Class stream_rmutex implements recursive mutex locks

// Note: this class is supposed to be used only by iostreams and not

// by a user program.

class stream_rmutex {

private:

mutex_t mutex;

thread_t owner;

Interface Changes to libC

Implementing iostreams in a multi-threaded environment 23 of 27

int sputc_unlocked(int);

int sputn_unlocked(const char *, int);

int out_waiting_unlocked();

protected:

char *base_unlocked();

char *ebuf_unlocked();

int blen_unlocked();

char *pbase_unlocked();

char *eback_unlocked();

char *gptr_unlocked();

char *egptr_unlocked();

char *pptr_unlocked();

char *epptr_unlocked();

void setp_unlocked(char*, char*);

void setg_unlocked(char*, char*, char*);

void pbump_unlocked(int);

void gbump_unlocked(int);

void setb_unlocked(char*, char*, int);

void unbuffered_unlocked(int);

int unbuffered_unlocked();

int allocate_unlocked();

};

class filebuf : public streambuf {

public:

int is_open_unlocked();

filebuf* close_unlocked();

filebuf* open_unlocked(const char*, int, int = filebuf::openprot);

filebuf* attach_unlocked(int);

};

class strstreambuf : public streambuf {

public:

int freeze_unlocked();

char* str_unlocked();

};

unsafe_ostream& endl(unsafe_ostream&);

unsafe_ostream& ends(unsafe_ostream&);

unsafe_ostream& flush(unsafe_ostream&);

Interface Changes to libC

22 of 27 Implementing iostreams in a multi-threaded environment

5.0 Interface Changes to libC

This section lists the interface changes that we have made to the existing libC to make it
mt-safe.

5.1 New Classes

stream_rmutex

stream_MT

stream_locker

unsafe_ios

unsafe_istream

unsafe_ostream

unsafe_iostream

unsafe_fstreambase

unsafe_strstreambase

5.2 New Class Hierarchies

class streambuf : public stream_MT { ... };

class unsafe_ios { ... };

class ios : virtual public unsafe_ios, public stream_MT { ... };

class unsafe_fstreambase : virtual public unsafe_ios { ... };

class fstreambase : virtual public ios, public unsafe_fstreambase { ... };

class unsafe_strstreambase : public virtual unsafe_ios { ... };

class strstreambase : virtual public ios, public unsafe_strstreambase { ... };

class unsafe_istream : virtual public unsafe_ios { ... };

class unsafe_ostream : virtual public unsafe_ios { ... };

class istream : virtual public ios, public unsafe_istream { ... };

class ostream : virtual public ios, public unsafe_ostream { ... };

class unsafe_iostream : public unsafe_istream, public unsafe_ostream { ... };

5.3 New Functions

class streambuf {

public:

int sgetc_unlocked();

int snextc_unlocked();

int sbumpc_unlocked();

void stossc_unlocked();

void sgetn_unlocked(char *, int);

int sputbackc_unlocked(char);

int in_avail_unlocked();

Other libC functions

Implementing iostreams in a multi-threaded environment 21 of 27

The language also does not specify the behavior of a program when the runtime stack
gets exhausted before a handler is located during the unwinding of the stack in a thread.

We assume that propagation of exceptions across thread boundaries is not allowed, i.e.,
an exception thrown in one thread cannot be caught by a handler in another.

Other libC functions

20 of 27 Implementing iostreams in a multi-threaded environment

4.0 Other libC functions

4.1 set_new_handler

The library function set_new_handler() in libC sets the value of a global variable in the
library to a user specified pointer to a function referred to as thenew-handler. This func-
tion is called if operator new() cannot find storage to return. A zero argument to
set_new_handler() indicates that new-handler should not be called. This is also the
default behavior. If a new-handler has been specified, thenoperator new() will make
another attempt to allocate memory by calling this function.

Since set_new_handler() uses a global variable, this function is made mt-safe. Although
not specified in the draft standard, the global variable _new_handler can also be
accessed directly. Examples of using this variable are given in [Lippman 1991] and
[Ellis 1990]. Accessing this variable directly in a user program will not be mt-safe
unless the user protects reading or modifying this variable with appropriate locking.

We have two choices in defining the behavior of new_handler in a multi-threaded envi-
ronment:

• Make it specific to each thread.

This implies using thread-specific data for the new-handler. This also introduces a
new semantic for the new-handler.

• Make it common across all threads.

In this case we can continue to use a global variable for the new-handler.

One of the guiding principles for making a library mt-safe is to minimize the use of
thread-specific data. This is mainly for performance reasons. Thus we choose to make
the new-handler common across all threads. This does not change the language seman-
tics for new-handler and also avoids using thread-specific data in libC.

