10

11

12
13

14
15
16

17
18
19
20

21

22
23

24
25

26

27

1.1

1.2

1.3

1.4

Chapter 1

Introduction

Scope

The scope of IEEE Std.1003.1-200x is described in the Base Definitions volume of
IEEE Std. 1003.1-200x.

Conformance

Conformance requirements for IEEE Std. 1003.1-200x are defined in the Base Definitions volume
of IEEE Std. 1003.1-200x, Chapter 2, Conformance.

Normative References

Normative references for IEEE Std. 1003.1-200x are defined in the Base Definitions volume of
IEEE Std. 1003.1-200x.

Changes from Issue 4

Notes to Reviewers

14.1

This section with side shading will not appear in the final copy. - Ed.

The change history is subject to revision. The intent is to document changes from Issue 4 thru
Issue 6, with the latest change history also documenting changes from the ISO POSIX-1: 1996
standard.

The following sections describe changes made to this volume of IEEE Std. 1003.1-200x since
Issue 4. The CHANGE HISTORY section for each entry details the technical changes that have
been made to that entry since Issue 4. Changes made between Issue 2 and Issue 4 are not
included.

Changes from Issue 4 to Issue 4, Version 2

The following list summarizes the major changes that were made in this volume of
IEEE Std. 1003.1-200x from Issue 4 to Issue 4, Version 2:

« The X/Open UNIX extension was added. This specifies the common core APIs of 4.3
Berkeley Software Distribution (BSD 4.3), the OSF AES, and SVID lIssue 3.

« STREAMS were added as part of the X/Open UNIX extension.

- Existing Issue 4 functions were clarified as a result of industry feedback.

System Interfaces, Issue 6 491

28

29
30

31
32
33

34

35

36

37
38

39
40

41

42

43

44

45

46
47

48
49

50

51
52

53

Changes from Issue 4 Introduction

142

143

492

Changes from Issue 4, Version 2 to Issue 5

The following list summarizes the major changes that were made in this volume of
IEEE Std. 1003.1-200x from Issue 4, Version 2 to Issue 5:

Functions previously defined in the ISO POSIX-2 standard C-language Binding, Shared
Memory, Enhanced Internationalization, and X/Open UNIX Extension Feature Groups were
moved to the BASE.

Threads were added to the BASE for alignment with the POSIX Threads Extension.
The Realtime Threads Feature Group was added.
The Realtime Feature Group was added for alignment with the POSIX Realtime Extension.

Multibyte Support Extensions (MSE) were added to the BASE for alignment with
ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

Large File Summit (LFS) Extensions were added to the BASE for support of 64-bit or larger
files and file systems.

X/0pen-specific threads extensions were added to the BASE.
X/0pen-specific dynamic linking functions were added to the BASE.

A new category Legacy was added.

The categories TO BE WITHDRAWN and WITHDRAWN were removed.

Changes from Issue 5 to Issue 6 (IEEE Std. 1003.1-200x)

The following list summarizes the major changes that were made in this volume of
IEEE Std. 1003.1-200x from Issue 5 to Issue 6:

This volume of IEEE Std. 1003.1-200x is extensively revised so it can be both an IEEE POSIX
Standard and an Open Group Technical Standard.

The POSIX System Interfaces requirements incorporate support of FIPS 151-2.

The POSIX System Interfaces requirements are updated to align with some features of the
Single UNIX Specification.

A RATIONALE section is added to each reference page.

Technical Standard (2000) (Draft July 31, 2000)

54

55

56
57

58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

Introduction

1.5

15.1

New Features

New Features in Issue 4, \ersion 2

New Features

The functions, headers, and external variables first introduced in Issue 4, Version 2 are listed in

the table below.

New Functions, Headers, and External Variables in Issue 4, Version 2

FD_CLR()
FD_ISSET()
FD_SET()
FD_ZERO()
_longjmp()
_setjmp()
a64l()
acosh()
asinh()
atanh()
basename()
bemp()
bcopy ()
brk()
bsd_signal ()
bzero()
cbrt()
closelog()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey ()
dbm_nextkey ()
dbm_open()
dbm_store()
dirname()
ecvt()
endgrent()
endpwent()
<fmtmsg.h>
<libgen.h>
<ndbm.h>
<poll.h>

getdate_err

endutxent()
expm1()
fattach ()
fchdir ()
fchmod ()
fchown ()
fevt()
fdetach ()
ffs()
fmtmsg()
fstatvfs ()
ftime()
ftok ()
ftruncate()
gevt()
getcontext()
getdate()
getdtablesize ()
getgrent()
gethostid ()
getitimer()
getmsg()
getpagesize()
getpgid ()
getpmsg ()
getpriority ()
getpwent()
getrlimit()
getrusage()
getsid()
getsubopt()
<re_comp.h>
<strings.h>
<stropts.h>
<sys/mman.h>

__loc1

gettimeofday ()
getutxent()
getutxid()
getutxline()
getwd ()
grantpt()
ilogb()
index()
initstate ()
insque()

ioctl ()
isastream()
killpg ()

164a()
Ichown()
lockf()
loglp()
logb()

Istat()
makecontext()
mknod ()
mkstemp()
mktemp()
mmap ()
mprotect()
msync()
munmap()
nextafter ()
nftw()
openlog()

poll ()
<sys/resource.h>
<sys/statvfs.h>
<sys/time.h>
<sys/timeb.h>

ptsname()
putmsg()
putpmsg()
pututxline()
random()
re_comp()
re_exec()
readlink ()
readv ()
realpath()
regemp()
regex()
remainder ()
remque()
rindex()
rint()
sbrk()
scalb()
select()
setcontext()
setgrent()
setitimer()
setlogmask ()
setpgrp()
setpriority ()
setpwent()
setregid()
setreuid()
setrlimit()
setstate()
setutxent()
<sys/uio.h>
<sys/un.h>
<syslog.h>
<ucontext.h>

sigaltstack ()
sighold ()
sigignore()
siginterrupt()
sigpause()
sigrelse()
sigset()
sigstack ()
srandom()
statvfs()
strcasecmp()
strdup()
strncasecmp()
swapcontext()
symlink()
sync()
syslog ()
tcgetsid()
truncate()
ttyslot()
ualarm()
unlockpt()
usleep()
utimes()
valloc ()
vfork()
wait3()
waitid ()
writev()

<utmpx.h>

System Interfaces, Issue 6

493

96

97

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

New Features

152

494

New Features in Issue 5

Introduction

The functions and headers first introduced in Issue 5 are listed in the table below.

New Functions and Headers in Issue 5

aio_cancel ()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
asctime_r()
btowc ()
clock_getres()
clock_gettime()
clock_settime()
ctime_r()
diclose()
dlerror()
dlopen()
disym()
fdatasync()
flockfile ()
fseeko()
ftello()
ftrylockfile ()
funlockfile ()
fwide()
fwprintf()
fwscanf()
getc_unlocked ()
getchar_unlocked()
getgrgid_r()
getgrnam_r()
getlogin_r()
getpwnam_r()
getpwuid_r()
gmtime_r()
lio_listio ()
localtime_r()
mbrlen()
mbrtowc()
mbsinit()
mbsrtowces()
mlock ()
mlockall ()
mq_close()
mq_getattr()
mq_notify ()
maq_open()

pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_cancel ()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal ()
pthread_cond_timedwait()

pthread _cond_wait()
pthread_condattr_destroy ()
pthread_condattr_getpshared()
pthread_condattr_init()

pthread condattr_setpshared()
pthread_create()
pthread_detach()

pthread equal ()
pthread_exit()
pthread_getconcurrency ()
pthread_getschedparam()
pthread_getspecific()

pthread join()

pthread key create()
pthread_key delete()
pthread_kill ()
pthread_mutex_destroy()
pthread_mutex_getprioceiling()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_setprioceiling()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()

pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol ()

pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()

pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setconcurrency()
pthread_setschedparam()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel ()
putc_unlocked ()
putchar_unlocked()
pwrite()

rand_r()

readdir_r()
sched_get_priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()
sem_close()
sem_destroy()
sem_getvalue()
sem_init()

sem_open()

sem_post()
sem_trywait()
sem_unlink()
sem_wait()

shm_open()
shm_unlink()
sigqueue()
sigtimedwait ()
sigwait()

sigwaitinfo ()

snprintf()

strtok_r()

swprintf()

swscanf()
timer_create()
timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
towctrans()

Technical Standard (2000) (Draft July 31, 2000)

146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

Introduction

New Features

New Functions and Headers in Issue 5

ma_receive()
ma_send()
mq_setattr()
mq_unlink()
munlock()
munlockall ()
nanosleep ()
pread()
pthread_atfork()

pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread attr_getguardsize()
pthread_attr_getinheritsched()
pthread_attr_getschedparam()
pthread_attr_getschedpolicy()
pthread_attr_getscope()
pthread_attr_getstackaddr()

<aio.h>
<dlfcn.h>
<inttypes.h>

pthread_mutexattr_init()
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol ()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock _unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()
<is0646.h>

<mqgueue.h>

<pthread.h>

ttyname_r()
viwprintf()
vsnprintf()
vswprintf()
vwprintf()
wertomb()
wesrtombs()
wesstr()
wectob ()
wectrans()
wmemchr ()
wmemcmp()
wmemcpy ()
wmemmove()
wmemset()
wprintf()
wscanf()
<sched.h>
<semaphore.h>
<wctype.h>

System Interfaces, Issue 6

495

168

169
170

171
172

New Features

153

New Features in Issue 6

Notes to Reviewers
This section with side shading will not appear in the final copy. - Ed.

496

Introduction

A table listing new functions, headers, etc. since the I1SO POSIX-1:1996 standard will be added

here in a future draft.

Technical Standard (2000) (Draft July 31, 2000)

173

174
175

176

177
178
179
180

181
182
183
184
185
186

187
188

189
190
191
192
193

194
195
196
197
198

199

200
201
202
203

204

205
206
207
208
209

210
211

212
213
214

215
216
217

Introduction Terminology

1.6

Terminology

This section appears in the Base Definitions volume of IEEE Std. 1003.1-200x, but is repeated
here for convenience:

For the purposes of IEEE Std. 1003.1-200x, the following terminology definitions apply:

can
Describes a permissible optional feature or behavior available to the user or application. The
feature or behavior is mandatory for an implementation that conforms to
IEEE Std. 1003.1-200x. An application can rely on the existence of the feature or behavior.

implementation-defined
Describes a value or behavior that is not defined by IEEE Std. 1003.1-200x but is selected by
an implementor. The value or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence of the value or
behavior. An application that relies on such a value or behavior cannot be assured to be
portable across conforming implementations.

The implementor shall document such a value or behavior so that it can be used correctly
by an application.

legacy
Describes a feature or behavior that is being retained for compatibility with older
applications, but which has limitations which make it inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality.

may
Describes a feature or behavior that is optional for an implementation that conforms to
IEEE Std. 1003.1-200x. An application should not rely on the existence of the feature or
behavior. An application that relies on such a feature or behavior cannot be assured to be
portable across conforming implementations.

To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

shall
For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
behavior that is mandatory. An application can rely on the existence of the feature or
behavior.

For an application or user, describes a behavior that is mandatory.

should
For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
behavior that is recommended but not mandatory. An application should not rely on the
existence of the feature or behavior. An application that relies on such a feature or behavior
cannot be assured to be portable across conforming implementations.

For an application, describes a feature or behavior that is recommended programming
practice for optimum portability.

undefined
Describes the nature of a value or behavior not defined by IEEE Std. 1003.1-200x which
results from use of an invalid program construct or invalid data input.

The wvalue or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be

System Interfaces, Issue 6 497

218

219
220
221

222
223
224
225

Terminology Introduction

498

assured to be portable across conforming implementations.

unspecified

Describes the nature of a value or behavior not specified by IEEE Std. 1003.1-200x which
results from use of a valid program construct or valid data input.

The wvalue or behavior may vary among implementations that conform to
IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or behavior cannot be
assured to be portable across conforming implementations.

Technical Standard (2000) (Draft July 31, 2000)

Introduction Definitions

26 1.7 Definitions
227 Concepts and definitions are defined in the Base Definitions volume of IEEE Std. 1003.1-200x.

System Interfaces, Issue 6 499

228

229
230

231
232

233
234
235
236
237
238

239
240

Relationship to Other Formal Standards Introduction

1.8

500

Relationship to Other Formal Standards

Great care has been taken to ensure that this volume of IEEE Std. 1003.1-200x is fully aligned
with the following standards:

ISO C (1999)
ISO/IEC 9899: 1999, Programming Languages — C.

Parts of the ISO/IEC 9899:1999 standard (hereinafter referred to as the ISO C standard) are
referenced to describe requirements also mandated by this volume of IEEE Std. 1003.1-200x.
Some functions and headers included within this volume of IEEE Std. 1003.1-200x have a version
in the ISO C standard; in this case CX markings are added as appropriate to show where the
ISO C standard has been extended. Any conflict between this volume of IEEE Std. 1003.1-200x
and the ISO C standard is unintentional.

This volume of IEEE Std. 1003.1-200x also allows, but does not require, mathematics functions to
support IEEE Std. 754-1985 and IEEE Std. 854-1987.

Technical Standard (2000) (Draft July 31, 2000)

241

242
243
244
245

246
247
248

249

250
251

252
253
254

255
256
257

258
259
260

261
262
263

264
265
266

267
268
269

270
271

272
273
274

275
276

277
278
279

280
281
282

283
284

Introduction Portability

1.9

191

ADV

AIO

BAR

BE

CD

CPT

Portability

Some of the utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x and functions in
the System Interfaces volume of IEEE Std. 1003.1-200x describe functionality that might not be
fully portable to systems meeting the requirements for POSIX conformance (see the Base
Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance).

Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
the margin identifies the nature of the option, extension, or warning (see Section 1.9.1). For
maximum portability, an application should avoid such functionality.

Codes

Margin codes and their meanings are listed in the Base Definitions volume of
IEEE Std. 1003.1-200x, but are repeated here for convenience:

Advisory Information
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ADV
margin legend.

Asynchronous Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the AIO
margin legend.

Barriers
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the BAR
margin legend.

Batch Environment Services and Utilities
The functionality described is optional.

Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the BE margin
legend.

C-Language Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the CD margin
legend.

Process CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CPT

System Interfaces, Issue 6 501

285

286
287
288

289
290
291

292
293
294

295
296

297
298
299

300
301

302
303
304

305
306
307

308
309
310

311
312
313

314
315
316

317
318
319
320
321

322
323
324

325
326
327

328
329

Portability Introduction

CS

CX

FD

FR

FSC

1P6

MAN

MF

ML

502

margin legend.

Clock Selection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the CS
margin legend.

Extension to the ISO C standard
The functionality described is an extension to the ISO C standard. Application writers may
make use of an extension as it is supported on all IEEE Std. 1003.1-200x-conforming systems.

FORTRAN Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FD margin
legend.

FORTRAN Runtime Utilities
The functionality described is optional.

Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the FR margin
legend.

File Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the FSC
margin legend.

IPV6
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the IP6
margin legend.

Mandatory in the Next Draft

This is an interim draft code used to aid reviewers during the development of
IEEE Std. 1003.1-200x. It denotes a feature that was previously an option or extension that is
being brought into the mandatory base functionality. This margin code will be removed from the
final draft.

Memory Mapped Files
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MF
margin legend.

Process Memory Locking
The functionality described is optional. The functionality described is also an extension to the

Technical Standard (2000) (Draft July 31, 2000)

330

331
332
333

334
335
336

337
338
339

340
341
342

343
344
345

346
347
348

349
350
351

352
353
354

355
356
357

358
359
360
361

362
363
364
365

366
367
368

369
370
371

372

Introduction Portability

MLR

MON

MPR

MSG

oB

OF

OH

OH

ISO C standard.

Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the ML
margin legend.

Range Memory Locking
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MLR
margin legend.

Monotonic Clock
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MON
margin legend.

Memory Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MPR
margin legend.

Message Passing
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the MSG
margin legend.

Obsolescent

The functionality described may be withdrawn in a future version of this volume of
IEEE Std. 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
Applications shall not use obsolescent features.

Output Format Incompletely Specified

The functionality described is an XSI extension. The format of the output produced by the utility
is not fully specified. It is therefore not possible to post-process this output in a consistent
fashion. Typical problems include unknown length of strings and unspecified field delimiters.

Optional Header
In the SYNOPSIS section of some interfaces in the System Interfaces volume of
IEEE Std. 1003.1-200x an included header is marked as in the following example:

#include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

This indicates that the marked header is not required on XSI-conformant systems.

System Interfaces, Issue 6 503

373
374
375

376
377
378

379
380
381

382
383
384

385
386
387

388
389
390

391
392

393
394
395

396
397
398

399
400
401

402
403
404

405
406
407

408
409
410

411
412
413

414
415
416

Portability Introduction

P1O

PS

RTS

SD

SEM

SHM

SIO

SPI

504

Prioritized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PIO
margin legend.

Process Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the PS
margin legend.

Realtime Signals Extension
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the RTS
margin legend.

Software Development Utilities
The functionality described is optional.

Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the SD margin
legend.

Semaphores
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SEM
margin legend.

Shared Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SHM
margin legend.

Synchronized Input and Output
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SIO
margin legend.

Spin Locks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Technical Standard (2000) (Draft July 31, 2000)

417
418
419

420
421
422

423
424
425

426
427
428

429
430
431

432
433
434

435
436
437

438
439
440

441
442
443

444
445
446

447
448
449

450
451
452

453
454
455

456
457
458

459
460
461

Introduction Portability

SPN

SS

TCT

THR

T™MO

TMR

TPI

Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPI
margin legend.

Spawn
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SPN
margin legend.

Process Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the SS
margin legend.

Thread CPU-Time Clocks
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TCT
margin legend.

Threads
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the THR
margin legend.

Timeouts
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TMO
margin legend.

Timers
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TMR
margin legend.

Threads Priority Inheritance
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPI
margin legend.

System Interfaces, Issue 6 505

462
463
464

465
466
467

468
469
470

471
472
473

474
475
476

477
478
479

480
481
482

483
484
485

486
487
488

489
490
491

492
493
494

495
496
497

498
499
500

501
502
503

504
505
506

Portability Introduction

TPP

TPS

TRC

TEF

TRL

TRI

TSA

TSF

506

Thread Priority Protection
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPP
margin legend.

Thread Execution Scheduling
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TPS
margin legend.

Trace
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRC
margin legend.

Trace Event Filter
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TEF
margin legend.

Trace Log
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRL
margin legend.

Trace Inherit
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TRI
margin legend.

Thread Stack Address Attribute
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSA
margin legend.

Thread-Safe Functions
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Technical Standard (2000) (Draft July 31, 2000)

507
508
509

510
511
512

513
514
515

516
517
518

519
520
521

522
523
524

525
526
527

528
529
530

531
532
533

534
535
536
537
538

539
540

541
542
543

544
545
546
547

548
549
550

Introduction Portability

TSH

TSP

TSS

TYM

UN

UP

XSl

Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSF
margin legend.

Thread Process-Shared Synchronization
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSH
margin legend.

Thread Sporadic Server
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSP
margin legend.

Thread Stack Address Size
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TSS
margin legend.

Typed Memory Objects
The functionality described is optional. The functionality described is also an extension to the
ISO C standard.

Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the TYM
margin legend.

Possibly Unsupportable Feature

The functionality described is an XSI extension. It need not be possible to implement the
required functionality (as defined) on all conformant systems and the functionality need not be
present. This may, for example, be the case where the conformant system is hosted and the
underlying system provides the service in an alternative way.

User Portability Utilities
The functionality described is optional.

Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
Where additional semantics apply to a utility, the material is identified by use of the UP margin
legend.

Extension

The functionality described is an XSI extension. Functionality marked XSl is also an extension to
the ISO C standard. Application writers may confidently make use of an extension on all
systems supporting the X/Open System Interfaces Extension.

If an entire SYNOPSIS section is shaded and marked with one XSlI, all the functionality described
in that reference page is an extension. See the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 3.441, XSI.

System Interfaces, Issue 6 507

551
552
553

554
555
556

Portability

XSR

508

XSI STREAMS

Introduction

The functionality described is optional. The functionality described is also an extension to the

ISO C standard.

Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
Where additional semantics apply to a function, the material is identified by use of the XSR

margin legend.

Technical Standard (2000) (Draft July 31, 2000)

557

558
559

560
561

562
563
564
565

566

567
568

569
570

571
572
573

574
575
576
577

578
579

580
581

582
583

584
585
586

587
588

589
590
591

592
593

594
595
596

597
598

Introduction Format of Entries

1.10

Format of Entries

The entries in Chapter 3 are based on a common format as follows. The only sections relating to
conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarizes the use of the entry being described. If it is necessary to
include a header to use this function, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the function or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion” means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error is indicated.

For functions where no errors are defined, “successful completion” means that if the
implementation checks for errors, no error has been detected. If the implementation can
detect errors, and an error is detected, the indicated return value is returned and errno
may be set.

ERRORS
This section gives the symbolic names of the values returned in errno if an error occurs.

“No errors are defined” means that values and usage of errno, if any, depend on the
implementation.

EXAMPLES
This section is non-normative.

This section gives examples of usage, where appropriate. In the event of conflict
between an example and a normative part of this volume of IEEE Std. 1003.1-200x, the
normative material is to be taken as correct.

APPLICATION USAGE
This section is non-normative.

This section gives warnings and advice to application writers about the entry. In the
event of conflict between warnings and advice and a normative part of this volume of
IEEE Std. 1003.1-200x, the normative material is to be taken as correct.

RATIONALE
This section is non-normative.

This section contains historical information concerning the contents of this volume of
IEEE Std. 1003.1-200x and why features were included or discarded by the standard
developers.

FUTURE DIRECTIONS
This section is non-normative.

System Interfaces, Issue 6 509

599
600

601
602

603

604
605

606
607

Format of Entries

510

Introduction

This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section is non-normative.

This section gives references to related information.

CHANGE HISTORY
This section is non-normative.

This section shows the derivation of the entry and any significant changes that have

been made to it.

Technical Standard (2000) (Draft July 31, 2000)

608

609
610

611

612
613

614
615
616

617
618
619
620
621
622
623
624

625
626
627
628
629

630
631
632

633
634

Chapter 2

General Information

This chapter covers information that is relevant to all the functions specified in Chapter 3 and
the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers.

2.1 Use and Implementation of Functions

Each of the following statements shall apply unless explicitly stated otherwise in the detailed
descriptions that follow:

1. If an argument to a function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program, or a null pointer), the
behavior is undefined.

2. Any function declared in a header may also be implemented as a macro defined in the
header, so a library function should not be declared explicitly if its header is included. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a library function even if it is also defined as a macro. The
use of the C-language #undef construct to remove any such macro definition shall also
ensure that an actual function is referred to.

3. Any invocation of a library function that is implemented as a macro shall expand to code
that evaluates each of its arguments exactly once, fully protected by parentheses where
necessary, so it is generally safe to use arbitrary expressions as arguments. Likewise, those
function-like macros described in the following sections may be invoked in an expression
anywhere a function with a compatible return type could be called.

4. Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use
it without including its associated header.

5. If a function that accepts a variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.

System Interfaces, Issue 6 511

635

636

637
638
639
640
641
642

643
644
645

646
647
648
649
650

651

652

653
654

655
656

657
658

659
660
661

662
663
664
665

666
667
668
669

670

671
672
673
674

675
676
677

The Compilation Environment General Information

2.2

221

2211

2212

XSl

512

The Compilation Environment

POSIX.1 Symbols

Certain symbols in this volume of IEEE Std. 1003.1-200x are defined in headers (see the Base
Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers). Some of those headers could
also define other symbols than those defined by this volume of IEEE Std. 1003.1-200x, potentially
conflicting with symbols used by the application. Also, this volume of IEEE Std. 1003.1-200x
defines symbols that are not permitted by other standards to appear in those headers without
some control on the visibility of those symbols.

Symbols called feature test macros are used to control the visibility of symbols that might be
included in a header. Implementations, future versions of this volume of IEEE Std. 1003.1-200x,
and other standards may define additional feature test macros.

In the compilation of an application that #defines a feature test macro specified by
IEEE Std. 1003.1-200x, no header defined by IEEE Std. 1003.1-200x shall be included prior to the
definition of the feature test macro. This restriction also applies to any implementation-
provided header in which these feature test macros are used. If the definition of the macro does
not precede the #include, the result is undefined.

Feature test macros shall begin with the underscore character ('’).

The POSIX_C_SOURCE Feature Test Macro

A POSIX-conforming application should ensure that the feature test macro POSIX_C_SOURCE
is defined before inclusion of any header.

When an application includes a header described by this volume of IEEE Std. 1003.1-200x, and
when this feature test macro is defined to have at least the value 200xMML.:;

1. All symbols required by this volume of IEEE Std. 1003.1-200x to appear when the header is
included shall be made visible.

2. Symbols that are explicitly permitted, but not required, by this volume of
IEEE Std. 1003.1-200x to appear in that header (including those in reserved name spaces)
may be made visible.

3. Additional symbols not required or explicitly permitted by this volume of
IEEE Std. 1003.1-200x to be in that header shall not be made visible, except when enabled
by another feature test macro or by having defined POSIX_C _SOURCE with a value
larger than 200xxxL.

Identifiers in this volume of IEEE Std. 1003.1-200x may only be undefined using the #undef
directive as described in Section 2.1 (on page 511) or Section 2.2.2 (on page 513). These #undef
directives shall follow all #include directives of any header in this volume of
IEEE Std. 1003.1-200x.

The XOPEN_SOURCE Feature Test Macro

An XSl-conforming application should ensure that the feature test macro XOPEN_SOURCE is
defined with the value 600 before inclusion of any header. This is needed to enable the
functionality described in Section 2.2.1.1 and in addition to enable the X/Open System Interfaces
Extension.

Since this volume of IEEE Std. 1003.1-200x is aligned with the ISO C standard, and since all
functionality enabled by POSIX C SOURCE set greater than zero and less than or equal to
200xxxL should be enabled by XOPEN_SOURCE set equal to 600, there should be no need to

Technical Standard (2000) (Draft July 31, 2000)

678
679
680
681
682

683

684
685
686
687
688
689
690
691

692
693
694
695

696
697

698
699

700
701

702
703
704
705
706

General Information The Compilation Environment

2.2.2

XSl

define either POSIX SOURCE or POSIX C _SOURCE if XOPEN_SOURCE is so defined.
Therefore, if XOPEN_SOURCE is set equal to 600 and POSIX SOURCE is defined, or
_POSIX_C SOURCE is set greater than zero and less than or equal to 200xxxL, the behavior is
the same as if only XOPEN_SOURCE is defined and set equal to 600. However, should
_POSIX_C_SOURCE be set to a value greater than 200xxxL, the behavior is undefined.

The Name Space

All identifiers in this volume of IEEE Std. 1003.1-200x%, except environ, are defined in at least one
of the headers, as shown in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13,
Headers. When XOPEN_SOURCE or POSIX_C_SOURCE is defined, each header defines or
declares some identifiers, potentially conflicting with identifiers used by the application. The set
of identifiers visible to the application consists of precisely those identifiers from the header
pages of the included headers, as well as additional identifiers reserved for the implementation.
In addition, some headers may make visible identifiers from other headers as indicated on the
relevant header pages.

Implementations may also add members to a structure or union without controlling the
visibility of those members with a feature test macro, as long as a user-defined macro with the
same name cannot interfere with the correct interpretation of the program. The identifiers
reserved for use by the implementation are described below:

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro name described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

The prefixes posix_, POSIX , and POSIX are reserved for use by IEEE Std. 1003.1-200x and
other POSIX standards. Implementations may add symbols to the headers shown in the
following table, provided the identifiers for those symbols begin with the corresponding
reserved prefixes in the following table, and do not use the reserved prefixes posix_, POSIX_, or
POSIX_.

System Interfaces, Issue 6 513

707
708
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

The Compilation Environment

AIO

MSG
XSl

XSl

PS
SEM

XSl
RTS
XSl

XSl
MF
XSl
XSl
XSl
XSl

XSl

XSl

XSl

514

General Information

Complete
Header Prefix Suffix Name

<aio.h> aio_, lio_, AIO_, LIO_
<arpa/inet.h> in_,inet_
<ctype.h> to[a-z], is[a-z]
<dirent.h> d_
<errno.h> E[0-9], E[A-Z]
<fcntl.h> I
<glob.h> gl_
<grp.h> ar_
<inttypes.h> int[0-9a-z_] _t, uint[0-9a-z_] t
<limits.h> _MAX, _MIN
<locale.h> LC [A-Z]
<mqueue.h> mq_, MQ_
<ndbm.h> dbm_
<netdb.h> h.,n,p,s_
<net/if.h> if_
<netinet/in.h> in_,ip_,s_,sin_
<poll.h> pd_, ph_, ps_
<pthread.h> pthread , PTHREAD _
<pwd.h> pw_
<regex.h> re_,rm_
<sched.h> sched_, SCHED_
<semaphore.h> sem_, SEM
<signal.h> sa_, uc_, SIG[A-Z], SIG_[A-Z]

SS_, SV_

si_, SI_, sigev_, SIGEV _, sival_
<stropts.h> bi_,ic_,l sl ,str_
<stdint.h> int[0-9a-z_] _t, uint[0-9a-z_] t
<stdlib.h> str[a-z]
<string.h> str[a-z], mem[a-z], wcs[a-z]
<sysl/ipc.h> ipc_ key, pad, seq
<sys/mman.h> shm_, MAP_, MCL_, MS_, PROT _
<sys/msg.h> msg msg
<sys/resource.h> rlim_, ru_
<sys/sem.h> sem sem
<sys/shm.h> shm
<sys/socket.h> _ss,sa_, if_,ifc_, ifru_,infu_, ifra_,

msg_,cmsg_, |
<sys/stat.h> st
<sys/statvfs.h> f
<sys/time.h> fds_,it ,tv_,FD_
<sys/times.h> tms_
<sys/uio.h> iov_
<sys/un.h> sun_
<sys/utsname.h> uts_
<sys/wait.h> si_, W[A-Z],P_
<termios.h> c

Technical Standard (2000) (Draft July 31, 2000)

756
757
758

759
760
761
762
763
764
765
766
767
768
769
770

771
772
773
774

775
776
7t
778

General Information The Compilation Environment

Complete
Header Prefix Suffix Name
<time.h> tm_
TMR clock_, timer_, it ,tv_,
TMR CLOCK_, TIMER_
Xsl <ucontext.h> uc _, ss_
Xsl <ulimit.h> UL
<utime.h> utim_
Xsl <utmpx.h> ut_ _LVL, TIME,
_PROCESS
<wchar.h> wcs[a-z]
<wctype.h> is[a-z], to[a-Z]
<wordexp.h> we_
ANY header POSIX_, POSIX_, posix_ t
Note: The notation [A-Z] indicates any uppercase letter in the portable character set. The

notation [a-z] indicates any lowercase letter in the portable character set. Commas
and spaces in the lists of prefixes and complete names in the above table are not part
of any prefix or complete name.

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
corresponding macro.

System Interfaces, Issue 6 515

779
780

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

815
816
817

818

819
820
821
822
823
824

The Compilation Environment

XSl

XSl

XSl

XSl

XSl
XSl

XSl

XSl
XSl
XSl
XSl
XSl
XSl
XSl
XSl
XSl

XSl
XSl

XSl
XSl

XSl

516

General Information

Header Prefix
<dflcn.h> RTLD
<fcntl.h> F,O0,S_
<fmtmsg.h> MM _
<fnmatch.h> FNM_
<ftw.h> FTW
<glob.h> GLOB_
<inttypes.h> PRI[a-z], SCN[a-z]
<ndbm.h> DBM_
<net/if.h> IF_
<netinet/in.h> IMPLINK_, IN_, INADDR_, IP_, IPPORT_, IPPROTO_, SOCK_
<netinet/tcp.h> TCP_
<nl_types.h> NL_
<poll.h> POLL
<regex.h> REG
<signal.h> SA , SIG_[0-9a-z],
BUS ,CLD_,FPE_, ILL_,POLL_,SEGV_,SI_,SS ,SV_, TRAP_
stdint.h INT[0-9A-Z_]_MIN, INT[0-9A-Z_]_MAX, INT[0-9A-Z_]_C

<stropts.h>
<syslog.h>
<sysl/ipc.h>
<sys/mman.h>
<sys/msg.h>

<sys/resource.h>

<sys/sem.h>
<sys/shm.h>
<sys/socket.h>
<sys/stat.h>
<sys/statvfs.h>
<sys/time.h>
<sys/uio.h>
<sys/wait.h>
<termios.h>
<wordexp.h>

UINTI[0-9A-Z_]_MIN, UINT[0-9A-Z_]_MAX, UINT[0-9A-Z_]_C
FLUSH[A-Z], |_, M_, MUXID_R[A-Z],S_, SND[A-Z], STR
LOG_

IPC_

PROT_, MAP_, MS_

MSG[A-Z]

PRIO_, RLIM_, RLIMIT_, RUSAGE _

SEM_

SHM[A-Z], SHM_[A-Z]

AF_,CMSG_, MSG_, PF_,SCM_, SHUT _, SO

S

ST_

FD_, ITIMER_

IOV_

BUS_ ,CLD_,FPE_, ILL_,POLL_, SEGV_,SI_, TRAP_

V, |, O, TC, B[0-9] (See below.)

WRDE_

Note:

The notation [0-9] indicates any digit. The notation [A-Z] indicates any uppercase

letter in the portable character set. The notation [0-9a-z_] indicates any digit, any
lowercase letter in the portable character set, or underscore.

The following reserved names are used as exact matches for <termios.h>:

CBAUD EXTB VDSUSP
DEFECHO FLUSHO VLNEXT
ECHOCTL LOBLK VREPRINT
ECHOKE PENDIN VSTATUS
ECHOPRT SWTCH VWERASE
EXTA VDISCARD

Technical Standard (2000) (Draft July 31, 2000)

825

826
827

828
829

830
831
832

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

General Information

The following identifiers are reserved regardless of the inclusion of headers:

The Compilation Environment

1. All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers with

file scope in both the ordinary identifier and tag name spaces.

3. All identifiers in the table below are reserved for use as identifiers with external linkage.
Some of these identifiers do not appear in this volume of IEEE Std. 1003.1-200x, but are

reserved for future use by the ISO C standard.

_Exit
abort
abs
acos
acosf
acosh
acoshf
acoshl
acosl
acosl
asctime
asin
asinf
asinh
asinhf
asinhl
asinl
asinl
atan
atan2
atan2f
atan2l|
atanf
atanf
atanh
atanh
atanhf
atanhl
atanl
atanl
atexit
atof
atoi
atol
atoll
bsearch
cabs
cabsf
cabsl
cacos

System Interfaces, Issue 6

clprtf
chrtl
cdos
cqosf
cdosh
cqoshf
cqoshl
cdosl
cqil
cqilf
cqilf
cqill
cqill
c§xp
c§xpf
c§xpl
cimag
cimagf
cimagl
clarerr
clock
clg
clogf
clgl
chnj
cdnjf
cénjl
chpysign
cPpysignf
cdpysignl
cds
csf
cdsh
cdshf
cshl
césl
cpow
cpowf
cpowl
cproj

ekit
efp
ekp2
ekp2f
ekp2l
ekpf
ekpl
ekpmil
ekpmif
ekpmil
fdbs
fdbsf
fdbsl
fdlose
fdim
fdimf
fgiml

fdclearexcept

fdgetenv

fdgetexceptflag

fdgetround
fgholdexcept
fdof

fdraiseexcept

fdrror
fdsetenv

fdsetexceptflag

fdsetround
fdtestexcept
fqupdateenv
ffjush

fdetc
fdetpos
fdets
fdetwc
fdetws
flpor

flporf

flporl

fiha

fdetpos
ftgll
fijvide
fprintf
fijrite
fijscanf
gptc
gktchar
gktenv
gpts
ghtwece
gktwchar
gntime
hypotf
hjpotl
ilpgb
ilpgbf
ilpgbl
irhaxabs
irhaxdiv
iJa-z]*
isplank
igwblank
Igbs
Idexp
Idexpf
Idexpl
Idiv

Idiv
Idammaf
Idammal
lIpbs
Ilfint
IIfintf
llfintl
llfound
llfoundf
llfoundl
Idcaleconv
Iqcaltime

njbrtowc
njbsinit
njbsrtowcs
njbstowcs
njbtowc
mem[a-z]*
njktime
njodf
njodff
njodfl

nhn

nhnf

nhnl
nparbyint
nparbyintf
nparbyintl
ngxtafterf
ngxtafterl
nxttoward
npxttowardf
ngxttowardl
pError
ppw

ppwf

ppwli
pkintf

phtc
plitchar
phts
phtwc
phitwchar
gport

rdise

rgnd
rdalloc
rgmainderf
rqmainderl
rgmove
rfmquo
rgmquof

siphl

sihnl
sprintf
sqrt
sqrtf
sqrtl
sfjand
sqcanf
strla-z]*
sfrtof
sfrtoimax
sfrtold
sfrtoll
sfrtoull
sfrtoumax
s\yvprintf
s\yvscanf
system
tgdn

tgdnf

tgdnh
tgnhf
tgnhl
tgnl
tdamma
tdammaf
tdammal
tijne
trhpfile
thpnam
td[a-z]*
tunc
tuncf
tuncl
uhgetc
uhgetwc
vh_end
viprintf
vfscanf
viwprintf

517

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

898
899
900

The Compilation Environment

518

cacosf
cacosh
cacoshf
cacoshl
cacosl
calloc
carg
cargf
cargl
casin
casinf
casinh
casinhf
casinhl
casinl
catan
catanf
catanh
catanh
catanhf
catanhf
catanhl
catanhl
catanl
cbrt

Note:

cprojf
cprojl
cleal
clealf
cfeall
cfin
c§inf
cfinh
c§inhf
c§inhl
c§inl
c{qrt
c{qrtf
c{qrtl
cin
canf
cfanl
cfime
d|fftime
dlv
effcf
effcl
efff
effl
efrno

frhaf
frhal
fihax
frhaxf
frhaxl
frhin
frhinf
frhinl
frhod
frhodf
frhodl
fdpen
fjrintf
fjutc
fjuts
fijutwc
fjutws
fripad
frie
fieopen
fiexp
fiexpf
fiexpl
fdcanf
fdeek

Idg
Idg10
Idg10f
Idg10l
Idglp
Idglpf
Idgipl
Idg2
Idg2f
Idg2l
Idgb
Idgbf
Idgbl
Idof
Iqgl
Idngjmp
Ifnt
Ifntf
Ifntl
Ipund
Ipundf
Ipundl
nmjalloc
njblen
njbrlen

General Information

rgmaquol vfwscanf
rgname vprintf
rqwind vicanf

ript viprintf
riptf vhscanf
riptl vhwprintf
rqund vpwscanf
rqundf vivprintf
rqundl vivscanf
sqalbin wcrtomb
sqalbinf wcs[a-z]*
sqalbinl wcstof
sqalbn wcstoimax
sqalbnf wcstold
sqalbnl wcstoll
sqanf wcstoull
sqtbuf wcstoumax
s¢timp wctob
sqtlocale wctomb
sqtvbuf wctrans
sipnal wctype

sh wcwidth
sihf wmem|[a-z]*
sihh wprintf
sihhf wscanf

The notation [a-Zz] indicates any lowercase letter in the portable character set.
indicates any combination of digits, letters in the portable

The notation ™

character set, and underscore.