4.2 Issues related to exceptions

Some of the functions in libC throw exceptions for error conditions. We document here
the issues related to exceptions in a multi threaded environment.

4.2.1 Exception stack
In a typical implementation, an exception stack is used for storing exceptions and book-
keeping information. Initially this stack is allocated statically. When the stack becomes
full, additional storage is allocated from the heap. A static variable is used to point to the
top of the stack. In an mt-environment, the static stack and the static stack pointer are
made thread-specific. An initialization routine initializes the stack when first entering a
thread. This is done automatically by the exception handling support in libC.

4.2.2 Behavior in mt-environment
The C++ language does not specify the behavior of exceptions in an mt-environment. In
particular, the current implementation of global functions such as set_terminate() and
set_unexpected() determine the global behavior of all exceptions in an mt-environment.
It may be desirable in some cases to make these functions thread-specific.

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 19 of 27

3.7.1 Accessing public static data members
Public static data members of a class are like global variables and can be accessed any-
where in a program. Access to these members is inherently mt-unsafe because these
members can be modified outside of the protection provided by the library.

In iostreams, only two classes, ios and filebuf, have public static members.

• Class ios:

static const long basefield;

static const long adjustfield;

static const long floatfield;

• Class filebuf:

static const int openprot;

Since these values are constants, there is no need for access of these members to be
made mt-safe.

3.7.2 Operating directly on streambuf
Class ios contains a streambuf object as a data member. The member functions of class
ios use this streambuf object to perform the low level production and consumption of
characters. For performance reasons, the ios member functions lock the streambuf
object, then call the unlocked version of streambuf member functions, and finally
unlock the streambuf object.

Instead of using the iostream member functions, a user could obtain the encapsulated
streambuf object of ios by using the function

streambuf *ios::rdbuf()

and operate on it directly. This usage is considered mt-unsafe.

3.7.3 Functions iword() and pword()
The member functions iword() and pword() in class ios return references to dynamically
allocated memory. A user of these routines should protect access to values returned by
iword() and pword() by using appropriate locking. As a typical use of these routines,
one would do the following

1. Use xalloc() to get a unique index. xalloc() is protected by a static lock so it is mt-
safe.

2. Use iword() or pword() to get the memory item indexed by the unique index
obtained in step 1. Again, iword() and pword() are protected by static mutex locks
and are mt-safe.

3. Assign and access values to the iword or pword. This operation is mt-unsafe.

The problem occurs if more than one thread is sharing a unique index to an iword or
pword. This will not be mt-safe. The threads will have to use appropriate locking mech-
anism to make this mt-safe.

Making iostreams library mt-safe

18 of 27 Implementing iostreams in a multi-threaded environment

owner = self;

count = 1;

}

3.6.4 rmutex_unlock()

void rmutex_t :: rmutex_unlock() {

if (_thr_main() == -1) {

return;

thread_t self = thr_self();

mutex_t *lck = &mutex;

if (MUTEX_HELD(lck) && owner == self) {

if (--count == 0) {

owner = 0;

mutex_unlock(lck);

}

}

else {

__stream_abort(“Trying to release a lock not acquired in this thread”);

}

return;

}

If the thread holding the lock has made the call to rmutex_unlock(), indicated by exam-
ining the mutex structure with MUTEX_HELD(lck), and the owner id is the same as the
current thread id, the count is decremented. If the count becomes zero then all functions
in the thread have released the lock and a call is made to mutex_unlock:

if (MUTEX_HELD(lck) && owner == self) {

if (--count == 0) {

owner = 0;

mutex_unlock(lck);

}

}

However, if another thread has managed to call this function, there is an error because it
should not be holding the lock. In this case __stream_abort() is called:

else {

__stream_abort(“Trying to release a lock not acquired in this thread”);

}

The function __stream_abort() prints the string passed as argument to stderr and calls
abort(). rmutex_lock() and rmutex_unlock() must bracket areas of code to be protected,
they cannot be used in isolation.

3.7 Unsafe usage of mt-safe classes

Even after modifying libC to make it mt-safe, the library can still be used in a mt-unsafe
manner. We discuss here three cases of unsafe usage.