Technical Standard (2000) (Draft July 31, 2000)

General Information The Compilation Environment

901 Notes to Reviewers

902 This section with side shading will not appear in the final copy. - Ed.

903 The following table should be made complete by including everything not in the previous
904 table.

905 4. The following identifiers are also reserved for use as identifiers with external linkage:

906 Table 2-1 XSI Identifiers

907 a64l fatfach getpriority minod regex sigfelse

908 basename fchpir getpbwent migstemp renpainder sigpet

909 bcmp fchjnod getflimit migemp rerhque sigptack

910 bcopy fchpwn getfusage mrhap rinpex srahdom

911 brk fevi getpid myrotect sbrk stajvfs

912 bsd_signal fdekach getpubopt mrhnd48 scajb strdasecmp
913 bzero ffs|] getfimeofday msnc selgct strqlup

914 cbrt fmimsg getjtxent muynmap setfontext strijcasecmp
915 closelog fstdtvfs getptxid ne)jtafter setprent swhpcontext
916 dbm_clearerr ftirhe getjtxline nftjv setftimer syrhlink

917 dbm_close ftok getjvd nicp _sekjmp syrc

918 dbm_delete ftryncate grgntpt op¢nlog setlogmask syqog

919 dbm_error gc\t index poll setpgrp tcgptsid

920 dbm_fetch getfontext inifstate ptshame setpriority trupcate

921 dbm_firstkey getfate inshue pujmsg setpwent ttyglot

922 dbm_nextkey getftablesize ioc}l pufpmsg setfeuid ualprm

923 dbm_open getprent isajtream pufutxline setflimit unjockpt

924 dbm_store getprgid killpg rarjdom settate uslpep

925 dirname gethostid 164h readlink setpitxent utifnes

926 ecvt getjtimer Ichpwn reapv sigpltstack valjoc

927 endgrent getinsg lockf reajpath sighold vidrk

928 endpwent getpagesize _lohgjmp re_fomp sig|gnore wa|t3

929 endservent getpgid Istdt re_Epxec sig|nterrupt wajtid

930 endutxent getbmsg makecontext regemp sigbause wrtev

931 Table 2-2 Sockets ldentifiers

932 accept if_frepnameindex recvffom shutdown |
933 bind if_indextoname recvrhsg sockedt |
934 connect if_najneindex send | socketpair |
935 getpeername if_najnetoindex sendinsg |

936 getsockname listen] sendtfp |

937 getsockopt recv | setsofkopt |

System Interfaces, Issue 6 519

938

939
940
941
942
943
944
945
946
947

948
949

950

951
952
953
954

955
956
957

958
959
960
961
962
963

The Compilation Environment General Information

520

Table 2-3 IP Address Resolution Identifiers

endhostent getipbnodebyaddr getgervbyname inet] netof |
endnetent getipbnodebyname getgervbyport inet] network |
endprotoent getjameinfo getgervent inet] ntoa |
endservent getrjetbyaddr h_efrno ntolpl |
getaddrinfo getrjetbyname htoipl ntolps |
gethostbyaddr getrjetent htoips setHostent |
gethostbyname getjrotobyname inet] addr setrjetent |
gethostent getgrotobynumber inet] Inaof setdrotoent |
gethostname getgrotoent inet] makeaddr setsprvent |

All the identifiers defined in this volume of IEEE Std. 1003.1-200x that have external linkage are
always reserved for use as identifiers with external linkage.

No other identifiers are reserved.

Applications shall not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names shall not be defined by
an application if any associated header is included.

Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG,
headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, the application shall ensure that a header is included outside of any external declaration
or definition, and it shall be first included before the first reference to any type or macro it
defines, or to any function or object it declares. However, if an identifier is declared or defined in
more than one header, the second and subsequent associated headers may be included after the
initial reference to the identifier. Prior to the inclusion of a header, the application shall not
define any macros with names lexically identical to symbols defined by that header.

Technical Standard (2000) (Draft July 31, 2000)

964

965
966

967
968
969

970
971
972
973

974
975

976
977

978
979
980
981
982
983
984

985
986
987
988

989
990
991

992
993
994
995
996
997
998
999

1000
1001
1002
1003

1004

1005

1006

1007

General Information Error Numbers

2.3

Error Numbers

Most functions can provide an error number. The means by which each function provides its
error numbers is specified in its description.

Some functions provide the error number in a variable accessed through the symbol errno. The
symbol errno, defined by including the <errno.h> header, is a macro that expands to a
modifiable Ivalue of type int.

The value of errno should only be examined when it is indicated to be valid by a function’s return
value. No function in this volume of IEEE Std. 1003.1-200x shall set errno to zero. For each thread
of a process, the value of errno shall not be affected by function calls or assignments to errno by
other threads.

Some functions return an error number directly as the function value. These functions return a
value of zero to indicate success.

If more than one error occurs in processing a function call, any one of the possible errors may be
returned, as the order of detection is undefined.

Implementations may support additional errors not included in this list, may generate errors
included in this list under circumstances other than those described here, or may contain
extensions or limitations that shall prevent some errors from occurring. The ERRORS section on
each page specifies whether an error shall be returned, or whether it may be returned.
Implementations shall not generate a different error number from the ones described here for
error conditions described in this volume of IEEE Std. 1003.1-200x, but may generate additional
errors unless explicitly disallowed for a particular function.

Each implementation shall document, in the conformance document, situations in which each of
the optional conditions defined in IEEE Std.1003.1-200x are detected. The conformance
document may also contain statements that one or more of the optional error conditions are not
detected.

For functions under the Threads option for which [EINTR] is not listed as a possible error
condition in this volume of IEEE Std. 1003.1-200x, an implementation shall not return an error
code of [EINTR].

The following symbolic names identify the possible error numbers, in the context of the
functions specifically defined in this volume of IEEE Std. 1003.1-200x; these general descriptions
are more precisely defined in the ERRORS sections of the functions that return them. Only these
symbolic names should be used in programs, since the actual value of the error number is
unspecified. All values listed in this section shall be unique integer constant expressions with
type int suitable for use in #if preprocessing directives, except as noted below. The values for all
these names shall be found in the <errno.h> header defined in the Base Definitions volume of
IEEE Std. 1003.1-200x. The actual values are unspecified by this volume of IEEE Std. 1003.1-200x.

[E2BIG]
Argument list too long. The sum of the number of bytes used by the new process image’s
argument list and environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

or:
Lack of space in an output buffer.
or:

Argument is greater than the system-imposed maximum.

System Interfaces, Issue 6 521

1008
1009
1010

1011
1012

1013
1014

1015
1016
1017
1018

1019
1020
1021

1022
1023
1024

1025
1026
1027

1028
1029
1030
1031

1032

1033

1034
1035

1036

1037

1038
1039
1040
1041

1042
1043
1044

1045
1046
1047

1048
1049

1050
1051

Error Numbers General Information

XSR

522

[EACCES]
Permission denied. An attempt was made to access a file in a way forbidden by its file
access permissions.

[EADDRINUSE]
Address in use. The specified address is in use.

[EADDRNOTAVAIL]
Address not available. The specified address is not available from the local system.

[EAFNOSUPPORT]
Address family not supported. The implementation does not support the specified address
family, or the specified address is not a valid address for the address family of the specified
socket.

[EAGAIN]
Resource temporarily unavailable. This is a temporary condition and later calls to the same
routine may complete normally.

[EALREADY]
Connection already in progress. A connection request is already in progress for the specified
socket.

[EBADF]
Bad file descriptor. A file descriptor argument is out of range, refers to no open file, or a
read (write) request is made to a file that is only open for writing (reading).

[EBADMSG]
Bad message. During a read(), getmsg(), or ioctl () |_RECVFD request to a STREAMS device,
a message arrived at the head of the STREAM that is inappropriate for the function
receiving the message.

read() Message waiting to be read on a STREAM is not a data message.

getmsg() A file descriptor was received instead of a control message.

ioctl () Control or data information was received instead of a file descriptor when
I_RECVFD was specified.

or:

Bad Message. The implementation has detected a corrupted message.

[EBUSY]
Resource busy. An attempt was made to make use of a system resource that is not currently
available, as it is being used by another process in a manner that would have conflicted with
the request being made by this process.

[ECANCELED]
Operation canceled. The associated asynchronous operation was canceled before
completion.

[ECHILD]
No child process. A wait() or waitpid() function was executed by a process that had no
existing or unwaited-for child process.

[ECONNABORTED]
Connection aborted. The connection has been aborted.

[ECONNREFUSED]
Connection refused. An attempt to connect to a socket was refused because there was no

Technical Standard (2000) (Draft July 31, 2000)

General Information Error Numbers

1052 process listening or because the queue of connection requests was full and the underlying
1053 protocol does not support retransmissions.

1054 [ECONNRESET]

1055 Connection reset. The connection was forcibly closed by the peer.

1056 [EDEADLK]

1057 Resource deadlock would occur. An attempt was made to lock a system resource that
1058 would have resulted in a deadlock situation.

1059 [EDESTADDRREQ)]

1060 Destination address required. No bind address was established.

1061 [EDOM]

1062 Domain error. An input argument is outside the defined domain of the mathematical
1063 function (defined in the ISO C standard).

1064 [EDQUOT]

1065 Reserved.

1066 [EEXIST]

1067 File exists. An existing file was mentioned in an inappropriate context; for example, as a
1068 new link name in the link () function.

1069 [EFAULT]

1070 Bad address. The system detected an invalid address in attempting to use an argument of a
1071 call. The reliable detection of this error cannot be guaranteed, and when not detected may
1072 result in the generation of a signal, indicating an address violation, which is sent to the
1073 process.

1074 [EFBIG]

1075 File too large. The size of a file would exceed the maximum file size of an implementation or
1076 offset maximum established in the corresponding file description.

1077 [EHOSTUNREACH]

1078 Host is unreachable. The destination host cannot be reached (probably because the host is
1079 down or a remote router cannot reach it).

1080 [EIDRM]

1081 Identifier removed. Returned during XSI interprocess communication if an identifier has
1082 been removed from the system.

1083 [EILSEQ]

1084 Illegal byte sequence. A wide-character code has been detected that does not correspond to
1085 a valid character, or a byte sequence does not form a valid wide-character code (defined in
1086 the ISO C standard).

1087 [EINPROGRESS]

1088 Operation in progress. This code is used to indicate that an asynchronous operation has not
1089 yet completed.

1090 or:

1091 O_NONBLOCK is set for the socket file descriptor and the connection cannot be
1092 immediately established.

1093 [EINTR]

1094 Interrupted function call. An asynchronous signal was caught by the process during the
1095 execution of an interruptible function. If the signal handler performs a normal return, the
1096 interrupted function call may return this condition (see the Base Definitions volume of

System Interfaces, Issue 6 523

1097

1098
1099
1100

1101
1102
1103
1104

1105
1106

1107
1108

1109
1110
1111
1112

1113
1114
1115

1116
1117
1118

1119
1120
1121

1122

1123

1124
1125

1126
1127
1128
1129
1130

1131
1132

1133
1134

1135
1136

1137
1138
1139
1140

Error Numbers General Information

524

IEEE Std. 1003.1-200x, <signal.h>).

[EINVAL]
Invalid argument. Some invalid argument was supplied; for example, specifying an
undefined signal in a signal () function or a kill () function.

[EIO]
Input/output error. Some physical input or output error has occurred. This error may be
reported on a subsequent operation on the same file descriptor. Any other error-causing
operation on the same file descriptor may cause the [EIO] error indication to be lost.

[EISCONN]
Socket is connected. The specified socket is already connected.

[EISDIR]
Is a directory. An attempt was made to open a directory with write mode specified.

[ELOOP]
Symbolic link loop. A loop exists in symbolic links encountered during path name
resolution. This error may also be returned if more than {SYMLOOP_MAX} symbolic links
are encountered during path name resolution.

[EMFILE]
Too many open files. An attempt was made to open more than the maximum number of
{OPEN_MAXj} file descriptors allowed in this process.

[EMLINK]
Too many links. An attempt was made to have the link count of a single file exceed
{LINK_MAX}.

[EMSGSIZE]
Message too large. A message sent on a transport provider was larger than an internal
message buffer or some other network limit.

or:
Inappropriate message buffer length.

[EMULTIHOP]
Reserved.

[ENAMETOOLONG]
File name too long. The length of a path name exceeds {PATH_MAX}, or a path name
component is longer than {NAME_MAX}. This error may also occur when path name
substitution, as a result of encountering a symbolic link during path name resolution,
results in a path name string the size of which exceeds {PATH_MAX]}.

[ENETDOWN]
Network is down. The local network interface used to reach the destination is down.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
Network unreachable. No route to the network is present.

[ENFILE]
Too many files open in system. Too many files are currently open in the system. The system
has reached its predefined limit for simultaneously open files and temporarily cannot accept
requests to open another one.

Technical Standard (2000) (Draft July 31, 2000)

1141
1142
1143

1144
1145

1146
1147
1148

1149
1150
1151

1152
1153
1154
1155

1156
1157
1158

1159
1160

1161
1162
1163

1164
1165
1166

1167
1168
1169

1170
1171
1172

1173
1174
1175
1176

1177
1178
1179

1180
1181
1182

1183
1184

General Information Error Numbers

XSR

XSR

XSR

[ENOBUFS]
No buffer space available. Insufficient buffer resources were available in the system to
perform the socket operation.

[ENODATA]
No message available. No message is available on the STREAM head read queue.

[ENODEV]
No such device. An attempt was made to apply an inappropriate function to a device; for
example, trying to read a write-only device such as a printer.

[ENOENT]
No such file or directory. A component of a specified path name does not exist, or the path
name is an empty string.

[ENOEXEC]
Executable file format error. A request is made to execute a file that, although it has the
appropriate permissions, is not in the format required by the implementation for executable
files.

[ENOLCK]
No locks available. A system-imposed limit on the number of simultaneous file and record
locks has been reached and no more are currently available.

[ENOLINK]
Reserved.

[ENOMEM]
Not enough space. The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ENOMSG]
No message of the desired type. The message queue does not contain a message of the
required type during XSl interprocess communication.

[ENOPROTOOPT]
Protocol not available. The protocol option specified to setsockopt() is not supported by the
implementation.

[ENOSPC]
No space left on a device. During the write() function on a regular file or when extending a
directory, there is no free space left on the device.

[ENOSR]
No STREAM resources. Insufficient STREAMS memory resources are available to perform a
STREAMS-related function. This is a temporary condition; it may be recovered from if other
processes release resources.

[ENOSTR]
Not a STREAM. A STREAM function was attempted on a file descriptor that was not
associated with a STREAMS device.

[ENOSYS]
Function not implemented. An attempt was made to use a function that is not available in
this implementation.

[ENOTCONN]
Socket not connected. The socket is not connected.

System Interfaces, Issue 6 525

1185
1186
1187

1188
1189
1190

1191
1192

1193
1194
1195

1196
1197
1198

1199
1200
1201
1202

1203
1204
1205

1206
1207
1208
1209
1210
1211
1212

1213
1214
1215

1216
1217
1218

1219
1220
1221

1222
1223
1224

1225
1226

1227
1228
1229

Error Numbers General Information

526

[ENOTDIR]
Not a directory. A component of the specified path name exists, but it is not a directory,
when a directory was expected.

[ENOTEMPTY]
Directory not empty. A directory other than an empty directory was supplied when an
empty directory was expected.

[ENOTSOCK]
Not a socket. The file descriptor does not refer to a socket.

[ENOTSUP]
Not supported. The implementation does not support this feature of the Realtime Option
Group.

[ENOTTY]
Inappropriate 1/0 control operation. A control function has been attempted for a file or
special file for which the operation is inappropriate.

[ENXIO]
No such device or address. Input or output on a special file refers to a device that does not
exist, or makes a request beyond the capabilities of the device. It may also occur when, for
example, a tape drive is not on-line.

[EOPNOTSUPP]
Operation not supported on socket. The type of socket (address family or protocol) does not
support the requested operation.

[EOVERFLOW]
Value too large to be stored in data type. The user ID or group ID of an IPC or file system
object was too large to be stored into the appropriate member of the caller-provided
structure. This error shall only occur on implementations that support a larger range of user
ID or group ID values than the declared structure member can support. This usually occurs
because the IPC or file system object resides on a remote machine with a larger value of the
type uid_t, off_t, or gid_t than the local system.

[EPERM]
Operation not permitted. An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or other resource.

[EPIPE]
Broken pipe. A write was attempted on a socket, pipe, or FIFO for which there is no process
to read the data.

[EPROTQ]
Protocol error. Some protocol error occurred. This error is device-specific, but is generally
not related to a hardware failure.

[EPROTONOSUPPORT]
Protocol not supported. The protocol is not supported by the address family, or the protocol
is not supported by the implementation.

[EPROTOTYPE]
Socket type not supported. The socket type is not supported by the protocol.

[ERANGE]
Result too large or too small. The result of the function is too large (overflow) or too small
(underflow) to be represented in the available space (defined in the ISO C standard).

Technical Standard (2000) (Draft July 31, 2000)

1230
1231
1232

1233
1234

1235
1236
1237

1238
1239

1240
1241
1242
1243
1244

1245
1246
1247
1248
1249
1250

1251

1252
1253

1254
1255
1256
1257

1258
1259
1260
1261

1262
1263

1264
1265

1266

1267

General Information Error Numbers

XSR

231

[EROFS]
Read-only file system. An attempt was made to modify a file or directory on a file system
that is read-only.

[ESPIPE]
Invalid seek. An attempt was made to access the file offset associated with a pipe or FIFO.

[ESRCH]
No such process. No process can be found corresponding to that specified by the given
process ID.

[ESTALE]
Reserved.

[ETIME]
STREAM ioctl () timeout. The timer set for a STREAMS ioctl () call has expired. The cause of
this error is device-specific and could indicate either a hardware or software failure, or a
timeout value that is too short for the specific operation. The status of the ioctl () operation
is indeterminate.

[ETIMEDOUT]
Connection timed out. The connection to a remote machine has timed out. If the connection
timed out during execution of the function that reported this error (as opposed to timing
out prior to the function being called), it is unspecified whether the function has completed
some or all of the documented behavior associated with a successful completion of the
function.

or:

Operation timed out. The time limit associated with the operation was exceeded before the
operation completed.

[ETXTBSY]
Text file busy. An attempt was made to execute a pure-procedure program that is currently
open for writing, or an attempt has been made to open for writing a pure-procedure
program that is being executed.

[EWOULDBLOCK]
Operation would block. An operation on a socket marked as non-blocking has encountered
a situation such as no data available that otherwise would have caused the function to
suspend execution.

A conforming implementation may assign the same values for [EWOULDBLOCK] and
[EAGAIN].

[EXDEV]
Improper link. A link to a file on another file system was attempted.
Additional Error Numbers

Additional implementation-defined error numbers may be defined in <errno.h>.

System Interfaces, Issue 6 527

1268

1269

1270
1271
1272
1273
1274

1275
1276
1277
1278
1279
1280

1281
1282
1283
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

1300
1301
1302
1303
1304

1305
1306
1307
1308
1309
1310
1311
1312

1313
1314
1315

Signal Concepts General Information

2.4

241

RTS
RTS

RTS

528

Signal Concepts

Signal Generation and Delivery

A signal is said to be generated for (or sent to) a process or thread when the event that causes the
signal first occurs. Examples of such events include detection of hardware faults, timer
expiration, signals generated via the sigevent structure and terminal activity, as well as
invocations of kill () and sigqueue() functions. In some circumstances, the same event generates
signals for multiple processes.

At the time of generation, a determination is made whether the signal has been generated for the
process or for a specific thread within the process. Signals which are generated by some action
attributable to a particular thread, such as a hardware fault, are generated for the thread that
caused the signal to be generated. Signals that are generated in association with a process ID or
process group ID or an asynchronous event such as terminal activity are generated for the
process.

Each process has an action to be taken in response to each signal defined by the system (see
Section 2.4.3 (on page 530)). A signal is said to be delivered to a process when the appropriate
action for the process and signal is taken. A signal is said to be accepted by a process when the
signal is selected and returned by one of the sigwait () functions.

During the time between the generation of a signal and its delivery or acceptance, the signal is
said to be pending. Ordinarily, this interval cannot be detected by an application. However, a
signal can be blocked from delivery to a thread. If the action associated with a blocked signal is
anything other than to ignore the signal, and if that signal is generated for the thread, the signal
shall remain pending until it is unblocked, it is accepted when it is selected and returned by a
call to the sigwait() function, or the action associated with it is set to ignore the signal. Signals
generated for the process shall be delivered to exactly one of those threads within the process
which is in a call to a sigwait() function selecting that signal or has not blocked delivery of the
signal. If there are no threads in a call to a sigwait() function selecting that signal, and if all
threads within the process block delivery of the signal, the signal shall remain pending on the
process until a thread calls a sigwait() function selecting that signal, a thread unblocks delivery
of the signal, or the action associated with the signal is set to ignore the signal. If the action
associated with a blocked signal is to ignore the signal and if that signal is generated for the
process, it is unspecified whether the signal is discarded immediately upon generation or
remains pending.

Each thread has a signal mask that defines the set of signals currently blocked from delivery to it.
The signal mask for a thread is initialized from that of its parent or creating thread, or from the
corresponding thread in the parent process if the thread was created as the result of a call to
fork(). The sigaction (), sigprocmask (), and sigsuspend() functions control the manipulation of the
signal mask.

The determination of which action is taken in response to a signal is made at the time the signal
is delivered, allowing for any changes since the time of generation. This determination is
independent of the means by which the signal was originally generated. If a subsequent
occurrence of a pending signal is generated, it is implementation-defined as to whether the
signal is delivered or accepted more than once in circumstances other than those in which
queuing is required under the Realtime Signals Extension option. The order in which multiple,
simultaneously pending signals outside the range SIGRTMIN to SIGRTMAX are delivered to or
accepted by a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any
pending SIGCONT signals for that process shall be discarded. Conversely, when SIGCONT is
generated for a process, all pending stop signals for that process shall be discarded. When

Technical Standard (2000) (Draft July 31, 2000)

1316
1317
1318

1319
1320

1321

1322
1323
1324

1325
1326
1327
1328
1329

1330
1331

1332
1333
1334
1335
1336

1337
1338
1339

1340
1341

1342
1343
1344
1345
1346
1347
1348

1349

1350

1351
1352
1353

1354

General Information Signal Concepts

24.2

RTS

SIGCONT is generated for a process that is stopped, the process shall be continued, even if the
SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it shall remain
pending until it is either unblocked or a stop signal is generated for the process.

An implementation shall document any condition not specified by this volume of
IEEE Std. 1003.1-200x under which the implementation generates signals.

Realtime Signal Generation and Delivery

This section describes extensions to support realtime signal generation and delivery. This
functionality is dependent on support of the Realtime Signals Extension option (and the rest of
this section is not further shaded for this option).

Some signal-generating functions, such as high-resolution timer expiration, asynchronous 1/0
completion, interprocess message arrival, and the sigqueue() function, support the specification
of an application-defined value, either explicitly as a parameter to the function or in a sigevent
structure parameter. The sigevent structure is defined in <signal.h> and shall contain at least
the following members:

Member Type Member Name Description
int sigev_notify Notification type.
int sigev_signo Signal number.
union sigval sigev_value Signal value.
void(*)(unsigned sigval) sigev_notify_function Notification function.
(pthread_attr_t*) sigev_notify_attributes Notification attributes.

The sigev_notify member specifies the notification mechanism to use when an asynchronous
event occurs. This volume of IEEE Std. 1003.1-200x defines the following values for the
sigev_notify member:

SIGEV_NONE No asynchronous notification shall be delivered when the event of
interest occurs.

SIGEV_SIGNAL The signal specified in sigev_signo shall be generated for the process when
the event of interest occurs. If the implementation supports the Realtime
Signals Extension option and if the SA_SIGINFO flag is set for that signal
number, then the signal shall be queued to the process and the value
specified in sigev_value shall be the si_value component of the generated
signal. If SA_SIGINFO is not set for that signal number, it is unspecified
whether the signal is queued and what value, if any, is sent.

SIGEV_THREAD A notification function shall be called to perform notification.
An implementation may define additional notification mechanisms.

The sigev_signo member specifies the signal to be generated. The sigev_value member is the
application-defined value to be passed to the signal-catching function at the time of the signal
delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

The sigval union is defined in <signal.h> and contains at least the following members:

System Interfaces, Issue 6 529

1355
1356

1357
1358

1359
1360

1361
1362
1363
1364
1365
1366

1367
1368
1369
1370

1371
1372
1373

1374
1375

1376
1377
1378

1379
1380
1381
1382
1383
1384

1385

1386
1387
1388

1389

1390
1391
1392
1393

1394
1395
1396
1397
1398
1399
1400

Signal Concepts General Information

2.4.3

RTS

530

Member Type | Member Name Description
int sival_int Integer signal value.
void* sival_ptr Pointer signal value.

The sival_int member is used when the application-defined value is of type int; the sival_ptr
member is used when the application-defined value is a pointer.

When a signal is generated by the sigqueue() function or any signal-generating function that
supports the specification of an application-defined value, the signal shall be marked pending
and, if the SA_SIGINFO flag is set for that signal, the signal shall be queued to the process along
with the application-specified signal value. Multiple occurrences of signals so generated are
queued in FIFO order. It is unspecified whether signals so generated are queued when the
SA_SIGINFO flag is not set for that signal.

Signals generated by the kill () function or other events that cause signals to occur, such as
detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
implementation does not support queuing, have no effect on signals already queued for the
same signal number.

When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
behavior shall be as if the implementation delivers the pending unblocked signal with the lowest
signal number within that range. No other ordering of signal delivery is specified.

If, when a pending signal is delivered, there are additional signals queued to that signal number,
the signal remains pending. Otherwise, the pending indication is reset.

Multi-threaded programs can use an alternate event notification mechanism. When a
notification is processed, and the sigev_notify member of the sigevent structure has the value
SIGEV_THREAD, the function sigev_notify_function is called with parameter sigev_value.

The function shall be executed in an environment as if it were the start_routine for a newly
created thread with thread attributes specified by sigev_notify_attributes. If sigev_notify_attributes
is NULL, the behavior shall be as if the thread were created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED. Supplying an attributes structure with a detachstate attribute
of PTHREAD_CREATE_JOINABLE results in undefined behavior. The signal mask of this
thread is implementation-defined.

Signal Actions

There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN, or a
pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of
the main() routine (see the exec functions). The actions prescribed by these values are as follows:

SIG_DFL Signal-specific default action.

The default actions for the signals defined in this volume of IEEE Std. 1003.1-200x
are specified under <signal.h>. If the Realtime Signals Extension option is
supported, the default actions for the realtime signals in the range SIGRTMIN to
SIGRTMAX are to terminate the process abnormally.

If the default action is to stop the process, the execution of that process is
temporarily suspended. When a process stops, a SIGCHLD signal shall be
generated for its parent process, unless the parent process has set the
SA_NOCLDSTOP flag. While a process is stopped, any additional signals that are
sent to the process shall not be delivered until the process is continued, except
SIGKILL which always terminates the receiving process. A process that is a
member of an orphaned process group shall not be allowed to stop in response to

Technical Standard (2000) (Draft July 31, 2000)

General Information Signal Concepts

1401 the SIGTSTP, SIGTTIN, or SIGTTOU signals. In cases where delivery of one of
1402 these signals would stop such a process, the signal shall be discarded.

1403 Setting a signal action to SIG_DFL for a signal that is pending, and whose default
1404 action is to ignore the signal (for example, SIGCHLD), shall cause the pending
1405 signal to be discarded, whether or not it is blocked.

1406 The default action for SIGCONT is to resume execution at the point where the
1407 RTS process was stopped, after first handling any pending unblocked signals. If the
1408 Realtime Signals Extension option is supported, any queued values pending shall
1409 be discarded and the resources used to queue them shall be released and returned
1410 to the system for other use.

1411 SIG_IGN Ignore signal.

1412 Delivery of the signal shall have no effect on the process. The behavior of a process
1413 RTS is undefined after it ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that
1414 RTS was not generated by kill (),sigqueue(),or raise().

1415 The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set
1416 to SIG_IGN.

1417 Setting a signal action to SIG_IGN for a signal that is pending shall cause the
1418 pending signal to be discarded, whether or not it is blocked.

1419 If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is
1420 Xl unspecified, except as specified below.

1421 If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the
1422 calling processes shall not be transformed into zombie processes when they
1423 terminate. If the calling process subsequently waits for its children, and the process
1424 has no unwaited-for children that were transformed into zombie processes, it shall
1425 block until all of its children terminate, and wait(), waitid (), and waitpid () shall fail
1426 and set errno to [ECHILD].

1427 RTS If the Realtime Signals Extension option is supported, any queued values pending
1428 shall be discarded and the resources used to queue them shall be released and
1429 made available to queue other signals.

1430 pointer to a function

1431 Catch signal.

1432 On delivery of the signal, the receiving process is to execute the signal-catching
1433 function at the specified address. After returning from the signal-catching function,
1434 the receiving process shall resume execution at the point at which it was
1435 interrupted.

1436 If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall
1437 be entered as a C-language function call as follows:

1438 void func (int signo);

1439 XSI|RTS If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be
1440 entered as a C-language function call as follows:

1441 void func (int signo , siginfo_t * info , void * context);

1442 where func is the specified signal-catching function, signo is the signal number of
1443 the signal being delivered, and info is a pointer to a siginfo_t structure defined in
1444 <signal.h> containing at least the following members:

System Interfaces, Issue 6 531

1445
1446

1447
1448
1449

1450
1451
1452

1453
1454

1455

1456
1457
1458
1459

1460

1461
1462

1463
1464

1465
1466

1467
1468
1469

1470
1471
1472

1473
1474
1475

1476

1477
1478
1479

1480
1481
1482
1483

1484
1485
1486

Signal Concepts

General Information

Member Type Member Name Description
int si_signo Signal number

int si_code Cause of the signal
union sigval si_value Signal value

The si_signo member contains the signal number. This is the same as the signo
parameter. The si_code member contains a code identifying the cause of the signal.
The following values are defined for si_code:

Notes to Reviewers

XSI|RTS

RTS

RTS

RTS

RTS

RTS

XSl
RTS

532

This section with side shading will not appear in the final copy. - Ed.
The shading in this area needs some work.

SI_USER The signal was sent by the kill () function. The implementation
may set si_code to SI_USER if the signal was sent by the raise() or
abort() functions or any similar functions provided as
implementation extensions.

SI_ QUEUE The signal was sent by the sigqueue() function.

SI_TIMER The signal was generated by the expiration of a timer set by
timer_settime().

SI_ASYNCIO The signal was generated by the completion of an asynchronous
1/0 request.

SI_MESGQ The signal was generated by the arrival of a message on an
empty message queue.

If the signal was not generated by one of the functions or events listed above, the
si_code shall be set to an implementation-defined value that is not equal to any of
the values defined above.

If the Realtime Signals Extension is supported, and si_code is one of SI_ QUEUE,
SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value contains the application-
specified signal value. Otherwise, the contents of si_value are undefined.

The behavior of a process is undefined after it returns normally from a signal-
catching function for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not
generated by kill (),sigqueue(),or raise().

The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.

If a process establishes a signal-catching function for the SIGCHLD signal while it
has a terminated child process for which it has not waited, it is unspecified
whether a SIGCHLD signal is generated to indicate that child process.

When signal-catching functions are invoked asynchronously with process
execution, the behavior of some of the functions defined by this volume of
IEEE Std. 1003.1-200x is unspecified if they are called from a signal-catching
function.

The following table defines a set of functions that are either reentrant or not
interruptible by signals and are async-signal-safe. Therefore applications may
invoke them, without restriction, from signal-catching functions:

Technical Standard (2000) (Draft July 31, 2000)

General Information

1487 Notes to Reviewers
This section with side shading will not appear in the final copy. - Ed.

1488

1489

1490

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

1513
1514
1515

1516

1517

1518
1519
1520
1521
1522
1523

1524
1525

The contents of the following tables need to be reviewed.

Base functions:

_Exit()
_exit()
access()
alarm()
cfgetispeed()
cfgetospeed ()
cfsetispeed()
cfsetospeed ()
chdir()
chmod ()
chown()
close()
creat()
dup()
dup2()
execle()
execve()
fchmod ()
fchown ()
fentl ()
fork ()

Realtime functions:

aio_error()
aio_return()
aio_suspend()

Tracing functions:

posix_trace_event()]

fpathconf()
fstat()
fsync()
ftruncate()
getegid()
geteuid()
getgid()
getgroups()
getpgrp()
getpid()
getppid ()
getuid()
kill ()
link()
Iseek()
Istat()
mkdir ()
mkfifo()
open()
pathconf ()
pause()

clock_gettime()
fdatasync()
sem_post()

pipe()

raise()

read()
readlink ()
rename()
rmdir()
setgid()
setpgid()
setsid()
setuid()
sigaction ()
sigaddset ()
sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal ()
sigpending ()
sigprocmask ()
sigsuspend()
sleep()

sigpause()
sigqueue()
sigset()

Signal Concepts

stat()
symlink()
sysconf()
tedrain()
teflow ()
tcflush()
tcgetattr()
tegetpgrp()
tcsendbreak ()
tesetattr ()
tesetpgrp()
time()
times()
umask()
uname()
unlink()
utime()
wait()
waitpid ()
write()

timer_getoverrun()

timer_gettime()
timer_settime()

All functions not in the above table are considered to be unsafe with respect to
signals. In the presence of signals, all functions defined by this volume of
IEEE Std. 1003.1-200x shall behave as defined when called from or interrupted by a
signal-catching function, with a single exception: when a signal interrupts an
unsafe function and the signal-catching function calls an unsafe function, the
behavior is undefined.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
continue, the entire process shall be terminated, stopped, or continued, respectively.

System Interfaces, Issue 6

533

1526 2.4.4

1527
1528
1529
1530
1531
1532
1533
1534

1535
1536

1537
1538
1539
1540
1541
1542
1543

Signal Concepts General Information

Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this volume of IEEE Std. 1003.1-200x if
delivered to a process while it is executing such a function. If the action of the signal is to
terminate the process, the process shall be terminated and the function shall not return. If the
action of the signal is to stop the process, the process shall stop until continued or terminated.
Generation of a SIGCONT signal for the process shall cause the process to be continued, and the
original function shall continue at the point the process was stopped. If the action of the signal is
to invoke a signal-catching function, the signal-catching function shall be invoked; in this case
the original function is said to be interrupted by the signal.

Notes to Reviewers

534

This section with side shading will not appear in the final copy. - Ed.

D3, XSH, ERN 20 points out a discrepancy between the following sentence and the paragraph
above beginning "All functions not in the above ...". An interpretation will be filed.

If the signal-catching function executes a return statement, the behavior of the interrupted
function shall be as described individually for that function. Signals that are ignored shall not
affect the behavior of any function; signals that are blocked shall not affect the behavior of any
function until they are unblocked and then delivered, except as specified for the sigpending () and
sigwait () functions.

Technical Standard (2000) (Draft July 31, 2000)

1544

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

1555
1556
1557
1558
1559
1560
1561
1562

1563
1564
1565
1566

1567
1568
1569
1570
1571

1572
1573

1574
1575
1576
1577
1578

1579

1580
1581
1582

1583
1584
1585
1586

1587
1588
1589

General Information Standard I/O Streams

2.5

251

CX

Standard 1/0 Streams

A stream is associated with an external file (which may be a physical device) by opening a file,
which may involve creating a new file. Creating an existing file causes its former contents to be
discarded if necessary. If a file can support positioning requests, (such as a disk file, as opposed
to a terminal), then a file position indicator associated with the stream is positioned at the start
(byte number 0) of the file, unless the file is opened with append mode, in which case it is
implementation-defined whether the file position indicator is initially positioned at the
beginning or end of the file. The file position indicator is maintained by subsequent reads,
writes, and positioning requests, to facilitate an orderly progression through the file. All input
takes place as if bytes were read by successive calls to fgetc(); all output takes place as if bytes
were written by successive calls to fputc().

When a stream is unbuffered, bytes are intended to appear from the source or at the destination
as soon as possible; otherwise, bytes may be accumulated and transmitted as a block. When a
stream is fully buffered, bytes are intended to be transmitted as a block when a buffer is filled.
When a stream is line buffered, bytes are intended to be transmitted as a block when a newline
byte is encountered. Furthermore, bytes are intended to be transmitted as a block when a buffer
is filled, when input is requested on an unbuffered stream, or when input is requested on a line-
buffered stream that requires the transmission of bytes. Support for these characteristics is
implementation-defined, and may be affected via setbuf() and setvbuf().

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
the file. The value of a pointer to a FILE object is indeterminate after the associated file is closed
(including the standard streams).

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at its start). If the main() function
returns to its original caller, or if the exit() function is called, all open files are closed (hence all
output streams are flushed) before program termination. Other paths to program termination,
such as calling abort(), need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE
object need not necessarily serve in place of the original.

At program start-up, three streams are predefined and need not be opened explicitly: standard
input (for reading conventional input), standard output (for writing conventional output), and
standard error (for writing diagnostic output). When opened, the standard error stream is not
fully buffered; the standard input and standard output streams are fully buffered if and only if
the stream can be determined not to refer to an interactive device.

Interaction of File Descriptors and Standard 1/O Streams

This section describes the interaction of file descriptors and standard 1/0 streams. This
functionality is an extension to the ISO C standard (and the rest of this section is not further CX
shaded).

An open file description may be accessed through a file descriptor, which is created using
functions such as open() or pipe(), or through a stream, which is created using functions such as
fopen() or popen(). Either a file descriptor or a stream is called a handle on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by explicit user action, without affecting the underlying
open file description. Some of the ways to create them include fentl(), dup(), fdopen(), fileno(),
and fork(). They can be destroyed by at least fclose(), close(), and the exec functions.

System Interfaces, Issue 6 535

1590
1591
1592
1593
1594
1595

1596
1597
1598
1599

1600
1601
1602
1603
1604

1605
1606
1607
1608
1609
1610

1611

1612
1613
1614
1615
1616

1617
1618

1619

1620
1621

1622

1623
1624

1625

1626

1627
1628

1629
1630

1631
1632
1633

Standard 1/O Streams General Information

536

A file descriptor that is never used in an operation that could affect the file offset (for example,
read(), write(), or Iseek()) is not considered a handle for this discussion, but could give rise to one
(for example, as a consequence of fdopen(), dup(), or fork()). This exception does not include the
file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is not
used directly by the application to affect the file offset. The read() and write() functions
implicitly affect the file offset; Iseek() explicitly affects it.

The result of function calls involving any one handle (the active handle) is defined elsewhere in
this volume of IEEE Std. 1003.1-200x, but if two or more handles are used, and any one of them is
a stream, the application shall ensure that their actions are coordinated as described below. If
this is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose() or freopen() is
executed on it (the result of freopen() is a new stream, which cannot be a handle on the same
open file description as its previous value), or when the process owning that stream terminates
with exit() or abort(). A file descriptor is closed by close(), _exit(), or the exec functions when
FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the application shall ensure that the actions below are
performed between the last use of the handle (the current active handle) and the first use of the
second handle (the future active handle). The second handle then becomes the active handle. All
activity by the application affecting the file offset on the first handle shall be suspended until it
again becomes the active file handle. (If a stream function has as an underlying function one that
affects the file offset, the stream function shall be considered to affect the file offset.)

The handles need not be in the same process for these rules to apply.

Note that after a fork (), two handles exist where one existed before. The application shall ensure
that, if both handles can ever be accessed, they are both in a state where the other could become
the active handle first. The application shall prepare for a fork() exactly as if it were a change of
active handle. (If the only action performed by one of the processes is one of the exec functions or
exit() (not exit()), the handle is never accessed in that process.)

For the first handle, the first applicable condition below applies. After the actions required
below are taken, if the handle is still open, the application can close it.

- Ifitis afile descriptor, no action is required.

- If the only further action to be performed on any handle to this open file descriptor is to close
it, no action need be taken.

. Ifitis astream which is unbuffered, no action need be taken.

. Ifitis a stream which is line buffered, and the last byte written to the stream was a newline
(that is, as if a:

putc(\n’)
was the most recent operation on that stream), no action need be taken.

. If it is a stream which is open for writing or appending (but not also open for reading), the
application shall either perform an fflush (), or the stream shall be closed.

- If the stream is open for reading and it is at the end of the file (feof() is true), no action need
be taken.

« If the stream is open with a mode that allows reading and the underlying open file
description refers to a device that is capable of seeking, the application shall either perform
an fflush (), or the stream shall be closed.

Technical Standard (2000) (Draft July 31, 2000)

1634

1635

1636
1637
1638

1639
1640
1641

1642
1643

1644
1645
1646
1647
1648

1649

1650
1651
1652
1653

1654

1655
1656
1657
1658
1659
1660
1661

1662
1663

1664
1665
1666
1667

1668
1669

1670
1671
1672

1673
1674
1675
1676
1677

General Information Standard I/O Streams

25.2

Otherwise, the result is undefined.
For the second handle:

- If any previous active handle has been used by a function that explicitly changed the file
offset, except as required above for the first handle, the application shall perform an Iseek() or
fseek () (as appropriate to the type of handle) to an appropriate location.

If the active handle ceases to be accessible before the requirements on the first handle, above,
have been met, the state of the open file description becomes undefined. This might occur during
functions such as a fork () or _exit().

The exec functions make inaccessible all streams that are open at the time they are called,
independent of which streams or file descriptors may be available to the new process image.

When these rules are followed, regardless of the sequence of handles used, implementations
shall ensure that an application, even one consisting of several processes, shall yield correct
results: no data shall be lost or duplicated when writing, and all data shall be written in order,
except as requested by seeks. It is implementation-defined whether, and under what conditions,
all input is seen exactly once.

If the rules above are not followed, the result is unspecified.

Each function that operates on a stream is said to have zero or more underlying functions. This
means that the stream function shares certain traits with the underlying functions, but does not
require that there be any relation between the implementations of the stream function and its
underlying functions.

Stream Orientation and Encoding Rules

For conformance to the ISO/IEC 9899:1999 standard, the definition of a stream includes an
orientation. After a stream is associated with an external file, but before any operations are
performed on it, the stream is without orientation. Once a wide-character input/output function
has been applied to a stream without orientation, the stream shall become wide-oriented.
Similarly, once a byte input/output function has been applied to a stream without orientation,
the stream shall become bhyte-oriented. Only a call to the freopen() function or the fwide () function
can otherwise alter the orientation of a stream.

A successful call to freopen() shall remove any orientation. The three predefined streams standard
input, standard output, and standard error shall be unoriented at program start-up.

Byte input/output functions cannot be applied to a wide-oriented stream, and wide-character
input/output functions cannot be applied to a byte-oriented stream. The remaining stream
operations shall not affect and shall not be affected by a stream’s orientation, except for the
following additional restrictions:

- Binary wide-oriented streams have the file positioning restrictions ascribed to both text and
binary streams.

- For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide-character output function can overwrite
a partial character; any file contents beyond the byte(s) written are henceforth undefined.

Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos() shall store a representation of the value of this
mbstate_t object as part of the value of the fpos_t object. A later successful call to fsetpos() using
the same stored fpos_t value shall restore the value of the associated mbstate_t object as well as
the position within the controlled stream.

System Interfaces, Issue 6 537

1678
1679
1680
1681
1682
1683
1684

1685
1686
1687

1688
1689

1690

1691
1692

1693
1694
1695
1696
1697

1698
1699
1700
1701
1702
1703

1704
1705
1706
1707
1708

Standard 1/O Streams General Information

CX

CX

538

Implementations that support multiple encoding rules associate an encoding rule with the
stream. The encoding rule shall be determined by the setting of the LC_CTYPE category in the
current locale at the time when the stream becomes wide-oriented. If a wide-character
input/output function is applied to a byte-oriented stream, the encoding rule used is undefined.
As with the stream’s orientation, the encoding rule associated with a stream cannot be changed
once it has been set, except by a successful call to freopen() which clears the encoding rule and
resets the orientation to unoriented.

Although both text and binary wide-oriented streams are conceptually sequences of wide
characters, the external file associated with a wide-oriented stream is a sequence of (possibly
multibyte) characters generalized as follows:

« Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

- Afile need not begin nor end in the initial shift state.

Moreover, the encodings used for characters may differ among files. Both the nature and choice
of such encodings are implementation-defined.

The wide-character input functions read characters from the stream and convert them to wide
characters as if they were read by successive calls to the fgetwc() function. Each conversion shall
occur as if by a call to the mbrtowc() function, with the conversion state described by the stream’s
own mbstate_t object, except the encoding rule associated with the stream is used instead of the
encoding rule implied by the LC_CTYPE category of the current locale.

The wide-character output functions convert wide characters to (possibly multibyte) characters
and write them to the stream as if they were written by successive calls to the fputwc() function.
Each conversion shall occur as if by a call to the wcrtomb() function, with the conversion state
described by the stream’s own mbstate_t object, except the encoding rule associated with the
stream is used instead of the encoding rule implied by the LC_CTYPE category of the current
locale.

An encoding error shall occur if the character sequence presented to the underlying mbrtowc()
function does not form a valid (generalized) character, or if the code value passed to the
underlying wertomb() function does not correspond to a valid (generalized) character. The
wide-character input/output functions and the byte input/output functions store the value of
the macro EILSEQ in errno if and only if an encoding error occurs.

Technical Standard (2000) (Draft July 31, 2000)

General Information STREAMS

1709 2.6

1710 XSR
1711
1712

1713
1714
1715
1716
1717
1718
1719
1720

1721
1722
1723
1724
1725
1726
1727

1728

1729
1730

1731

1732
1733
1734
1735
1736
1737
1738

1739
1740
1741
1742
1743
1744

1745

1746
1747
1748
1749
1750
1751
1752
1753
1754
1755

STREAMS

STREAMS functionality is provided on implementations supporting the XSI STREAMS Option
Group. This functionality is dependent on support of the XSI STREAMS option (and the rest of
this section is not further shaded for this option).

STREAMS provides a uniform mechanism for implementing networking services and other
character-based 1/0. The STREAMS function provides direct access to protocol modules. A
STREAM is typically a full-duplex connection between a process and an open device or pseudo-
device. However, since pipes may be STREAMS-based, a STREAM can be a full-duplex
connection between two processes. The STREAM itself exists entirely within the implementation
and provides a general character 1/0 function for processes. It optionally includes one or more
intermediate processing modules that are interposed between the process end of the STREAM
(STREAM head) and a device driver at the end of the STREAM (STREAM end).

STREAMS 1/0 is based on messages. Messages flow in both directions in a STREAM. A given
module need not understand and process every message in the STREAM, but every module in
the STREAM handles every message. Each module accepts messages from one of its neighbor
modules in the STREAM, and passes them to the other neighbor. For example, a line discipline
module may transform the data. Data flow through the intermediate modules is bidirectional,
with all modules handling, and optionally processing, all messages. There are three types of
messages:

- Data messages containing actual data for input or output

« Control data containing instructions for the STREAMS modules and underlying
implementation

« Other messages, which include file descriptors

The function between the STREAM and the rest of the implementation is provided by a set of
functions at the STREAM head. When a process calls write(), putmsg(), putpmsg(), or ioctl(),
messages are sent down the STREAM, and read(), getmsg(), or getpmsg() accepts data from the
STREAM and passes it to a process. Data intended for the device at the downstream end of the
STREAM is packaged into messages and sent downstream, while data and signals from the
device are composed into messages by the device driver and sent upstream to the STREAM
head.

When a STREAMS-based device is opened, a STREAM is created that contains two modules: the
STREAM head module and the STREAM end (driver) module. If pipes are STREAMS-based in
an implementation, when a pipe is created, two STREAMS are created, each containing a
STREAM head module. Other modules are added to the STREAM using ioctl (). New modules
are “‘pushed” onto the STREAM one at a time in last-in, first-out (LIFO) style, as though the
STREAM was a push-down stack.

Priority

Message types are classified according to their queuing priority and may be normal (non-
priority), priority, or high-priority messages. A message belongs to a particular priority band that
determines its ordering when placed on a queue. Normal messages have a priority band of 0 and
are always placed at the end of the queue following all other messages in the queue. High-
priority messages are always placed at the head of a queue, but are discarded if there is already a
high-priority message in the queue. Their priority band is ignored; they are high-priority by
virtue of their type. Priority messages have a priority band greater than 0. Priority messages are
always placed after any messages of the same or higher priority. High-priority and priority
messages are used to send control and data information outside the normal flow of control. By
convention, high-priority messages are not affected by flow control. Normal and priority

System Interfaces, Issue 6 539

1756

1757

1758
1759
1760
1761
1762
1763
1764

1765

1766
1767
1768

1769
1770
1771
1772

1773
1774

1775
1776
1777
1778
1779

STREAMS General Information

2.6.1

540

messages have separate flow controls.

Message Parts

A process may access STREAMS messages that contain a data part, control part, or both. The
data part is that information which is transmitted over the communication medium and the
control information is used by the local STREAMS modules. The other types of messages are
used between modules and are not accessible to processes. Messages containing only a data part
are accessible via putmsg(), putpmsg(), getmsg(), getpmsg(), read(), or write(). Messages
containing a control part with or without a data part are accessible via calls to putmsg(),

putpmsg(), getmsg(), or getpmsg ().

Accessing STREAMS

A process accesses STREAMS-based files using the standard functions close(), ioctl(), getmsg(),
getpmsg(), open(), pipe(), poll (), putmsg(), putpmsg(), read(), or write(). Refer to the applicable
function definitions for general properties and errors.

Calls to ioctl () are used to perform control functions with the STREAMS-based device associated
with the file descriptor fildes. The arguments command and arg are passed to the STREAMS file
designated by fildes and are interpreted by the STREAM head. Certain combinations of these
arguments may be passed to a module or driver in the STREAM.

Since these STREAMS requests are a subset of ioctl(), they are subject to the errors described
there.

STREAMS modules and drivers can detect errors, sending an error message to the STREAM
head, thus causing subsequent functions to fail and set errno to the value specified in the
message. In addition, STREAMS modules and drivers can elect to fail a particular ioctl () request
alone by sending a negative acknowledgement message to the STREAM head. This causes just
the pending ioctl () request to fail and set errno to the value specified in the message.

Technical Standard (2000) (Draft July 31, 2000)

1780

1781
1782
1783

1784
1785
1786

1787
1788

1789
1790
1791
1792

1793
1794

1795

1796
1797
1798
1799

1800
1801
1802

1803
1804
1805
1806
1807

1808

1809
1810

1811
1812
1813
1814
1815
1816

1817
1818
1819

1820

1821
1822
1823

General Information XSI Interprocess Communication

2.7

XSl

2.7.1

XSI Interprocess Communication

This section describes extensions to support interprocess communication. This functionality is
dependent on support of the XSI Extension (and the rest of this section is not further shaded for
this option).

The following message passing, semaphore, and shared memory services form an XSI
interprocess communication facility. Certain aspects of their operation are common, and are
described below.

IPC Functions

msgctl() semctl() shmctl()
msgget() semget() shmdt()

msgrev() semop() shmget()
msgsnd() shmat()

Another interprocess communication facility is provided by functions in the Realtime Option
Group; see Section 2.8 (on page 543).

IPC General Description

Each individual shared memory segment, message queue, and semaphore set is identified by a
unique positive integer, called respectively a shared memory identifier, shmid, a semaphore
identifier, semid, and a message queue identifier, msgid. The identifiers are returned by calls to
shmget(), semget(), and msgget(), respectively.

Associated with each identifier is a data structure which contains data related to the operations
which may be or may have been performed; see the Base Definitions volume of
IEEE Std. 1003.1-200x, <sys/shm.h>, <sys/sem.h>, and <sys/msg.h> for their descriptions.

Each of the data structures contains both ownership information and an ipc_perm structure (see
the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/ipc.h>) which are used in conjunction
to determine whether or not read/write (read/alter for semaphores) permissions should be
granted to processes using the IPC facilities. The mode member of the ipc_perm structure acts as
a bit field which determines the permissions.

The values of the bits are given below in octal notation.

Bit Meaning

0400 Read by user.
0200 Write by user.
0040 Read by group.
0020 Write by group.
0004 Read by others.
0002 Write by others.

The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on which
service is being used. In each case, read and write/alter permissions are granted to a process if
one or more of the following are true ("xxx" is replaced by shm, sem, or msg, as appropriate):

« The process has appropriate privileges.

« The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
structure associated with the IPC identifier, and the appropriate bit of the user field in
XXX_perm.mode is set.

System Interfaces, Issue 6 541

XSI Interprocess Communication General Information

1824 - The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
1825 effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data structure
1826 associated with the IPC identifier, and the appropriate bit of the group field in xxx_perm.mode
1827 is set.

1828 « The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
1829 effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
1830 structure associated with the IPC identifier, but the appropriate bit of the other field in
1831 XXX_perm.mode is set.

1832 Otherwise, the permission is denied.

542 Technical Standard (2000) (Draft July 31, 2000)

1833

1834
1835
1836

1837
1838
1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849
1850

1851

1852
1853

1854

1855

1856
1857

1858
1859
1860

1861

1862
1863
1864
1865
1866
1867
1868

1869

1870
1871
1872

General Information Realtime

2.8

281

RTS

2.8.2

AIO

Realtime

This section defines functions to support the source portability of applications with realtime
requirements. The presence of many of these functions is dependent on support for
implementation options described in the text.

The specific functional areas included in this section and their scope include the following. Full
definitions of these terms can be found in the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 3, Definitions.

- Semaphores

« Process Memory Locking

« Memory Mapped Files and Shared Memory Objects
« Priority Scheduling

- Realtime Signal Extension

-+ Timers

« Interprocess Communication

« Synchronized Input and Output

« Asynchronous Input and Output

All the realtime functions defined in this volume of IEEE Std. 1003.1-200x are portable, although
some of the numeric parameters used by an implementation may have hardware dependencies.

Realtime Signals

Realtime signal generation and delivery is dependent on support for the Realtime Signals
Extension option.

See Section 2.4.2 (on page 529).

Asynchronous 1/0

The functionality described in this section is dependent on support of the Asynchronous Input
and Output option (and the rest of this section is not further shaded for this option).

An asynchronous 1I/0 control block structure aiocb is used in many asynchronous 1/0
functions. It is defined in the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> and has
at least the following members:

Member Type Member Name Description

int aio_fildes File descriptor.

off t aio_offset File offset.

volatile void* aio_buf Location of buffer.

size t aio_nbytes Length of transfer.

int aio_reqprio Request priority offset.
struct sigevent aio_sigevent Signal number and value.
int aio_lio_opcode Operation to be performed.

The aio_fildes element is the file descriptor on which the asynchronous operation is performed.

If O_APPEND is not set for the file descriptor aio_fildes and if aio_fildes is associated with a
device that is capable of seeking, then the requested operation takes place at the absolute
position in the file as given by aio_offset, as if Iseek() were called immediately prior to the

System Interfaces, Issue 6 543

1873
1874
1875
1876
1877
1878
1879
1880

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902

1903
1904
1905
1906

1907
1908
1909
1910

1911
1912

1913
1914
1915
1916

1917
1918
1919
1920
1921

Realtime General Information

544

operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET.
If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
incapable of seeking, write operations append to the file in the same order as the calls were
made, with the following exception: under implementation-defined circumstances, such as
operation on a multiprocessor or when requests of differing priorities are submitted at the same
time, the ordering restriction may be relaxed. After a successful call to enqueue an asynchronous
1/0 operation, the value of the file offset for the file is unspecified. The aio_nbytes and aio_buf
elements are the same as the nbyte and buf arguments defined by read () and write(), respectively.

If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
asynchronous 1/0 is queued in priority order, with the priority of each asynchronous operation
based on the current scheduling priority of the calling process. The aio_reqprio member can be
used to lower (but not raise) the asynchronous 1/0 operation priority and is within the range
zero through {AIO_PRIO_DELTA_MAX}, inclusive. Unless both _POSIX_PRIORITIZED 10 and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing asynchronous 1/0
requests is unspecified. When both _POSIX_PRIORITIZED_IO and
_POSIX_PRIORITY_SCHEDULING are defined, the order of processing of requests submitted
by processes whose schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
unspecified. The priority of an asynchronous request is computed as (process scheduling
priority) minus aio_reqprio. The priority assigned to each asynchronous 1/0 request is an
indication of the desired order of execution of the request relative to other asynchronous 1/0
requests for this file. If _POSIX_PRIORITIZED_IO is defined, requests issued with the same
priority to a character special file are processed by the underlying device in FIFO order; the order
of processing of requests of the same priority issued to files that are not character special files is
unspecified. Numerically higher priority values indicate requests of higher priority. The value of
aio_reqprio has no effect on process scheduling priority. When prioritized asynchronous 1/0
requests to the same file are blocked waiting for a resource required for that 1/0 operation, the
higher-priority 1/0 requests shall be granted the resource before lower-priority 1/0 requests are
granted the resource. The relative priority of asynchronous 1/0 and synchronous 1/0 is
implementation-defined. If _POSIX PRIORITIZED IO is defined, the implementation shall
define for which files 1/0 prioritization is supported.

The aio_sigevent determines how the calling process shall be notified upon I/0 completion, as
specified in Section 2.4.1 (on page 528). If aio_sigevent.sigev_notify is SIGEV_NONE, then no
signal shall be posted upon 1/0 completion, but the error status for the operation and the return
status for the operation shall be set appropriately.

The aio_lio_opcode field is used only by the lio_listio () call. The lio_listio() call allows multiple
asynchronous 1/0 operations to be submitted at a single time. The function takes as an
argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation to
be performed (read or write) via the aio_lio_opcode field.

The address of the aiocb structure is used as a handle for retrieving the error status and return
status of the asynchronous operation while it is in progress.

The aiocb structure and the data buffers associated with the asynchronous 1/0 operation are
being used by the system for asynchronous 1/0 while, and only while, the error status of the
asynchronous operation is equal to EINPROGRESS. Applications shall not modify the aiocb
structure while the structure is being used by the system for asynchronous 1/0.

The return status of the asynchronous operation is the number of bytes transferred by the 1/0
operation. If the error status is set to indicate an error completion, then the return status is set to
the return value that the corresponding read(), write(), or fsync() call would have returned.
When the error status is not equal to EINPROGRESS, the return status shall reflect the return
status of the corresponding synchronous operation.

Technical Standard (2000) (Draft July 31, 2000)

1922

1923

1924
1925

1926
1927
1928
1929

1930
1931
1932
1933
1934
1935

1936

1937
1938

1939
1940
1941
1942

1943
1944
1945
1946
1947
1948

1949
1950
1951

1952
1953
1954
1955
1956

1957

1958
1959
1960

1961
1962
1963

1964

General Information Realtime

2.8.3

2.8.3.1

ML

2.8.3.2

MF

SHM

SHM

2.8.3.3

MPR MF

Memory Management

Memory Locking

The functionality described in this section is dependent on support of the Process Memory
Locking option (and the rest of this section is not further shaded for this option).

Range memory locking operations are defined in terms of pages. Implementations may restrict
the size and alignment of range lockings to be on page-size boundaries. The page size, in bytes,
is the value of the configurable system variable {PAGESIZE}. If an implementation has no
restrictions on size or alignment, it may specify a 1-byte page size.

Memory locking guarantees the residence of portions of the address space. It is
implementation-defined whether locking memory guarantees fixed translation between virtual
addresses (as seen by the process) and physical addresses. Per-process memory locks are not
inherited across a fork(), and all memory locks owned by a process are unlocked upon exec or
process termination. Unmapping of an address range removes any memory locks established on
that address range by this process.

Memory Mapped Files

The functionality described in this section is dependent on support of the Memory Mapped Files
option (and the rest of this section is not further shaded for this option).

Range memory mapping operations are defined in terms of pages. Implementations may
restrict the size and alignment of range mappings to be on page-size boundaries. The page size,
in bytes, is the value of the configurable system variable {PAGESIZE}. If an implementation has
no restrictions on size or alignment, it may specify a 1-byte page size.

Memory mapped files provide a mechanism that allows a process to access files by directly
incorporating file data into its address space. Once a file is mapped into a process address space,
the data can be manipulated as memory. If more than one process maps a file, its contents are
shared among them. If the mappings allow shared write access, then data written into the
memory object through the address space of one process appears in the address spaces of all
processes that similarly map the same portion of the memory object.

Shared memory objects are named regions of storage that may be independent of the file system
and can be mapped into the address space of one or more processes to allow them to share the
associated memory.

An unlink() of a file or shm_unlink() of a shared memory object, while causing the removal of the
name, does not unmap any mappings established for the object. Once the name has been
removed, the contents of the memory object are preserved as long as it is referenced. The
memory object remains referenced as long as a process has the memory object open or has some
area of the memory object mapped.

Memory Protection

The functionality described in this section is dependent on support of the Memory Protection
and Memory Mapped Files option (and the rest of this section is not further shaded for these
options).

When an object is mapped, various application accesses to the mapped region may result in
signals. In this context, SIGBUS is used to indicate an error using the mapped object, and
SIGSEGYV is used to indicate a protection violation or misuse of an address:

- A mapping may be restricted to disallow some types of access.

System Interfaces, Issue 6 545

1965
1966

1967

1968
1969

1970
1971

1972

1973
1974

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

1989

1990

1991
1992

1993
1994
1995
1996
1997
1998
1999

2000
2001
2002
2003
2004

2005
2006
2007

Realtime General Information

2.8.3.4

TYM

2.8.4

PS

546

- Write attempts to memory that was mapped without write access, or any access to memory
mapped PROT_NONE, shall result in a SIGSEGV signal.

- References to unmapped addresses shall result in a SIGSEGV signal.

- Reference to whole pages within the mapping, but beyond the current length of the object,
shall result in a SIGBUS signal.

« The size of the object is unaffected by access beyond the end of the object (even if a SIGBUS is
not generated).

Typed Memory Objects

The functionality described in this section is dependent on support of the Typed Memory
Obijects option (and the rest of this section is not further shaded for this option).

Implementations may support the Typed Memory Objects option without supporting the
Memory Mapped Files option or the Shared Memory Objects option. Typed memory objects are
implementation-configurable named storage pools accessible from one or more processors in a
system, each via one or more ports, such as backplane buses, LANSs, I/0 channels, and so on.
Each valid combination of a storage pool and a port is identified through a name that is defined
at system configuration time, in an implementation-defined manner; the name may be
independent of the file system. Using this name, a typed memory object can be opened and
mapped into process address space. For a given storage pool and port, it is necessary to support
both dynamic allocation from the pool as well as mapping at an application-supplied offset
within the pool; when dynamic allocation has been performed, subsequent deallocation must be
supported. Lastly, accessing typed memory objects from different ports requires a method for
obtaining the offset and length of contiguous storage of a region of typed memory (dynamically
allocated or not); this allows typed memory to be shared among processes and/or processors
while being accessed from the desired port.

Process Scheduling

Scheduling Policies

The functionality described in this section is dependent on support of the Process Scheduling
option (and the rest of this section is not further shaded for this option).

The scheduling semantics described in this volume of IEEE Std. 1003.1-200x are defined in terms
of a conceptual model that contains a set of thread lists. No implementation structures are
necessarily implied by the use of this conceptual model. It is assumed that no time elapses
during operations described using this model, and therefore no simultaneous operations are
possible. This model discusses only processor scheduling for runnable threads, but it should be
noted that greatly enhanced predictability of realtime applications result if the sequencing of
other resources takes processor scheduling policy into account.

There is, conceptually, one thread list for each priority. Any runnable thread may be on any
thread list. Multiple scheduling policies shall be provided. Each non-empty thread list is
ordered, contains a head as one end of its order, and a tail as the other. The purpose of a
scheduling policy is to define the allowable operations on this set of lists (for example, moving
threads between and within lists).

Each process shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the sched setscheduler() or
sched_setparam() functions.

Technical Standard (2000) (Draft July 31, 2000)

2008
2009
2010

2011
2012
2013

2014
2015
2016

2017
2018
2019

2020

2021

2022

2023

2024

2025

2026
2027

2028
2029
2030
2031

2032

2033
2034

2035
2036

2037
2038
2039

2040
2041

2042
2043
2044

2045
2046

2047
2048

General Information Realtime

SS

Each thread shall be controlled by an associated scheduling policy and priority. These
parameters may be specified by explicit application execution of the pthread_setschedparam()
function.

Associated with each policy is a priority range. Each policy definition shall specify the minimum
priority range for that policy. The priority ranges for each policy may but need not overlap the
priority ranges of other policies.

A conforming implementation shall select the thread that is defined as being at the head of the
highest priority non-empty thread list to become a running thread, regardless of its associated
policy. This thread is then removed from its thread list.

Four scheduling policies are specifically required. Other implementation-defined scheduling
policies may be defined. The following symbols are defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, <sched.h>:

SCHED_FIFO Firstin, first out (FIFO) scheduling policy.
SCHED_RR Round robin scheduling policy.
SCHED_SPORADIC Sporadic server scheduling policy.
SCHED_OTHER Another scheduling policy.

The values of these symbols shall be distinct.

SCHED_FIFO

Conforming implementations shall include a scheduling policy called the FIFO scheduling
policy.

Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
threads have been on the list without being executed; generally, the head of the list is the thread
that has been on the list the longest time, and the tail is the thread that has been on the list the
shortest time.

Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:
1. When a running thread becomes a preempted thread, it becomes the head of the thread list
for its priority.
2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list for
its priority.

3. When a running thread calls the sched_setscheduler() function, the process specified in the
function call is modified to the specified policy and the priority specified by the param
argument.

4. When a running thread calls the sched_setparam() function, the priority of the process
specified in the function call is modified to the priority specified by the param argument.

5. When a running thread calls the pthread setschedparam() function, the thread specified in
the function call is modified to the specified policy and the priority specified by the param
argument.

6. If a thread whose policy or priority has been modified is a running thread or is runnable, it
then becomes the tail of the thread list for its new priority.

7. When a running thread issues the sched_yield () function, the thread becomes the tail of the
thread list for its priority.

System Interfaces, Issue 6 547

2049
2050

2051
2052
2053
2054

2055

2056
2057
2058
2059
2060
2061

2062
2063
2064
2065
2066

2067
2068

2069
2070
2071
2072

2073

2074
2075
2076

2077
2078

2079
2080
2081
2082
2083
2084
2085

2086
2087
2088
2089
2090
2091
2092
2093
2094

Realtime General Information

SS|TSP

548

8. At no other time is the position of a thread with this scheduling policy within the thread
lists affected.

For this policy, valid priorities shall be within the range returned by the sched_get priority_max()
and sched_get_priority_min() functions when SCHED_FIFO is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this

policy.

SCHED_RR

Conforming implementations shall include a scheduling policy called the round robin scheduling
policy. This policy is identical to the SCHED_FIFO policy with the additional condition that
when the implementation detects that a running thread has been executing as a running thread
for a time period of the length returned by the sched_rr_get_interval() function or longer, the
thread shall become the tail of its thread list and the head of that thread list shall be removed
and made a running thread.

The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
priority, one of them does not monopolize the processor. An application should not rely only on
the use of SCHED_RR to ensure application progress among multiple threads if the application
includes threads using the SCHED_FIFO policy at the same or higher priority levels or
SCHED_RR threads at a higher priority level.

A thread under this policy that is preempted and subsequently resumes execution as a running
thread completes the unexpired portion of its round robin interval time period.

For this policy, valid priorities shall be within the range returned by the sched_get priority_max()
and sched_get_priority_ min() functions when SCHED_RR is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 priorities for this

policy.

SCHED_SPORADIC

The functionality described in this section is dependent on support of the Process Sporadic
Server or Thread Sporadic Server options (and the rest of this section is not further shaded for
these options).

If _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is defined, the
implementation shall include a scheduling policy identified by the value SCHED_SPORADIC.

The sporadic server policy is based primarily on two parameters: the replenishment period and the
available execution capacity. The replenishment period is given by the sched_ss_repl period
member of the sched_param structure. The available execution capacity is initialized to the
value given by the sched_ss_init_budget member of the same parameter. The sporadic server
policy is identical to the SCHED_FIFO policy with some additional conditions that cause the
thread’s assigned priority to be switched between the values specified by the sched priority and
sched_ss_low_priority members of the sched_param structure.

The priority assigned to a thread using the sporadic server scheduling policy is determined in
the following manner: if the available execution capacity is greater than zero and the number of
pending replenishment operations is strictly less than sched _ss_max_repl, the thread is assigned
the priority specified by sched priority; otherwise, the assigned priority shall be
sched_ss_low_priority. If the value of sched_priority is less than or equal to the value of
sched_ss_low_priority, the results are undefined. When active, the thread shall belong to the
thread list corresponding to its assigned priority level, according to the mentioned priority
assignment. The modification of the available execution capacity and, consequently of the
assigned priority, is done as follows:

Technical Standard (2000) (Draft July 31, 2000)

2095
2096
2097
2098

2099
2100
2101
2102

2103
2104
2105
2106

2107
2108
2109
2110

2111
2112
2113
2114
2115

2116
2117
2118
2119
2120
2121
2122
2123
2124

2125
2126
2127
2128
2129
2130

2131

2132
2133

2134
2135
2136
2137

General Information Realtime

1. When the thread at the head of the sched priority list becomes a running thread, its
execution time shall be limited to at most its available execution capacity, plus the
resolution of the execution time clock used for this scheduling policy. This resolution shall
be implementation-defined.

2. Each time the thread is inserted at the tail of the list associated with sched priority—
because as a blocked thread it became runnable with priority sched_priority or because a
replenishment operation was performed—the time at which this operation is done is
posted as the activation_time.

3. When the running thread with assigned priority equal to sched priority becomes a
preempted thread, it becomes the head of the thread list for its priority, and the execution
time consumed is subtracted from the available execution capacity. If the available
execution capacity would become negative by this operation, it shall be set to zero.

4. When the running thread with assigned priority equal to sched_priority becomes a blocked
thread, the execution time consumed is subtracted from the available execution capacity,
and a replenishment operation is scheduled, as described in 6 and 7. If the available
execution capacity would become negative by this operation, it shall be set to zero.

5. When the running thread with assigned priority equal to sched priority reaches the limit
imposed on its execution time, it becomes the tail of the thread list for
sched ss_low_priority, the execution time consumed is subtracted from the available
execution capacity (which becomes zero), and a replenishment operation is scheduled, as
described in 6 and 7.

6. Each time a replenishment operation is scheduled, the amount of execution capacity to be
replenished, replenish_amount, is set equal to the execution time consumed by the thread
since the activation_time. The replenishment is scheduled to occur at activation_time plus
sched _ss_repl_period. If the scheduled time obtained is before the current time, the
replenishment operation is carried out immediately. Several replenishment operations may
be pending at the same time, each of which will be serviced at its respective scheduled
time. With the above rules, the number of replenishment operations simultaneously
pending for a given thread that is scheduled under the sporadic server policy shall not be
greater than sched_ss_max_repl.

7. A replenishment operation consists of adding the corresponding replenish_amount to the
available execution capacity at the scheduled time. If, as a consequence of this operation,
the execution capacity would become larger than sched_ss_initial_budget, it shall be
rounded down to a value equal to sched_ss_initial_budget. Additionally, if the thread was
runnable or running, and had assigned priority equal to sched_ss_low_priority, then it
becomes the tail of the thread list for sched_priority.

Execution time is defined in Section 2.2.2 (on page 513).

For this policy, changing the value of a CPU-time clock via clock_settime() shall have no effect on
its behavior.

For this policy, valid priorities shall be within the range returned by the sched_get_priority_min()
and sched_get_priority_max() functions when SCHED_SPORADIC is provided as the parameter.
Conforming implementations shall provide a priority range of at least 32 distinct priorities for
this policy.

System Interfaces, Issue 6 549

2138

2139
2140
2141
2142
2143

2144
2145

2146
2147
2148

2149

2150
2151

2152

2153

2154
2155

2156
2157

2158
2159

2160
2161
2162

2163
2164

2165
2166

2167
2168

2169
2170
2171

2172
2173
2174

Realtime General Information

SS

2.8.5

TMR

550

SCHED_OTHER

Conforming implementations shall include one scheduling policy identified as SCHED_OTHER
(which may execute identically with either the FIFO or round robin scheduling policy). The
effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads
are executing under SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is implementation-
defined.

This policy is defined to allow conforming applications to be able to indicate that they no longer
need a realtime scheduling policy in a portable manner.

For threads executing under this policy, the implementation shall use only priorities within the
range returned by the sched get priority_max() and sched get priority_ min() functions when
SCHED_OTHER is provided as the parameter.

Clocks and Timers

The functionality described in this section is dependent on support of the Timers option (and the
rest of this section is not further shaded for this option).

The <time.h> header defines the types and manifest constants used by the timing facility.

Time Value Specification Structures

Many of the timing facility functions accept or return time value specifications. A time value
structure timespec specifies a single time value and includes at least the following members:

Member Type Member Name Description

time_t tv_sec Seconds.
long tv_nsec Nanoseconds.

The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
nanoseconds in a second (1,000 million). The time interval described by this structure is (tv_sec *
10 + tv_nsec) nanoseconds.

A time value structure itimerspec specifies an initial timer value and a repetition interval for use
by the per-process timer functions. This structure includes at least the following members:

Member Type Member Name Description
struct timespec it_interval Timer period.
struct timespec it value Timer expiration.

If the value described by it_value is non-zero, it indicates the time to or time of the next timer
expiration (for relative and absolute timer values, respectively). If the value described by it_value
is zero, the timer shall be disarmed.

If the value described by it_interval is non-zero, it specifies an interval to be used in reloading the
timer when it expires; that is, a periodic timer is specified. If the value described by it_interval is
zero, the timer is disarmed after its next expiration; that is, a one-shot timer is specified.

Technical Standard (2000) (Draft July 31, 2000)

2175

2176
2177
2178
2179
2180

2181

2182
2183

2184

2185
2186

2187
2188
2189
2190

2191
2192
2193
2194
2195
2196
2197
2198

2199
2200
2201
2202
2203

2204

2205
2206

2207

2208
2209
2210
2211

2212
2213

2214
2215
2216
2217
2218

General Information Realtime

RTS

MON

MON

MON

CPT

TCT

CPT|TCT

CPT

Timer Event Notification Control Block

Per-process timers may be created that notify the process of timer expirations by queuing a
realtime extended signal. The sigevent structure, defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, <signal.h>, is used in creating such a timer. The sigevent structure
contains the signal number and an application-specific data value to be used when notifying the
calling process of timer expiration events.

Manifest Constants

The following constants are defined in the Base Definitions volume of IEEE Std. 1003.1-200x,
<time.h>:

CLOCK_REALTIME The identifier for the system-wide realtime clock.
TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated
with a timer.

CLOCK_MONOTONIC The identifier for the system-wide monotonic clock, which is defined
as a clock whose value cannot be set via clock_settime() and which
cannot have backward clock jumps. The maximum possible clock
jump is implementation-defined.

The maximum allowable resolution for the CLOCK REALTIME and the
CLOCK_MONOTONIC clocks and all time services based on these clocks is represented by
{ POSIX_CLOCKRES_MIN} and is defined as 20ms (1/50 of a second). Implementations may
support smaller values of resolution for these clocks to provide finer granularity time bases. The
actual resolution supported by an implementation for a specific clock is obtained using the
clock_getres() function. If the actual resolution supported for a time service based on one of these
clocks differs from the resolution supported for that clock, the implementation shall document
this difference.

The minimum allowable maximum value for the CLOCK REALTIME and the
CLOCK_MONOTONIC clocks and all absolute time services based on them is the same as that
defined by the ISO C standard for the time_t type. If the maximum value supported by a time
service based on one of these clocks differs from the maximum value supported by that clock,
the implementation shall document this difference.

Execution Time Monitoring

If _POSIX_CPUTIME is defined, process CPU-time clocks shall be supported in addition to the
clocks described in Manifest Constants.

If _POSIX_THREAD_CPUTIME is defined, thread CPU-time clocks shall be supported.

CPU-time clocks measure execution or CPU time, which is defined in the Base Definitions
volume of IEEE Std. 1003.1-200%, Section 3.120, CPU Time (Execution Time). The mechanism
used to measure execution time is described in the Base Definitions volume of
IEEE Std. 1003.1-200x, Section 4.7, Measurement of Execution Time.

If _POSIX_CPUTIME is defined, the following constant of the type clockid_t shall be defined in
<time.h>:

CLOCK_PROCESS_CPUTIME_ID
When this value of the type clockid_t is used in a clock() or timer*() function call, it is
interpreted as the identifier of the CPU-time clock associated with the process making the
function call.

System Interfaces, Issue 6 551

Realtime General Information

2219 TCT If POSIX THREAD_CPUTIME is defined, the following constant of the type clockid_t shall be
2220 defined in <time.h>:

2221 CLOCK_THREAD_CPUTIME_ID

2222 When this value of the type clockid_t is used in a clock() or timer*() function call, it is
2223 interpreted as the identifier of the CPU-time clock associated with the thread making the
2224 function call.

2225

552 Technical Standard (2000) (Draft July 31, 2000)

2226

2227
2228

2229
2230
2231

2232

2233
2234

2235
2236

2237

2238
2239

2240
2241
2242
2243
2244
2245
2246
2247

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257

2258

2259
2260

2261
2262
2263
2264
2265
2266
2267
2268

General Information Threads

2.9

THR

29.1

XSl

Threads

The functionality described in this section is dependent on support of the Threads option (and
the rest of this section is not further shaded for this option).

This section defines functionality to support multiple flows of control, called threads, within a
process. For the definition of threads, see the Base Definitions volume of IEEE Std. 1003.1-200x,
Section 3.395, Thread.

The specific functional areas covered by threads and their scope includes:

- Thread management: the creation, control, and termination of multiple flows of control in the
same process under the assumption of a common shared address space

- Synchronization primitives optimized for tightly coupled operation of multiple control flows
in a common, shared address space

Thread-Safety

All functions defined by this volume of IEEE Std. 1003.1-200x shall be thread-safe, except that
the following functions need not be thread-safe.

asctime() gethostbyname() getprotobynumber() inet_ntoa() ttyname()
ctime() gethostent() getprotoent() localtime () unsetenv()
getc_unlocked () getlogin() getpwnam() putc_unlocked () westombs()
getchar_unlocked() getnetbyaddr() getpwuid() putchar_unlocked() wctomb()
getenv() getnetbyname() getservbyname() rand()

getgrgid() getnetent() getservbyport() readdir()

getgrnam() getopt() getservent() setenv()

gethostbyaddr () getprotobyname() gmtime() strtok ()

basename() dbm_open() fevt() hdestroy() setgrent()
catgets() dbm_store() gevt() hsearch () setkey ()

crypt() dirname() getdate() 164a() setpwent()
dbm_clearerr() dlerror() getenv() Ilgamma() setutxent()
dbm_close() drand48() getgrent() Irand48() strerror()
dbm_delete() ecvt() getpwent() mrand48()

dbm_error() encrypt() getutxent() nl_langinfo ()

dbm_fetch() endgrent() getutxid () ptsname()

dbm_firstkey () endpwent() getutxline() putenv()

dbm_nextkey () endutxent() hcreate () pututxline()

The read() function need not be thread-safe when reading from a pipe, FIFO, socket, or terminal
device.

Note: While a read from a pipe of {PIPE_MAX}*2 bytes may not generate a single atomic
and thread-safe stream of bytes, it should generate “‘several” (individually atomic)
thread-safe streams of bytes. Similiarly, while reading from a terminal device may
not generate a single atomic and thread-safe stream of bytes, it should generate some
finite number of (individually atomic) and thread-safe streams of bytes. That is,
concurrent calls to read for a pipe, FIFO, or terminal device are not allowed to result
in corrupting the stream of bytes or other internal data. However, read(), in these
cases, is not required to return a single contiguous and atomic stream of bytes.

System Interfaces, Issue 6 553

Threads General Information

2269 The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL argument. The
2270 wertomb () and wesrtombs() functions need not be thread-safe if passed a NULL ps argument.

2271 Implementations shall provide internal synchronization as necessary in order to satisfy this
2272 requirement.

2273 2.9.2 Thread IDs

2274 Although implementations may have thread IDs that are unique in a system, applications
2275 should only assume that thread IDs are usable and unique within a single process. The effect of
2276 calling any of the functions defined in this volume of IEEE Std. 1003.1-200x and passing as an
2277 argument the thread ID of a thread from another process is unspecified. A conforming
2278 implementation is free to reuse a thread ID after the thread terminates if it was created with the
2279 detachstate attribute set to PTHREAD_CREATE DETACHED or if pthread detach() or
2280 pthread join() has been called for that thread. If a thread is detached, its thread ID is invalid for
2281 use as an argument in a call to pthread_detach() or pthread_join ().

2282 2.9.3 Thread Mutexes

2283 A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
2284 processing resources from eventually making forward progress in its execution. Eligibility for
2285 processing resources is determined by the scheduling policy.

2286 A thread becomes the owner of a mutex, m, when one of the following occurs:

2287 « It returns successfully from pthread_mutex_lock () with m as the mutex argument.

2288 « It returns successfully from pthread_mutex_trylock () with m as the mutex argument.

2289 TMO « It returns successfully from pthread _mutex_timedwait() with m as the mutex argument.

2290 « It returns (successfully or not) from pthread cond_wait() with m as the mutex argument
2291 (except as explicitly indicated otherwise for certain errors).

2292 « It returns (successfully or not) from pthread_cond_timedwait() with m as the mutex argument
2293 (except as explicitly indicated otherwise for certain errors).

2294 The thread remains the owner of m until one of the following occurs:

2295 - It executes pthread_mutex_unlock() with m as the mutex argument

2296 - It blocks in a call to pthread_cond_wait() with m as the mutex argument.

2297 - It blocks in a call to pthread_cond_timedwait() with m as the mutex argument.

2298 The implementation behaves as if at all times there is at most one owner of any mutex.

2299 A thread that becomes the owner of a mutex is said to have acquired the mutex and the mutex is
2300 said to have become locked; when a thread gives up ownership of a mutex it is said to have
2301 released the mutex and the mutex is said to have become unlocked.

554 Technical Standard (2000) (Draft July 31, 2000)

2302 2.94

2303

2304
2305

2306
2307

2308
2309

2310
2311
2312

2313
2314
2315

2316
2317
2318
2319
2320
2321

2322
2323
2324
2325
2326

2327
2328
2329
2330

2331

2332
2333
2334
2335
2336

2337
2338

2339
2340
2341
2342
2343
2344
2345

General Information Threads

TSP

Thread Scheduling

Thread Scheduling Attributes

Thread scheduling attributes are dependent on support of the Thread Execution Scheduling
option.

In support of the scheduling function, threads have attributes which are accessed through the
pthread_attr_t thread creation attributes object.

The contentionscope attribute defines the scheduling contention scope of the thread to be either
PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
attributes of the creating thread or to have its scheduling values set according to the other
scheduling attributes in the pthread_attr_t object.

The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
defines the scheduling parameters for the thread. The interaction of threads having different
policies within a process is described as part of the definition of those policies.

If the Thread Execution Scheduling option is defined, and the schedpolicy attribute specifies one
of the priority-based policies defined under this option, the schedparam attribute contains the
scheduling priority of the thread. A conforming implementation ensures that the priority value
in schedparam is in the range associated with the scheduling policy when the thread attributes
object is used to create a thread, or when the scheduling attributes of a thread are dynamically
modified. The meaning of the priority value in schedparam is the same as that of priority.