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 17 of 27

memset(&m->mutex, 0, sizeof(mutex_t));

count = 0;

owner = 0;

}

3.6.3 rmutex_lock()

void stream_rmutex :: rmutex_lock() {

if (_thr_main() == -1)

return;

thread_t self = thr_self();

mutex_t *lck = &mutex;

if (mutex_trylock(lck) == 0) {

owner = self;

count = 1;

return;

}

if (MUTEX_HELD(lck) && owner == self)

count++;

else {

mutex_lock(lck);

owner = self;

count = 1;

}

return;

}

When a thread attempts to acquire a lock the first time, mutex_trylock() will return 0.
The function rmutex_lock() will save the thread id and set the initial count to 1 in the
recursive mutex structure:

if (mutex_trylock(lck) == 0) {

owner = self;

count = 1;

return;

}

If the thread has already acquired the lock, indicated by examining the mutex structure
with MUTEX_HELD(lck), and if the owner id is the same as the current id, the count of
the number of times the lock has been acquired is incremented:

if (MUTEX_HELD(lck) && owner == self)

count++;

If another thread is trying to acquire the lock, it will block on a mutex_lock() call until
the thread that has the lock releases it, at which time the lock is acquired, the thread id is
saved and the initial count is set to 1:

else {

mutex_lock(lck);

Making iostreams library mt-safe

16 of 27 Implementing iostreams in a multi-threaded environment

lockp2.lock (); // lock streambuf object

}

unsafe_istream::read(p, len);

return *this;

}

3.6 Implementing recursive locking

This section discusses the definition of class stream_rmutex used for implementing
recursive locking.

The threads library does not support recursive mutex locks. Acquiring a lock that a
thread already owns results in a deadlock. We provide an implementation of recursive
locks to support application level locking and locking for public virtual functions where
recursive locking may occur.

Recursive locking requires the ordering of lock/unlock calls; any deviation from this
will result in an error.

3.6.1 class stream_rmutex
The recursive mutex class is:

// Note: this class is supposed to be used only by iostreams and not by a user program.

class stream_rmutex {

private:

mutex_t mutex; // mutex lock

thread_t owner; // owner of the recursive lock - id returned by thr_self

int count; // count of number of times the lock is acquired

void rmutex_init(); // initialization routine

void rmutex_lock();

void rmutex_unlock();

friend class ios;

friend class streambuf;

friend class stream_MT;

friend class stream_locker;

};

For applications that do not link with the threads library, there is an opportunity at the
beginning of each member function of the class to exit without proceeding further.

3.6.2 Initialization routine rmutex_init()
Initialization of stream_rmutex objects is done in rmutex_init() and not in a constructor
because of special needs of static objects of this class. The class ios has a static member
of stream_rmutex and this member is used for acquiring and releasing a lock in the
member functions sync_with_stdio(), bitalloc(), xalloc(), iword() and pword(). Initial-
ization of static objects of stream_rmutex is done only once, in the same place where the
global objects cout, cin, cerr and clog are initialized.

stream_rmutex::rmutex_init() {

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 15 of 27

For example, consider an istream class. It contains a pointer to a streambuf object and
this pointer is passed as an argument to its constructor and through its assignment. Sev-
eral member functions of the istream class perform operations on this pointer, such as,
getting characters from the streambuf and incrementing the buffer pointer in the stream-
buf object. These operations must be made atomic.

Example:

istream& istream::read(char *p, int len) {

if (ipfx1()) {

int c = 0;

gcount_ = 0;

// Critical region for streambuf bp starts here

while (--len >= 0 && (c = bp->sgetc()) != EOF) {

*p++ = c;

++gcount_;

bp->stossc();

}

// Critical region ends here

}

return *this;

}

bp is the pointer to an object of streambuf class and a member variable of istream. stre-
ambuf::sgetc() gets a character from the buffer and streambuf::stossc() increments the
get pointer. An intervening call on a bp member function from another thread must not
be allowed to occur within the defined critical region. The mt-safe version of this func-
tion is:

unsafe_istream& unsafe_istream::read(char *p, int len) {

if (ipfx1()) {

int c = 0;

gcount_ = 0;

while (--len >= 0 && (c = bp->sgetc_unlocked()) != EOF) {

*p++ = c;

++gcount_;

bp->stossc_unlocked();

}

return *this;

}

istream& istream::read(char *p, int len) {

stream_locker lockp1(this, stream_locker::lock_defer);

streambuf *buf = rdbuf();

stream_locker lockp2(buf, stream_locker::lock_defer);

if (test_safe_flag()) {

lockp1.lock (); // lock istream object

Making iostreams library mt-safe

14 of 27 Implementing iostreams in a multi-threaded environment

tions to be used by an application. It also is a much cleaner design as the code changes
are easier to maintain.

3.4.4 Special case: class streambuf
The class streambuf is mainly used in two different ways:

1. As a base class from which other classes can be derived.

Most of the work of buffer management in streams is done by classes derived from
streambuf.

2. As encapsulated objects in other classes.

The class ios is an example of this. To perform a sequence of operations on the
encapsulated streambuf object, the encapsulated object is locked before the opera-
tions start and unlocked after the operations are completed. This is discussed further
in section 3.5 below.