If POSIX_THREAD_SPORADIC_SERVER is defined, the schedparam attribute supports four
new members that are used for the sporadic server scheduling policy. These members are
sched ss_low_priority, sched ss_repl period, sched ss init budget, and sched ss max_repl. The
meaning of these attributes is the same as in the definitions that appear under Section 2.8.4 (on
page 546).

When a process is created, its single thread has a scheduling policy and associated attributes
equal to the process’ policy and attributes. The default scheduling contention scope value is
implementation-defined. The default values of other scheduling attributes are implementation-
defined.

Thread Scheduling Contention Scope

The scheduling contention scope of a thread defines the set of threads with which the thread
competes for use of the processing resources. The scheduling operation selects at most one
thread to execute on each processor at any point in time and the thread’s scheduling attributes
(for example, priority), whether under process scheduling contention scope or system scheduling
contention scope, are the parameters used to determine the scheduling decision.

The scheduling contention scope, in the context of scheduling a mixed scope environment,
effects threads as follows:

« A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
for resources with all other threads in the same scheduling allocation domain relative to their
system scheduling attributes. The system scheduling attributes of a thread created with
PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling attributes with
which the thread was created. The system scheduling attributes of a thread created with
PTHREAD_SCOPE_PROCESS scheduling contention scope are the implementation-defined
mapping into system attribute space of the scheduling attributes with which the thread was

System Interfaces, Issue 6 555

2346

2347
2348
2349
2350
2351
2352

2353
2354

2355

2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

2367
2368
2369
2370

2371
2372
2373
2374
2375
2376

2377
2378
2379
2380
2381
2382

2383
2384
2385

Threads

TSP

TSP

556

General Information

created.

« Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
directly with other threads within their process that were created with
PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
based on the threads’ scheduling attributes and policies. It is unspecified how such threads
are scheduled relative to threads in other processes or threads with
PTHREAD_SCOPE_SYSTEM scheduling contention scope.

« Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling
contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

Scheduling Allocation Domain

Implementations shall support scheduling allocation domains containing one or more
processors. It should be noted that the presence of multiple processors does not automatically
indicate a scheduling allocation domain size greater than one. Conforming implementations on
multiprocessors may map all or any subset of the CPUs to one or multiple scheduling allocation
domains, and could define these scheduling allocation domains on a per-thread, per-process, or
per-system basis, depending on the types of applications intended to be supported by the
implementation. The scheduling allocation domain is independent of scheduling contention
scope, as the scheduling contention scope merely defines the set of threads with which a thread
contends for processor resources, while scheduling allocation domain defines the set of
processors for which it contends. The semantics of how this contention is resolved among
threads for processors is determined by the scheduling policies of the threads.

The choice of scheduling allocation domain size and the level of application control over
scheduling allocation domains is implementation-defined. Conforming implementations may
change the size of scheduling allocation domains and the binding of threads to scheduling
allocation domains at any time.

For application threads with scheduling allocation domains of size equal to one, the scheduling
rules defined for SCHED_FIFO and SCHED_RR shall be used; see Scheduling Policies (on page
546). All threads with system scheduling contention scope, regardless of the processes in which
they reside, compete for the processor according to their priorities. Threads with process
scheduling contention scope compete only with other threads with process scheduling
contention scope within their process.

For application threads with scheduling allocation domains of size greater than one, the rules
defined for SCHED_FIFO, SCHED RR, and SCHED_SPORADIC shall be used in an
implementation-defined manner. Each thread with system scheduling contention scope
competes for the processors in its scheduling allocation domain in an implementation-defined
manner according to its priority. Threads with process scheduling contention scope are
scheduled relative to other threads within the same scheduling contention scope in the process.

If POSIX_ THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
in Scheduling Policies (on page 546) shall be used in an implementation-defined manner for
application threads whose scheduling allocation domain size is greater than one.

Technical Standard (2000) (Draft July 31, 2000)

2386

2387
2388
2389
2390
2391
2392

2393

2394
2395
2396
2397

2398
2399
2400

2401
2402
2403
2404
2405

2406
2407
2408

2409

2410
2411

2412

2413
2414
2415
2416

2417
2418
2419
2420
2421
2422
2423
2424
2425

General Information Threads

TSP

295

2951

Scheduling Documentation

If POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of
the scheduling policies indicated by these other values, and the attributes required in order to
support such a policy, are implementation-defined. Furthermore, the implementation shall
document the effect of all processor scheduling allocation domain values supported for these
policies.

Thread Cancelation

The thread cancelation mechanism allows a thread to terminate the execution of any other
thread in the process in a controlled manner. The target thread (that is, the one that is being
canceled) is allowed to hold cancelation requests pending in a number of ways and to perform
application-specific cleanup processing when the notice of cancelation is acted upon.

Cancelation is controlled by the cancelation control functions. Each thread maintains its own
cancelability state. Cancelation may only occur at cancelation points or when the thread is
asynchronously cancelable.

The thread cancelation mechanism described in this section depends upon programs having set
deferred cancelability state, which is specified as the default. Applications shall also carefully
follow static lexical scoping rules in their execution behavior. For example, use of setjimp(),
return, goto, and so on, to leave user-defined cancelation scopes without doing the necessary
scope pop operation results in undefined behavior.

Use of asynchronous cancelability while holding resources which potentially need to be released
may result in resource loss. Similarly, cancelation scopes may only be safely manipulated
(pushed and popped) when the thread is in the deferred or disabled cancelability states.

Cancelability States

The cancelability state of a thread determines the action taken upon receipt of a cancelation
request. The thread may control cancelation in a number of ways.

Each thread maintains its own cancelability state, which may be encoded in two bits:

1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined in
the Base Definitions volume of IEEE Std. 1003.1-200%, <pthread.h>), cancelation requests
against the target thread are held pending. By default, cancelability is set to
PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2. Cancelability Type: When cancelability is enabled and the cancelability type is
PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
cancelation requests may be acted upon at any time. When cancelability is enabled and the
cancelability type is PTHREAD CANCEL DEFERRED (as defined in <pthread.h>),
cancelation requests are held pending until a cancelation point (see below) is reached. If
cancelability is disabled, the setting of the cancelability type has no immediate effect as all
cancelation requests are held pending; however, once cancelability is enabled again the
new type is in effect. The cancelability type is PTHREAD_ CANCEL_DEFERRED in all
newly created threads including the thread in which main() was first invoked.

System Interfaces, Issue 6 557

2426 2.9.5.2

2427

2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441

2442

Threads

Cancelation Points

General Information

Cancelation points occur when a thread is executing the following functions:

accept()
aio_suspend()
clock_nanosleep()
close()

connect()

creat()

fentl()!

fsync()

getmsg()
getpmsg ()

lockf()
mq_receive()
ma_send()
mq_timedreceive()

mq_timedsend()
msgrev()

msgsnd()

msync()

nanosleep ()

open()

pause()

poll ()

pread()
pthread_cond_timedwait()
pthread _cond_ wait()
pthread join()
pthread_testcancel ()
putmsg()

2443 1. When the cmd argument is F_SETLKW.

558

putpmsg()
pwrite()
read()
readv ()
recv()
recvfrom()
recvmsg()
select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigpause()

sigsuspend()
sigtimedwait ()
sigwait()
sigwaitinfo ()
sleep()
system()
tedrain()
usleep()
wait()
waitid ()
waitpid ()
write()
writev()

Technical Standard (2000) (Draft July 31, 2000)

2444

2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485

2486
2487

2488

General Information

Threads

A cancelation point may also occur when a thread is executing the following functions:

catclose()
catgets()
catopen ()
closedir ()
closelog()
ctermid()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey ()
dbm_open()
dbm_store()
diclose()
dlopen()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
fclose()
fentl()?
fflush()
fgetc()
fgetpos()
fgets()
fgetwe()
fgetws()
fopen()
fprintf()
fputc()
fputs()
fputwe()
fputws()
fread()
freopen()
fscanf()
fseek ()
fseeko()
fsetpos()

ftell ()
ftello()
ftw()
fwprintf()
fwrite()
fwscanf()

getc()

getc_unlocked ()

getchar()

getchar_unlocked()

getewd()
getdate()
getgrent()
getgrgid ()
getgrgid_r()
getgrnam()
getgrnam_r()

gethostbyaddr ()
gethostbyname()

gethostent()
gethostname()
getlogin()
getlogin_r()
getnetbyaddr ()

getnetbyname()

getnetent()

getprotobyname()
getprotobynumber()

getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()

getservbyname()
getservbyport()

getservent()
getutxent()
getutxid()

getutxline()

getwe()
getwchar()
getwd()

glob()
iconv_close()
iconv_open()

ioctl ()

Iseek()

mkstemp()

nftw()

opendir()
openlog()

pclose()

perror()

popen ()
posix_fadvise ()
posix_fallocate()
posix_madvise ()
posix_spawn ()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()

posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()

posix_trace_flush()
posix_trace_get attr()
posix_trace_get filter()
posix_trace_get status()

posix_trace_getnext_event()

posix_trace_open()
posix_trace_rewind()
posix_trace_set filter()
posix_trace_shutdown()

posix_trace_timedgetnext_event()

posix_typed_mem_open()
printf()
pthread_rwlock_rdlock()

pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()

pthread_rwlock_wrlock()
putc()
putc_unlocked ()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar ()
readdir()
readdir_r()
remove()
rename()
rewind()
rewinddir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
strerror()
syslog ()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
ungetc()
ungetwce()
unlink()
viprintf()
viwprintf()
vprintf()
vwprintf()
wprintf()
wscanf()

An implementation shall not introduce cancelation points into any other functions specified in
this volume of IEEE Std. 1003.1-200x.

2489 2. For any value of the cmd argument.

System Interfaces, Issue 6

559

Threads General Information

2490 The side effects of acting upon a cancelation request while suspended during a call of a function
2491 are the same as the side effects that may be seen in a single-threaded program when a call to a
2492 function is interrupted by a signal and the given function returns [EINTR]. Any such side effects
2493 occur before any cancelation cleanup handlers are called.

2494 Whenever a thread has cancelability enabled and a cancelation request has been made with that
2495 thread as the target and the thread calls pthread_testcancel (), then the cancelation request is acted
2496 upon before pthread_testcancel () returns. If a thread has cancelability enabled and the thread has
2497 a cancelation request pending and the thread is suspended at a cancelation point waiting for an
2498 event to occur, then the cancelation request shall be acted upon. However, if the thread is
2499 suspended at a cancelation point and the event that it is waiting for occurs before the cancelation
2500 request is acted upon, it is unspecified whether the cancelation request is acted upon or whether
2501 the request remains pending and the thread resumes normal execution.

2502 2.9.5.3 Thread Cancelation Cleanup Handlers

2503 Each thread maintains a list of cancelation cleanup handlers. The programmer uses the
2504 pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
2505 routines from this list.

2506 When a cancelation request is acted upon, the routines in the list are invoked one by one in LIFO
2507 sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
2508 Out). The thread invokes the cancelation cleanup handler with cancelation disabled until the last
2509 cancelation cleanup handler returns. When the cancelation cleanup handler for a scope is
2510 invoked, the storage for that scope remains valid. If the last cancelation cleanup handler returns,
2511 thread execution is terminated and a status of PTHREAD_CANCELED is made available to any
2512 threads joining with the target. The symbolic constant PTHREAD_CANCELED expands to a
2513 constant expression of type (void*) whose value matches no pointer to an object in memory nor
2514 the value NULL.

2515 The cancelation cleanup handlers are also invoked when the thread calls pthread_exit().

2516 A side effect of acting upon a cancelation request while in a condition variable wait is that the
2517 mutex is re-acquired before calling the first cancelation cleanup handler. In addition, the thread
2518 is no longer considered to be waiting for the condition and the thread shall not have consumed
2519 any pending condition signals on the condition.

2520 A cancelation cleanup handler cannot exit via longjmp () or siglongjmp ().

2521 2.9.5.4 Async-Cancel Safety

2522 The pthread_cancel (), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
2523 be async-cancel safe.
2524 No other functions in this volume of IEEE Std. 1003.1-200x are required to be async-cancel-safe.

2525 2.9.6 Thread Read-Write Locks

2526 Multiple readers, single writer (read-write) locks allow many threads to have simultaneous
2527 read-only access to data while allowing only one thread to have exclusive write access at any
2528 given time. They are typically used to protect data that is read-only more frequently than it is
2529 changed.

2530 One or more readers acquire read access to the resource by performing a read lock operation on
2531 the associated read-write lock. A writer acquires exclusive write access by performing a write
2532 lock operation. Basically, all readers exclude any writers and a writer excludes all readers and
2533 any other writers.

560 Technical Standard (2000) (Draft July 31, 2000)

2534
2535
2536
2537

2538
2539
2540

2541

2542
2543
2544
2545
2546

General Information Threads

2.9.7

A thread that has blocked on a read-write lock (for example, has not yet returned from a
pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent any unblocked thread
that is eligible to use the same processing resources from eventually making forward progress in
its execution. Eligibility for processing resources shall be determined by the scheduling policy.

Read-write locks can be used to synchronize threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialized for this behavior.

Thread Interactions with Regular File Operations

All of the functions chmod(), close(), fchmod (), fentl(), fstat(), ftruncate(), Iseek(), open(), read(),
readlink (), stat(), symlink(), and write() shall be atomic with respect to each other in the effects
specified in IEEE Std. 1003.1-200x when they operate on regular files. If two threads each call one
of these functions, each call shall either see all of the specified effects of the other call, or none of
them.

System Interfaces, Issue 6 561

2547

2548
2549
2550
2551

2552

2553
2554
2555
2556
2557
2558
2559
2560

2561
2562
2563

2564

2565
2566
2567
2568
2569
2570
2571

2572

2573
2574
2575
2576
2577
2578
2579

2580

2581
2582

Sockets

2.10

2.10.1

2.10.2

2.10.3

2.10.4

562

General Information

Sockets

A socket is an endpoint for communication using the facilities described in this section. A socket
is created with a specific socket type, described in Section 2.10.6 (on page 563), and is associated
with a specific protocol, detailed in Section 2.10.2. A socket is accessed via a file descriptor
obtained when the socket is created.

Protocol Families

All network protocols are associated with a specific protocol family. A protocol family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol family may support multiple methods of addressing.
Each method represents an address family. A protocol family is normally comprised of a
number of protocols, one per socket type. Each protocol is characterized by an abstract socket
type. It is not required that a protocol family support all socket types. A protocol family may
contain multiple protocols supporting the same socket abstraction.

Section 2.10.17 (on page 569), Section 2.10.18 (on page 569), and Section 2.10.19 (on page 570),
respectively, describe the use of sockets for local UNIX connections, for Internet protocols based
on IPv4, and for Internet protocols based on IPv6.

Protocols

A protocol supports one of the socket abstractions detailed in Section 2.10.6 (on page 563).
Selecting a protocol involves specifying the protocol family, socket type, and protocol number to
the socket() function. Protocols normally accept only one type of address format, usually
determined by the addressing structure inherent in the design of the protocol family/network
architecture. Certain semantics of the basic socket abstractions are protocol-specific. All
protocols are expected to support the basic model for their particular socket type, but may, in
addition, provide non-standard facilities or extensions to a mechanism.

Addressing

Associated with each protocol family is at least one address family. An address family defines
the format of a socket address. All network addresses are described using a general structure,
called a sockaddr, as defined in the Base Definitions volume of IEEE Std.1003.1-200x,
<sys/socket.n>. However, each address family imposes finer and more specific structure,
generally defining a structure with fields specific to the address family. The field sa_family in the
sockaddr structure contains the address family identifier, specifying the format of the sa_data
area. The size of the sa_data area is unspecified.

Routing

Sockets provides packet routing facilities. A routing information database is maintained, which
is used in selecting the appropriate network interface when transmitting packets.

Technical Standard (2000) (Draft July 31, 2000)

2583

2584
2585
2586

2587

2588
2589
2590
2591

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601

2602
2603
2604
2605
2606
2607
2608

2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620

2621

2622
2623
2624

2625
2626
2627
2628
2629

General Information Sockets

2.10.5

2.10.6

2.10.7

Interfaces

Each network interface in a system corresponds to a path through which messages can be sent
and received. A network interface usually has a hardware device associated with it, though
certain interfaces such as the loopback interface, do not.

Socket Types

A socket is created with a specific type, which defines the communication semantics and which
allows the selection of an appropriate communication protocol. Three types are defined:
SOCK_STREAM, SOCK_SEQPACKET, and SOCK_DGRAM. Implementations may specify
additional socket types.

The SOCK _STREAM socket type provides reliable, sequenced, full-duplex octet streams
between the socket and a peer to which the socket is connected. A socket of type
SOCK_STREAM must be in a connected state before any data may be sent or received. Record
boundaries are not maintained; data sent on a stream socket using output operations of one size
may be received using input operations of smaller or larger sizes without loss of data. Data may
be buffered; successful return from an output function does not imply that the data has been
delivered to the peer or even transmitted from the local system. If data cannot be successfully
transmitted within a given time then the connection is considered broken, and subsequent
operations shall fail. A SIGPIPE signal is raised if a thread sends on a broken stream (one that is
no longer connected). Support for an out-of-band data transmission facility is protocol-specific.

The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also
connection-oriented. The only difference between these types is that record boundaries are
maintained using the SOCK_SEQPACKET type. A record can be sent using one or more output
operations and received using one or more input operations, but a single operation never
transfers parts of more than one record. Record boundaries are visible to the receiver via the
MSG_EOR flag in the received message flags returned by the recvmsg() function. It is protocol-
specific whether a maximum record size is imposed.

The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
acknowledged or reliable. Datagrams may be sent to a peer named in each output operation, and
incoming datagrams may be received from multiple sources. The source address of each
datagram is available when receiving the datagram. An application may also pre-specify a peer
address, in which case calls to output functions shall send to the pre-specified peer. If a peer has
been specified, only datagrams from that peer shall be received. A datagram must be sent in a
single output operation, and must be received in a single input operation. The maximum size of
a datagram is protocol-specific; with some protocols, the limit is implementation-defined.
Output datagrams may be buffered within the system; thus, a successful return from an output
function does not guarantee that a datagram is actually sent or received. However,
implementations should attempt to detect any errors possible before the return of an output
function, reporting any error by an unsuccessful return value.

Socket I/0O Mode

The 1/0 mode of a socket is described by the O_NONBLOCK file status flag which pertains to
the open file description for the socket. This flag is initially off when a socket is created, but may
be set and cleared by the use of the F_SETFL command of the fcntl () function.

When the O_NONBLOCK flag is set, functions that would normally block until they are
complete either return immediately with an error, or they complete asynchronously to the
execution of the calling process. Data transfer operations (the read(), write(), send(), and recv()
functions) complete immediately, transfer only as much as is available, and then return without
blocking, or return an error indicating that no transfer could be made without blocking. The

System Interfaces, Issue 6 563

2630
2631
2632

2633

2634
2635

2636

2637
2638
2639

2640

2641
2642
2643
2644

2645

2646
2647
2648
2649
2650
2651
2652

2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669

2670
2671
2672
2673
2674

Sockets

2.10.8

2.10.9

2.10.10

2.10.11

564

General Information

connect() function initiates a connection and returns without blocking when O_NONBLOCK is
set; it returns the error [EINPROGRESS] to indicate that the connection was initiated
successfully, but that it has not yet completed.

Socket Owner

The owner of a socket is unset when a socket is created. The owner may be set to a process ID or
process group ID using the F SETOWN command of the fentl () function.

Socket Queue Limits

The transmit and receive queue sizes for a socket are set when the socket is created. The default
sizes used are both protocol-specific and implementation-defined. The sizes may be changed
using the setsockopt () function.

Pending Error

Errors may occur asynchronously, and be reported to the socket in response to input from the
network protocol. The socket stores the pending error to be reported to a user of the socket at the
next opportunity. The error is returned in response to a subsequent send(), recv(), or getsockopt()
operation on the socket, and the pending error is then cleared.

Socket Receive Queue

A socket has a receive queue that buffers data when they are received by the system until they
are removed by a receive call. Depending on the type of the socket and the communication
provider, the receive queue may also contain ancillary data such as the addressing and other
protocol data associated with the normal data in the queue, and may contain out-of-band or
expedited data. The limit on the queue size includes any normal, out-of-band data, datagram
source addresses, and ancillary data in the queue. The description in this section applies to all
sockets, even though some elements cannot be present in some instances.

The contents of a receive buffer are logically structured as a series of data segments with
associated ancillary data and other information. A data segment may contain normal data or
out-of-band data, but never both. A data segment may complete a record if the protocol
supports records (always true for types SOCK_SEQPACKET and SOCK_DGRAM). A record
may be stored as more than one segment; the complete record might never be present in the
receive buffer at one time, as a portion might already have been returned to the application, and
another portion might not yet have been received from the communications provider. A data
segment may contain ancillary protocol data, which is logically associated with the segment.
Ancillary data is received as if it were queued along with the first normal data octet in the
segment (if any). A segment may contain ancillary data only, with no normal or out-of-band
data. For the purposes of this section, a datagram is considered to be a data segment that
terminates a record, and that includes a source address as a special type of ancillary data. Data
segments are placed into the queue as data is delivered to the socket by the protocol. Normal
data segments are placed at the end of the queue as they are delivered. If a new segment
contains the same type of data as the preceding segment and includes no ancillary data, and if
the preceding segment does not terminate a record, the segments are logically merged into a
single segment.

The receive queue is logically terminated if an end-of-file indication has been received or a
connection has been terminated. A segment shall be considered to be terminated if another
segment follows it in the queue, if the segment completes a record, or if an end-of-file or other
connection termination has been reported. The last segment in the receive queue shall also be
considered to be terminated while the socket has a pending error to be reported.

Technical Standard (2000) (Draft July 31, 2000)

2675

2676

2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689

2690

2691
2692
2693

2694

2695
2696
2697
2698

2699
2700

2701
2702
2703
2704
2705

2706

2707
2708

2709
2710

2711
2712
2713
2714

2715
2716

General Information Sockets

2.10.12

2.10.13

2.10.14

2.10.15

A receive operation shall never return data or ancillary data from more than one segment.

Socket Out-of-Band Data State

The handling of received out-of-band data is protocol-specific. Out-of-band data may be placed
in the socket receive queue, either at the end of the queue or before all normal data in the queue.
In this case, out-of-band data is returned to an application program by a normal receive call.
Out-of-band data may also be queued separately rather than being placed in the socket receive
queue, in which case it shall be returned only in response to a receive call that requests out-of-
band data. It is protocol-specific whether an out-of-band data mark is placed in the receive
queue to demarcate data preceding the out-of-band data and following the out-of-band data. An
out-of-band data mark is logically an empty data segment that cannot be merged with other
segments in the queue. An out-of-band data mark is never returned in response to an input
operation. The sockatmark () function can be used to test whether an out-of-band data mark is the
first element in the queue. If an out-of-band data mark is the first element in the queue when an
input function is called without the MSG_PEEK option, the mark is removed from the queue and
the following data (if any) are processed as if the mark had not been present.

Connection Indication Queue

Sockets that are used to accept incoming connections maintain a queue of outstanding
connection indications. This queue is a list of connections that are awaiting acceptance by the
application. See listen().

Signals

One category of event at the socket interface is the generation of signals. These signals report
protocol events or process errors relating to the state of the socket. The generation or delivery of
a signal does not change the state of the socket, although the generation of the signal may have
been caused by a state change.

The SIGPIPE signal shall be sent to a thread that attempts to send data on a socket that is no
longer able to send. In addition, the send operation fails with the error [EPIPE].

If a socket has an owner, the SIGURG signal is sent to the owner of the socket when it is notified
of expedited or out-of-band data. The socket state at this time is protocol-dependent, and the
status of the socket is specified in Section 2.10.17 (on page 569), Section 2.10.18 (on page 569),
and Section 2.10.19 (on page 570). Depending on the protocol, the expedited data may or may
not have arrived at the time of signal generation.

Asynchronous Errors

If any of the following conditions occur asynchronously for a socket, the corresponding value
listed below shall become the pending error for the socket:

[ECONNABORTED]
The connection was aborted locally.

[ECONNREFUSED]
For a connection-mode socket attempting a non-blocking connection, the attempt to connect
was forcefully rejected. For a connectionless-mode socket, an attempt to deliver a datagram
was forcefully rejected.

[ECONNRESET]
The peer has aborted the connection.

System Interfaces, Issue 6 565

2717
2718

2719
2720

2721
2722
2723

2724
2725

2726
2727

2728
2729

2730

2731
2732
2733

2734
2735
2736

2737
2738
2739
2740

2741
2742
2743
2744

2745

2746

2747
2748

2749
2750
2751
2752
2753

Sockets

2.10.16

566

General Information

[EHOSTDOWN]
The destination host has been determined to be down or disconnected.

[EHOSTUNREACH]
The destination host is not reachable.

[EMSGSIZE]
For a connectionless-mode socket, the size of a previously sent datagram prevented
delivery.

[ENETDOWN]
The local network connection is not operational.

[ENETRESET]
The connection was aborted by the network.

[ENETUNREACH]
The destination network is not reachable.

Use of Options

There are a number of socket options which either specialize the behavior of a socket or provide
useful information. These options may be set at different protocol levels and are always present
at the uppermost ““socket” level.

Socket options are manipulated by two functions, getsockopt() and setsockopt(). These functions
allow an application program to customize the behavior and characteristics of a socket to
provide the desired effect.

All of the options have default values. The type and meaning of these values is defined by the
protocol level to which they apply. Instead of using the default values, an application program
may choose to customize one or more of the options. However, in the bulk of cases, the default
values are sufficient for the application.

Some of the options are used to enable or disable certain behavior within the protocol modules
(for example, turn on debugging) while others may be used to set protocol-specific information
(for example, IP time-to-live on all the application’s outgoing packets). As each of the options is
introduced, its effect on the underlying protocol modules is described.

Table 2-4 shows the value for the socket level.

Table 2-4 Value of Level for Socket Options

Name Description
SOL_SOCKET | Options are intended for the sockets level.

Table 2-5 (on page 567) lists those options present at the socket level; that is, when the level
parameter of the getsockopt() or setsockopt() function is SOL_SOCKET, the types of the option
value parameters associated with each option, and a brief synopsis of the meaning of the option
value parameter. Unless otherwise noted, each may be examined with getsockopt () and set with
setsockopt () on all types of socket.

Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2754 Table 2-5 Socket-Level Options

2755 Option Parameter Type Parameter Meaning

2756 SO _BROADCAST | (void?*)int Non-zero requests permission to transmit

2757 broadcast datagrams (SOCK_DGRAM sockets

2758 only).

2759 SO_DEBUG int Non-zero requests debugging in underlying

2760 protocol modules.

2761 SO_DONTROUTE | int Non-zero requests bypass of normal routing;

2762 route based on destination address only.

2763 SO_ERROR int Requests and clears pending error information

2764 on the socket (getsockopt () only).

2765 SO_KEEPALIVE int Non-zero requests periodic transmission of

2766 keepalive messages (protocol-specific).

2767 SO_LINGER struct linger Specify actions to be taken for queued, unsent

2768 data on close(): linger on/off and linger time in

2769 seconds.

2770 SO_OOBINLINE int Non-zero requests that out-of-band data be

2171 placed into normal data input queue as received.
2172 SO_RCVBUF int Size of receive buffer (in bytes).

2773 SO_RCVLOWAT int Minimum amount of data to return to

2774 application for input operations (in bytes).

2775 SO_RCVTIMEO struct timeval Timeout value for a socket receive operation.

2776 SO_REUSEADDR int Non-zero requests reuse of local addresses in

2177 bind() (protocol-specific).

2778 SO_SNDBUF int Size of send buffer (in bytes).

2779 SO_SNDLOWAT int Minimum amount of data to send for output

2780 operations (in bytes).

2781 SO _SNDTIMEO struct timeval Timeout value for a socket send operation.

2782 SO _TYPE int Identify socket type (getsockopt () only).

2783 The SO_BROADCAST option requests permission to send broadcast datagrams on the socket.
2784 Support for SO_BROADCAST is protocol-specific. The default for SO BROADCAST is that the
2785 ability to send broadcast datagrams on a socket is disabled.

2786 SO_DEBUG enables debugging in the underlying protocol modules. This can be useful for
2787 tracing the behavior of the underlying protocol modules during normal system operation. The
2788 semantics of the debug reports are implementation-defined. The default value for SO_DEBUG is
2789 for debugging to be turned off.

2790 SO_DONTROUTE requests that outgoing messages bypass the standard routing facilities. The
2791 destination must be on a directly-connected network, and messages are directed to the
2792 appropriate network interface according to the destination address. It is protocol-specific
2793 whether this option has any effect and how the outgoing network interface is chosen. Support
2794 for this option with each protocol is implementation-defined.

2795 SO_ERROR is used only on getsockopt (). When this option is specified, getsockopt() returns any
2796 pending error on the socket and clears the error status. It returns a value of 0 if there is no
2797 pending error. SO_ERROR may be used to check for asynchronous errors on connected
2798 connectionless-mode sockets or for other types of asynchronous errors. SO_ERROR has no
2799 default value.

System Interfaces, Issue 6 567

2800
2801
2802

2803
2804
2805
2806

2807
2808
2809
2810
2811

2812
2813
2814
2815
2816

2817
2818

2819
2820
2821
2822
2823
2824
2825
2826
2827
2828

2829
2830
2831
2832
2833
2834
2835

2836
2837
2838

2839
2840
2841
2842
2843

2844
2845
2846
2847

Sockets

568

General Information

SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. The
behavior of this option is protocol-specific. The default value for SO_KEEPALIVE is zero,
specifying that this capability is turned off.

The SO_LINGER option controls the action of the interface when unsent messages are queued
on a socket and a close() is performed. The details of this option are protocol-specific. The
default value for SO_LINGER is zero, or off, for the |_onoff element of the option value and zero
seconds for the linger time specified by the |_linger element.

SO_OOBINLINE is valid only on protocols that support out-of-band data. The SO_OOBINLINE
option requests that out-of-band data be placed in the normal data input queue as received; it is
then accessible using the read() or recv() functions without the MSG_OOB flag set. The default
for SO_OOBINLINE is off; that is, for out-of-band data not to be placed in the normal data input
queue.

SO_RCVBUF requests that the buffer space allocated for receive operations on this socket be set
to the value, in bytes, of the option value. Applications may wish to increase buffer size for high
volume connections, or may decrease buffer size to limit the possible backlog of incoming data.
The default value for the SO_RCVBUF option value is implementation-defined, and may vary by
protocol.

The maximum value for the option for a socket may be obtained by the use of the fpathconf()
function, using the value _PC_SOCK_MAXBUF.

SO_RCVLOWAT sets the minimum number of bytes to process for socket input operations. In
general, receive calls block until any (non-zero) amount of data is received, then return the
smaller of the amount available or the amount requested. The default value for SO_ RCVLOWAT
is 1, and does not affect the general case. If SO_RCVLOWAT is set to a larger value, blocking
receive calls normally wait until they have received the smaller of the low water mark value or
the requested amount. Receive calls may still return less than the low water mark if an error
occurs, a signal is caught, or the type of data next in the receive queue is different than that
returned (for example, out-of-band data). As mentioned previously, the default value for
SO_RCVLOWAT is 1 byte. It is implementation-defined whether the SO _RCVLOWAT option
can be set.

SO_RCVTIMEO is an option to set a timeout value for input operations. It accepts a timeval
structure with the number of seconds and microseconds specifying the limit on how long to wait
for an input operation to complete. If a receive operation has blocked for this much time without
receiving additional data, it returns with a partial count or errno set to [EWOULDBLOCK] if no
data were received. The default for this option is the value zero, which indicates that a receive
operation will not timeout. It is implementation-defined whether the SO_RCVTIMEO option can
be set.

SO_REUSEADDR indicates that the rules used in validating addresses supplied in a bind()
should allow reuse of local addresses. Operation of this option is protocol-specific. The default
value for SO_REUSEADDR is off; that is, reuse of local addresses is not permitted.

SO_SNDBUF requests that the buffer space allocated for send operations on this socket be set to
the value, in bytes, of the option value. The default value for the SO_SNDBUF option value is
implementation-defined, and may vary by protocol. The maximum value for the option for a
socket may be obtained by the use of the fpathconf() function, using the value
_PC_SOCK_MAXBUF.

SO_SNDLOWAT sets the minimum number of bytes to process for socket output operations.
Most output operations process all of the data supplied by the call, delivering data to the
protocol for transmission and blocking as necessary for flow control. Non-blocking output
operations process as much data as permitted subject to flow control without blocking, but

Technical Standard (2000) (Draft July 31, 2000)

2848
2849
2850
2851
2852

2853
2854
2855
2856
2857
2858
2859
2860

2861
2862
2863

2864

2865

2866

2867

2868
2869
2870
2871

2872
2873
2874
2875
2876
2877

2878

2879

2880

2881
2882
2883
2884

2885
2886
2887
2888
2889
2890

General Information Sockets

2.10.17

process no data if flow control does not allow the smaller of the send low water mark value or
the entire request to be processed. A select() operation testing the ability to write to a socket
returns true only if the send low water mark could be processed. The default value for
SO_SNDLOWAT is implementation-defined and protocol-specific. It is implementation-defined
whether the SO_SNDLOWAT option can be set.

SO_SNDTIMEO is an option to set a timeout value for the amount of time that an output
function shall block because flow control prevents data from being sent. As noted in Table 2-5
(on page 567), the option value is a timeval structure with the number of seconds and
microseconds specifying the limit on how long to wait for an output operation to complete. If a
send operation has blocked for this much time, it returns with a partial count or errno set to
[EWOULDBLOCK] if no data were sent. The default for this option is the value zero, which
indicates that a send operation will not timeout. It is implementation-defined whether the
SO_SNDTIMEO option can be set.

SO_TYPE is used only on getsockopt(). When this option is specified, getsockopt() returns the
type of the socket (for example, SOCK_STREAM). This option is useful to servers that inherit
sockets on start-up. SO_TYPE has no default value.

Use of Sockets for Local UNIX Connections
Support for UNIX domain sockets is mandatory.

UNIX domain sockets provide process-to-process communication in a single system.

2.10.17.1 Headers

2.10.18

Symbolic constant AF_UNIX is defined in the <sys/socket.h> header to identify the UNIX
domain address family. The <sys/un.h> header contains other definitions used in connection
with UNIX domain sockets. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter
13, Headers.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_un structure (see the <sys/un.h> header defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that
pointers to it can be cast as pointers to sockaddr_un structures and used to access the fields of
those structures without alignment problems. When a sockaddr_storage structure is cast as a
sockaddr_un structure, the ss_family field maps onto the sun_family field.

Use of Sockets over Internet Protocols Based on IPv4

Support for sockets over Internet protocols based on IPv4 is mandatory.

2.10.18.1 Headers

Symbolic constant AF_INET is defined in the <sys/socket.h> header to identify the IPv4 Internet
address family. The <netinet/in.h> header contains other definitions used in connection with
IPv4 Internet sockets. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13,
Headers.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_in structure (see the <netinet/in.h> header defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that
pointers to it can be cast as pointers to sockaddr_in structures and used to access the fields of
those structures without alignment problems. When a sockaddr_storage structure is cast as a
sockaddr_in structure, the ss_family field maps onto the sin_family field.

System Interfaces, Issue 6 569

Sockets

General Information

2891 2.10.19 Use of Sockets over Internet Protocols Based on IPv6

2892
2893
2894

2895
2896

1P6

This section describes extensions to support sockets over Internet protocols based on IPv6. This
functionality is dependent on support of the IPV6 option (and the rest of this section is not
further shaded for this option).

To enable smooth transition from IPv4 to IPv6, the features defined in this section may, in certain
circumstances, also be used in connection with IPv4; see Section 2.10.19.2 (on page 571).

2897 2.10.19.1 Addressing

2898
2899

2900

2901
2902

2903
2904
2905

2906
2907
2908

2909
2910

2911
2912
2913

2914
2915
2916
2917
2918
2919

2920

2921

2922
2923
2924

2925
2926
2927

2928

2929
2930
2931

2932
2933

570

IPv6 overcomes the addressing limitations of previous versions by using 128-bit addresses
instead of 32-bit addresses. The IPv6 address architecture is described in RFC 2373.

There are three kinds of IPv6 address:

Unicast
Identifies a single interface.

A unicast address can be global, link-local (designed for use on a single link), or site-local
(designed for systems not connected to the Internet). Link-local and site-local addresses
need not be globally unique.

Anycast
Identifies a set of interfaces such that a packet sent to the address can be delivered to any
member of the set.

An anycast address is similar to a unicast address; the nodes to which an anycast address is
assigned must be explicitly configured to know that it is an anycast address.

Multicast
Identifies a set of interfaces such that a packet sent to the address should be delivered to
every member of the set.

An application can send multicast datagrams by simply specifying an IPv6 multicast
address in the address argument of sendto(). To receive multicast datagrams, an application
must join the multicast group (using setsockopt() with IPV6_JOIN_GROUP) and must bind
to the socket the UDP port on which datagrams will be received. Some applications should
also bind the multicast group address to the socket, to prevent other datagrams destined to
that port from being delivered to the socket.

A multicast address can be global, node-local, link-local, site-local, or organization-local.
The following special IPv6 addresses are defined:

Unspecified
An address that is not assigned to any interface and is used to indicate the absence of an
address.

Loopback
A unicast address that is not assigned to any interface and can be used by a node to send
packets to itself.

Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

IPv4-compatible addresses
These are assigned to nodes that support IPv6 and can be used when traffic is “tunneled”
through IPv4.

IPv4-mapped addresses
These are used to represent IPv4 addresses in IPv6 address format; see Section 2.10.19.2 (on

Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2934 page 571).
2935 Note that the unspecified address and the loopback address must not be treated as IPv4-
2936 compatible addresses.

2937 2.10.19.2 Compatibility with IPv4

2938 The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
2939 by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
2940 getipnodebyname() function when the specified host has only IPv4 addresses (as described in
2941 endhostent()).

2942 Applications may use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
2943 packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
2944 IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
2945 sendto() or sendmsg() function. When applications use AF_INET6 sockets to accept TCP
2946 connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system returns the
2947 peer’s address to the application in the accept(), recvfrom(), recvmsg(), or getpeername() function
2948 using a sockaddr_in6 structure encoded this way. If a node has an IPv4 address, then the
2949 implementation may allow applications to communicate using that address via an AF_INET6
2950 socket. In such a case, the address will be represented at the API by the corresponding IPv4-
2951 mapped IPv6 address. Also, the implementation may allow an AF_INET6 socket bound to
2952 in6addr_any to receive inbound connections and packets destined to one of the node’s IPv4
2953 addresses.

2954 An application may use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
2955 address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() function. For
2956 an AF_INET6 socket bound to a node’s IPv4 address, the system returns the address in the
2957 getsockname () function as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

2958 2.10.19.3 Interface Identification

2959 Each local interface is assigned a unique positive integer as a numeric index. Indexes start at 1;
2960 zero is not used. There may be gaps so that there is no current interface for a particular positive
2961 index. Each interface also has a unique implementation-defined name.

2962 2.10.19.4 Options

2963 The following options apply at the IPPROTO_IPV6 level:

2964 IPV6_JOIN_GROUP

2965 When set via setsockopt(), it joins the application to a multicast group on an interface
2966 (identified by its index) and addressed by a given multicast address, enabling packets sent
2967 to that address to be read via the socket. If the interface index is specified as zero, the
2968 system selects the interface (for example, by looking up the address in a routing table and
2969 using the resulting interface).

2970 An attempt to read this option using getsockopt () results in an [EOPNOTSUPP] error.

2971 The value of this option is an ipv6_mreq structure.

2972 IPV6_LEAVE_GROUP

2973 When set via setsockopt(), it removes the application from the multicast group on an
2974 interface (identified by its index) and addressed by a given multicast address.

2975 An attempt to read this option using getsockopt () results in an [EOPNOTSUPP] error.

System Interfaces, Issue 6 571

2976

2977
2978
2979
2980
2981

2982
2983
2984

2985
2986
2987
2988
2989

2990
2991
2992
2993
2994

2995
2996

2997

2998
2999
3000

3001
3002
3003
3004
3005
3006

3007
3008
3009

Sockets

General Information

The value of this option is an ipv6_mreq structure.

IPV6_MULTICAST_HOPS
The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
socket. Its possible values are the same as those of IPV6 _UNICAST HOPS. If the
IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
via setsockopt () and read via getsockopt ().

IPV6_MULTICAST_IF
The index of the interface to be used for outgoing multicast packets. It can be set via
setsockopt () and read via getsockopt ().

IPV6_MULTICAST_LOOP
This option controls whether outgoing multicast packets should be delivered back to the
local application when the sending interface is itself a member of the destination multicast
group. If itis set to 1 they are delivered. If it is set to 0 they are not. Other values result in an
[EINVAL] error. This option can be set via setsockopt () and read via getsockopt ().

IPV6_UNICAST_HOPS
The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
socket. If the option is not set, or is set to —1, the system selects a default value. Attempts to
set a value less than -1 or greater than 255 result in an [EINVAL] error. This option can be
set via setsockopt () and read via getsockopt ().

An [EOPNOTSUPP] error results if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used with
getsockopt ().