We treat the class streambuf as a special case and modify it using the “fat” class
approach instead of deriving it from an unsafe version. This is done mainly for
improved performance; we avoid the extra overhead of calls to mutex lock and unlock
routines for every call to a streambuf member function. The locking and unlocking of
the streambuf object is done in the caller of the streambuf member functions by follow-
ing these steps:

1. lock the streambuf object

2. call unlocked version of streambuf member function (this is usually done several
times by the caller, inside a loop.)

3. unlock the streambuf object

An example is given in section 3.5 below.

3.4.5 Link-time compatibility
To ensure link-time compatibility between binaries built for single and multi-threaded
cases, the same classes are used for single as well as for multi-threaded applications.
Also, to improve performance for the single threaded case, a set of stub functions is
defined for the libthreads interface in libC itself. If the application is to run in a multi-
threaded environment, libthread is linked before libC causing the stub definitions to be
ignored. If the application is to run in a single thread, libthread is not linked and the stub
definitions from libC will get linked.

A compiler option, -mt, can be provided that will perform all necessary link steps for the
user to build an mt-safe application. This option will pass -lthread to the linker and pass
-D_REENTRANT to the preprocessor so that code relevant only for mt-safe could be
added in header files within #ifdef _REENTRANT ... #endif.

3.5 Compound Operations

In our design approach of deriving mt-safe classes from unsafe ones, we lock an entire
routine to achieve reentrancy. We should also ensure that all operations on encapsulated
class objects are atomic.

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 13 of 27

restriction in the iostreams library as there is little scope for concurrency in the exist-
ing functions.

3.4.2 Fat MT-safe classes
With this scheme, the existing libC classes are modified to create “fat” mt-safe classes.
Every public and protected member function of each class is modified to become reen-
trant. The modifications involve protecting all references to internal state by locked
mutual exclusion regions. Also, for performance reasons, calls to other public/protected
member functions from within a locked region may be replaced by calls to unlocked
versions of the member functions. The changes involved here are much more extensive
than those in the other approach.

Example:

The original function code:

int istream::ipfx(int _need) {

return ((_need ? (ispecial & ~skipping) : ispecial) ?

do_ipfx(_need) : 1);

}

is replaced by the following code which calls an unlocked version of the function
do_ipfx():

int istream::ipfx(int _need) {

int return_val;

stream_locker lockp(this, stream_locker::lock_defer);

if (test_safe_flag())

lockp.lock ();

return_val = ((_need ? (ispecial & ~skipping) : ispecial) ?

do_ipfx_unlocked(_need) : 1);

return return_val;

}

Advantages:

• The class hierarchy is unchanged

• Mutex locks can be placed to maximize potential concurrency.

Disadvantages:

• Many calls to public/protected member functions must be replaced by calls to
unlocked versions.

• More than 200 functions need to be modified causing problems for maintenance and
debugging.

• Changes are not well partitioned.

3.4.3 Implementation
We chose the design alternative of deriving mt-safe classes from unsafe ones described
in section 3.4.1. This approach allows both unsafe and safe versions of member func-

Making iostreams library mt-safe

12 of 27 Implementing iostreams in a multi-threaded environment

class istream : virtual public ios, public unsafe_istream{ // mt-safe version of the class

. . .

};

As far as possible, any changes to make libC mt-safe are confined to the mt-safe classes.
The mt-safe version of the class contains the same protected and public member func-
tions as theunsafe_ base class. Each public/protected member function of the mt-safe
class acts as a wrapper function and performs the following steps:

Acquire lock

Call same function in theunsafe_ base class

Release lock

Return result, if needed

Examples of wrapper functions:

long ios::flags(long l) {

stream_locker lockp(this, stream_locker::lock_defer);

if (test_safe_flag())

lockp.lock ();

return unsafe_ios::flags(l);

}

int istream::ipfx(int _need) {

stream_locker lockp(this, stream_locker::lock_defer);

if (test_safe_flag())

lockp.lock ();

return unsafe_istream::ipfx (_need);

}

Each public/protected member function simply acts as a wrapper for calling the same
function in theunsafe_ base class. The wrapper functions can be made inline to
improve performance.

Advantages of deriving mt-safe classes from unsafe classes:

• Encapsulates most of the changes in the derived classes making it easier to modify
and maintain.

• Allows an application access to the original unsafe classes for best performance pro-
vided the application knows what it is doing.

Disadvantages:

• Changes the class hierarchy.

• Fine grain concurrency may not be achieved because an entire function is locked
even if only a small portion of the code needs locking. However, this is not a major

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 11 of 27

if (test_safe_flag())

lockp.lock(); // The destructor of lockp will release the lock

. . .