2.10.19.5 Headers

572

Symbolic constant AF_INET6 is defined in the <sys/socket.h> header to identify the IPv6
Internet address family. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13,
Headers.

The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
sockaddr_in6 structure (see the <netinet/in.h> header defined in the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that
pointers to it can be cast as pointers to sockaddr_in6 structures and used to access the fields of
those structures without alignment problems. When a sockaddr_storage structure is cast as a
sockaddr_in6 structure, the ss_family field maps onto the sin6é_family field.

The <netinet/in.h>, <arpa/inet.h>, and <netdb.h> headers contain other definitions used in
connection with IPv6 Internet sockets; see the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 13, Headers.

Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3000 2.11

3011 TRC
3012
3013

3014
3015
3016

3017
3018
3019
3020
3021

3022
3023
3024
3025
3026

3027
3028
3029
3030
3031

3032
3033
3034
3035

3036
3037
3038
3039
3040

3041
3042
3043

3044
3045
3046
3047
3048

3049
3050
3051
3052
3053

Tracing

This section describes extensions to support tracing of user applications. This functionality is
dependent on support of the Trace option (and the rest of this section is not further shaded for
this option).

The tracing facilities defined in IEEE Std. 1003.1-200x allow a process to select a set of trace event
types, to activate a trace stream of the selected trace events as they occur in the flow of
execution, and to retrieve the recorded trace events.

The tracing operation relies on three logically different components: the traced process, the
controller process, and the analyzer process. During the execution of the traced process, when a
trace point is reached, a trace event is recorded into the trace streams created for that process in
which the associated trace event type identifier is not being filtered out. The controller process
controls the operation of recording the trace events into the trace stream. It shall be able to:

« Initialize the attributes of a trace stream

- Create the trace stream (for a specified traced process) using those attributes

- Start and stop tracing for the trace stream

- Filter the type of trace events to be recorded, if the Trace Event Filter option is supported
» Shut a trace stream down

These operations can be done for an active trace stream. The analyzer process retrieves the
traced events either at runtime, when the trace stream has not yet been shut down, but is still
recording trace events; or after opening a trace log that had been previously recorded and shut
down. These three logically different operations can be performed by the same process, or can be
distributed into different processes.

A trace stream identifier can be «created by a call to posix_trace create(),
posix_trace_create_withlog(), or posix_trace_open(). The posix_trace_create() and
posix_trace_create_withlog() functions should be wused by a controller process. The
posix_trace_open() should be used by an analyzer process.

The tracing functions can serve different purposes. One purpose is debugging the possibly pre-
instrumented code, while another is post-mortem fault analysis. These two potential uses differ
in that the first requires pre-filtering capabilities to avoid overwhelming the trace stream and
permits focusing on expected information; while the second needs comprehensive trace
capabilities in order to be able to record all types of information.

The events to be traced belong to two classes:
1. User trace events (generated by the application instrumentation)
2. System trace events (generated by the operating system)

The trace interface defines several system trace event types associated with control of and
operation of the trace stream. This small set of system trace events includes the minimum
required to interpret correctly the trace event information present in the stream. Other desirable
system trace events for some particular application profile may be implemented and are
encouraged; for example, process and thread scheduling, signal occurrence, and so on.

Each traced process shall have a mapping of the trace event names to trace event type identifiers
that have been defined for that process. Each active trace stream shall have a mapping that
incorporates all the trace event type identifiers predefined by the trace system plus all the
mappings of trace event names to trace event type identifiers of the processes that are being
traced into that trace stream. These mappings are defined from the instrumented application by

System Interfaces, Issue 6 573

3054
3055
3056

3057
3058

3059
3060

3061
3062
3063

3064
3065
3066

3067

3068

3069
3070

3071

3072
3073
3074

3075
3076
3077
3078
3079
3080
3081
3082

3083
3084
3085
3086
3087
3088
3089
3090
3091
3092

3093
3094

Tracing

2.11.1

21111

574

General Information

calling the posix_trace_eventid_open() function and from the controller process by calling the
posix_trace_trid_eventid_open() function. For a pre-recorded trace stream, the list of trace event
types is obtained from the pre-recorded trace log.

The st_ctime and st_mtime fields of a file associated with an active trace stream shall be marked
for update every time any of the tracing operations modifies that file.

The st_atime field of a file associated with a trace stream shall be marked for update every time
any of the tracing operations causes data to be read from that file.

Results are undefined if the application performs any operation on a file descriptor associated
with an active or pre-recorded trace stream until posix_trace_shutdown() or posix_trace_close() is
called for that trace stream.

The main purpose of this option is to define a complete set of functions and concepts that allow
a portable application to be traced from birth to death, whatever its realtime constraints and
properties.

Tracing Data Definitions

Structures

The <trace.h> header shall define the posix_trace_status_info and posix_trace_event_info structures
described below. Implementations may add extensions to these structures.
posix_trace_status_info Structure

To facilitate control of a trace stream, information about the current state of an active trace
stream can be obtained dynamically. This structure is returned by a call to the
posix_trace_get status() function.

The posix_trace_status_info structure defined in <trace.h> shall contain at least the following
members:

Member Type Member Name Description

int posix_stream_status The operating mode of the trace stream.

int posix_stream_full_status The full status of the trace stream.

int posix_stream_overrun_status | Indicates whether trace events were |
lost in the trace stream. |

If the Trace Log option is supported in addition to the Trace option, the posix_trace_status_info
structure defined in <trace.h> shall contain at least the following additional members;

Member Type Member Name Description

int posix_stream_flush_status | Indicates whether a flush is in progress.

int posix_stream_flush_error Indicates whether any error occurred |
during the last flush operation. |

int posix_log_overrun_status Indicates whether trace events were |
lost in the trace log. |

int posix_log_full_status The full status of the trace log.

The posix_stream_status member indicates the operating mode of the trace stream and shall have
one of the following values defined by manifest constants in the <trace.h> header:

Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3095 POSIX_TRACE_RUNNING

3096 Tracing is in progress; that is, the trace stream is accepting trace events.

3097 POSIX_TRACE_SUSPENDED

3098 The trace stream is not accepting trace events. The tracing operation has not yet started or
3099 has stopped, either following a posix_trace_stop() function call or because the trace resources
3100 are exhausted.

3101 The posix_stream_full_status member indicates the full status of the trace stream, and it shall have
3102 one of the following values defined by manifest constants in the <trace.h> header:

3103 POSIX_TRACE_FULL

3104 The space in the trace stream for trace events is exhausted.

3105 POSIX_TRACE_NOT_FULL

3106 There is still space available in the trace stream.

3107 The combination of the posix_stream_status and posix_stream_full_status members also indicates
3108 the actual status of the stream. The status shall be interpreted as follows:

3109 POSIX_TRACE_RUNNING and POSIX_TRACE_NOT_FULL

3110 This status combination indicates that tracing is in progress, and there is space available for
3111 recording more trace events.

3112 POSIX_TRACE_RUNNING and POSIX_TRACE_FULL

3113 This status combination indicates that tracing is in progress and that the trace stream is full
3114 of trace events. This status combination cannot occur unless the stream-full-policy is set to
3115 POSIX_TRACE_LOOP. The trace stream contains trace events recorded during a moving
3116 time window of prior trace events, and some older trace events may have been overwritten
3117 and thus lost.

3118 POSIX_TRACE_SUSPENDED and POSIX_TRACE_NOT_FULL

3119 This status combination indicates that tracing has not yet been started, has been stopped by
3120 the posix_trace_stop() function, or has been cleared by the posix_trace_clear() function.

3121 POSIX_TRACE_SUSPENDED and POSIX_TRACE_FULL

3122 This status combination indicates that tracing has been stopped by the implementation
3123 because the stream-full-policy attribute was POSIX_TRACE_UNTIL FULL and trace
3124 resources were exhausted, or that the trace stream was stopped by the function
3125 posix_trace_stop() at a time when trace resources were exhausted.

3126 The posix_stream_overrun_status member indicates whether trace events were lost in the trace
3127 stream, and shall have one of the following values defined by manifest constants in the
3128 <trace.h> header:

3129 POSIX_TRACE_OVERRUN

3130 At least one trace event was lost and thus was not recorded in the trace stream.

3131 POSIX_TRACE_NO_OVERRUN

3132 No trace events were lost.

3133 When the corresponding trace stream is created, the posix_stream_overrun_status member shall be
3134 set to POSIX_TRACE_NO_OVERRUN.

3135 Whenever an overrun occurs, posix_stream_overrun_status member shall be set to
3136 POSIX_TRACE_OVERRUN.

3137 An overrun occurs when:

System Interfaces, Issue 6 575

3138

3139
3140

3141
3142

3143

3144
3145
3146

3147
3148
3149

3150
3151

3152
3153

3154
3155
3156
3157
3158

3159
3160
3161
3162
3163

3164
3165
3166

3167
3168

3169
3170

3171
3172
3173
3174

3175
3176

3177
3178

3179
3180

Tracing

576

General Information

« The policy is POSIX_TRACE_LOOP and a recorded trace event is overwritten.

« The policy is POSIX_TRACE_UNTIL_FULL and the trace stream is full when a trace event is
generated.

- If the Trace Log option is supported, the policy is POSIX TRACE_FLUSH and at least one
trace event is lost while flushing the trace stream to the trace log.

The posix_stream_overrun_status member is reset to zero after its value is read.

If the Trace Log option is supported in addition to the Trace option, the posix_stream_flush_status,
posix_stream_flush_error, posix_log_overrun_status, and posix_log_full_status members are defined
as follows; otherwise, they are undefined.

The posix_stream_flush_status member indicates whether a flush operation is being performed
and shall have one of the following values defined by manifest constants in the header
<trace.h>:

POSIX_TRACE_FLUSHING
The trace stream is currently being flushed to the trace log.

POSIX_TRACE_NOT_FLUSHING
No flush operation is in progress.

The posix_stream_flush_status member shall be set to POSIX TRACE_FLUSHING if a flush
operation is in progress either due to a call to the posix_trace_flush() function (explicit or caused
by a trace stream shutdown operation) or because the trace stream has become full with the
stream-full-policy attribute set to POSIX_TRACE_FLUSH. The posix_stream_flush_status member
shall be set to POSIX_TRACE_NOT_FLUSHING if no flush operation is in progress.

The posix_stream_flush_error member shall be set to zero if no error occurred during flushing. If
an error occurred during a previous flushing operation, the posix_stream_flush_error member
shall be set to the value of the first error that occurred. If more than one error occurs while
flushing, error values after the first shall be discarded. The posix_stream_flush_error member is
reset to zero after its value is read.

The posix_log_overrun_status member indicates whether trace events were lost in the trace log,
and shall have one of the following values defined by manifest constants in the <trace.h>
header:

POSIX_TRACE_OVERRUN
At least one trace event was lost.

POSIX_TRACE_NO_OVERRUN
No trace events were lost.

When the corresponding trace stream is created, the posix_log_overrun_status member shall be set
to POSIX_TRACE_NO_OVERRUN. Whenever an overrun occurs, this status shall be set to
POSIX_TRACE_OVERRUN. The posix_log_overrun_status member is reset to zero after its value
is read.

The posix_log_full_status member indicates the full status of the trace log, and it shall have one of
the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_FULL
The space in the trace log is exhausted.

POSIX_TRACE_NOT_FULL
There is still space available in the trace log.

Technical Standard (2000) (Draft July 31, 2000)

3181
3182

3183
3184
3185

3186

3187
3188
3189

3190
3191

3192
3193

3194
3195
3196

3197
3198
3199

3200

3201
3202
3203

3204
3205

3206
3207
3208

3209
3210
3211
3212
3213

3214
3215
3216

3217
3218
3219
3220
3221

3222
3223
3224
3225

General Information Tracing

The posix_log_full_status member is only meaningful if the log-full-policy attribute is either
POSIX_TRACE_UNTIL_FULL or POSIX_TRACE_LOOP.

For an active trace stream without log, that is created by the posix_trace create() function, the
posix_log_overrun_status member shall be set to POSIX_ TRACE _NO_OVERRUN and the
posix_log_full_status member shall be set to POSIX_TRACE_NOT_FULL.

posix_trace_event_info Structure

The trace event structure posix_trace_event info contains the information for one recorded
trace event. This structure is returned by the set of functions posix_trace getnext event(),
posix_trace_timedgetnext_event(), and posix_trace_trygetnext_event().

The posix_trace_event_info structure defined in <trace.h> shall contain at least the following
members:

Member Type Member Name Description

trace_event_id t | posix_event id Trace event type identification.

pid_t posix_pid Process ID of the process that generated the
trace event.

void * posix_prog_address Address at which the trace point was invoked.

int posix_truncation_status | Status about the truncation of the data
associated with this trace event.

struct timespec posix_timestamp Time at which the trace event was generated.

In addition, if the Trace option and the Threads option are both supported, the
posix_trace_event_info structure defined in <trace.h> shall contain the following additional
member:

Member Type | Member Name Description

pthread_t posix_thread id Thread ID of the thread |
that generated the trace |
event. |

The posix_event_id member represents the identification of the trace event type and its value is
not directly defined by the user. This identification is returned by a call to one of the following
functions: posix_trace_trid_eventid_open(), posix_trace_eventtypelist_getnext_id(), or
posix_trace_eventid_open(). The name of the trace event type can be obtained by calling
posix_trace_eventid_get name().

The posix_pid is the process identifier of the traced process which generated the trace event. If
the posix_event_id member is one of the implementation-defined system trace events and that
trace event is not associated with any process, the posix_pid member shall be set to zero.

For a user trace event, the posix_prog_address member is the process mapped address of the point
at which the associated call to the posix_trace_event() function was made. For a system trace
event, if the trace event is caused by a system service explicitly called by the application, the
posix_prog_address member shall be the address of the process at the point where the call to that
system service was made.

The posix_truncation_status member defines whether the data associated with a trace event has
been truncated at the time the trace event was generated, or at the time the trace event was read
from the trace stream, or (if the Trace Log option is supported) from the trace log (see the event
argument from the posix_trace_getnext_event() function). The posix_truncation_status member

System Interfaces, Issue 6 577

3226

3227
3228

3229
3230

3231
3232
3233
3234

3235
3236
3237

3238

3239
3240
3241

3242

3243

3244
3245

3246

3247
3248

3249

3250
3251

3252
3253

3254
3255

3256

3257
3258
3259

3260
3261
3262

3263
3264
3265

3266
3267

Tracing

21112

578

General Information

shall have one of the following values defined by manifest constants in the <trace.h> header:

POSIX_TRACE_NOT_TRUNCATED
All the traced data is available.

POSIX_TRACE_TRUNCATED_RECORD
Data was truncated at the time the trace event was generated.

POSIX_TRACE_TRUNCATED_READ
Data was truncated at the time the trace event was read from a trace stream or a trace log
because the reader's buffer was too small. This truncation status overrides the
POSIX_TRACE_TRUNCATED_RECORD status.

The posix_timestamp member shall be the time at which the trace event was generated. The clock
used is implementation-defined, but the resolution of this clock can be retrieved by a call to the
posix_trace_attr_getclockres() function.

If the Threads option is supported in addition to the Trace option:

- The posix_thread_id member is the identifier of the thread that generated the trace event. If
the posix_event_id member is one of the implementation-defined system trace events and that
trace event is not associated with any thread, the posix_thread_id member shall be set to zero.

Otherwise, this member is undefined.

Trace Stream Attributes

Trace streams have attributes that compose the posix_trace_attr_t trace stream attributes object.
This object shall contain at least the following attributes:

- The generation-version attribute identifies the origin and version of the trace system.

- The trace-name attribute is a character string defined by the trace controller, and that
identifies the trace stream.

« The creation-time attribute represents the time of the creation of the trace stream.

« The clock-resolution attribute defines the clock resolution of the clock used to generate
timestamps.

« The stream-min-size attribute defines the minimum size in bytes of the trace stream strictly
reserved for the trace events.

« The stream-full-policy attribute defines the policy followed when the trace stream is full; its
value is POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_FLUSH.

« The max-data-size attribute defines the maximum record size in bytes of a trace event.

In addition, if the Trace option and the Trace Inherit option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attributes:

- The inheritance attribute specifies whether a newly created trace stream will inherit tracing in
its parent’s process trace stream. It is either POSIX TRACE_INHERITED or
POSIX_TRACE_CLOSE_FOR_CHILD.

In addition, if the Trace option and the Trace Log option are both supported, the
posix_trace_attr_t trace stream creation attributes object shall contain at least the following
attribute:

- If the file type corresponding to the trace log supports the POSIX_ TRACE_LOOP or the
POSIX_TRACE_UNTIL_FULL policies, the log-max-size attribute defines the maximum size

Technical Standard (2000) (Draft July 31, 2000)

3268
3269

3270
3271
3272

3273

3274

3275
3276

3277

3278

3279
3280

3281
3282

3283

3284

3285
3286

3287
3288

3289
3290

3291
3292
3293

3294
3295

3296
3297

3298
3299
3300

3301
3302

3303
3304

3305
3306
3307

General Information Tracing

2.11.2

21121

in bytes of the trace log associated with an active trace stream. Other stream data—for
example, trace attribute values—shall not be included in this size.

- The log-full-policy attribute defines the policy of a trace log associated with an active trace
stream to be POSIX_TRACE_LOORP, POSIX_TRACE_UNTIL_FULL, or
POSIX_TRACE_APPEND.

Trace Event Type Definitions

System Trace Event Type Definitions

The following system trace event types, defined in the <trace.h> header, track the invocation of
the trace operations:

« POSIX_TRACE_START shall be associated with a trace start operation.
« POSIX_TRACE_STOP shall be associated with a trace stop operation.

- if the Trace Event Filter option is supported, POSIX_TRACE_FILTER shall be associated with
a trace event type filter change operation.

The following system trace event types, defined in the <trace.h> header, report operational trace
events:

« POSIX_TRACE_OVERFLOW shall mark the beginning of a trace overflow condition.
« POSIX_TRACE_RESUME shall mark the end of a trace overflow condition.

- If the Trace Log option is supported, POSIX TRACE_FLUSH_START shall mark the
beginning of a flush operation.

- If the Trace Log option is supported, POSIX_TRACE_FLUSH_STOP shall mark the end of a
flush operation.

. If an implementation-defined trace error condition is reported, it shall be marked
POSIX_TRACE_ERROR.

The interpretation of a trace stream or a trace log by a trace analyzer process relies on the
information recorded for each trace event, and also on system trace events that indicate the
invocation of trace control operations and trace system operational trace events.

The POSIX_TRACE_START and POSIX_TRACE_STOP trace events specify the time windows
during which the trace stream is running.

The POSIX_TRACE_STOP trace event with an associated data that is equal to zero indicates
a call of the function posix_trace_stop().

The POSIX_TRACE_STOP trace event with an associated data that is different from zero
indicates an automatic stop of the trace stream (see posix_trace attr_getstreamfullpolicy()
defined in the System Interfaces volume of IEEE Std. 1003.1-200x).

The POSIX_TRACE_FILTER trace event indicates that a trace event type filter value changed
while the trace stream was running.

The POSIX_TRACE_ERROR serves to inform the analyzer process that an implementation-
defined internal error of the trace system occurred.

The POSIX_TRACE_OVERFLOW trace event shall be reported with a timestamp equal to the
timestamp of the first trace event overwritten. This is an indication that some generated trace
events have been lost.

System Interfaces, Issue 6 579

3308
3309
3310
3311

3312
3313

3314
3315

3316

3317
3318
3319
3320
3321
3322
3323
3324
3325

3326
3327
3328

3329

3330
3331
3332
3333
3334
3335
3336
3337

3338
3339

3340
3341
3342

3343
3344
3345

Tracing General Information

The POSIX_TRACE_RESUME trace event shall be reported with a timestamp equal to the
timestamp of the first valid trace event reported after the overflow condition ends and shall be
reported before this first valid trace event. This is an indication that the trace system is reliably
recording trace events after an overflow condition.

Each of these trace event types is defined by a constant trace event name and a trace_event_id t
constant; trace event data is associated with some of these trace events.

If the Trace option is supported and the Trace Event Filter option and the Trace Log option are
not supported, the following predefined system trace events in Table 2-6 shall be defined:

Table 2-6 Trace Option: System Trace Events

Event Name Constant Associated Data
Data Type

"posix_trace_error" POSIX_TRACE_ERROR error

int
"posix_trace_start" POSIX_TRACE_START None.
"posix_trace_stop" POSIX_TRACE_STOP auto

int
"posix_trace_overflow" | POSIX_TRACE_OVERFLOW | None.
"posix_trace_resume" POSIX_TRACE_RESUME None.

If the Trace option and the Trace Event Filter option are both supported, and if the Trace Log
option is not supported, the following predefined system trace events in Table 2-7 shall be
defined:

Table 2-7 Trace and Trace Event Filter Options: System Trace Events

Event Name Constant Associated Data
Data Type

"posix_trace_error" POSIX_TRACE_ERROR error

int
"posix_trace_start" POSIX_TRACE_START event_filter

trace_event_set_t
"posix_trace_stop" POSIX_TRACE_STOP auto

int
"posix_trace_filter" POSIX_TRACE_FILTER old_event filter

new_event_filter

trace_event_set_t
"posix_trace_overflow" | POSIX_TRACE_OVERFLOW | None.
"posix_trace_resume" POSIX_TRACE_RESUME None.

If the Trace option and the Trace Log option are both supported, and if the Trace Event Filter
option is not supported, the following predefined system trace events in Table 2-8 (on page 581)
shall be defined:

580 Technical Standard (2000) (Draft July 31, 2000)

3346

3347
3348

3349
3350
3351

3352
3353
3354
3355
3356
3357
3358

3359
3360

3361

3362
3363
3364
3365
3366
3367
3368
3369

3370
3371

3372
3373
3374
3375
3376

3377

3378
3379
3380
3381
3382

3383

General Information

Tracing

Table 2-8 Trace and Trace Log Options: System Trace Events

Event Name Constant Associated Data
Data Type

"posix_trace_error" POSIX_TRACE_ERROR error

int
"posix_trace_start" POSIX_TRACE_START None.
"posix_trace_stop" POSIX_TRACE_STOP auto

int
"posix_trace_overflow" POSIX_TRACE_OVERFLOW None.
"posix_trace_resume" POSIX_TRACE_RESUME None.
"posix_trace_flush_start" | POSIX TRACE_FLUSH_START | None.
"posix_trace_flush_stop" | POSIX TRACE_FLUSH_STOP None.

If the Trace option, the Trace Event Filter option, and the Trace Log option are all supported, the

following predefined system trace events in Table 2-9 shall be defined:

Table 2-9 Trace, Trace Log, and Trace Event Filter Options: System Trace Events

Event Name Constant Associated Data
Data Type

"posix_trace_error" POSIX_TRACE_ERROR error

int
"posix_trace_start" POSIX_TRACE_START event_filter

trace_event_set_t
"posix_trace_stop" POSIX_TRACE_STOP auto

int

"posix_trace_filter"

POSIX_TRACE_FILTER

old_event filter
new_event_filter

trace_event_set_t

"posix_trace_overflow" POSIX_TRACE_OVERFLOW None.
"posix_trace_resume" POSIX_TRACE_RESUME None.
"posix_trace_flush_start" | POSIX TRACE_FLUSH_START | None.
"posix_trace_flush_stop" | POSIX TRACE_FLUSH_STOP None.

2.11.2.2 User Trace Event Type Definitions

The user trace event POSIX TRACE_UNNAMED_ USEREVENT shall be defined in the

<trace.h> header. If the limit of per-process user trace event names represented by
{TRACE_USER_EVENT_MAX} has already been reached, this predefined user event shall be

returned when the application tries to register more events than allowed. The data associated
with this trace event is application-defined.

The following predefined user trace event in Table 2-10 (on page 582) shall be defined:

System Interfaces, Issue 6

581

3384

3385
3386

3387

3388
3389
3390
3391
3392
3393

3394
3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410
3411

3412

3413

3414

3415

3416

3417

3418

3419

Tracing

2.11.3

582

General Information

Table 2-10 Trace Option: User Trace Event

Event Name Constant
"posix_trace_unnamed_userevent" | POSIX TRACE_UNNAMED _ USEREVENT

Trace Functions

The trace interface is built and structured to improve portability through use of trace data of
opaque type. The object-oriented approach for the manipulation of trace attributes and trace
event type identifiers requires definition of many constructor and selector functions which
operate on these opaque types. Also, the trace interface must support several different tracing
roles. To facilitate reading the trace interface, the trace functions are grouped into small
functional sets supporting the three different roles:

« A trace controller process requires functions to set up and customize all the resources needed
to run a trace stream, including:

— Attribute initialization and destruction (posix_trace_attr_init())
— ldentification information manipulation (posix_trace_attr_getgenversion())
— Trace system behavior modification (posix_trace_attr_getinherited())
— Trace stream and trace log size set (posix_trace_attr_getmaxusereventsize())
— Trace stream creation, flush, and shutdown (posix_trace_create())
— Trace stream and trace log clear (posix_trace_clear())
— Trace event type identifier manipulation (posix_trace_trid_eventid_open())
— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())
— Trace event type set manipulation (posix_trace_eventset_empty())
— Trace event type filter set (posix_trace_set filter())
— Trace stream start and stop (posix_trace_start())
— Trace stream information and status read (posix_trace_get_attr())
- Atraced process requires functions to instrument trace points:
— Trace event type identifiers definition and trace points insertion (posix_trace_event())

« A trace analyzer process requires functions to retrieve information from a trace stream and
trace log:

— ldentification information read (posix_trace_attr_getgenversion())

— Trace system behavior information read (posix_trace_attr_getinherited())

— Trace stream and trace log size get (posix_trace_attr_getmaxusereventsize())

— Trace event type identifier manipulation (posix_trace_trid_eventid_open())

— Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id())
— Trace log open, rewind, and close (posix_trace_open())

— Trace stream information and status read (posix_trace_get_attr())

— trace event read (posix_trace_getnext_event())

Technical Standard (2000) (Draft July 31, 2000)

General Information

320 2.12

3421
3422
3423

3424
3425

3426
3427
3428

3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466

Data Types

All of the data types used by various functions are defined by the implementation. The
following table describes some of these types. Other types referenced in the description of a

Data Types

function, not mentioned here, can be found in the appropriate header for that function.

Defined Type

Description

cc_t
clock t

clockid_t
dev t
DIR
div_t
FILE
glob_t
fpos_t

gid_t
iconv_t
id_t

ino_t

key t

Idiv_t

mode_t

mqd_t

nfds_t

nlink_t

off t

pid_t
pthread_attr_t
pthread _cond t
pthread_condattr_t
pthread_key t
pthread_mutex t
pthread_mutexattr_t
pthread_once _t
pthread_rwlock t
pthread_rwlockattr_t
pthread_t

ptrdiff _t

regex_t

regmatch_t

rlim_t

sem_t
sig_atomic_t

Type used for terminal special characters.
Arithmetic type used for processor times, as defined in the ISO C
standard.

Used for clock ID type in some timer functions.

Arithmetic type used for device numbers.

Type representing a directory stream.

Structure type returned by the div() function.

Structure containing information about a file.

Structure type used in path name pattern matching.

Type containing all information needed to specify uniquely every
position within a file.

Arithmetic type used for group IDs.

Type used for conversion descriptors.

Arithmetic type used as a general identifier; can be used to contain
at least the largest of a pid_t, uid_t, or gid_t.

Arithmetic type used for file serial numbers.

Arithmetic type used for XSI interprocess communication.
Structure type returned by the Idiv() function.

Arithmetic type used for file attributes.

Used for message queue descriptors.

Integer type used for the number of file descriptors.

Arithmetic type used for link counts.

Signed arithmetic type used for file sizes.

Signed arithmetic type used for process and process group IDs.
Used to identify a thread attribute object.

Used for condition variables.

Used to identify a condition attribute object.

Used for thread-specific data keys.

Used for mutexes.

Used to identify a mutex attribute object.

Used for dynamic package initialization.

Used for read-write locks.

Used for read-write lock attributes.

Used to identify a thread.

Signed integer type of the result of subtracting two pointers.
Structure type used in regular expression matching.

Structure type used in regular expression matching.

Unsigned arithmetic type used for limit values, to which objects of
type int and off_t can be cast without loss of value.

Type used in performing semaphore operations.

Integer type of an object that can be accessed as an atomic

System Interfaces, Issue 6

583

3467
3468

3469
3470
3471
3472
3473
3474
3475
3476
3477
3478

3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489

3490

Data Types General Information
Defined Type Description

entity, even in the presence of asynchronous interrupts.

sigset t Integer or structure type of an object used to represent sets
of signals.

size t Unsigned integer type used for size of objects.

speed _t Type used for terminal baud rates.

ssize t Arithmetic type used for a count of bytes or an error indication.

suseconds_t Signed arithmetic type used for time in microseconds.

tcflag_t Type used for terminal modes.

time_t Arithmetic type used for time in seconds, as defined in the ISO C
standard.

timer _t Used for timer ID returned by the timer_create() function.

uid_t Arithmetic type used for user IDs.

useconds_t Integer type used for time in microseconds.

va_list Type used for traversing variable argument lists.

wchar_t Integer type whose range of values can represent distinct codes for
all members of the largest extended character set specified by the
supported locales.

wctype_t Scalar type which represents a character class descriptor.

wint_t Integer type capable of storing any valid value of wchar _t or
WEOF.

wordexp_t Structure type used in word expansion.

584 Technical Standard (2000) (Draft July 31, 2000)

Chapter 3

System Interfaces

3491
3492 This chapter describes the functions, macros, and external variables to support applications
3493 portability at the C-language source level.

System Interfaces, Issue 6 585

3494
3495

3496
3497

3498
3499
3500
3501

3502
3503

FD_CLR()

NAME

FD_CLR — macros for synchronous I/0 multiplexing

SYNOPSIS

#include <sys/time.h>

FD _CLR(int fd, fd_set * fdset);
FD_ISSET(int fd, fd_set * fdset);
FD_SET(int fd, fd_set * fdset);

FD_ZERO(fd_set * fdset);

DESCRIPTION

586

Refer to select().

System Interfaces

Technical Standard (2000) (Draft July 31, 2000)

3504
3505

3506
3507

3508
3509

3510
3511

System Interfaces

NAME

_Exit, _exit— terminate a process

SYNOPSIS
#include <unistd.h>

void _Exit(int
void _exit(int

DESCRIPTION
Refer to exit().

System Interfaces, Issue 6

status);
status);

_Exit()

587

3512
3513

3514
3515

3516
3517
3518

3519
3520
3521

3522
3523

3524
3525

3526
3527

3528
3529

3530
3531
3532
3533
3534
3535
3536
3537

3538
3539
3540
3541

3542
3543

3544
3545

3546
3547

3548
3549
3550

3551
3552

_longjmp() System Interfaces

NAME
_longjmp, _setjimp — non-local goto
SYNOPSIS
Xsl #include <setjmp.h>
void _longjmp(jmp_buf env, int val);
int _setimp(jmp_buf env);
DESCRIPTION
The _longjmp() and _setjmp() functions are identical to longjmp () and setjmp(), respectively, with
the additional restriction that _longjmp() and _setjmp() do not manipulate the signal mask.
If _longjmp() is called even though env was never initialized by a call to _setjmp(), or when the
last such call was in a function that has since returned, the results are undefined.
RETURN VALUE
Refer to longjmp () and setjmp().
ERRORS
No errors are defined.
EXAMPLES

None.

APPLICATION USAGE

If _longjmp() is executed and the environment in which _setjmp() was executed no longer exists,
errors can occur. The conditions under which the environment of the _setjmp() no longer exists
include exiting the function that contains the _setjimp() call, and exiting an inner block with
temporary storage. This condition might not be detectable, in which case the _longjmp() occurs
and, if the environment no longer exists, the contents of the temporary storage of an inner block
are unpredictable. This condition might also cause unexpected process termination. If the
function has returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp() a pointer to a
buffer not created by _setjmp(), passing siglongjmp() a pointer to a buffer not created by
sigsetjmp (), or passing any of these three functions a buffer that has been modified by the user
can cause all the problems listed above, and more.

The _longjmp() and _setjmp() functions are included to support programs written to historical
system interfaces. New applications should use siglongjmp () and sigsetimp() respectively.

RATIONALE

None.

FUTURE DIRECTIONS

The _longjmp() and _setjmp() functions may be marked LEGACY in a future version.

SEE ALSO

longimp(), setjimp(), siglongjmp(), sigsetimp(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <setjmp.h>

CHANGE HISTORY

588

First released in Issue 4, Version 2.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces _longjmp()

3553 Issue 5
3554 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 589

3555
3556

3557
3558

3559
3560

3561
3562

_setjmp()

NAME

_setjmp — set jump point for a non-local goto

SYNOPSIS

XSl

#include <setjmp.h>

int _setimp(jmp_buf

DESCRIPTION

590

Refer to _longjmp ().

env);

System Interfaces

Technical Standard (2000) (Draft July 31, 2000)

3563
3564

3565
3566

3567
3568

3569
3570
3571

3572
3573
3574

3575
3576

3577
3578

3579
3580

3581
3582

3583
3584

3585
3586
3587

3588
3589

3590
3591

3592
3593

System Interfaces _tolower()

NAME
_tolower — transliterate uppercase characters to lowercase
SYNOPSIS
Xsl #include <ctype.h>
int _tolower(int c);
DESCRIPTION

The _tolower() macro shall be equivalent to tolower(c) except that the application shall ensure

that the argument ¢ is an uppercase letter.

RETURN VALUE
Upon successful completion, _tolower () shall return the lowercase letter corresponding to
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

the

tolower (), isupper(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base

Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The RETURN VALUE section is expanded.

Issue 6
The DESCRIPTION is updated to avoid use of the term “must’ for application requirements.

System Interfaces, Issue 6

591

3594
3595

3596
3597

3598
3599

3600
3601
3602

3603
3604
3605

3606
3607

3608
3609

3610
3611

3612
3613

3614
3615

3616
3617
3618

3619
3620

3621
3622

3623
3624

_toupper() System Interfaces

NAME
_toupper — transliterate lowercase characters to uppercase
SYNOPSIS
Xsl #include <ctype.h>
int _toupper(int c);
DESCRIPTION

The _toupper() macro shall be equivalent to toupper() except that the application shall ensure
that the argument c is a lowercase letter.

RETURN VALUE
Upon successful completion, _toupper() shall return the uppercase letter corresponding to the
argument passed.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
islower (), toupper (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base
Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The RETURN VALUE section is expanded.

Issue 6
The DESCRIPTION is updated to avoid use of the term “must’ for application requirements.

592 Technical Standard (2000) (Draft July 31, 2000)

3625
3626

3627
3628

3629
3630
3631

3632
3633
3634
3635
3636

3637
3638

3639
3640
3641
3642
3643
3644
3645
3646

3647
3648

3649
3650

3651
3652

3653
3654
3655

3656
3657

3658
3659

3660
3661

3662
3663

3664
3665

System Interfaces a64l()

NAME
a64l, 16da — convert between a 32-bit integer and a radix-64 ASCII string
SYNOPSIS
XSl #include <stdlib.h>
long a64dl(const char * s);
char *I164a(long value);
DESCRIPTION

These functions are used to maintain numbers stored in radix-64 ASCII characters. This is a
notation by which 32-bit integers can be represented by up to six characters; each character
represents a digit in radix-64 notation. If the type long contains more than 32 bits, only the low-
order 32 bits shall be used for these operations.

The characters used to represent digitsare’.” (dot) for 0,/ for 1,’0" through'9’ for 2-11,
‘A’ through’z’ for 12-37,and’a’ through’'z’ for 38-63.

The a64l () function shall take a pointer to a radix-64 representation, in which the first digit is the
least significant, and return a corresponding long value. If the string pointed to by s contains
more than six characters, a64l() shall use the first six. If the first six characters of the string
contain a null terminator, a641() shall use only characters preceding the null terminator. The
a4l () function scans the character string from left to right with the least significant digit on the
left, decoding each character as a 6-bit radix-64 number. If the type long contains more than 32
bits, the resulting value is sign-extended. The behavior of a64l() is unspecified if s is a null
pointer or the string pointed to by s was not generated by a previous call to 164a().

The 164a() function shall take a long argument and return a pointer to the corresponding radix-
64 representation. The behavior of 164a() is unspecified if value is negative.

The value returned by 164a() may be a pointer into a static buffer. Subsequent calls to 164a() may
overwrite the buffer.

The 164a() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE
Upon successful completion, a641() shall return the long value resulting from conversion of the
input string. If a string pointed to by s is an empty string, a641() shall return OL.

The 164a() function shall return a pointer to the radix-64 representation. If value is OL, 164a() shall
return a pointer to an empty string.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
If the type long contains more than 32 bits, the result of a641(164a(x)) is x in the low-order 32 bits.

RATIONALE
This is not the same encoding as used by either encoding variant of the uuencode utility.

System Interfaces, Issue 6 593

3666
3667

3668
3669
3670

3671
3672

3673
3674

3675

3676

a641()

System Interfaces

FUTURE DIRECTIONS

None.

SEE ALSO

CHANG

Issue 5

594

strtoul (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, the Shell and Utilities
volume of IEEE Std. 1003.1-200x, uuencode

E HISTORY
First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.
Normative text previously in the APPLICATION USAGE section moved to the DESCRIPTION.
A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Technical Standard (2000) (Draft July 31, 2000)

3677
3678

3679
3680

3681

3682
3683
3684
3685

3686
3687

3688
3689

3690
3691

3692
3693

3694
3695
3696

3697
3698

3699
3700

3701
3702

3703
3704
3705
3706
3707

3708
3709

3710
3711

3712
3713
3714

3715
3716

System Interfaces abort()

NAME
abort — generate an abnormal process abort

SYNOPSIS
#include <stdlib.h>

void abort(void);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The abort() function shall cause abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return.

cX The abnormal termination processing shall include at least the effect of fclose() on all open
streams and the default actions defined for SIGABRT.

Xsl On XSl-conformant systems, in addition the abnormal termination processing shall include the
effect of fclose () on message catalog descriptors.

The SIGABRT signal shall be sent to the calling process as if by means of raise() with the
argument SIGABRT.

cX The status made available to wait() or waitpid () by abort() shall be that of a process terminated
by the SIGABRT signal. The abort() function shall override blocking or ignoring the SIGABRT
signal.

RETURN VALUE
The abort() function shall not return.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Catching the signal is intended to provide the application writer with a portable means to abort
processing, free from possible interference from any implementation-defined library functions. If
SIGABRT is neither caught nor ignored, then the actions associated with SIGABRT defined in
Section 2.4.1 (on page 528) will be taken.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), Kkill(), raise(), signal(), wait(), waitpid(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 6 595

abort() System Interfaces

3717 Issue 4

3718 The following changes are incorporated in this issue for alignment with the ISO C standard and
3719 the ISO POSIX-1 standard:

3720 « The argument list is explicitly defined as void.

3721 - The DESCRIPTION is revised to identify the correct order in which operations occur. It also
3722 identifies:

3723 — How the calling process is signaled

3724 — How status information is made available to the host environment

3725 — That abort() overrides blocking or ignoring of the SIGABRT signal

3726 « The APPLICATION USAGE section is replaced.

3727 Issue 6

3728 Extensions beyond the ISO C standard are now marked.

596 Technical Standard (2000) (Draft July 31, 2000)

3729
3730

3731
3732

3733

3734
3735
3736
3737

3738
3739

3740
3741

3742
3743

3744
3745

3746
3747
3748

3749
3750

3751
3752

3753
3754

3755
3756

3757
3758
3759

3760
3761

System Interfaces abs()

NAME
abs — return an integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The abs() function shall compute the absolute value of its integer operand, i. If the result cannot
be represented, the behavior is undefined.

RETURN VALUE
The abs() function shall return the absolute value of its integer operand.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In two's-complement representation, the absolute value of the negative integer with largest
magnitude {INT_MIN} might not be representable.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fabs(), labs(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
In the APPLICATION USAGE section, the phrase “{INT_MIN} is undefined” is replaced with
“{INT_MIN} might not be representable’.

Issue 6
Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 597

3762 NAME

3763

accept() System Interfaces

accept — accept a new connection on a socket

3764 SYNOPSIS

3765

3766
3767

#include <sys/socket.h>

int accept(int socket , struct sockaddr *restrict address ,
socklen_t *restrict address len);

3768 DESCRIPTION

3769
3770
3771

3772

3773
3774

3775
3776

3777
3778
3779

3780
3781
3782

3783
3784

3785
3786

3787
3788
3789
3790

3791
3792

3793
3794
3795

3796
3797

3798
3799
3800

3801

3802
3803

The accept() function shall extract the first connection on the queue of pending connections,
create a new socket with the same socket type protocol and address family as the specified
socket, and allocate a new file descriptor for that socket.

The accept() function takes the following arguments:

socket Specifies a socket that was created with socket(), has been bound to an address
with bind(), and has issued a successful call to listen().

address Either a null pointer, or a pointer to a sockaddr structure where the address of
the connecting socket shall be returned.

address_len Points to a socklen_t structure which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length of the stored
address.

If address is not a null pointer, the address of the peer for the accepted connection shall be stored
in the sockaddr structure pointed to by address, and the length of this address shall be stored in
the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr structure,
the stored address shall be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound, then the value
stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
descriptor for the socket, accept() shall block until a connection is present. If the listen() queue is
empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
accept() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

The accepted socket cannot itself accept more connections. The original socket remains open and
can accept more connections.

RETURN VALUE

Upon successful completion, accept() shall return the non-negative file descriptor of the accepted
socket. Otherwise, —1 shall be returned and errno set to indicate the error.

ERRORS

598

The accept() function shall fail if:

[EAGAIN] or [EWOULDBLOCK]
O_NONBLOCK is set for the socket file descriptor and no connections are
present to be accepted.

[EBADF] The socket argument is not a valid file descriptor.

[ECONNABORTED]
A connection has been aborted.

Technical Standard (2000) (Draft July 31, 2000)

3804
3805

3806

3807

3808

3809

3810
3811

3812

3813

3814

3815
3816

3817
3818

3819
3820
3821

3822
3823

3824
3825

3826
3827
3828

3829
3830

3831
3832

System Interfaces accept()

[EINTR] The accept() function was interrupted by a signal that was caught before a
valid connection arrived.

[EINVAL] The socket is not accepting connections.

[EMFILE] {OPEN_MAXj} file descriptors are currently open in the calling process.

[ENFILE] The maximum number of file descriptors in the system are already open.

[ENOTSOCK] The socket argument does not refer to a socket.

[EOPNOTSUPP] The socket type of the specified socket does not support accepting
connections.

The accept() function may fail if:

[ENOBUFS] No buffer space is available.
[ENOMEM] There was insufficient memory available to complete the operation.
XSR [EPROTOQO] A protocol error has occurred; for example, the STREAMS protocol stack has
not been initialized.
EXAMPLES
None.

APPLICATION USAGE
When a connection is available, select() indicates that the file descriptor for the socket is ready
for reading.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
bind(), connect(), listen(), socket(), the Base Definitions volume of IEEE Std.1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The restrict keyword is added to the accept() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 599

3833 NAME

3834

access() System Interfaces

access — determine accessibility of a file

3835 SYNOPSIS

3836

3837

#include <unistd.h>

int access(const char * path , int amode);

3838 DESCRIPTION

3839
3840
3841

3842
3843

3844
3845
3846
3847

3848
3849
3850

3851
3852

3853
3854

3855
3856

3857
3858
3859

3860

3861

3862

3863

3864

3865
3866

3867
3868
3869

3870
3871

The access() function shall check the file named by the path name pointed to by the path
argument for accessibility according to the bit pattern contained in amode, using the real user ID
in place of the effective user ID and the real group ID in place of the effective group ID.

The value of amode is either the bitwise-inclusive OR of the access permissions to be checked
(R_OK, W_OK, X_OK) or the existence test (F_OK).

If any access permissions are checked, each shall be checked individually, as described in the
Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 3, Definitions. If the process has
appropriate privileges, an implementation may indicate success for X_OK even if none of the
execute file permission bits are set.

RETURN VALUE

If the requested access is permitted, access() succeeds and shall return 0; otherwise, —1 shall be
returned and errno shall be set to indicate the error.

ERRORS

600

The access() function shall fail if:

[EACCES] Permission bits of the file mode do not permit the requested access, or search
permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX} or a path name
component is longer than {(NAME_MAX]}.

[ENOENT] A component of path does not name an existing file or path is an empty string.
[ENOTDIR] A component of the path prefix is not a directory.
[EROFS] Write access is requested for a file on a read-only file system.

The access() function may fail if:

[EINVAL] The value of the amode argument is invalid.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

[ENAMETOOLONG]

As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted path name string exceeded {PATH_MAX]}.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces access()

3872 EXAMPLES

3873 Testing for the Existence of a File

3874 The following example tests whether a file named myfile exists in the /tmp directory.

3875 #include <unistd.h>

3876

3877 int result;

3878 const char *filename = "/tmp/myfile";

3879 result = access (filename, F_OK);

3880 APPLICATION USAGE

3881 Additional values of amode other than the set defined in the description may be valid; for
3882 example, if a system has extended access controls.

3883 RATIONALE

3884 In early proposals, some inadequacies in the access() function led to the creation of an eaccess()
3885 function because:

3886 1. Historical implementations of access() do not test file access correctly when the process’
3887 real user ID is superuser. In particular, they always return zero when testing execute
3888 permissions without regard to whether the file is executable.

3889 2. The superuser has complete access to all files on a system. As a consequence, programs
3890 started by the superuser and switched to the effective user ID with lesser privileges cannot
3891 use access() to test their file access permissions.

3892 However, the historical model of eaccess() does not resolve problem (1), so this volume of
3893 IEEE Std. 1003.1-200x now allows access() to behave in the desired way because several
3894 implementations have corrected the problem. It was also argued that problem (2) is more easily
3895 solved by using open(), chdir(), or one of the exec functions as appropriate and responding to the
3896 error, rather than creating a new function that would not be as reliable. Therefore, eaccess() is not
3897 included in this volume of IEEE Std. 1003.1-200x.

3898 The sentence concerning appropriate privileges and execute permission bits reflects the two
3899 possibilities implemented by historical implementations when checking superuser access for
3900 X_OK.

3901 FUTURE DIRECTIONS

3902 None.

3903 SEE ALSO

3904 chmod (), stat(), the Base Definitions volume of IEEE Std. 1003.1-200x%, <unistd.h>

3905 CHANGE HISTORY

3906 First released in Issue 1. Derived from Issue 1 of the SVID.

3907 Issue 4

3908 The following change is incorporated for alignment with the 1ISO POSIX-1 standard:

3909 - The type of argument path is changed from char* to const char*.

3910 The following change is incorporated for alignment with the FIPS requirements:

3911 « In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
3912 name component is larger that {NAME_MAX} is how defined as mandatory and marked as
3913 an extension.

System Interfaces, Issue 6 601

3914
3915

3916
3917

3918
3919

3920
3921

3922
3923

3924
3925

3926

3927

3928

3929

3930

access() System Interfaces

Issue 4, Version 2

Issue 6

602

The ERRORS section is updated for X/OPEN UNIX conformance as follows:

« It states that [ELOORP] is returned if too many symbolic links are encountered during path
name resolution.

« A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of path name resolution of a symbolic link.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

« The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
This is since behavior may vary from one file system to another.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The [ELOOP] mandatory error condition is added.
« Asecond [ENAMETOOLONG] is added as an optional error condition.
« The [ETXTBSY] optional error condition is added.
The following changes were made to align with the IEEE P1003.1a draft standard:
« The [ELOOP] optional error condition is added.

Technical Standard (2000) (Draft July 31, 2000)

3931
3932

3933
3934

3935
3936
3937

3938
3939
3940
3941

3942
3943

3944
3945

3946
3947
3948
3949

3950
3951
3952

3953
3954

3955

3956

3957

3958

3959
3960

3961
3962

3963
3964

3965
3966

3967
3968

3969
3970

System Interfaces acos()

NAME
acos, acosf, acosl — arc cosine function

SYNOPSIS
#include <math.h>
double acos(double X);
float acosf(float X);
long double acosl(long double X);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The acos family of functions shall compute the principal value of the arc cosine of x. The value
of x should be in the range [-1,1].

An application wishing to check for error situations should set errno to 0 before calling acos(). If
errno is non-zero on return, or the value NaN is returned, an error has occurred.

RETURN VALUE
Upon successful completion, the acos family of functions shall return the arc cosine of x, in the

Xsl range [0,m] radians. If the value of x is not in the range [-1,1], and is not £Inf or NaN, either 0.0 or
NaN shall be returnedand errno shall be set to [EDOM].

Xsl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. If x is zInf, either 0.0 shall be
returned and errno shall be set to [EDOM], or NaN shall be returned and errno may be set to
[EDOM].

ERRORS
The acos family of functions shall fail if:

Xsl [EDOM] The value x is not £Inf or NaN andis not in the range [-1,1].

The acos family of functions may fail if:

Xsl [EDOM] The value x is £Inf or NaN.

XSl No other errors shall occur.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

cos(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY

First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 6 603

3971
3972

3973
3974

3975

3976
3977
3978

3979
3980

acos() System Interfaces

Issue 4

Issue 5

Issue 6

604

Removed references to matherr().

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
ISO C standard and to rationalize error handling in the mathematics functions.
The return value specified for [EDOM] is marked as an extension.

The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

The acosf() and acosl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

3981
3982

3983
3984

3985
3986
3987
3988
3989
3990
3991
3992
3993

3994
3995
3996

3997
3998
3999

4000
4001

4002
4003
4004

4005
4006

4007
4008

4009

4010

4011

4012

4013

4014

4015

System Interfaces acosh()

NAME
acosh, acoshf, acoshl, asinh, asinfh, asinfl, atanh, atanhf, atanhl — inverse hyperbolic functions

SYNOPSIS
#include <math.h>

double acosh(double X);
float acoshf(float X);
long double acoshl(long double X);
double asinh(double X);
float asinhf(float X);
long double asinhl(long double X);
double atanh(double X);
float atanhf(float X);
long double atanhl(long double X);
DESCRIPTION

The acosh (), asinh(), and atanh () functions shall compute the inverse hyperbolic cosine, sine, and
tangent of their argument, respectively.

RETURN VALUE
The acosh(), asinh(), and atanh () functions shall return the inverse hyperbolic cosine, sine, and
tangent of their argument, respectively.

The acosh(), acoshf(), and acoshl () functions shall return an implementation-defined value (NaN
or equivalent if available) and set errno to [EDOM] when its argument is less than 1.0.

The atanh (), atanhf(), and atanhl () functions shall return an implementation-defined value (NaN
or equivalent if available) and set errno to [EDOM] when its argument has absolute value greater

than 1.0.
If x is NaN, the asinh(), acosh(), and atanh() functions shall return NaN and may set errno to
[EDOM].
ERRORS
The acosh (), acoshf(), and acoshl () functions shall fail if:
[EDOM] The x argument is less than 1.0.

The atanh (), atanhf(), and atanhl () functions shall fail if:

[EDOM] The x argument has an absolute value greater than 1.0.
The atanh (), atanhf(), and atanhl () functions shall fail if:

[ERANGE] The x argument has an absolute value equal to 1.0

The asinh(), acosh (), and atanh () functions may fail if:

[EDOM] The value of x is NaN.

System Interfaces, Issue 6 605

4016
4017

4018
4019

4020
4021

4022
4023

4024
4025

4026
4027

4028
4029

4030
4031
4032

acosh()

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

System Interfaces

cosh(), sinh(), tanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6

The acoshf (), acoshl (), asinhf(), asinhl (), atanhf(), and atanhl () functions are added for alignment

with the ISO/IEC 9899: 1999 standard.

606

Technical Standard (2000) (Draft July 31, 2000)

4033
4034

4035
4036

4037
4038

4039
4040
4041
4042
4043

4044
4045
4046

4047
4048
4049

4050
4051

4052

4053
4054
4055
4056
4057
4058
4059
4060
4061

4062
4063

4064

4065
4066

4067
4068
4069

4070
4071

4072
4073

System Interfaces aio_cancel()

NAME

aio_cancel — cancel an asynchronous I/0 request (REALTIME)
SYNOPSIS
AlO #include <aio.h>

int aio_cancel(int fildes , struct aiocb * aiocbp);
DESCRIPTION

The aio_cancel () function shall attempt to cancel one or more asynchronous I/0 requests
currently outstanding against file descriptor fildes. The aiocbhp argument points to the
asynchronous 1I/0 control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous 1/0 requests against fildes shall be canceled.

Normal asynchronous notification shall occur for asynchronous 1/0 operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process shall take place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status shall be set to
[ECANCELED] and the return status shall be -1. For requested operations that are not
successfully canceled, the aiocbp shall not be modified by aio_cancel ().

If aiochp is not NULL, then if fildes does not have the same value as the file descriptor with which
the asynchronous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE

The aio_cancel () function shall return the value AIO_CANCELED to the calling process if the
requested operation(s) were canceled. The value AIO_NOTCANCELED shall be returned if at
least one of the requested operation(s) cannot be canceled because it is in progress. In this case,
the state of the other operations, if any, referenced in the call to aio_cancel () is not indicated by
the return value of aio_cancel (). The application may determine the state of affairs for these
operations by using aio_error(). The value AIO_ALLDONE is returned if all of the operations
have already completed. Otherwise, the function shall return -1 and set errno to indicate the
error.

ERRORS
The aio_cancel () function shall fail if:

[EBADF] The fildes argument is not a valid file descriptor.

EXAMPLES
None.

APPLICATION USAGE
The aio_cancel () function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

System Interfaces, Issue 6 607

4074
4075

4076
4077

4078
4079
4080

4081

aio_cancel()

SEE ALSO
aio_read (), aio_write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6

608

System Interfaces

The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

Technical Standard (2000) (Draft July 31, 2000)

4082
4083

4084
4085

4086
4087

4088
4089
4090
4091
4092
4093

4094
4095
4096
4097
4098

4099
4100

4101
4102

4103
4104

4105
4106
4107

4108
4109

4110
4111

4112
4113
4114

4115
4116

4117
4118
4119

4120

System Interfaces aio_error()

NAME
aio_error — retrieve errors status for an asynchronous 170 operation (REALTIME)
SYNOPSIS
AlO #include <aio.h>
int aio_error(const struct aiocb * aiocbp);
DESCRIPTION

The aio_error() function shall return the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous 1/0 operation is the

slo errno value that would be set by the corresponding read(), write(), fdatasync(), or fsync()
operation. If the operation has not yet completed, then the error status shall be equal to
[EINPROGRESS].

RETURN VALUE
If the asynchronous 1/0 operation has completed successfully, then 0 shall be returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for

slo read (), write(), fdatasync(),and fsync(), shall be returned. If the asynchronous 1/0 operation has
not yet completed, then [EINPROGRESS] shall be returned.
ERRORS
The aio_error () function may fail if:
[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.
EXAMPLES
None.

APPLICATION USAGE
The aio_error() function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_fsync(), aio_read (), aio_return(), aio_write (), close(), exec, exit(), fork(), lio_listio (),
Iseek (), read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

System Interfaces, Issue 6 609

4121
4122

4123
4124

4125
4126

4127
4128
4129
4130
4131
4132

4133
4134
4135
4136
4137
4138

4139
4140
4141
4142

4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153

4154
4155

4156
4157
4158
4159

4160
4161

4162
4163

4164
4165

aio_fsync() System Interfaces

NAME

aio_fsync — asynchronous file synchronization (REALTIME)

SYNOPSIS

AIO

#include <aio.h>

int aio_fsync(int op, struct aiocb * aiocbp);

DESCRIPTION

The aio_fsync() function asynchronously forces all 1/0 operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the aiochp
argument and queued at the time of the call to aio_fsync() to the synchronized 1/0 completion
state. The function call shall return when the synchronization request has been initiated or
queued to the file or device (even when the data cannot be synchronized immediately).

If op is O_DSYNC, all currently queued 1/0 operations shall be completed as if by a call to
fdatasync(); that is, as defined for synchronized 1/0 data integrity completion. If op is O_SYNC,
all currently queued 1/0 operations shall be completed as if by a call to fsync(); that is, as
defined for synchronized 1/0 file integrity completion. If the aio_fsync() function fails, or if the
operation queued by aio_fsync() fails, then, as for fsync() and fdatasync(), outstanding 170
operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/0 that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion of
subsequent 1/0 on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiochp argument refers to an asynchronous 1/0 control block. The aiochp value may be used
as an argument to aio_error() and aio_return() in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is
queued, the error status for the operation is [EINPROGRESS]. When all data has been
successfully transferred, the error status shall be reset to reflect the success or failure of the
operation. If the operation does not complete successfully, the error status for the operation shall
be set to indicate the error. The aio_sigevent member determines the asynchronous notification to
occur as specified in Section 2.4.1 (on page 528) when all operations have achieved synchronized
1/0 completion. All other members of the structure referenced by aiocbp are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous 1/0
completion, then the behavior is undefined.

If the aio_fsync () function fails or the aiocbp indicates an error condition, data is not guaranteed
to have been successfully transferred.

RETURN VALUE

The aio_fsync() function shall return the value 0 to the calling process if the I/0 operation is
successfully queued; otherwise, the function shall return the value -1 and set errno to indicate
the error.

ERRORS

610

The aio_fsync () function shall fail if:

[EAGAIN] The requested asynchronous operation was not queued due to temporary
resource limitations.

[EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument
is not a valid file descriptor open for writing.

Technical Standard (2000) (Draft July 31, 2000)

4166

4167

4168
4169
4170

4171
4172

4173
4174
4175

4176
4177

4178
4179

4180
4181
4182

4183
4184

4185
4186
4187

4188

System Interfaces aio_fsync()

[EINVAL] This implementation does not support synchronized 1/0 for this file.
[EINVAL] A value of op other than O_DSYNC or O_SYNC was specified.

In the event that any of the queued I/0 operations fail, aio_fsync() shall return the error
condition defined for read() and write(). The error is returned in the error status for the
asynchronous fsync() operation, which can be retrieved using aio_error ().

EXAMPLES
None.

APPLICATION USAGE
The aio_fsync() function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
fentl(), fdatasync(), fsync(), open(), read(), write(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

System Interfaces, Issue 6 611

4189
4190

4191
4192

4193
4194

4195
4196
4197
4198
4199

4200
4201

4202
4203
4204
4205
4206
4207
4208
4209

4210

4211
4212
4213

4214

4215
4216
4217

4218
4219

4220
4221

4222
4223
4224
4225

4226
4227

4228
4229

4230
4231
4232
4233

aio_read() System Interfaces

NAME

aio_read — asynchronous read from a file (REALTIME)

SYNOPSIS

AIO

#include <aio.h>

int aio_read(struct aiocb * aiocbp);

DESCRIPTION

P1O

SIO

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file
associated with aiocbp->aio_fildes into the buffer pointed to by aiochp->aio_buf. The function call
shall return when the read request has been initiated or queued to the file or device (even when
the data cannot be delivered immediately).

If prioritized 170 is supported for this file, then the asynchronous operation is submitted at a
priority equal to the scheduling priority of the process minus aiocbp->aio_reqgprio.

The aiocbp value may be used as an argument to aio_error() and aio_return() in order to
determine the error status and return status, respectively, of the asynchronous operation while it
is proceeding. If an error condition is encountered during queuing, the function call shall return
without having initiated or queued the request. The requested operation takes place at the
absolute position in the file as given by aio_offset, as if Iseek() were called immediately prior to
the operation with an offset equal to aio offset and a whence equal to {SEEK SET}. After a
successful call to enqueue an asynchronous I/0 operation, the value of the file offset for the file
is unspecified.

The aiocbp->aio_lio_opcode field shall be ignored by aio_read ().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or
the control block pointed to by aiochp becomes an illegal address prior to asynchronous 1/0
completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/0 is enabled on the file associated with aiocbp->aio_fildes, the behavior of this
function shall be according to the definitions of synchronized I/0 data integrity completion and
synchronized I/0 file integrity completion.

For any system action that changes the process memory space while an asynchronous 170 is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiochp->aio_fildes.

RETURN VALUE

The aio_read () function shall return the value zero to the calling process if the 1/0 operation is
successfully queued; otherwise, the function shall return the value -1 and set errno to indicate
the error.

ERRORS

612

The aio_read () function shall fail if:

[EAGAIN] The requested asynchronous 1/0 operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_read (), or asynchronously. If any of the conditions below are detected synchronously, the
aio_read () function shall return -1 and set errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation

Technical Standard (2000) (Draft July 31, 2000)

4234

4235

4236
4237

4238
4239
4240
4241
4242

4243

4244
4245

4246

4247

4248
4249
4250

4251
4252

4253
4254
4255

4256
4257

4258
4259

4260
4261
4262

4263
4264

4265

4266
4267
4268

4269

4270
4271

4272
4273

4274
4275

System Interfaces aio_read()

is set to —1, and the error status of the asynchronous operation is set to the corresponding value.
[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiochp-
>aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_read() successfully queues the I/0O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation is
one of the values normally returned by the read() function call. In addition, the error status of
the asynchronous operation is set to one of the error statuses normally set by the read() function
call, or one of the following values:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading.

[ECANCELED] The requested I/0 was canceled before the 1/0 completed due to an explicit
aio_cancel () request.

[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.
The following condition may be detected synchronously or asynchronously:

[EOVERFLOW] The file is a regular file, aiobcp->aio_nbytes is greater than 0, and the starting
offset in aiobcp->aio_offset is before the end-of-file and is at or beyond the offset
maximum in the open file description associated with aiochp->aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
The aio_read () function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error (), lio_listio (), aio_return(), aio_write(), close(), exec, exit(), fork(), Iseek(),
read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« Inthe DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
description. This change is to support large files.

« In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
large files.

System Interfaces, Issue 6 613

aio_read() System Interfaces

614 Technical Standard (2000) (Draft July 31, 2000)

4276
4277

4278
4279

4280
4281

4282
4283
4284
4285
4286
4287
4288
4289
4290
4291

4292
4293
4294
4295

4296
4297

4298
4299

4300
4301

4302
4303
4304

4305
4306

4307
4308

4309
4310
4311

4312
4313

4314
4315
4316

4317

4318
4319

System Interfaces aio_return()

NAME
aio_return — retrieve return status of an asynchronous 1/0 operation (REALTIME)
SYNOPSIS
AlO #include <aio.h>
ssize_t aio_return(struct aiocb * aiocbp);
DESCRIPTION

The aio_return() function shall return the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous 1/0 operation is the
value that would be returned by the corresponding read(), write(), or fsync() function call. If the
error status for the operation is equal to [EINPROGRESS], then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used in
a call to aio_return() or aio_error(), an error may be returned. When the aiocb structure referred
to by aiochp is used to submit another asynchronous operation, then aio_return() may be
successfully used to retrieve the return status of that operation.

RETURN VALUE
If the asynchronous 1/0 operation has completed, then the return status, as described for read(),
write(), and fsync(), shall be returned. If the asynchronous 1/0 operation has not yet completed,
the results of aio_return() are undefined.

ERRORS
The aio_return() function may fail if:

[EINVAL] The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.
EXAMPLES
None.

APPLICATION USAGE
The aio_return() function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error (), aio_fsync (), aio_read (), aio_write(), close(), exec, exit(), fork(), lio_listio (),
Iseek (), read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The [EINVAL] error condition is updated as a “may fail”’. This is for consistency with the
DESCRIPTION.

System Interfaces, Issue 6 615

4320
4321

4322
4323

4324
4325
4326

4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338

4339
4340
4341
4342

4343
4344
4345
4346

4347
4348

4349
4350

4351
4352

4353
4354
4355
4356

aio_suspend() System Interfaces

NAME

aio_suspend — wait for an asynchronous 170 request (REALTIME)

SYNOPSIS

AIO

#include <aio.h>

int aio_suspend(const struct aiocb * const list], int nent ,
const struct timespec * timeout);

DESCRIPTION

MON

The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous
I/0 operations referenced by the list argument has completed, until a signal interrupts the
function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
of the aiocb structures in the list correspond to completed asynchronous 1/0 operations (that is,
the error status for the operation is not equal to [EINPROGRESS]) at the time of the call, the
function shall return without suspending the calling thread. The list argument is an array of
pointers to asynchronous I/0 control blocks. The nent argument indicates the number of
elements in the array. Each aiocb structure pointed to has been used in initiating an
asynchronous 1/0 request via aio_read(), aio_write(), or lio_listio(). This array may contain
NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures
that have not been used in submitting asynchronous 170, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of
the 1/0 operations referenced by list are completed, then aio_suspend() shall return with an
error. If the Monotonic Clock option is supported, the clock that shall be used to measure this
time interval shall be the CLOCK_MONOTONIC clock.

RETURN VALUE

If the aio_suspend() function returns after one or more asynchronous 1/0 operations have
completed, the function shall return zero. Otherwise, the function shall return a value of -1 and
set errno to indicate the error.

The application may determine which asynchronous 1/0 completed by scanning the associated
error and return status using aio_error() and aio_return(), respectively.

ERRORS

The aio_suspend() function shall fail if:

[EAGAIN] No asynchronous 1/0 indicated in the list referenced by list completed in the
time interval indicated by timeout.

[EINTR] A signal interrupted the aio_suspend() function. Note that, since each
asynchronous 1/0 operation may possibly provoke a signal when it
completes, this error return may be caused by the completion of one (or more)
of the very I/0 operations being awaited.

4357 EXAMPLES

4358

None.

4359 APPLICATION USAGE

4360
4361

The aio_suspend() function is part of the Asynchronous Input and Output option and need not
be available on all implementations.

4362 RATIONALE

4363

616

None.

Technical Standard (2000) (Draft July 31, 2000)

4364
4365

4366
4367

4368
4369

4370
4371
4372

4373

4374
4375

System Interfaces aio_suspend()

FUTURE DIRECTIONS
None.

SEE ALSO

aio_read (), aio_write(), lio_listio (), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6

The [ENOSYS] error condition has been removed as stubs need not be provided if an

implementation does not support the Asynchronous Input and Output option.
The APPLICATION USAGE section is added.

The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that the

CLOCK_MONOTONIC clock, if supported, is used.

System Interfaces, Issue 6

617

4376
4377

4378
4379

4380
4381

4382
4383
4384
4385
4386

4387
4388

4389
4390

4391
4392
4393

4394
4395
4396
4397
4398
4399

4400

4401

4402
4403
4404

4405
4406

4407
4408

4409
4410
4411
4412

4413
4414

4415
4416

4417
4418
4419

aio_write() System Interfaces

NAME

aio_write — asynchronous write to a file (REALTIME)

SYNOPSIS

AIO

#include <aio.h>

int aio_write(struct aiocb * aiocbp);

DESCRIPTION

P1O

SIO

The aio_write() function allows the calling process to write aiocbp->aio_nbytes to the file
associated with aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf. The function call
shall return when the write request has been initiated or, at a minimum, queued to the file or
device.

If prioritized 1/0 is supported for this file, then the asynchronous operation shall be submitted
at a priority equal to the scheduling priority of the process minus aiochp->aio_reqprio.

The aiochp may be used as an argument to aio_error() and aio_return() in order to determine the
error status and return status, respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or
the control block pointed to by aiochp becomes an illegal address prior to asynchronous 1/0
completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation takes place
at the absolute position in the file as given by aio_offset, as if Iseek() were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to {SEEK_SET}. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as
the calls were made. After a successful call to enqueue an asynchronous 1/0 operation, the value
of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field shall be ignored by aio_write().
Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/0 is enabled on the file associated with aiocbp->aio_fildes, the behavior of this
function shall be according to the definitions of synchronized 1/0 data integrity completion, and
synchronized I/0 file integrity completion.

For any system action that changes the process memory space while an asynchronous 170 is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer shall occur past the offset maximum established in the open
file description associated with aiochp->aio_fildes.

RETURN VALUE

The aio_write() function shall return the value zero to the calling process if the 1/0 operation is
successfully queued; otherwise, the function shall return the value -1 and set errno to indicate
the error.

ERRORS

618

The aio_write () function shall fail if:

[EAGAIN] The requested asynchronous 1/0 operation was not queued due to system
resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously, the
aio_write() function shall return -1 and set errno to the corresponding value. If any of the

Technical Standard (2000) (Draft July 31, 2000)

4420
4421
4422

4423

4424
4425

4426
4427
4428
4429
4430

4431

4432

4433
4434

4435

4436
4437
4438

4439
4440

4441
4442
4443

4444
4445

4446
4447

4448
4449
4450

4451
4452

4453

4454
4455
4456

4457

4458
4459

4460
4461
4462

System Interfaces aio_write()

conditions below are detected asynchronously, the return status of the asynchronous operation
shall be set to -1, and the error status of the asynchronous operation is set to the corresponding

value.
[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.
[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiochp-

>aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value.

In the case that the aio_write() successfully queues the 1/0 operation, the return status of the
asynchronous operation shall be one of the values normally returned by the write() function call.
If the operation is successfully queued but is subsequently canceled or encounters an error, the
error status for the asynchronous operation contains one of the values normally set by the
write() function call, or one of the following:

[EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing.
[EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid.

[ECANCELED] The requested I/0 was canceled before the 1/0 completed due to an explicit
aio_cancel () request.

The following condition may be detected synchronously or asynchronously:

[EFBIG] The file is a regular file, aiobcp->aio_nbytes is greater than 0, and the starting
offset in aiobcp->aio_offset is at or beyond the offset maximum in the open file
description associated with aiochp->aio_fildes.

EXAMPLES
None.

APPLICATION USAGE
The aio_write() function is part of the Asynchronous Input and Output option and need not be
available on all implementations.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
aio_cancel (), aio_error(), aio_read (), aio_return(), close(), exec, exit(), fork(), lio_listio(), Iseek(),
write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Asynchronous Input and Output option.

The APPLICATION USAGE section is added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
past the offset maximum established in the open file description associated with aiochp-
>aio_fildes.

System Interfaces, Issue 6 619

aio_write() System Interfaces

4463 - The [EFBIG] error is added as part of the large file support extensions.

620 Technical Standard (2000) (Draft July 31, 2000)

4464
4465

4466
4467

4468

4469
4470
4471
4472

4473

4474
4475
4476

4477

4478
4479
4480
4481

4482
4483

4484
4485

4486
4487
4488

4489
4490
4491
4492
4493
4494

4495
4496

4497
4498
4499
4500
4501
4502
4503

4504
4505
4506

4507
4508

System Interfaces alarm()

NAME
alarm — schedule an alarm signal
SYNOPSIS
#include <unistd.h>
unsigned alarm(unsigned seconds);
DESCRIPTION
The alarm() function shall cause the system to generate a SIGALRM signal for the process after
the number of realtime seconds specified by seconds have elapsed. Processor scheduling delays
may prevent the process from handling the signal as soon as it is generated.
If seconds is 0, a pending alarm request, if any, is canceled.
Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner.
If the SIGALRM signal has not yet been generated, the call shall result in rescheduling the time
at which the SIGALRM signal is generated.
Interactions between alarm() and any of setitimer(), ualarm(), or usleep() are unspecified.
RETURN VALUE
If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value
that is the number of seconds until the previous request would have generated a SIGALRM
signal. Otherwise, alarm() shall return 0.
ERRORS
The alarm() function is always successful, and no return value is reserved to indicate an error.
EXAMPLES

None.

APPLICATION USAGE

The fork () function clears pending alarms in the child process. A new process image created by
one of the exec functions inherits the time left to an alarm signal in the old process’ image.

Application writers should note that the type of the argument seconds and the return value of
alarm() is unsigned. That means that a Strictly Conforming POSIX System Interfaces
Application cannot pass a value greater than the minimum guaranteed value for {UINT_MAX},
which the ISO C standard sets as 65535, and any application passing a larger value is restricting
its portability. A different type was considered, but historical implementations, including those
with a 16-bit int type, consistently use either unsigned or int.

Application writers should be aware of possible interactions when the same process uses both
the alarm() and sleep() functions.

RATIONALE

Many historical implementations (including Version 7 and System V) allow an alarm to occur up
to a second early. Other implementations allow alarms up to half a second or one clock tick
early or do not allow them to occur early at all. The latter is considered most appropriate, since it
gives the most predictable behavior, especially since the signal can always be delayed for an
indefinite amount of time due to scheduling. Applications can thus choose the seconds argument
as the minimum amount of time they wish to have elapse before the signal.

The term realtime here and elsewhere (sleep(), times()) is intended to mean ““wall clock’ time as
common English usage, and has nothing to do with “‘realtime operating systems”. It is in
contrast to virtual time, which could be misinterpreted if just time were used.

In some implementations, including 4.3 BSD, very large values of the seconds argument are
silently rounded down to an implementation-defined maximum value. This maximum is large

System Interfaces, Issue 6 621

4509

4510
4511
4512
4513

4514
4515
4516

4517
4518

4519
4520
4521

4522
4523

4524
4525

4526
4527
4528

4529
4530
4531

4532
4533

alarm() System Interfaces

enough (on the order of several months) that the effect is not noticeable.

There were two possible choices for alarm generation in multi-threaded applications: generation
for the calling thread or generation for the process. The first option would not have been
particularly useful since the alarm state is maintained on a per-process basis and the alarm that
is established by the last invocation of alarm() is the only one that would be active.

Furthermore, allowing generation of an asynchronous signal for a thread would have introduced
an exception to the overall signal model. This requires a compelling reason in order to be
justified.

FUTURE DIRECTIONS
None.

SEE ALSO
alarm(), exec, fork(), getitimer(), pause(), sigaction(), sleep(), ualarm(), usleep(), the Base
Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The <unistd.h> header is included in the SYNOPSIS section.

Issue 4, Version 2
The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(), and
usleep() functions are unspecified.

Issue 6
The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

- The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(), and
usleep() functions are unspecified.

622 Technical Standard (2000) (Draft July 31, 2000)

4534
4535

4536
4537

4538
4539
4540

4541
4542
4543
4544

4545
4546

4547

4548

4549
4550
4551
4552
4553
4554
4555
4556
4557
4558

4559
4560
4561
4562
4563
4564
4565
4566

4567

4568
4569
4570
4571

4572
4573

4574
4575
4576

System Interfaces asctime()

NAME
asctime, asctime_r — convert date and time to a string

SYNOPSIS
#include <time.h>

char *asctime(const struct tm * timeptr),
TSF char *asctime_r(const struct tm *restrict tm, char *restrict buf);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The asctime() function shall convert the broken-down time in the structure pointed to by timeptr
into a string in the form:

Sun Sep 16 01:03:52 1973\n\0
using the equivalent of the following algorithm:

char *asctime(const struct tm *timeptr)

{
static char wday _name[7][3] = {
"Sun”, "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
h
static char mon_name[12][3] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
h
static char result[26];
sprintf(result, "%.3s 9%.3s5%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);
return result;
}

The tm structure is defined in the <time.h> header.

cx The asctime(), ctime(), gmtime(), and localtime () functions shall return values in one of two static
objects: a broken-down time structure and an array of type char. Execution of any of the
functions may overwrite the information returned in either of these objects by any of the other
functions.

The asctime() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

TSF The asctime_r() function shall convert the broken-down time in the structure pointed to by tm
into a string (of the same form as that returned by asctime()) that is placed in the user-supplied
buffer pointed to by buf (which contains at least 26 bytes) and then return buf.

System Interfaces, Issue 6 623

4577
4578

4579
4580
4581

4582
4583

4584
4585

4586
4587
4588
4589
4590

4591
4592

4593
4594

4595
4596

4597
4598
4599

4600
4601

4602
4603

4604
4605

4606

4607

4608
4609
4610

4611

4612
4613

4614
4615

4616

4617
4618

asctime() System Interfaces

RETURN VALUE
Upon successful completion, asctime() shall return a pointer to the string.

TSF Upon successful completion, asctime_r() shall return a pointer to a character string containing
the date and time. This string is pointed to by the argument buf. If the function is unsuccessful,
it shall return NULL.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Values for the broken-down time structure can be obtained by calling gmtime() or localtime().
This function is included for compatibility with older implementations, and does not support
localized date and time formats. Applications should use strftime() to achieve maximum
portability.

The asctime_r() function is thread-safe and shall return values in a user-supplied buffer instead
of possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock (), ctime(), difftime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The location of the tm structure is now defined.

The APPLICATION USAGE section is expanded to describe the time-handling functions
generally and to refer users to strftime(), which is a locale-dependent time-handling function.

The following change is incorporated for alignment with the ISO C standard:
« The type of argument timeptr is changed from struct tm* to const struct tm*,

Issue 5
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

The asctime_r() function is included for alignment with the POSIX Threads Extension.

A note indicating that the asctime() function need not be reentrant is added to the
DESCRIPTION.

Issue 6
The asctime_r() function is marked as part of the Thread-Safe Functions option.

Extensions beyond the ISO C standard are now marked.

The APPLICATION USAGE section is updated to include a note on the thread-safe function and
its avoidance of possibly using a static data area.

624 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces asctime()

4619 The DESCRIPTION of asctime_r() is updated to describe the format of the string returned. |
4620 The restrict keyword is added to the asctime r() prototype for alignment with the |
4621 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 625

4622
4623

4624
4625

4626
4627
4628

4629
4630
4631
4632

4633
4634

4635
4636

4637
4638
4639
4640

4641

4642
4643

4644

4645
4646

4647

4648

4649

4650

4651

4652
4653

4654
4655

4656
4657

4658
4659

4660
4661

asin()

System Interfaces

NAME
asin, asinf, asinl — arc sine function
SYNOPSIS
#include <math.h>
double asin(double X);
float asinf(float X);
long double asinl(long double X);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The asin(), asinf(), and asinl() functions shall compute the principal value of the arc sine of x.
The value of x should be in the range [-1,1].
An application wishing to check for error situations should set errno to 0, then call asin(). If errno
is non-zero on return, or the return value is NaN, an error has occurred.
RETURN VALUE
Upon successful completion, the asin(), asinf(), and asinl() functions shall return the arc sine of
Xsl X, in the range [-T/2,7/2] radians. If the value of x is not in the range [-1,1], and is not Inf or
NaN, either 0.0 or NaN shall be returned anderrno shall be set to [EDOM].
Xsl If x is NaN, NaN shall be returned and errno may be set to [EDOM].
If x is zInf, either 0.0 shall be returned and errno set to [EDOM], or NaN shall be returned and
errno may be set to [EDOM].
If the result underflows, 0.0 shallbe returned and errno may be set to [ERANGE].
ERRORS
The asin(), asinf(), and asinl () functions shall fail if:
Xsl [EDOM] The value x is not £Inf or NaN andis not in the range [-1,1].
The asin(), asinf(), and asinl () functions may fail if:
Xsl [EDOM] The value of x is £Inf or NaN.
[ERANGE] The result underflows
XSl No other errors shall occur.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

626

isnan(), sin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

Technical Standard (2000) (Draft July 31, 2000)

4662
4663

4664
4665

4666
4667

4668

4669
4670
4671

4672
4673

System Interfaces

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
References to matherr() are removed.

asin()

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the

ISO C standard and to rationalize error handling in the mathematics functions.
The return value specified for [EDOM] is marked as an extension.

Issue 5

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The asinf() and asinl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

627

4674
4675

4676
4677

4678
4679

4680
4681

asinh()

NAME
asinh — hyperbolic arc sine

SYNOPSIS
XSl #include <math.h>

double asinh(double X);

DESCRIPTION
Refer to acosh().

628

System Interfaces

Technical Standard (2000) (Draft July 31, 2000)

4682
4683

4684
4685

4686

4687
4688
4689
4690

4691
4692
4693

4694
4695
4696
4697

4698
4699
4700

4701
4702

4703
4704

4705
4706

4707
4708

4709
4710

4711
4712

4713
4714

4715
4716

4717
4718

4719
4720
4721

4722

System Interfaces assert()

NAME
assert — insert program diagnostics

SYNOPSIS
#include <assert.h>

void assert(scalar expression),
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The assert() macro inserts diagnostics into programs; it expands to a void expression. When it is
executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0),
assert() shall write information about the particular call that failed on stderr and shall call abort().

The information written about the call that failed shall include the text of the argument, the
name of the source file, the source file line number, and the name of the enclosing function, the
latter are, respectively, the values of the preprocessing macros __FILE__and __LINE__ and of
the identifier __func__.

Forcing a definition of the name NDEBUG, either from the compiler command line or with the
preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
shall stop assertions from being compiled into the program.

RETURN VALUE
The assert() macro shall return no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
abort(), the Base Definitions volume of IEEE Std. 1003.1-200x, <assert.h>, stderr

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The APPLICATION USAGE section is merged into the DESCRIPTION.

Issue 6
The prototype for the expression argument to assert() is changed from int to scalar for alignment
with the ISO/IEC 9899: 1999 standard.

The DESCRIPTION of assert() is updated for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 629

atan() System Interfaces

4723 NAME

4724 atan, atanf, atanl — arc tangent function |
4725 SYNOPSIS

4726 #include <math.h>

4727 double atan(double X);

4728 float atanf(float X); |
4729 long double atanl(long double X); |
4730 DESCRIPTION [
4731 cX The functionality described on this reference page is aligned with the ISO C standard. Any
4732 conflict between the requirements described here and the ISO C standard is unintentional. This
4733 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4734 The atan(), atanf(), and atanl () functions shall compute the principal value of the arc tangent of |
4735 X.

4736 An application wishing to check for error situations should set errno to 0 before calling atan(). If
4737 errno is non-zero on return, or the return value is NaN, an error has occurred.

4738 RETURN VALUE

4739 Upon successful completion, the atan(), atanf(), and atanl() functions shall return the arc |
4740 tangent of x in the range [-1/2,1/2] radians. |
4741 Xl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |
4742 If the result underflows, 0.0 shall be returned and errno may be set to [ERANGE]. |
4743 ERRORS

4744 The atan(), atanf(), and atanl () functions may fail if: |
4745 Xl [EDOM] The value of x is NaN.

4746 [ERANGE] The result underflows |
4747 xSl No other errors shall occur.