}

For all iostream classes, the default value of safe_flag will be set to stream_MT::-
safe_object by the constructor. Note that the function set_safe_flag() is unconditionally
protected by mutex locks. The function test_safe_flag() does not need any mutex locks;
we assume that reading of a boolean value is always atomic.

If more than one thread tries to change safe_flag then the threads must coordinate
among themselves by using an appropriate locking mechanism such as mutex locks.
This situation could arise if one thread was performing some operation on a global
object after setting it to be in unsafe mode and another thread tried to set the same object
to safe mode. The second thread would proceed assuming that the object is in safe mode
when actually it may not be since the first thread may not have completed its operation
on the object.

3.3.4 Implementation
In our implementation, we have made class objects dynamically switchable between
safe and unsafe. This provides maximum flexibility at a small cost. Each public and pro-
tected member function has an added cost of a test at the beginning and end of the func-
tion. This additional cost applies to both safe as well as unsafe objects.

3.4 Design Alternatives for mt-safe classes

There are two different ways of modifying the iostreams library to make it mt-safe:
deriving mt-safe classes from existing unsafe classes, and, modifying the existing
unsafe classes to create ‘fat’ mt-safe classes. These two approaches are discussed in the
sections below.

3.4.1 MT-safe classes derived from unsafe classes
In this approach, mt-safe classes are derived from the existing unsafe versions. The
original classes are renamed by adding a prefixunsafe_ to the names. Thus for each
existing class, there will be an unsafe version which is the original class itself and an
mt-safe version derived from the unsafe class. The following example illustrates this:

class unsafe_ios { // this is the original class named ios and is mt-unsafe

. . .

};

class ios : virtual public unsafe_ios, public stream_MT { // mt-safe version

. . .

};

class unsafe_istream : virtual public unsafe_ios { // original class istream, is mt-unsafe

. . .

};

Making iostreams library mt-safe

10 of 27 Implementing iostreams in a multi-threaded environment

object when using these classes in a multi-threaded environment. This approach will
have no performance penalty for the single threaded case.

A class containing static data members needs special attention because the static mem-
bers are shared by all objects of the class. For a program using such a class to be mt-
safe, all objects of the class should be locked before calling any class member function
that accesses these static members, i.e, a user should have a way of providing a lock
around the class instead of around an object. Since a user of the class may not be aware
if there are any static data members, he may have to lock the entire class every time
before calling any member function.

3.3.2 Safe class instances
In this model, all member functions are made reentrant by placing a lock at entry to the
function and an unlock before exit as in the examples given in section 3.1 above. The
lock and unlock routines will be called even for a single-threaded case. This will have
maximum performance penalty for the case of a single thread.

3.3.3 Dynamically changeable class instances
In this approach, the locking and unlocking of an object is performed conditionally on a
flag which can be modified at execution time. The following example illustrates this:

typedef char stream_bool_t;

class stream_MT {

private:

rmutex_t mutlock;

stream_bool_t safe_flag; // safe_object or unsafe_object

protected:

stream_rmutex& get_rmutex() { return mutlock; }

public:

enum { unsafe_object=0, safe_object=1 };

stream_MT () { safe_flag = safe_object; }

stream_MT(stream_bool_t flag) { safe_flag = flag; }

void set_safe_flag (stream_bool_t i) {

mutlock.rmutex_lock();

safe_flag = i;

mutlock.rmutex_unlock();

}

stream_bool_t test_safe_flag() { return safe_flag; }

friend class stream_locker;

}

class ios : public stream_MT { ... };

class streambuf : public stream_MT { ... };

class istream : virtual public ios { ... };

istream& istream::get(char& c) {

stream_locker lockp(this, stream_locker::lock_defer);

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 9 of 27

}

stream_locker (stream_MT *ptr, lock_choice flag=lock_now) {

do_lock_set(&(ptr->get_rmutex()), flag);

}

~stream_locker () { do_unlock(); }

void lock () { do_lock(); }

void unlock() { do_unlock(); }

}

The above example can then be written as:

{

stream_locker lockp(cout);

cout << func1() << func2();

}

If an exception is thrown by func1() or func2(), the stack unwinding will ensure that the
destructor of lockp also gets called, thus unlocking cout. If no exception is thrown, the
destructor of lockp will get called when the block of code is exited.

The first argument of the stream_locker constructor specifies the stream object to be
locked by the stream_locker object. The second argument of the constructor is the
lock_choice flag. This flag decides if the stream object is to be locked at the time the
stream_locker object is created. The default value of the lock_choice flag in the con-
structors is lock_now; this specifies that the stream object passed as argument to the
stream_locker constructor is to be locked when the stream_locker object is created. The
value lock_defer means that the stream object is not to be locked when the stream_-
locker object is created. A subsequent call to the stream_locker member function lock()
will lock the stream object.