4748 EXAMPLES

4749 None.

4750 APPLICATION USAGE

4751 None.

4752 RATIONALE

4753 None.

4754 FUTURE DIRECTIONS

4755 None.

4756 SEE ALSO

4757 atan2(), isnan(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200%, <math.h> |
4758 CHANGE HISTORY

4759 First released in Issue 1. Derived from Issue 1 of the SVID. |
4760 Issue 4

4761 References to matherr() are removed.

4762 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
4763 ISO C standard and to rationalize error handling in the mathematics functions.

630 Technical Standard (2000) (Draft July 31, 2000)

4764

4765
4766
4767

4768
4769

System Interfaces

The return value specified for [EDOM] is marked as an extension.

Issue 5

atan()

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The atanf() and atanl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

631

atan2() System Interfaces

4770 NAME

4771 atan2 — arc tangent function

4772 SYNOPSIS

4773 #include <math.h>

4774 double atan2(double y, double Xx);

4775 float atan2f(float y, float X); |
4776 long double atan2l(long double y, long double X); |
4777 DESCRIPTION |
4778 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4779 conflict between the requirements described here and the ISO C standard is unintentional. This
4780 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4781 The atan2(), atan2f(), and atan2l () functions shall compute the principal value of the arc tangent |
4782 of y/x, using the signs of both arguments to determine the quadrant of the return value. |
4783 An application wishing to check for error situations should set errno to 0 before calling atan2().
4784 If errno is non-zero on return, or the return value is NaN, an error has occurred.

4785 RETURN VALUE

4786 Upon successful completion, the atan2(), atan2f(), and atan2I() functions shall return the arc |
4787 tangent of y/x in the range [~ 1] radians. If both arguments are 0.0, an implementation-defined |
4788 value is returned and errno may be set to [EDOM]. |
4789 Xsl If x or y is NaN, NaN shall be returned and errno may be set to [EDOM].

4790 If the result underflows, 0.0 shall be returned and errno may be set to [ERANGE]. |
4791 ERRORS

4792 The atan2 (), atan2f(), and atan2l () functions may fail if: |
4793 Xsl [EDOM] Both arguments are 0.0 or one or more of the arguments is NaN. |
4794 [ERANGE] The result underflows |
4795 xsl No other errors shall occur.

4796 EXAMPLES

4797 None.

4798 APPLICATION USAGE

4799 None.

4800 RATIONALE

4801 None.

4802 FUTURE DIRECTIONS

4803 None.

4804 SEE ALSO

4805 atan(), isnan(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |
4806 CHANGE HISTORY

4807 First released in Issue 1. Derived from Issue 1 of the SVID. |
4808 Issue 4

4809 References to matherr() are removed.

4810 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
4811 ISO C standard and to rationalize error handling in the mathematics functions.

632 Technical Standard (2000) (Draft July 31, 2000)

4812

4813
4814
4815

System Interfaces

The return value specified for [EDOM] is marked as an extension.

Issue 5

atan2()

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

System Interfaces, Issue 6

633

4816
4817

4818
4819

4820
4821

4822
4823

atanh()

NAME
atanh — hyperbolic arc tangent

SYNOPSIS
XSl #include <math.h>

double atanh(double X);

DESCRIPTION
Refer to acosh().

634

System Interfaces

Technical Standard (2000) (Draft July 31, 2000)

4824
4825

4826
4827

4828

4829
4830
4831
4832

4833
4834
4835
4836

4837

4838
4839

4840
4841

4842
4843

4844
4845

4846
4847
4848

4849
4850
4851

4852
4853

4854
4855

4856
4857

4858
4859

4860
4861
4862

4863
4864

System Interfaces atexit()

NAME
atexit — register a function to run at process termination

SYNOPSIS
#include <stdlib.h>

int atexit(void (* func)(void));
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The atexit() function registers the function pointed to by func, to be called without arguments at
normal program termination. At normal program termination, all functions registered by the

cX atexit() function shall be called, in the reverse order of their registration. Normal termination
occurs either by a call to exit() or a return from main().

At least 32 functions can be registered with atexit().

cX After a successful call to any of the exec functions, any functions previously registered by atexit()
shall no longer be registered.
RETURN VALUE
Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.
ERRORS
No errors are defined.
EXAMPLES
None.

APPLICATION USAGE
The functions registered by a call to atexit() must return to ensure that all registered functions
are called.

The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
functions that can be registered. There is no way for an application to tell how many functions
have already been registered with atexit().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
exit(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ANSI C standard.

Issue 4, Version 2
The APPLICATION USAGE section is updated to indicate how an application can determine the
setting of {ATEXIT_MAX}, which is a constant added for X/OPEN UNIX conformance.

Issue 6
Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 635

4865
4866

4867
4868

4869

4870
4871
4872
4873

4874

4875

4876
4877

4878
4879

4880
4881

4882
4883

4884
4885
4886
4887

4888
4889

4890
4891

4892
4893

4894
4895

4896
4897

4898

4899

4900

atof() System Interfaces

NAME
atof — convert a string to double-precision number

SYNOPSIS
#include <stdlib.h>

double atof(const char * str);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The call atof (str) shall be equivalent to:
strtod(str ,(char *)NULL),

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atof () function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atof() function is subsumed by strtod() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtod() should be used because atof() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtod(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
Reference to how str is converted is removed from the DESCRIPTION.

The APPLICATION USAGE section is added.
The following change is incorporated for alignment with the ISO C standard:

« The type of argument str is changed from char* to const char*.

636 Technical Standard (2000) (Draft July 31, 2000)

4901
4902

4903
4904

4905

4906
4907
4908
4909

4910

4911

4912
4913

4914
4915

4916
4917

4918

4919

4920
4921
4922

4923
4924
4925
4926
4927
4928
4929
4930
4931

4932
4933
4934
4935

4936
4937

4938
4939

4940
4941

System Interfaces atoi()

NAME
atoi — convert a string to an integer

SYNOPSIS
#include <stdlib.h>

int atoi(const char * str);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The call atoi (str) shall be equivalent to:
(int) strtol(str, (char **)NULL, 10)

except that the handling of errors may differ. If the value cannot be represented, the behavior is
undefined.

RETURN VALUE
The atoi () function shall return the converted value if the value can be represented.

ERRORS
No errors are defined.

EXAMPLES

Converting an Argument

The following example checks for proper usage of the program. If there is an argument and the
decimal conversion of this argument (obtained using atoi()) is greater than 0, then the program
has a valid number of minutes to wait for an event.

#include <stdlib.h>
#include <stdio.h>

int minutes_to_event;

if (arg ¢ < 2 || ((minutes_to _event = atoi (argv[l]))) <= 0) {
fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
}

APPLICATION USAGE
The atoi() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol () should be used because atoi() is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

System Interfaces, Issue 6 637

4942
4943

4944
4945

4946

4947

4948

atoi()

System Interfaces

CHANGE HISTORY

Issue 4

638

First released in Issue 1. Derived from Issue 1 of the SVID.

Reference to how str is converted is removed from the DESCRIPTION.
The APPLICATION USAGE section is added.
The following change is incorporated for alignment with the ISO C standard:

« The type of argument str is changed from char* to const char*.

Technical Standard (2000) (Draft July 31, 2000)

4949
4950

4951
4952

4953
4954

4955
4956
4957
4958

4959

4960

4961

4962

4963
4964

4965
4966

4967
4968

4969
4970

4971
4972
4973
4974

4975
4976

4977
4978

4979
4980

4981
4982

4983
4984

4985

4986

4987

4988

System Interfaces atol()

NAME
atol, atoll — convert a string to a long integer |

SYNOPSIS
#include <stdlib.h>

long atol(const char * str); |
long long atoll(const char * nptr); |

DESCRIPTION [

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The call atol (str) shall be equivalent to:

strtol(str, (char *)NULL, 10)

The call atoll (str) shall be equivalent to: |
strtoll(nptr, (char *)NULL, 10) |

except that the handling of errors may differ. If the value cannot be represented, the behavior is |
undefined.

RETURN VALUE
These functions shall return the converted value if the value can be represented. |

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
The atol() function is subsumed by strtol() but is retained because it is used extensively in
existing code. If the number is not known to be in range, strtol () should be used because atol () is
not required to perform any error checking.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
strtol (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID. |

Issue 4
Reference to how str is converted is removed from the DESCRIPTION.

The APPLICATION USAGE section is added.
The following changes are incorporated for alignment with the ISO C standard:
« The type of argument str is changed from char* to const char*.

« The return type of the function is expanded to long. |

System Interfaces, Issue 6 639

atol() System Interfaces

4989 Issue 6
4990 The atoll () function is added for alignment with the ISO/IEC 9899: 1999 standard.

640 Technical Standard (2000) (Draft July 31, 2000)

4991
4992

4993
4994

4995
4996

4997
4998
4999

5000
5001
5002

5003
5004

5005
5006

5007
5008

5009
5010

5011
5012

5013

5014

5015
5016

5017
5018
5019
5020

5021
5022

5023

5024
5025

5026
5027
5028
5029

System Interfaces basename()

NAME
basename — return the last component of a path name

SYNOPSIS

Xsl #include <libgen.h>
char *basename(char * path);

DESCRIPTION
The basename() function shall take the path name pointed to by path and return a pointer to the
final component of the path name, deleting any trailing '/’ characters.
If the string consists entirely of the '/’ character, basename() shall return a pointer to the string
“" . If the string is exactly "//" , it is implementation-defined whether '/ or "/[" s
returned.
If path is a null pointer or points to an empty string, basename() shall return a pointer to the
string "."
The basename() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by a subsequent call to basename().
The basename() function need not be reentrant. A function that is not required to be reentrant is
not required to be thread-safe.

RETURN VALUE
The basename() function shall return a pointer to the final component of path.

ERRORS
No errors are defined.

EXAMPLES

Using basename()

The following program fragment returns a pointer to the value lib, which is the base name of
{usr/lib.

#include <libgen.h>
char *name = "/ust/lib";
char *base;

base = basename(name);

Sample Input and Output Strings for basename()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the basename() function.

InputString Output String

"fusr/lib" "lib"
"lusr/" "usr"
II/II Il/ll

System Interfaces, Issue 6 641

5030
5031

5032
5033

5034
5035

5036
5037
5038

5039
5040

5041
5042

5043
5044

5045

5046
5047

basename() System Interfaces

APPLICATION USAGE

None.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

dirname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <libgen.h>, the Shell and
Utilities volume of IEEE Std. 1003.1-200x, basename

CHANGE HISTORY

Issue 5

Issue 6

642

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Technical Standard (2000) (Draft July 31, 2000)

5048
5049

5050
5051

5052
5053

5054
5055
5056

5057
5058
5059

5060
5061

5062
5063

5064
5065

5066

5067

5068
5069

5070
5071

5072
5073

5074
5075

5076
5077

5078
5079

System Interfaces bcmp()

NAME
bcmp — memory operations (LEGACY)
SYNOPSIS
Xsl #include <strings.h>
int bcmp(const void * s1, const void * s2, size t n);
DESCRIPTION

The bemp() function shall compare the first n bytes of the area pointed to by sl with the area
pointed to by s2.

RETURN VALUE
The becmp() function shall return 0 if s1 and s2 are identical; otherwise, it shall return non-zero.
Both areas are assumed to be n bytes long. If the value of n is 0, bemp() shall return 0.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
memcmp() is preferred over this function.

For maximum portability, it is recommended to replace the function call to bcmp() as follows:
#define bcmp(bl1,b2,len) memcmp((bl), (b2), (size_t)(len))

RATIONALE
None.

FUTURE DIRECTIONS
This function may be withdrawn in a future version.

SEE ALSO
memcmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked LEGACY.

System Interfaces, Issue 6 643

5080
5081

5082
5083

5084
5085

5086
5087
5088

5089
5090

5091
5092

5093
5094

5095
5096

5097
5098

5099

5100

5101

5102

5103
5104

5105
5106

5107
5108

5109
5110

5111
5112

5113
5114

bcopy()

NAME

bcopy — memory operations (LEGACY)

SYNOPSIS

XSl

#include <strings.h>

System Interfaces

void bcopy(const void * s1, void * s2, size t n);

DESCRIPTION
The beopy () function shall copy n bytes from the area pointed to by sl to the area pointed to by

S2.

The bytes are copied correctly even if the area pointed to by s1 overlaps the area pointed to by

S2.

RETURN VALUE

The bcopy () function shall return no value.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

memmove() is preferred over this function.

The following are approximately equivalent (note the order of the arguments):

bcopy(sl,s2,n) "= memmove(s2,s1,n)

For maximum portability, it is recommended to replace the function call to bcopy() as follows:
#define bcopy(bl,b2,len) (memmove((b2), (bl), (len)), (void) 0)
RATIONALE

None.

FUTURE DIRECTIONS

This function may be withdrawn in a future version.

SEE ALSO
memmove(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h>

CHANGE HISTORY

Issue 5

Issue 6

644

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

This function is marked LEGACY.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bind()

5115 NAME

5116 bind — bind a name to a socket

5117 SYNOPSIS

5118 #include <sys/socket.h>

5119 int bind(int socket , const struct sockaddr * address ,

5120 socklen_t address len);

5121 DESCRIPTION

5122 The bind() function shall assign a local socket address address to a socket identified by descriptor
5123 socket that has no local socket address assigned. Sockets created with the socket() function are
5124 initially unnamed; they are identified only by their address family.

5125 The bind() function takes the following arguments:

5126 socket Specifies the file descriptor of the socket to be bound.

5127 address Points to a sockaddr structure containing the address to be bound to the
5128 socket. The length and format of the address depend on the address family of
5129 the socket.

5130 address_len Specifies the length of the sockaddr structure pointed to by the address
5131 argument.

5132 The socket specified by socket may require the process to have appropriate privileges to use the
5133 bind() function.

5134 RETURN VALUE

5135 Upon successful completion, bind() shall return 0; otherwise, —1 shall be returned and errno set
5136 to indicate the error.

5137 ERRORS

5138 The bind() function shall fail if:

5139 [EADDRINUSE]

5140 The specified address is already in use.

5141 [EADDRNOTAVAIL]

5142 The specified address is not available from the local machine.

5143 [EAFNOSUPPORT]

5144 The specified address is not a valid address for the address family of the
5145 specified socket.

5146 [EBADF] The socket argument is not a valid file descriptor.

5147 [EINVAL] The socket is already bound to an address, and the protocol does not support
5148 binding to a new address; or the socket has been shut down.

5149 [ENOTSOCK] The socket argument does not refer to a socket.

5150 [EOPNOTSUPP] The socket type of the specified socket does not support binding to an
5151 address.

5152 If the address family of the socket is AF_UNIX, then bind() shall fail if:

5153 [EACCES] A component of the path prefix denies search permission, or the requested
5154 name requires writing in a directory with a mode that denies write
5155 permission.

System Interfaces, Issue 6 645

5156
5157

5158

5159
5160

5161
5162
5163

5164
5165

5166

5167

5168

5169
5170

5171

5172

5173
5174

5175
5176
5177

5178

5179
5180

5181
5182

5183
5184

5185
5186

5187
5188
5189

5190
5191

bind() System Interfaces

[EDESTADDRREQ)] or [EISDIR]
The address argument is a null pointer.

[EIO] An I/0 error occurred.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
name in address.

[ENAMETOOLONG]

A component of a path name exceeded {NAME_MAX} characters, or an entire
path name exceeded {PATH_MAX} characters.

[ENOENT] A component of the path name does not name an existing file or the path
name is an empty string.

[ENOTDIR] A component of the path prefix of the path name in address is not a directory.

[EROFS] The name would reside on a read-only file system.

The bind() function may fail if:

[EACCES] The specified address is protected and the current user does not have
permission to bind to it.

[EINVAL] The address_len argument is not a valid length for the address family.

[EISCONN] The socket is already connected.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path name in address.

[ENAMETOOLONG]

Path name resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENOBUFS] Insufficient resources were available to complete the call.

EXAMPLES
None.

APPLICATION USAGE
An application program can retrieve the assigned socket name with the getsockname () function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
connect(), getsockname(), listen(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x,
<sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

646 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bsd_signal()

5192 NAME

5193 bsd_signal — simplified signal facilities

5194 SYNOPSIS

5195 OB #include <signal.h>

5196 void (*bsd_signal(int sig , void (* func)(int)))(int);

5197

5198 DESCRIPTION

5199 The bsd_signal () function provides a partially compatible interface for programs written to
5200 historical system interfaces (see APPLICATION USAGE).

5201 The function call bsd_signal(sig, func) has an effect as if implemented as:

5202 void (*bsd_signal(int sig, void (*func)(int)))(int)

5203 {

5204 struct sigaction act, oact;

5205 act.sa_handler = func ;

5206 act.sa_flags = SA RESTART;

5207 sigemptyset(&act.sa_mask);

5208 sigaddset(&act.sa_mask, sig);

5209 if (sigaction(sig , &act, &oact) == -1)

5210 return(SIG_ERR);

5211 return(oact.sa_handler);

5212 }

5213 The handler function should be declared:

5214 void handler(int sig);

5215 where sig is the signal number. The behavior is undefined if func is a function that takes more
5216 than one argument, or an argument of a different type.

5217 RETURN VALUE

5218 Upon successful completion, bsd_signal() shall return the previous action for sig. Otherwise,
5219 SIG_ERR shall be returned and errno shall be set to indicate the error.

5220 ERRORS

5221 Refer to sigaction ().

5222 EXAMPLES

5223 None.

5224 APPLICATION USAGE

5225 This function is a direct replacement for the BSD signal () function for simple applications that
5226 are installing a single-argument signal handler function. If a BSD signal handler function is being
5227 installed that expects more than one argument, the application has to be modified to use
5228 sigaction (). The bsd_signal () function differs from signal() in that the SA_ RESTART flag is set
5229 and the SA_RESETHAND is clear when bsd_signal() is used. The state of these flags is not
5230 specified for signal ().

5231 It is recommended that new applications use the sigaction () function.

5232 RATIONALE

5233 None.

System Interfaces, Issue 6 647

5234
5235

5236
5237
5238

5239
5240

5241
5242

5243
5244

bsd_signal()

FUTURE DIRECTIONS
None.

SEE ALSO
sigaction(), sigaddset(), sigemptyset(), signal(), the Base
IEEE Std. 1003.1-200x, <signal.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked obsolescent.

System Interfaces

Definitions

volume

of

648 Technical Standard (2000) (Draft July 31, 2000)

5245
5246

5247
5248

5249
5250

5251
5252
5253
5254

5255
5256
5257

5258
5259

5260
5261
5262
5263
5264

5265
5266
5267
5268

5269
5270

5271
5272
5273

5274
5275

5276
5277
5278

5279

5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290

System Interfaces bsearch()

NAME
bsearch — binary search a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void * key, const void * base, size t nel ,
size t width , int (* compar)(const void *, const void *));
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The bsearch() function searches an array of nel objects, the initial element of which is pointed to
by base, for an element that matches the object pointed to by key. The size of each element in the
array is specified by width.

The comparison function pointed to by compar is called with two arguments that point to the key
object and to an array element, in that order.

The application shall ensure that the function returns an integer less than, equal to, or greater
than 0 if the key object is considered, respectively, to be less than, to match, or to be greater than
the array element. The application shall ensure that the array consists of all the elements that
compare less than, all the elements that compare equal to, and all the elements that compare
greater than the key object, in that order.

RETURN VALUE
The bsearch() function shall return a pointer to a matching member of the array, or a null pointer
if no match is found. If two or more members compare equal, which member is returned is
unspecified.

ERRORS
No errors are defined.

EXAMPLES
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

The code fragment below reads in strings and either finds the corresponding node and prints out
the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TABSIZE 1000

struct node { /* These are stored in the table. */
char *string;
int length;

h

struct node table[TABSIZE]; [* Table to be searched. */

struct node *node_ptr, node;
[* routine to compare 2 nodes */

System Interfaces, Issue 6 649

5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318

5319
5320
5321

5322
5323

5324

5325
5326

5327
5328

5329
5330
5331

5332
5333

5334
5335

5336
5337

bsearch() System Interfaces

int node_compare(const void * const void *);
char str_space[20]; /* Space to read string into. */

node.string = str_space;
while (scanf("%s", node.string) = EOF) {
node_ptr = (struct node *)bsearch((void *)(&node),
(void *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr = NULL) {
(void)printf("string = %20s, length = %d\n",
node_ptr->string, node_ptr->length);
} else {
(void)printf("not found: %s\n", node.string);

}
}
/*
This routine compares two nodes based on an
alphabetical ordering of the string field.
*
int
node_compare(const void *nodel, const void *node2)
{
return strcoll(((const struct node *)nodel)->string,
((const struct node *)node2)->string);
}

APPLICATION USAGE
The pointers to the key and the element at the base of the table should be of type pointer-to-
element.

The comparison function need not compare every byte, so arbitrary data may be contained in
the elements in addition to the values being compared.

In practice, the array is usually sorted according to the comparison function.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
hcreate(), lsearch(), gsort(), tsearch(), the Base Definitions volume of IEEE Std. 1003.1-200x,
<stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
Text indicating the need for various casts is removed from the APPLICATION USAGE section.

The code in the EXAMPLES section is changed to use strcoll() instead of strcmp() in
node_compare().

650 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bsearch()

5338 The return value and the contents of the array are now requirements on the application.

5339 The DESCRIPTION is changed to specify the order of arguments.

5340 The following changes are incorporated for alignment with the ISO C standard:

5341 - The type of arguments key and base, and the type of arguments to compar, are changed from
5342 void* to const void*.

5343 - The requirement that the table be sorted according to compar is removed from the
5344 DESCRIPTION.

5345 Issue 6

5346 The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

System Interfaces, Issue 6 651

5347
5348

5349
5350
5351

5352

5353
5354
5355
5356

5357
5358

5359

5360
5361
5362
5363

5364
5365

5366
5367

5368
5369

5370
5371

5372
5373

5374
5375

5376
5377
5378

btowc() System Interfaces

NAME
btowc — single-byte to wide-character conversion

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The btowc() function shall determine whether ¢ constitutes a valid (one-byte) character in the
initial shift state.

The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

RETURN VALUE
The btowc() function shall return WEOF if ¢ has the value EOF or if (unsigned char) ¢ does not
constitute a valid (one-byte) character in the initial shift state. Otherwise, it shall return the
wide-character representation of that character.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
wctob (), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1:1995

(E).

652 Technical Standard (2000) (Draft July 31, 2000)

5379
5380

5381
5382

5383
5384

5385
5386

5387
5388

5389
5390

5391
5392

5393
5394

5395

5396

5397
5398

5399
5400

5401
5402

5403
5404

5405
5406

5407
5408

System Interfaces

NAME
bzero — memory operations (LEGACY)

SYNOPSIS
Xsl #include <strings.h>

void bzero(void * S, size_t n);

DESCRIPTION
The bzero() function shall place n zero-valued bytes in the area pointed to by s.

RETURN VALUE
The bzero() function shall return no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
memset() is preferred over this function.

bzero()

For maximum portability, it is recommended to replace the function call to bzero() as follows:

#define bzero(b,len) (memset((b), \O’, (len)), (void) 0)

RATIONALE
None.

FUTURE DIRECTIONS
This function may be withdrawn in a future version.

SEE ALSO
memset(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
This function is marked LEGACY.

System Interfaces, Issue 6

653

5409
5410

5411
5412

5413
5414
5415

5416
5417
5418
5419

5420
5421

5422
5423

5424
5425

5426
5427

5428
5429

5430
5431

5432
5433

5434
5435

5436
5437

cabs() System Interfaces

NAME
cabs, cabsf, cabsl — return a complex absolute value
SYNOPSIS
#include <complex.h> |
double cabs(double complex 2);
float cabsf(float complex 2);
long double cabsl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute the complex absolute value (also called norm, modulus, or
magnitude) of z.
RETURN VALUE
These functions shall return the complex absolute value.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

The Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY

654

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

5438
5439

5440
5441

5442
5443
5444

5445
5446
5447
5448

5449
5450

5451
5452
5453

5454
5455

5456
5457

5458
5459

5460
5461

5462
5463

5464
5465

5466
5467

System Interfaces cacos()

NAME
cacos, cacosf, cacosl — complex arc cosine functions

SYNOPSIS
#include <complex.h> |

double complex cacos(double complex 2);
float complex cacosf(float complex 2);
long double complex cacosl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc cosine of z, with branch cuts outside the interval
[-1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc cosine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [0, 17 along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccos(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 655

5468
5469

5470
5471

5472
5473
5474

5475
5476
5477
5478

5479
5480

5481
5482
5483

5484
5485

5486
5487

5488
5489

5490
5491

5492
5493

5494
5495

5496
5497

cacosh() System Interfaces

NAME
cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

SYNOPSIS
#include <complex.h> |

double complex cacosh(double complex 2);
float complex cacoshf(float complex 2);
long double complex cacoshl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip
of non-negative values along the real axis and in the interval [-iTt, +iT{] along the imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ccosh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

656 Technical Standard (2000) (Draft July 31, 2000)

5498
5499

5500
5501

5502

5503
5504
5505
5506

5507
5508

5509
5510
5511
5512
5513
5514
5515
5516

5517
5518
5519
5520
5521

5522
5523

5524

5525
5526

5527
5528

5529
5530

5531
5532

5533
5534

5535
5536

5537
5538

5539
5540

System Interfaces calloc()

NAME
calloc — a memory allocator

SYNOPSIS

#include <stdlib.h>
void *calloc(size_t nelem, size_t elsize),

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The calloc () function allocates unused space for an array of nelem elements each of whose size in
bytes is elsize. The space is initialized to all bits 0.
The order and contiguity of storage allocated by successive calls to calloc() is unspecified. The
pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
pointer to any type of object and then used to access such an object or an array of such objects in
the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall
yield a pointer to an object disjoint from any other object. The pointer returned points to the start
(lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer is
returned. If the size of the space requested is 0, the behavior is implementation-defined; the
value returned shall be either a null pointer or a unique pointer.

RETURN VALUE
Upon successful completion with both nelem and elsize non-zero, calloc() shall return a pointer to
the allocated space. If either nelem or elsize is 0, then either a null pointer or a unique pointer
value that can be successfully passed to free() shall be returned. Otherwise, it shall return a null

cX pointer and set errno to indicate the error.

ERRORS
The calloc () function shall fail if:

cX [ENOMEM] Insufficient memory is available.

EXAMPLES
None.

APPLICATION USAGE

There is now no requirement for the implementation to support the inclusion of <malloc.h>.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
free(), malloc(), realloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The setting of errno and the [ENOMEM)] error are marked as extensions.

The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be

supported on XSl-conformant systems.

System Interfaces, Issue 6

5541

5542

5543
5544

5545

5546

5547

5548
5549

5550
5551

5552
5553

5554
5555

calloc() System Interfaces

The following changes are incorporated in this issue for alignment with the ISO C standard:
« The DESCRIPTION is updated to indicate:

— The order and contiguity of storage allocated by successive calls to this function is
unspecified.

— Each allocation yields a pointer to an object disjoint from any other object.
— The returned pointer points to the lowest byte address of the allocation.
— The behavior if space is requested of zero size.

« The RETURN VALUE section is updated to indicate what is returned if either nelem or elsize
is 0.

Issue 6
Extensions beyond the ISO C standard are now marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The setting of errno and the [ENOMEM] error condition are mandatory if an insufficient
memory condition occurs.

658 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces carg()

5556 NAME

5557 carg, cargf, cargl — complex argument functions

5558 SYNOPSIS

5559 #include <complex.h> |
5560 double carg(double complex 2);

5561 float cargf(float complex 2);

5562 long double cargl(long double complex 2);

5563 DESCRIPTION

5564 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5565 conflict between the requirements described here and the ISO C standard is unintentional. This
5566 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5567 These functions shall compute the argument (also called phase angle) of z, with a branch cut
5568 along the negative real axis.

5569 RETURN VALUE

5570 These functions shall return the value of the argument in the interval [-T1, +71].

5571 ERRORS

5572 No errors are defined.

5573 EXAMPLES

5574 None.

5575 APPLICATION USAGE

5576 None.

5577 RATIONALE

5578 None.

5579 FUTURE DIRECTIONS

5580 None.

5581 SEE ALSO

5582 cimag (), conj(), cproj(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

5583 CHANGE HISTORY

5584 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 659

5585
5586

5587
5588

5589
5590
5591

5592
5593
5594
5595

5596
5597

5598
5599
5600

5601
5602

5603
5604

5605
5606

5607
5608

5609
5610

5611
5612

5613
5614

casin() System Interfaces

NAME
casin, casinf, casinl — complex arc sine functions

SYNOPSIS
#include <complex.h> |

double complex casin(double complex 2);
float complex casinf(float complex 2);
long double complex casinl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc sine of z, with branch cuts outside the interval
[-1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc sine value, in the range of a strip mathematically
unbounded along the imaginary axis and in the interval [-1/2, +1/2] along the real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

660 Technical Standard (2000) (Draft July 31, 2000)

5615
5616

5617
5618

5619
5620
5621

5622
5623
5624
5625

5626
5627

5628
5629
5630
5631

5632
5633

5634
5635

5636
5637

5638
5639

5640
5641

5642
5643

5644
5645

System Interfaces casinh()

NAME
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

SYNOPSIS
#include <complex.h> |

double complex casinh(double complex 2);
float complex casinhf(float complex 2);
long double complex casinhl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic sine of z, with branch cuts outside the
interval [—i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iT/2, +iT/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
csinh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 661

5646
5647

5648
5649

5650
5651
5652

5653
5654
5655
5656

5657
5658

5659
5660
5661
5662

5663
5664

5665
5666

5667
5668

5669
5670

5671
5672

5673
5674

5675
5676

catan() System Interfaces

NAME
catan, catanf, catanl — complex arc tangent functions

SYNOPSIS
#include <complex.h> |

double complex catan(double complex 2);
float complex catanf(float complex 2);
long double complex catanl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc tangent of z, with branch cuts outside the
interval [—i, +i] along the imaginary axis.

RETURN VALUE
These functions shall return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-T/2, +T//2] along the
real axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

662 Technical Standard (2000) (Draft July 31, 2000)

5677
5678

5679
5680

5681
5682
5683

5684
5685
5686
5687

5688
5689

5690
5691
5692
5693

5694
5695

5696
5697

5698
5699

5700
5701

5702
5703

5704
5705

5706
5707

System Interfaces catanh()

NAME
catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

SYNOPSIS
#include <complex.h> |

double complex catanh(double complex 2);
float complex catanhf(float complex 2);
long double complex catanhl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex arc hyperbolic tangent of z, with branch cuts outside
the interval [-1, +1] along the real axis.

RETURN VALUE
These functions shall return the complex arc hyperbolic tangent value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iT/2, +iT/2] along the
imaginary axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
ctanh (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 663

5708
5709

5710
5711

5712
5713

5714
5715
5716

5717
5718
5719

5720
5721

5722

5723

5724
5725

5726
5727

5728
5729

5730
5731

5732
5733

5734
5735

5736
5737

catclose() System Interfaces

NAME

catclose — close a message catalog descriptor
SYNOPSIS
Xsl #include <nl_types.h>

int catclose(nl_catd catd);
DESCRIPTION

The catclose() function shall close the message catalog identified by catd. If a file descriptor is
used to implement the type nl_catd, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, catclose () shall return 0; otherwise, —1 shall be returned, and errno
set to indicate the error.

ERRORS
The catclose () function may fail if:

[EBADF] The catalog descriptor is not valid.
[EINTR] The catclose () function was interrupted by a signal.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catgets(), catopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The [EBADF] and [EINTR] errors are added to the ERRORS section.

664 Technical Standard (2000) (Draft July 31, 2000)

5738
5739

5740
5741

5742
5743

5744
5745
5746
5747
5748

5749
5750

5751
5752
5753
5754

5755
5756

5757

5758
5759

5760

5761

5762
5763

5764
5765

5766
5767

5768
5769

5770
5771

5772
5773

5774
5775

5776

System Interfaces catgets()

NAME
catgets — read a program message
SYNOPSIS
Xsl #include <nl_types.h>
char *catgets(nl_catd catd , int s etid , int msg id, const char * s);
DESCRIPTION
The catgets() function attempts to read message msg_id, in set set_id, from the message catalog
identified by catd. The catd argument is a message catalog descriptor returned from an earlier
call to catopen(). The s argument points to a default message string which shall be returned by
catgets() if it cannot retrieve the identified message.
The catgets() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.
RETURN VALUE

If the identified message is retrieved successfully, catgets() shall return a pointer to an internal
buffer area containing the null-terminated message string. If the call is unsuccessful for any
reason, s shall be returned and errno may be set to indicate the error.

ERRORS
The catgets() function may fail if:

[EBADF] The catd argument is not a valid message catalog descriptor open for reading.

[EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.

[EINVAL] The message catalog identified by catd is corrupted.
[ENOMSG] The message identified by set_id and msg_id is not in the message catalog.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
catclose (), catopen (), the Base Definitions volume of IEEE Std. 1003.1-200x%, <nl_types.h>

CHANGE HISTORY
First released in Issue 2.

Issue 4
The type of argument s is changed from char* to const char*.

The [EBADF] and [EINTR] errors are added to the ERRORS section.

System Interfaces, Issue 6 665

5777
5778

5779

5780

5781
5782

5783
5784

catgets() System Interfaces

Issue 4, Version 2

Issue 5

Issue 6

666

The following changes are incorporated for X/OPEN UNIX conformance;
- The RETURN VALUE section notes that errno may be set to indicate an error.
+ Inthe ERRORS section, [EINVAL] and [ENOMSG] are added as optional errors.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Technical Standard (2000) (Draft July 31, 2000)

5785
5786

5787
5788

5789
5790

5791
5792
5793
5794
5795
5796
5797
5798
5799
5800

5801
5802
5803

5804
5805

5806
5807
5808
5809

5810
5811
5812
5813

5814
5815

5816
5817

5818

5819
5820
5821

5822
5823
5824

5825

5826
5827

5828

System Interfaces catopen()

NAME
catopen — open a message catalog

SYNOPSIS
Xsl #include <nl_types.h>

nl_catd catopen(const char * name, int oflag);

DESCRIPTION

The catopen() function shall open a message catalog and return a message catalog descriptor.
The name argument specifies the name of the message catalog to be opened. If name contains a
‘I, then name specifies a complete name for the message catalog. Otherwise, the environment
variable NLSPATH is used with name substituted for %N (see the Base Definitions volume of
IEEE Std. 1003.1-200x, Chapter 8, Environment Variables). If NLSPATH does not exist in the
environment, or if a message catalog cannot be found in any of the components specified by
NLSPATH, then an implementation-defined default path is used. This default may be affected by
the setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or the LANG
environment variable if oflag is 0.

A message catalog descriptor remains valid in a process until that process closes it, or a
successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
category may invalidate existing open catalogs.

If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
shall be set; see <fcntl.h>.

If the value of the oflag argument is 0, the LANG environment variable is used to locate the
catalog without regard to the LC _MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see the
Base Definitions volume of IEEE Std. 1003.1-200x, Section 8.2, Internationalization Variables).

RETURN VALUE
Upon successful completion, catopen() shall return a message catalog descriptor for use on
subsequent calls to catgets() and catclose(). Otherwise, catopen() shall return (nl_catd) -1 and set
errno to indicate the error.

ERRORS
The catopen() function may fail if:

[EACCES] Search permission is denied for the component of the path prefix of the

message catalog or read permission is denied for the message catalog.
[EMFILE] {OPEN_MAXj} file descriptors are currently open in the calling process.
[ENAMETOOLONG]

The length of a path name of the message catalog exceeds {PATH_MAX} or a
path name component is longer than {NAME_MAX}.

[ENAMETOOLONG]
Path name resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENFILE] Too many files are currently open in the system.

[ENOENT] The message catalog does not exist or the name argument points to an empty
string.

[ENOMEM] Insufficient storage space is available.

System Interfaces, Issue 6 667

5829

5830
5831

5832
5833
5834
5835

5836
5837

5838
5839
5840

5841
5842

5843
5844

5845
5846
5847

5848
5849

5850
5851

5852

5853

5854

5855
5856

5857

5858
5859

5860

5861
5862

5863
5864

catopen() System Interfaces

[ENOTDIR] A component of the path prefix of the message catalog is not a directory.

EXAMPLES

None.

APPLICATION USAGE

Some implementations of catopen() use malloc() to allocate space for internal buffer areas. The
catopen () function may fail if there is insufficient storage space available to accommodate these
buffers.

Portable applications must assume that message catalog descriptors are not valid after a call to
one of the exec functions.

Application writers should be aware that guidelines for the location of message catalogs have
not yet been developed. Therefore they should take care to avoid conflicting with catalogs used
by other applications and the standard utilities.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

catclose(), catgets(), the Base Definitions volume of IEEE Std.1003.1-200x, <fcntl.h>,
<nl_types.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x

CHANGE HISTORY

Issue 4

First released in Issue 2.

The type of argument name is changed from char* to const char*.
The DESCRIPTION is updated:
- To indicate the longevity of message catalog descriptors.
« To specify values for the oflag argument and the effect of LC_MESSAGES and NLSPATH.

The [EACCES], [EMFILE], [ENAMETOOLONG], [ENFILE], [ENOENT], and [ENOTDIR] errors
are added to the ERRORS section.

The APPLICATION USAGE section is updated to indicate:

- Portable applications should not assume the continued validity of message catalog
descriptors after a call to one of the exec functions.

- Message catalogs must be located with care.

Issue 4, Version 2

668

The following change is incorporated for X/OPEN UNIX conformance:

« In the ERRORS section, an [ENAMETOOLONG] condition is defined that may report
excessive length of an intermediate result of path name resolution of a symbolic link.

Technical Standard (2000) (Draft July 31, 2000)

5865
5866

5867
5868

5869
5870
5871

5872
5873
5874
5875

5876

5877
5878

5879
5880

5881

5882

5883
5884

5885

5886
5887

5888
5889

5890
5891
5892

5893
5894

5895
5896

5897
5898

5899
5900

5901
5902

5903

System Interfaces cbrt()

NAME
cbrt, cbrtf, cbrtl — cube root functions

SYNOPSIS
#include <math.h>

double cbrt(double X);
float cbrtf(float X);
long double chrtl(long double X);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This

volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the real cube root of x.

An application wishing to check for error situations should set errno to 0 before calling these

functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the cube root of x.

If x is £Inf, these functions shall return x.
If x is NaN, NaN shall be returned and errno may be set to [EDOM].

ERRORS
These functions may fail if:

[EDOM] The value of x is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

For some applications, a true cube root function, which returns negative results for negative

arguments, is more appropriate than pow(x, 1.0/3.0), which returns a NaN for x less than 0.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Issue 6
The cbrt() function is no longer marked XSI.

The cbrtf() and cbrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

669

ccos() System Interfaces

5904 NAME

5905 ccos, ccosf, ccosl — complex cosine functions

5906 SYNOPSIS

5907 #include <complex.h> |
5908 double complex ccos(double complex 2);

5909 float complex ccosf(float complex 2);

5910 long double complex ccosl(long double complex 2);

5911 DESCRIPTION

5912 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5913 conflict between the requirements described here and the ISO C standard is unintentional. This
5914 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5915 These functions shall compute the complex cosine of z.

5916 RETURN VALUE

5917 These functions shall return the complex cosine value.

5918 ERRORS

5919 No errors are defined.

5920 EXAMPLES

5921 None.

5922 APPLICATION USAGE

5923 None.

5924 RATIONALE

5925 None.

5926 FUTURE DIRECTIONS

5927 None.

5928 SEE ALSO

5929 cacos(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

5930 CHANGE HISTORY

5931 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

670 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ccosh()

5932 NAME

5933 ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

5934 SYNOPSIS

5935 #include <complex.h> |
5936 double complex ccosh(double complex 2);

5937 float complex ccoshf(float complex 2);

5938 long double complex ccoshl(long double complex 2);

5939 DESCRIPTION

5940 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5941 conflict between the requirements described here and the ISO C standard is unintentional. This
5942 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5943 These functions shall compute the complex hyperbolic cosine of z.

5044 RETURN VALUE

5945 These functions shall return the complex hyperbolic cosine value.

5946 ERRORS

5947 No errors are defined.

5048 EXAMPLES

5949 None.

5950 APPLICATION USAGE

5951 None.

5952 RATIONALE

5953 None.

5054 FUTURE DIRECTIONS

5955 None.

5956 SEE ALSO

5957 cacosh (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

5958 CHANGE HISTORY

5959 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 671

5960
5961

5962
5963

5964
5965
5966

5967
5968
5969
5970

5971

5972
5973

5974
5975
5976

5977

5978
5979

5980
5981

5982

5983

5984

5985

5986
5987

5988
5989
5990
5991

5992
5993

5994
5995

5996
5997

5998
5999

ceil() System Interfaces

NAME
ceil, ceilf, ceill — ceiling value function
SYNOPSIS
#include <math.h>
double ceil(double X);
float ceilf(float X);
long double ceill(long double X);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The ceil (), ceilf(), and ceill () functions shall compute the smallest integral value not less than x.