The recommended way of using stream_locker is to create only local objects of this
class. The member functions do_lock() and do_unlock() don’t use any locking them-
selves to protect access to data members of the class. They will work correctly for local
objects of the class (unless the address of the local object is passed between threads. See
section 2.1. We consider this usage unlikely in practice). A user could use global/
dynamic objects of this class and provide additional locking himself before calling the
members lock() and unlock() but we don’t recommend doing this.

3.2.4 Implementation
We use a separate stream_locker class described in section 3.2.3 in our implementation.

3.3 Performance and mt-safety

There are three different user models that address the issues of performance and mt-
safety: unsafe class instances, safe class instances, and dynamically changeable class
instances.

3.3.1 Unsafe class instances
In this model, no locking mechanism is provided in the classes. As a result, all member
functions are mt-unsafe. It is the user’s responsibility to lock operations on a class

Making iostreams library mt-safe

8 of 27 Implementing iostreams in a multi-threaded environment

3.2.3 A separate stream_locker class
There is a problem with the two aproaches described above if we take into account
exceptions. Consider the following test case:

{

cout.lock();

cout << func1() << func2();

cout.unlock();

}

If either func1() or func2() throws an exception, cout.unlock() will not be called and the
object cout will remain locked. To solve this problem, we define a special class whose
constructor acquires the lock and whose destructor releases the lock:

class stream_rmutex {

. . .

friend class stream_locker; // to provide access to rmutex_lock() and rmutex_unlock()

};

class stream_MT {

. . .

friend class stream_locker; // to provide access for get_rmutex()

};

class stream_locker {

private:

stream_rmutex *lockp;

int lock_count;

void do_lock() {

lock_count++;

lockp->rmutex_lock();

}

void do_lock_set(stream_rmutex *ptr, int lock_flag) {

lockp = ptr;

lock_count = 0;

if (lock_flag)

do_lock();

}

void do_unlock() {

if (lock_count) {

lockp->rmutex_unlock();

lock_count--;

}

}

public:

enum lock_choice { lock_defer=0, lock_now=1 };

stream_locker (stream_MT& obj, lock_choice flag=lock_now) {

do_lock_set(&(obj.get_rmutex()), flag);

Making iostreams library mt-safe

Implementing iostreams in a multi-threaded environment 7 of 27

class streambuf : public stream_MT { ... };

istream& istream::get(char& c) {

get_rmutex().rmutex_lock(); // acquire lock (recursive mutex lock)

. . .

get_rmutex().rmutex_unlock(); // release lock (recursive mutex unlock)

};

These additional calls for locking/unlocking will degrade the performance of the mem-
ber functions in a single-threaded case. The issue of performance and mt-safety is dis-
cussed further in section 3.3 below.

3.2 Implementing a sequence of operations on an object

We consider three ways of implementing a sequence of operations on an object atomi-
cally: provide lock/unlock public member functions in each class, use manipulators, and
use constructors/destructors of a separate class to do locking and unlocking.

3.2.1 lock/unlock member functions
In this scheme, we would provide two public member functions in each class:

lock() { ... }

unlock() { ... }

These two functions allow the user to lock a particular stream object, perform a
sequence of operations on the object, and then unlock that object. Note that these rou-
tines use the same member variable for the lock as the other public member functions of
the class.

Example:

cout.lock();

cout << “Version = ” << version_no << “\n”;

cout.unlock();

ensures that the three strings “Version = “, version_no, and “\n” are sent to the output
stream cout without any intervening strings from any other thread.

It is the user’s responsibility to ensure proper use of the routines lock() and unlock(). In
the above example, if the functions cout.lock() and cout.unlock() are not called then out-
put to cout from other threads could get mingled with the three strings. Moreover, if the
user calls cout.lock() but forgets to call cout.unlock(), the stream cout will remain
locked.

3.2.2 lock/unlock manipulators
Instead of defining member functions lock() and unlock() in each class, we could define
them as manipulators. The above example could then be written as:

cout << lock << “Version = ” << version_no << “\n” << unlock;

Making iostreams library mt-safe

6 of 27 Implementing iostreams in a multi-threaded environment

3.0 Making iostreams library mt-safe

This section discusses implementation details for making the iostreams library mt-safe.

3.1 Making member functions reentrant

The preferred way of providing mutual exclusion and making public class member
functions reentrant is to use mutex locks. A simple way of achieving this is to add a data
member of type stream_rmutex in each class and use this for acquiring a lock on entry
to a function and to release the lock before exiting the function. As mentioned in section
2.3, we use recursive locking to protect the state of objects. The class stream_rmutex is
used to implement recursive locking. This class is discussed in section 3.6.

In our implementation, we define a class stream_MT that provides the interface needed
for any class to be mt-safe. The classes ios and streambuf are derived from stream_MT.

Example:

// Class stream_rmutex implements recursive mutex locks.

// Note: this class is supposed to be used only by iostreams and not by

// a user program, so all its members are private.

class stream_rmutex {

private:

mutex_t mutex;

thread_t owner;

int count;

// Initialization is not done in a constructor because of special needs

// of static objects of this class.

void rmutex_init ();// initialization routine

void rmutex_lock ();

void rmutex_unlock ();

friend class ios;

friend class streambuf;

friend class stream_MT;

};

// Class stream_MT is used as a base class. It provides the interface

// for a class that wants to be mt-safe.

class stream_MT {

private:

stream_rmutex mutlock;

protected:

stream_rmutex& get_rmutex() { return mutlock; }

};

class ios : public stream_MT { ... };

MT-safe issues for C++

Implementing iostreams in a multi-threaded environment 5 of 27

• By default all operations in iostreams should be mt-safe. Where needed for perfor-
mance reasons, an mt-unsafe version of the operation should be provided.

MT-safe issues for C++

4 of 27 Implementing iostreams in a multi-threaded environment

2.6 Constructors and Destructors

2.6.1 Constructors
Class constructors will normally require locking if they access a static member variable
or a global variable. If a static member variable or a global variable is not used in a con-
structor then locking may not be needed. In libC, there are no class constructors that use
static member variables or global variables.

2.6.2 Destructors
While one thread is trying to destroy a dynamically allocated object, it is possible that
other threads may be trying to access it. We consider this a user error. Providing mutex
locks in the destructor will not help because once one thread has successfully destroyed
the object, it will no longer exist for the other threads to use. Destructors are not pro-
tected by mutex locks and are documented as unsafe. It is the user’s responsibility to
ensure that dynamically created objects are not destroyed while some thread is still
using them.

2.7 Exported Interface of iostreams Library

For the purpose of making the library mt-safe, the exported interface of the iostreams
library is considered to be the following:

• Public and protected member functions of the classes of libC.

• A set of base classes that can be extended and customized by the user.

Any changes to libC must ensure that the original exported interface continues to be
available after the changes.We propose that the class hierarchy structure not be consid-
ered part of the exported interface. This proposal, we believe, is in keeping with the dis-
cussion of conformance in the iostreams specification (X3J16/93-0004, p 8), in
particular, with the specification that a class member may be inherited from an imple-
mentation specific base class rather being declared directly. We have modified the ios-
treams class hierarchy in our implementation. The different design alternatives are
discussed in section 3.4 below.

2.8 Other issues

Changes in libC sources to make it mt-safe should also meet the following require-
ments:

• The behavior of the iostreams library in a single threaded application should not
change.

• For a single-threaded application, the performance penalty as a result of changes
made to the library should be within acceptable limits, about < 5%.

• The changes should be consistent with the mechanism and style used in mt-safe libc
as specified in the Posix standard.

• Thread-specific data is expensive and should be used sparingly.

• Recursive locking is expensive and should be avoided as far as possible, especially
in inner loops.

MT-safe issues for C++

Implementing iostreams in a multi-threaded environment 3 of 27

exclusion member functions in each class. These routines can be used for locking and
unlocking objects of the class. Another way, and the approach taken by us, is to define a
separate locker class to perform the locking.

Section 3.2 below discusses implementation of the different user callable locking
schemes. The locking routines in all the different schemes use the same member vari-
able for the lock as the other public member functions of the class. We use recursive
locking to accomplish this.

2.3.2 mt-safe virtual public functions
The class streambuf has several virtual member functions and some of these are called
from other public member functions of that class. For instance, the virtual function stre-
ambuf::underflow() is called from the public member streambuf::sgetc(). Once both
these member functions have been made mt-safe, they will each lock the streambuf
object before performing any operation on it. The streambuf object may get locked
twice if streambuf::sgetc() is called; once by sgetc() itself and the second time by under-
flow() if underflow() gets called by sgetc(). We use recursive locking to achieve this.

The virtual functions that are called by other public functions are: setbuf(), xsgetn(),
underflow(), pbackfail(), doallocate(), xsputn() and overflow().

2.4 References to static data

Routines that maintain or return references to static data members must be modified to
use thread-specific data instead. If such routines are not modified then they should be
documented as mt-unsafe. In libC, the routines oct(), hex(), dec(), chr(), str(), and form()
use static data. We provide a reentrant interface that uses user-specified buffers instead
of static data by providing six additional functions oct_r(), hex_r(), dec_r(), chr_r(),
str_r(), and form_r().

2.5 Static member variables

Static members of a class are like global variables and are shared by all objects of that
class. Access to these variables cannot be protected by using the object’s mutex lock. A
static mutex is defined in each class that has static mutable member variables. Each
member function of a class that accesses a static member variable uses the static mutex
to serialize access to the static member. The static mutex is made protected so that
derived classes can also use it. In the iostreams library, the only class that needs a static
mutex lock is ios where the static mutex is used for acquiring and releasing locks in the
member functions sync_with_stdio(), bitalloc(), xalloc(), iword(), and pword().

If a class has public static member variables, then access of these members in a program
is inherently mt-unsafe because these members can be easily modified outside of the
protection provided by the library. If these members are accessed directly in a user pro-
gram, then it is the user’s responsibility to protect access to these members by using
appropriate locking in the program. This issue is discussed further in section 3.7 below.

MT-safe issues for C++

2 of 27 Implementing iostreams in a multi-threaded environment

2.0 MT-safe issues for C++

All the issues discussed in Posix standard 1003.4a, for making the library libc mt-safe,
apply to the C++ library libC as well. However C++ has some additional requirements
that are not relevant for C and are not addressed by the Posix standard. This section dis-
cusses requirements that are specific to C++ and libC.

2.1 Internal state of objects

Every class object has an internal state determined by the values of data members of the
object. We define an object to be in aconsistentstate if all its data members have values
that reflect its desired state. An object for which only some of the data members have
the desired values is said to be in aninconsistent state.

A program running in a multi-threaded environment should ensure that if more than one
thread tries to modify the internal state of an object then each thread gets the object in a
consistent state. This requirement is needed for static and global objects. This require-
ment is also needed for local (stack based) objects whose addresses are passed between
threads.

2.2 Reentrant member functions

Member functions in the original iostreams library do not provide any protection against
multiple threads trying to modify the internal state of an object. As a result, most of the
library functions in libC will not work correctly in a multi-threaded environment. To
ensure reentrancy, the internal state of class objects must be protected by all public and
protected member functions. The preferred way of providing this protection is to use
mutex locks.

Another requirement for reentrancy is to ensure that compound operations on a stream
object are atomic. Some member functions of the iostream classes perform compound
operations on the underlying streambuf object. These operations must be made atomic.
It must also be possible for the user to make compound operations atomic by explicitly
locking iostream objects.

In our implementation, we have defined a class stream_MT that has a mutex lock as a
data member. The classes ios and streambuf are derived from stream_MT. The member
functions of all iostream classes use the mutex lock of the base class stream_MT for
locking operations. This class is discussed in section 3.1 below.

2.3 Recursive locking

Our implementation uses recursive locking to satisfy two requirements: allowing a
sequence of operations on an iostream object to be atomic, and, making virtual public
member functions mt-safe. The implementation of recursive locking is discussed in sec-
tion 3.6 below.

2.3.1 Sequence of operations on an object
A user should be able to perform a sequence of operations in an atomic fashion on any
iostreams class object. One way of achieving this is to provide user callable mutual

July 7, 1993 X3J16/93-0071, WG21/N0278

1 of 27

Implementing iostreams
in a multi-threaded
environment

Mukesh Kapoor

mukesh.kapoor@Eng.sun.com
SunPro
A Sun Microsystems Inc. Business

1.0 Introduction

Multi-threading is a powerful facility that can speed up applications on multi-processor
machines; it can also simplify the structuring of applications on both multi-processor
and uni-processor machines. A library is said to be multi-threading safe (mt-safe) if all
the public functions in its interface are reentrant. This implies that the library provides
protection against multiple threads trying to modify the state of objects shared by more
than one thread.

The current iostreams library, which is part of libC, was not designed to work in a multi-
threaded environment. We have modified libC to make it mt-safe. Our implementation
uses the threads library, libthread, which is based on the interface specified in the
POSIX 1003.4a standard. This report discusses the issues involved and describes the
interface changes needed for making libC mt-safe. Examples are provided from our
experience with modifying libC. Wherever possible, the different choices are listed and
a rationale given for the recommended choice. Though most of the issues discussed here
are specific to the iostreams library, these issues apply for making any C++ class library
mt-safe.

Section 2 addresses some general issues for making a C++ library mt-safe. Section 3
discusses implementation details for modifying the iostreams library, section 4
describes other functions of libC that were made mt-safe, and section 5 lists the inter-
face changes that we made for making the iostreams library mt-safe.

The terms libC, C++ library, and iostreams library are used interchangeably in this doc-
ument.