An application wishing to check for error situations should set errno to 0 before calling ceil (). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, the ceil(), ceilf(), and ceill() functions shall return the smallest
integral value not less than x, expressed as a type double.

Xsl If x is NaN, NaN shall be returned and errno may be set to [EDOM].
If the correct value would cause overflow, HUGE_ VAL shall be returned and errno set to
Xsl [ERANGE]. If x is £Inf or 0, the value of x shall be returned.
ERRORS
The ceil (), ceilf(), and ceill () functions shall fail if:
[ERANGE] The result overflows.
The ceil (), ceilf(), and ceill () functions may fail if:
Xsl [EDOM] The value of x is NaN.
XSl No other errors shall occur.
EXAMPLES
None.

APPLICATION USAGE
The integral value returned by ceil () as a double need not be expressible as an int or long. The
return value should be tested before assigning it to an integer type to avoid the undefined results
of an integer overflow.

The ceil() function can only overflow when the floating point representation has
DBL_MANT _DIG > DBL_MAX_EXP.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
floor (), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

672 Technical Standard (2000) (Draft July 31, 2000)

6000
6001

6002
6003

6004
6005

6006

6007
6008

6009
6010
6011

6012
6013

System Interfaces ceil()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
References to matherr() are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
ISO C standard and to rationalize error handling in the mathematics functions.

The return value specified for [EDOM] is marked as an extension.

Support for x being xInf or +0 is added to the RETURN VALUE section and marked as an
extension.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The ceilf() and ceill () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 673

cexp() System Interfaces

6014 NAME

6015 cexp, cexpf, cexpl — complex exponential functions

6016 SYNOPSIS

6017 #include <complex.h> |
6018 double complex cexp(double complex 2);

6019 float complex cexpf(float complex 2);

6020 long double complex cexpl(long double complex 2);

6021 DESCRIPTION

6022 CX The functionality described on this reference page is aligned with the ISO C standard. Any
6023 conflict between the requirements described here and the ISO C standard is unintentional. This
6024 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

6025 These functions shall compute the complex exponent of z, defined as e?.

6026 RETURN VALUE

6027 These functions shall return the complex exponential value of z.

6028 ERRORS

6029 No errors are defined.

6030 EXAMPLES

6031 None.

6032 APPLICATION USAGE

6033 None.

6034 RATIONALE

6035 None.

6036 FUTURE DIRECTIONS

6037 None.

6038 SEE ALSO

6039 clog(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

6040 CHANGE HISTORY

6041 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

674 Technical Standard (2000) (Draft July 31, 2000)

6042
6043

6044
6045

6046

6047
6048
6049

6050

6051
6052
6053

6054
6055

6056
6057

6058
6059

6060
6061
6062
6063

6064
6065

6066
6067

6068
6069

6070
6071
6072

6073
6074
6075
6076
6077
6078
6079
6080
6081
6082

6083
6084
6085
6086

System Interfaces cfgetispeed()

NAME
cfgetispeed — get input baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetispeed(const struct termios * termios p);

DESCRIPTION
The cfgetispeed () function shall extract the input baud rate from the termios structure to which
the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE
Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the
input baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
The term baud is used historically here, but is not technically correct. This is properly “bits per
second”, which may not be the same as baud. However, the term is used because of the
historical usage and understanding.

The cfgetospeed (), cfgetispeed (), cfsetospeed (), and cfsetispeed() functions do not take arguments as
numbers, but rather as symbolic names. There are two reasons for this;

1. Historically, numbers were not used because of the way the rate was stored in the data
structure. This is retained even though a function is now used.

2. More importantly, only a limited set of possible rates is at all portable, and this constrains
the application to that set.

There is nothing to prevent an implementation to accept, as an extension, a number (such as 126)
if it wished, and because the encoding of the Bxxx symbols is not specified, this can be done so
no ambiguity is introduced.

Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications
in this volume of IEEE Std. 1003.1-200x have made it possible to determine whether split rates
are supported and to support them without having to treat zero as a special case. Since this
functionality is also confusing, it has been declared obsolescent. The 0 argument referred to is
the literal constant 0, not the symbolic constant BO. This volume of IEEE Std. 1003.1-200x does
not preclude BO from being defined as the value 0; in fact, implementations would likely benefit
from the two being equivalent. This volume of IEEE Std. 1003.1-200x does not fully specify
whether the previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as
zero. Therefore, portable applications should always set both the input speed and output speed
when setting either.

In historical implementations, the baud rate information is traditionally kept in c_cflag.
Applications should be written to presume that this might be the case (and thus not blindly copy
c_cflag), but not to rely on it in case it is in some other field of the structure. Setting the ¢_cflag
field absolutely after setting a baud rate is a non-portable action because of this. In general, the

System Interfaces, Issue 6 675

6087
6088

6089
6090

6091
6092
6093
6094

6095
6096

6097

6098
6099

6100

6101
6102
6103

cfgetispeed() System Interfaces

unused parts of the flag fields might be used by the implementation and should not be blindly
copied from the descriptions of one terminal device to another.

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetospeed (), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 11, General Terminal Interface

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

- The type of the argument termios_p is changed from struct termios* to const struct termios*.

- The DESCRIPTION is changed to indicate that the function simply returns the value from
termios_p, irrespective of how that structure was obtained. Issue 3 states that if termios_p was
not obtained by a successful call to tcgetattr(), the behavior is undefined.

676 Technical Standard (2000) (Draft July 31, 2000)

6104
6105

6106
6107

6108

6109
6110
6111

6112

6113
6114
6115

6116
6117

6118
6119

6120
6121

6122
6123

6124
6125

6126
6127
6128
6129

6130
6131

6132

6133
6134

6135

6136
6137
6138

System Interfaces cfgetospeed()

NAME
cfgetospeed — get output baud rate

SYNOPSIS
#include <termios.h>

speed_t cfgetospeed(const struct termios * termios p);
DESCRIPTION

The cfgetospeed () function shall extract the output baud rate from the termios structure to which

the termios_p argument points.

This function shall return exactly the value in the termios data structure, without interpretation.

RETURN VALUE

Upon successful completion, cfgetospeed () shall return a value of type speed_t representing the

output baud rate.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
Refer to cfgetispeed().

FUTURE DIRECTIONS
None.

SEE ALSO
cfgetispeed (), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume

of

IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x,

Chapter 11, General Terminal Interface

CHANGE HISTORY
First released in Issue 3.

Entry included for alignment with the POSIX.1-1988 standard.

Issue 4
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

« The type of the argument termios_p is changed from struct termios* to const struct termios*.

. The DESCRIPTION is changed to indicate that the function simply returns the value from
termios_p, irrespective of how that structure was obtained. Issue 3 states that if termios_p was

not obtained by a successful call to tcgetattr(), the behavior is undefined.

System Interfaces, Issue 6

677

6139
6140

6141
6142

6143

6144
6145
6146

6147
6148
6149
6150

6151
6152
6153

6154
6155

6156

6157
6158

6159
6160

6161
6162

6163
6164

6165
6166

6167
6168
6169
6170

6171
6172

6173

6174
6175

6176
6177
6178

cfsetispeed() System Interfaces

NAME

cfsetispeed — set input baud rate

SYNOPSIS

#include <termios.h>

int cfsetispeed(struct termios * termios p , speed_t speed);

DESCRIPTION

The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE

Upon successful completion, cfsetispeed() shall return 0; otherwise, -1 shall be returned, and
errno may be set to indicate the error.

ERRORS

The cfsetispeed () function may fail if:
[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE

Refer to cfgetispeed().

FUTURE DIRECTIONS

None.

SEE ALSO

cfgetispeed (), cfgetospeed(), cfsetospeed(), tcsetattr(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 11, General Terminal Interface

CHANGE HISTORY

Issue 4

First released in Issue 3.
Entry included for alignment with the POSIX.1-1988 standard.

The first description of the [EINVAL] error is added and is marked as an extension.

Issue 4, Version 2

678

The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
speed is outside the range of possible speed values given in <termios.h>.

Technical Standard (2000) (Draft July 31, 2000)

6179
6180
6181

6182

System Interfaces cfsetispeed()

Issue 6

The following new requirements on POSIX implementations derive from alignment with the

Single UNIX Specification:

- The optional setting of errno and the [EINVAL] error conditions are added.

System Interfaces, Issue 6

679

6183
6184

6185
6186

6187

6188
6189
6190

6191
6192
6193
6194

6195
6196
6197

6198
6199

6200

6201
6202

6203
6204

6205
6206

6207
6208

6209
6210

6211
6212
6213
6214

6215
6216

6217

6218
6219

6220
6221
6222

cfsetospeed() System Interfaces

NAME

cfsetospeed — set output baud rate

SYNOPSIS

#include <termios.h>

int cfsetospeed(struct termios * termios p , speed_t speed);

DESCRIPTION

The cfsetospeed () function shall set the output baud rate stored in the structure pointed to by
termios_p to speed.

There shall be no effect on the baud rates set in the hardware until a subsequent successful call
to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
baud rates not supported by the terminal device need not be detected until the tcsetattr()
function is called.

RETURN VALUE

Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return -1 and errno
may be set to indicate the error.

ERRORS

The cfsetospeed () function may fail if;
[EINVAL] The speed value is not a valid baud rate.

[EINVAL] The value of speed is outside the range of possible speed values as specified in
<termios.h>.

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE

Refer to cfgetispeed().

FUTURE DIRECTIONS

None.

SEE ALSO

cfgetispeed (), cfgetospeed(), cfsetispeed(), tcsetattr(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x,
Chapter 11, General Terminal Interface

CHANGE HISTORY

Issue 4

First released in Issue 3.
Entry included for alignment with the POSIX.1-1988 standard.

The first description of the [EINVAL] error is added and is marked as an extension.

Issue 4, Version 2

680

The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
speed is outside the range of possible speed values given in <termios.h>.

Technical Standard (2000) (Draft July 31, 2000)

6223
6224
6225

6226

System Interfaces cfsetospeed()

Issue 6

The following new requirements on POSIX implementations derive from alignment with the

Single UNIX Specification:

- The optional setting of errno and the [EINVAL] error conditions are added.

System Interfaces, Issue 6

681

6227
6228

6229
6230

6231

6232
6233
6234
6235

6236
6237
6238

6239
6240

6241

6242
6243

6244
6245
6246

6247
6248

6249

6250

6251
6252

6253
6254
6255

6256

6257

6258
6259

6260
6261
6262
6263

6264

chdir() System Interfaces

NAME
chdir — change working directory
SYNOPSIS
#include <unistd.h>
int chdir(const char * path);
DESCRIPTION
The chdir() function shall cause the directory named by the path name pointed to by the path
argument to become the current working directory; that is, the starting point for path searches
for path names not beginning with '/’
RETURN VALUE
Upon successful completion, 0 shall be returned. Otherwise, -1 shall be returned, the current
working directory shall remain unchanged, and errno shall be set to indicate the error.
ERRORS
The chdir () function shall fail if:
[EACCES] Search permission is denied for any component of the path name.
[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.
[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a path name
component is longer than {(NAME_MAX]}.
[ENOENT] A component of path does not name an existing directory or path is an empty
string.
[ENOTDIR] A component of the path name is not a directory.
The chdir () function may fail if:
[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.
[ENAMETOOLONG]
As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted path name string exceeded {PATH_MAX]}.
EXAMPLES
Changing the Current Working Directory
The following example makes the value pointed to by directory, /tmp, the current working
directory.
#include <unistd.h>
char *directory = "tmp";
int ret;
ret = chdir (directory);
682 Technical Standard (2000) (Draft July 31, 2000)

6265
6266
6267
6268

6269
6270

6271
6272

6273
6274

6275
6276

6277
6278

6279
6280

6281

6282

6283

6284
6285
6286

6287
6288

6289
6290

6291
6292

6293
6294

6295

6296
6297

6298
6299

6300

6301

6302

6303

System Interfaces chdir()

APPLICATION USAGE
The chdir() function only affects the working directory of the current process. The result if a
NULL argument is passed to chdir() is unspecified because some implementations dynamically
allocate space in that case.

RATIONALE
The chdir () function only affects the working directory of the current process.

The result if a NULL argument is passed to chdir() is left implementation-defined because some
implementations dynamically allocate space in that case.

FUTURE DIRECTIONS
None.

SEE ALSO
getcwd(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
The <unistd.h> header is added to the SYNOPSIS section.

The following change is incorporated for alignment with the 1ISO POSIX-1 standard:
- The type of argument path is changed from char* to const char*.
The following change is incorporated for alignment with the FIPS requirements:

« In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
name component is larger that {NAME_MAX} is how defined as mandatory and marked as
an extension.

Issue 4, Version 2
The ERRORS section is updated for X/OPEN UNIX conformance as follows:

. It states that [ELOORP] is returned if too many symbolic links are encountered during path
name resolution.

« A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of path name resolution of a symbolic link.

Issue 6
The APPLICATION USAGE section is added.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

« The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
This is since behavior may vary from one file system to another.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The [ELOOP] mandatory error condition is added.
« Asecond [ENAMETOOLONG] is added as an optional error condition.

The following changes were made to align with the IEEE P1003.1a draft standard:
« The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 683

6304
6305

6306
6307

6308

6309
6310
6311
6312
6313

6314

6315
6316

6317

6318

6319
6320

6321

6322
6323
6324
6325

6326
6327

6328
6329

6330

6331
6332
6333

6334
6335

6336

6337
6338

6339
6340
6341

6342

6343

6344
6345

chmod() System Interfaces

NAME

chmod — change mode of afile

SYNOPSIS

#include <sys/stat.h>

int chmod(const char * path , mode_t mode);

DESCRIPTION

XSl

XSl

XSl

The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of
the file named by the path name pointed to by the path argument to the corresponding bits in the
mode argument. The application shall ensure that the effective user ID of the process matches the
owner of the file or the process has appropriate privileges in order to do this.

S_ISUID, S_ISGID, and the file permission bits are described in <sys/stat.h>.

If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
or rename files within that directory only if one or more of the following is true:

- The effective user ID of the process is the same as that of the owner ID of the file.
- The effective user ID of the process is the same as that of the owner ID of the directory.

« The process has appropriate privileges.

If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

If the calling process does not have appropriate privileges, and if the group ID of the file does
not match the effective group ID or one of the supplementary group IDs and if the file is a
regular file, bit S_ISGID (set-group-1D on execution) in the file’'s mode shall be cleared upon
successful return from chmod ().

Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID bits in
mode to be ignored.

The effect on file descriptors for files open at the time of a call to chmod() is implementation-
defined.

Upon successful completion, chmod () shall mark for update the st_ctime field of the file.

RETURN VALUE

Upon successful completion, 0 shall be returned; otherwise, —1 shall be returned and errno set to
indicate the error. If =1 is returned, no change to the file mode occurs.

ERRORS

684

The chmod () function shall fail if:
[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX} or a path name
component is longer than {(NAME_MAX]}.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of path does not name an existing file or path is an empty string.

[EPERM] The effective user ID does not match the owner of the file and the process
does not have appropriate privileges.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chmod()

6346 [EROFS] The named file resides on a read-only file system.

6347 The chmod () function may fail if:

6348 [EINTR] A signal was caught during execution of the function.

6349 [EINVAL] The value of the mode argument is invalid.

6350 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
6351 resolution of the path argument.

6352 [ENAMETOOLONG]

6353 As a result of encountering a symbolic link in resolution of the path argument,
6354 the length of the substituted path name strings exceeded {PATH_MAX}.

6355 EXAMPLES

6356 Setting Read Permissions for User, Group, and Others

6357 The following example sets read permissions for the owner, group, and others.

6358 #include <sys/stat.h>

6359 const char *path;

6360

6361 chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

6362 Setting Read, Write, and Execute Permissions for the Owner Only

6363 The following example sets read, write, and execute permissions for the owner, and no
6364 permissions for group and others.

6365 #include <sys/stat.h>

6366 const char *path;

6367

6368 chmod(path, S_IRWXU);

6369 Setting Different Permissions for Owner, Group, and Other

6370 The following example sets owner permissions for CHANGEFILE to read, write, and execute,
6371 group permissions to read and execute, and other permissions to read.

6372 #include <sys/stat.h>

6373 #define CHANGEFILE "/etc/myfile"

6374

6375 chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

6376 Setting and Checking File Permissions

6377 The following example sets the file permission bits for a file named /home/cnd/modl, then calls
6378 the stat() function to verify the permissions.

6379 #include <sys/types.h>

6380 #include <sys/stat.h>

6381 int status;

6382 struct stat buffer

6383

System Interfaces, Issue 6 685

6384
6385

6386
6387
6388

6389
6390
6391
6392

6393
6394
6395
6396
6397
6398
6399

6400
6401
6402
6403

6404
6405

6406
6407
6408

6409
6410

6411
6412
6413

6414

6415

6416

6417

6418
6419
6420

6421
6422

6423
6424
6425

6426
6427

chmod() System Interfaces

chmod("home/cnd/mod1”, S _IRWXU|S IRWXG|S_IROTHI|S_IWOTH);
status = stat("home/cnd/modl1", &buffer;);

APPLICATION USAGE

In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this should
use stat() after a successful chmod() to verify this.

Any file descriptors currently open by any process on the file could possibly become invalid if
the mode of the file is changed to a value which would deny access to that process. One
situation where this could occur is on a stateless file system. This behavior will not occur in a
conforming environment.

RATIONALE

This volume of IEEE Std. 1003.1-200x specifies that the S_ISGID bit is cleared by chmod() on a
regular file under certain conditions. This is specified on the assumption that regular files may
be executed, and the system should prevent users from making executable setgid() files perform
with privileges that the caller does not have. On implementations that support execution of
other file types, the S_ISGID bit should be cleared for those file types under the same
circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for example,
mandatory record locking) on non-executable files need not clear this bit on writing. They
should clear the bit for executable files and any other cases where the bit grants special powers
to processes that change the file contents. Similar comments apply to the S_ISGID bit.

FUTURE DIRECTIONS

None.

SEE ALSO

chown(), mkdir(), mkfifo(), open(), stat(), statvfs(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <sys/stat.h>, <sys/types.h>

CHANGE HISTORY

Issue 4

First released in Issue 1. Derived from Issue 1 of the SVID.

The <sys/types.h> header is now marked as optional (OH); this header need not be included on
XSl-conformant systems.

The [EINVAL] error is marked as an extension.

The following change is incorporated for alignment with the ISO POSIX-1 standard:
- The type of argument path is changed from char* to const char*.

The following change is incorporated for alignment with the FIPS requirements:

« In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
name component is larger that {NAME_MAX} is how defined as mandatory and marked as
an extension.

Issue 4, Version 2

686

The following changes are incorporated for X/OPEN UNIX conformance;

« The DESCRIPTION is updated to describe X/OPEN UNIX functionality relating to
permission checks applied when removing or renaming files in a directory having the
S_ISVTX bit set.

« In the ERRORS section, the condition whereby [ELOOP] is returned if too many symbolic
links are encountered during path name resolution is defined as mandatory, and [EINTR] is

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chmod()

6428 added as an optional error.

6429 « In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
6430 excessive length of an intermediate result of path name resolution of a symbolic link.

6431 Issue 6

6432 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

6433 « The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
6434 This is since behavior may vary from one file system to another.

6435 The following new requirements on POSIX implementations derive from alignment with the
6436 Single UNIX Specification:

6437 « The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
6438 required for conforming implementations of previous POSIX specifications, it was not
6439 required for UNIX applications.

6440 « The [EINVAL] and [EINTR] optional error conditions are added.

6441 « Asecond [ENAMETOOLONG] is added as an optional error condition.

6442 The following changes were made to align with the IEEE P1003.1a draft standard:

6443 « The [ELOOP] optional error condition is added.

6444 The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

System Interfaces, Issue 6 687

6445 NAME

6446

chown() System Interfaces

chown — change owner and group of afile

6447 SYNOPSIS

6448

6449

6450
6451
6452

6453
6454
6455

6456

6457
6458
6459
6460

6461
6462
6463
6464
6465
6466
6467
6468
6469

6470
6471

6472

6473
6474
6475

6476
6477

6478

6479
6480

6481
6482
6483

6484

6485

6486
6487
6488

#include <unistd.h>

int chown(const char * path , uid_t owner, gid_t group);

DESCRIPTION

The path argument points to a path name naming a file. The user ID and group ID of the named
file are set to the numeric values contained in owner and group, respectively.

Only processes with an effective user ID equal to the user ID of the file or with appropriate
privileges may change the ownership of a file. If _POSIX_ CHOWN_RESTRICTED is in effect for
path:

- Changing the user ID is restricted to processes with appropriate privileges.

- Changing the group ID is permitted to a process with an effective user ID equal to the user
ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s user
ID or (uid_t)-1 and group is equal either to the calling process’ effective group ID or to one of
its supplementary group IDs.

If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of
the file mode are set, and the process does not have appropriate privileges, the set-user-ID
(S_ISUID) and set-group-1D (S_ISGID) bits of the file mode shall be cleared upon successful
return from chown(). If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP,
or S_IXOTH bits of the file mode are set, and the process has appropriate privileges, it is
implementation-defined whether the set-user-I1D and set-group-ID bits are altered. If the chown()
function is successfully invoked on a file that is not a regular file and one or more of the
S _IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID and set-group-1D
bits may be cleared.

If owner or group is specified as (uid_t)-1 or (gid_t)-1, respectively, the corresponding ID of the
file is unchanged.

Upon successful completion, chown () shall mark for update the st_ctime field of the file.

RETURN VALUE

Upon successful completion, 0 shall be returned; otherwise, —1 shall be returned and errno set to
indicate the error. If =1 is returned, no changes are made in the user ID and group ID of the file.

ERRORS

688

The chown () function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX} or a path name
component is longer than {(NAME_MAX]}.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of path does not name an existing file or path is an empty string.

[EPERM] The effective user ID does not match the owner of the file, or the calling
process does not have appropriate privileges and

_POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chown()

6489 [EROFS] The named file resides on a read-only file system.

6490 The chown () function may fail if:

6491 [EIO] An I/0 error occurred while reading or writing to the file system.

6492 [EINTR] The chown () function was interrupted by a signal which was caught.

6493 [EINVAL] The owner or group ID supplied is not a value supported by the
6494 implementation.

6495 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
6496 resolution of the path argument.

6497 [ENAMETOOLONG]

6498 As a result of encountering a symbolic link in resolution of the path argument,
6499 the length of the substituted path name string exceeded {PATH_MAX]}.

6500 EXAMPLES

6501 None.

6502 APPLICATION USAGE

6503 Although chown() can be used on some systems by the file owner to change the owner and
6504 group to any desired values, the only portable use of this function is to change the group of a file
6505 to the effective GID of the calling process or to a member of its group set.

6506 RATIONALE

6507 System Ill and System V allow a user to give away files; that is, the owner of a file may change
6508 its user ID to anything. This is a serious problem for implementations that are intended to meet
6509 government security regulations. Version 7 and 4.3 BSD permit only the superuser to change the
6510 user ID of a file. Some government agencies (usually not ones concerned directly with security)
6511 find this limitation too confining. This volume of IEEE Std. 1003.1-200x uses may to permit
6512 secure implementations while not disallowing System V.

6513 System Il and System V allow the owner of a file to change the group ID to anything. Version 7
6514 permits only the superuser to change the group ID of a file. 4.3 BSD permits the owner to
6515 change the group ID of a file to its effective group ID or to any of the groups in the list of
6516 supplementary group IDs, but to no others.

6517 The POSIX.1-1990 standard requires that the chown() function invoked by a non-appropriate
6518 privileged process clear the S_ISGID and the S_ISUID bits for regular files, and permits them to
6519 be cleared for other types of files. This is so that changes in accessibility do not accidentally
6520 cause files to become security holes. Unfortunately, requiring these bits to be cleared on non-
6521 executable data files also clears the mandatory file locking bit (shared withwith S_ISGID), which
6522 is an extension on many implementations (it first appeared in System V). These bits should only
6523 be required to be cleared on regular files that have one or more of their execute bits set.

6524 FUTURE DIRECTIONS

6525 None.

6526 SEE ALSO

6527 chmod(), pathconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>,
6528 <unistd.h>

6529 CHANGE HISTORY

6530 First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 6 689

6531
6532
6533

6534
6535

6536

6537

6538

6539

6540
6541
6542

6543
6544
6545

6546
6547

6548
6549

6550

6551
6552

6553
6554

6555
6556

6557
6558

6559
6560
6561
6562

6563
6564

6565
6566
6567

6568
6569

6570

6571

chown() System Interfaces

Issue 4

The <sys/types.h> header is now marked as optional (OH); this header need not be included on
XSl-conformant systems.

The value for owner of (uid_t)-1 is added to the DESCRIPTION to allow the use of -1 by the
owner of a file to change the group ID only.

The APPLICATION USAGE section is added.

The following change is incorporated for alignment with the 1ISO POSIX-1 standard:
- The type of argument path is changed from char* to const char*.

The following changes are incorporated for alignment with the FIPS requirements:

- In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
name component is larger that {NAME_MAX} is how defined as mandatory and marked as
an extension.

« In the ERRORS section, the condition whereby [EPERM] is returned when an attempt is
made to change the user ID of a file and the caller does not have appropriate privileges is
now defined as mandatory and marked as an extension.

Issue 4, Version 2

Issue 6

690

The ERRORS section is updated for X/OPEN UNIX conformance as follows:

« It states that [ELOORP] is returned if too many symbolic links are encountered during path
name resolution.

- The [EIO] and [EINTR] optional conditions are added.

« A second [ENAMETOOLONG] condition is defined that may report excessive length of an
intermediate result of path name resolution of a symbolic link.

The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

- The wording describing the optional dependency on POSIX CHOWN_RESTRICTED is
restored.

« The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
This is since behavior may vary from one file system to another.

« The [EPERM] error is restored as an error dependent on _POSIX_CHOWN_RESTRICTED.
This is since its operand is a path name and applications should be aware that the error may
not occur for that path name if the file system does not support
_POSIX_CHOWN_RESTRICTED.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

« The value for owner of (uid_t)-1 allows the use of -1 by the owner of a file to change the
group ID only.

« The [ELOOP] mandatory error condition is added.
- The [EIO] and [EINTR] optional error conditions are added.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chown()

6572 « Asecond [ENAMETOOLONG] is added as an optional error condition.

6573 The following changes were made to align with the IEEE P1003.1a draft standard:

6574 - Clarification is added that the S_ISUID and S_ISGID bits do not need to be cleared when the
6575 process has appropriate privileges.

6576 « The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 691

6577
6578

6579
6580

6581
6582
6583

6584
6585
6586
6587

6588

6589
6590

6591
6592

6593
6594

6595
6596

6597

6598
6599

6600
6601

6602
6603

6604
6605

cimag() System Interfaces

NAME
cimag, cimagf, cimagl — complex imaginary functions
SYNOPSIS
#include <complex.h> |
double cimag(double complex 2);
float cimagf(float complex 2);
long double cimagl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute the imaginary part of z.
RETURN VALUE
These functions shall return the imaginary part value (as a real).
ERRORS
No errors are defined.
EXAMPLES

None.

APPLICATION USAGE

For a variable z of complex type:

z == creal(z) + cimag(z)*l

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

carg(), conj(), cproj(), creal (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY

692

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

6606
6607

6608
6609

6610

6611
6612
6613
6614

6615
6616

6617
6618

6619
6620

6621
6622

6623
6624

6625
6626

6627
6628

6629
6630

6631
6632

System Interfaces clearerr()

NAME
clearerr — clear indicators on a stream

SYNOPSIS
#include <stdio.h>

void clearerr(FILE * stream);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The clearerr() function shall clear the end-of-file and error indicators for the stream to which
stream points.

RETURN VALUE
The clearerr() function shall return no value.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 6 693

6633
6634

6635
6636

6637

6638
6639
6640
6641

6642
6643
6644

6645
6646
6647
6648
6649

6650
6651

6652
6653

6654
6655
6656
6657
6658

6659
6660

6661
6662

6663
6664

6665
6666
6667

6668
6669

6670
6671

6672

6673
6674

6675

clock() System Interfaces

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The clock() function shall return the implementation’s best approximation to the processor time
used by the process since the beginning of an implementation-defined time related only to the
process invocation.

RETURN VALUE
To determine the time in seconds, the value returned by clock() should be divided by the value
Xsl of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>.

If the processor time used is not available or its value cannot be represented, the function shall
return the value (clock_t)-1.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
In order to measure the time spent in a program, clock() should be called at the start of the
program and its return value subtracted from the value returned by subsequent calls. The value
returned by clock () is defined for compatibility across systems that have clocks with different
resolutions. The resolution on any particular system need not be to microsecond accuracy.

The value returned by clock() may wrap around on some systems. For example, on a machine
with 32-bit values for clock_t, it wraps after 2 147 seconds or 36 minutes.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
asctime(), ctime(), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
Reference to the resolution of CLOCKS_PER_SEC is marked as an extension.

The ERRORS section is added.

Advice on how to calculate the time spent in a program is added to the APPLICATION USAGE
section.

The following changes are incorporated for alignment with the ISO C standard:

694 Technical Standard (2000) (Draft July 31, 2000)

6676

6677
6678
6679

6680

System Interfaces

- The <time.h> header is added to the SYNOPSIS section.

clock()

« The DESCRIPTION and RETURN VALUE sections, though functionally equivalent to Issue
3, are rewritten for clarity and consistency with the ISO C standard. This issue also defines

under what circumstances (clock_t)-1 can be returned by the function.

- The function is no longer marked as an extension.

System Interfaces, Issue 6

695

6681
6682

6683
6684

6685
6686

6687
6688
6689
6690

6691
6692

6693
6694

6695
6696
6697

6698
6699

6700
6701

6702

6703

6704
6705

6706
6707
6708

6709
6710

6711
6712

6713
6714

6715
6716

6717

clock _getcpuclockid() System Interfaces

NAME
clock_getcpuclockid — access a process CPU-time clock (REALTIME)
SYNOPSIS
CPT #include <time.h>
int clock getcpuclockid(pid_t pid , clockid t * clock id); |
I
DESCRIPTION
The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process
specified by pid. If the process described by pid exists and the calling process has permission,
the clock ID of this clock shall be returned in clock_id.
If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of
the process making the call, in clock_id.
The conditions under which one process has permission to obtain the CPU-time clock ID of |
other processes are implementation-defined. |
RETURN VALUE

Upon successful completion, clock_getcpuclockid () shall return zero; otherwise, an error number
shall be returned to indicate the error.

ERRORS
The clock_getcpuclockid () function shall fail if:

[EPERM] The requesting process does not have permission to access the CPU-time
clock for the process.

The clock_getcpuclockid() function may fail if:
[ESRCH] No process can be found corresponding to the process specified by pid. |

EXAMPLES
None.

APPLICATION USAGE
The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not |
be provided on all implementations. |

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getres(), timer_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

CHANGE HISTORY
First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

696 Technical Standard (2000) (Draft July 31, 2000)

6718
6719

6720
6721

6722
6723
6724
6725

6726
6727
6728
6729
6730
6731

6732

6733
6734
6735

6736
6737
6738
6739
6740
6741
6742

6743
6744
6745
6746
6747
6748

6749
6750
6751
6752
6753

6754
6755
6756
6757
6758
6759
6760

6761
6762

6763
6764

System Interfaces clock getres()

NAME

clock_getres, clock gettime, clock_settime — clock and timer functions (REALTIME)

SYNOPSIS

TMR

#include <time.h>

int clock getres(clockid t clock id , struct timespec * res);
int clock_settime(clockid_t clock id , const struct timespec * p);
int clock_gettime(clockid_t clock id , struct timespec * p);

DESCRIPTION

MON

CS

The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are
implementation-defined and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock shall be stored in the location pointed to by res. If res is NULL,
the clock resolution is not returned. If the time argument of clock_settime() is not a multiple of res,
then the value is truncated to a multiple of res.

The clock_gettime() function shall return the current value tp for the specified clock, clock_id.

The clock_settime() function shall set the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock are truncated down to the smaller multiple of the resolution.

A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that
is meaningful only within a process). All implementations shall support a clock id of
CLOCK_REALTIME defined in <time.h>. This clock represents the realtime clock for the
system. For this clock, the values returned by clock gettime() and specified by clock_settime()
represent the amount of time (in seconds and nanoseconds) since the Epoch. An implementation
may also support additional clocks. The interpretation of time values for these clocks is
unspecified.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the
absolute time requested at the invocation of such a time service is before the new value of the
clock, the time service shall expire immediately as if the clock had reached the requested time
normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the
nanosleep() function; nor on the expiration of relative timers based upon this clock.
Consequently, these time services shall expire when the requested relative interval elapses,
independently of the new or old value of the clock.

If the Monotonic Clock option is supported, all implementations shall support a clock_id of
CLOCK_MONOTONIC defined in <time.h>. This clock represents the monotonic clock for the
system. For this clock, the value returned by clock gettime() represents the amount of time (in
seconds and nanoseconds) since an unspecified point in the past (for example, system start-up
time, or the Epoch). This point does not change after system start-up time. The value of the
CLOCK_MONOTONIC clock cannot be set via clock_settime(). This function shall fail if it is
invoked with a clock_id argument of CLOCK_MONOTONIC.

The effect of setting a clock via clock_settime() on armed per-process timers associated with a
clock other than CLOCK_REALTIME is implementation-defined.

If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
shall be used to determine the time at which the system shall awaken a thread blocked on an

System Interfaces, Issue 6 697

6765
6766
6767

6768
6769
6770

6771

6772
6773
6774
6775
6776
6777
6778
6779
6780

6781
6782
6783
6784
6785
6786
6787
6788
6789

6790
6791
6792

6793
6794

6795

6796

6797

6798
6799

6800

6801

6802
6803

clock getres() System Interfaces

CPT

TCT

absolute clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time
requested at the invocation of such a time service is before the new value of the clock, the call
shall return immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any
thread that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return
when the requested relative interval elapses, independently of the new or old value of the clock.

The appropriate privilege to set a particular clock is implementation-defined.

If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by
invoking clock getcpuclockid(), which represent the CPU-time clock of a given process.
Implementations shall also support the special clockid_t value
CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time clock of the calling process
when invoking one of the clock *() or timer_*() functions. For these clock IDs, the values
returned by clock gettime() and specified by clock_settime() represent the amount of execution
time of the process associated with the clock. Changing the value of a CPU-time clock via
clock_settime () shall have no effect on the behavior of the sporadic server scheduling policy (see
Scheduling Policies (on page 546)).

If POSIX_ THREAD_CPUTIME is defined, implementations shall support clock ID values
obtained by invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given
thread. Implementations shall also support the special clockid t value
CLOCK_THREAD_CPUTIME_ID, which represents the CPU-time clock of the calling thread
when invoking one of the clock *() or timer_*() functions. For these clock IDs, the values
returned by clock gettime() and specified by clock_settime() represent the amount of execution
time of the thread associated with the clock. Changing the value of a CPU-time clock via
clock_settime () shall have no effect on the behavior of the sporadic server scheduling policy (see
Scheduling Policies (on page 546)).

RETURN VALUE

A return value of 0 shall indicate that the call succeeded. A return value of -1 shall indicate that
an error occurred, and errno shall be set to indicate the error.

ERRORS

MON

698

The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

[EINVAL] The clock_id argument does not specify a known clock.

The clock_settime() function shall fail if:

[EINVAL] The tp argument to clock_settime() is outside the range for the given clock ID.

[EINVAL] The tp argument specified a nanosecond value less than zero or greater than
or equal to 1000 million.

[EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.
The clock_settime() function may fail if:

[EPERM] The requesting process does not have the appropriate privilege to set the
specified clock.

Technical Standard (2000) (Draft July 31, 2000)

6804
6805

6806
6807

6808
6809
6810
6811

6812
6813

6814
6815

6816
6817
6818
6819

6820
6821

6822
6823
6824

6825

6826

6827

6828
6829

6830

6831

6832

6833

6834
6835

6836
6837

6838
6839
6840

6841
6842
6843

System Interfaces clock getres()

EXAMPLES
None.

APPLICATION USAGE
These functions are part of the Timers option and need not be available on all implementations.

Note that the absolute value of the monotonic clock is meaningless (because its origin is
arbitrary), and thus there is no need to set it. Furthermore, realtime applications can rely on the
fact that the value of this clock is never set and, therefore, that time intervals measured with this
clock will not be affected by calls to clock_settime().

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_timedreceive(), mg_timedsend(), nanosleep(),
pthread_mutex_timedlock(), sem_timedwait(), time(), timer_create(), timer_getoverrun(), the Base
Definitions volume of IEEE Std. 1003.1-200x, <time.h>

CHANGE HISTORY
First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

Issue 6
The [ENOSYS] error condition has been removed as stubs need not be provided if an
implementation does not support the Timers option.

The APPLICATION USAGE section is added.
The following changes were made to align with the IEEE P1003.1a draft standard:
- Clarification is added of the effect of resetting the clock resolution.

CPU-time clocks and the clock_getcpuclockid() function are added for alignment with
IEEE Std. 1003.1d-1999.

The following changes are added for alignment with IEEE Std. 1003.1j-2000:
« The DESCRIPTION is updated as follows:
— The value returned by clock_gettime() for CLOCK_MONOTONIC is specified.
— clock_settime() failing for CLOCK_MONOTONIC is specified.

— The effects of clock settime() on the clock nanosleep() function with respect to
CLOCK_REALTIME is specified.

« An [EINVAL] error is added to the ERRORS section, indicating that clock settime() fails for
CLOCK_MONOTONIC.

« The APPLICATION USAGE section notes that the CLOCK_MONOTONIC clock need not
and shall not be set by clock_settime() since the absolute value of the CLOCK_MONOTONIC
clock is meaningless.

- The clock_nanosleep(), mq_timedreceive(), mq_timedsend(), pthread_mutex_timedlock(),
sem_timedwait(), timer_create(), and timer_settime() functions are added to the SEE ALSO
section.

System Interfaces, Issue 6 699

6844
6845

6846
6847

6848
6849
6850

6851
6852
6853
6854
6855
6856

6857
6858
6859
6860
6861
6862
6863

6864
6865
6866
6867
6868
6869
6870
6871
6872

6873
6874

6875
6876

6877
6878
6879

6880
6881
6882
6883
6884
6885

6886

clock_nanosleep() System Interfaces

NAME

clock_nanosleep — high resolution sleep with specifiable clock

SYNOPSIS

CS

#include <time.h>

int clock_nanosleep(clockid_t clock id , int flags |,
const struct timespec * rgtp , struct timespec * rmtp);

DESCRIPTION

If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time interval specified
by the rgtp argument has elapsed, or a signal is delivered to the calling thread and its action is to
invoke a signal-catching function, or the process is terminated. The clock used to measure the
time shall be the clock specified by clock id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall
cause the current thread to be suspended from execution until either the time value of the clock
specified by clock id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock _nanosleep() shall return immediately
and the calling process shall not be suspended.

The suspension time caused by this function may be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock _nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) shall not be less than the time interval specified by rgtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep() function
(that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function shall have no effect on the action or blockage of any
signal.

The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of
the calling thread. It is unspecified if clock_id values of other CPU-time clocks are allowed.

RETURN VALUE

700

If the clock_nanosleep() function returns because the requested time has elapsed, its return value
shall be zero.

If the clock_nanosleep () function returns because it has been interrupted by a signal, it shall return
the corresponding error value. For the relative clock_nanosleep() function, if the rmtp argument is
non-NULL, the timespec structure referenced by it shall be updated to contain the amount of
time remaining in the interval (the requested time minus the time actually slept). If the rmtp
argument is NULL, the remaining time is not returned. The absolute clock _nanosleep() function
has no effect on the structure referenced by rmtp.

If clock_nanosleep () fails, it shall return the corresponding error value.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clock_nanosleep()

6887 ERRORS

6888 The clock_nanosleep() function shall fail if:

6889 [EINTR] The clock_nanosleep () function was interrupted by a signal.

6890 [EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
6891 or equal to 1000 million; or the TIMER_ABSTIME flag was specified in flags
6892 and the rgtp argument is outside the range for the clock specified by clock id;
6893 or the clock_id argument does not specify a known clock, or specifies the
6894 CPU-time clock of the calling thread.

6895 [ENOTSUP] The clock_id argument specifies a clock for which clock _nanosleep() is not
6896 supported, such as a CPU-time clock.

6897 EXAMPLES

6898 None.

6899 APPLICATION USAGE

6900 Calling clock_nanosleep () with the value TIMER_ABSTIME not set in the flags argument and with
6901 aclock_id of CLOCK_REALTIME is equivalent to calling nanosleep () with the same rqtp and rmtp
6902 arguments.

6903 RATIONALE

6904 The nanosleep() function specifies that the system-wide clock CLOCK_ REALTIME is used to
6905 measure the elapsed time for this time service. However, with the introduction of the monotonic
6906 clock CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to
6907 take advantage of the special characteristics of this clock.

6908 There are many applications in which a process needs to be suspended and then activated
6909 multiple times in a periodic way; for example, to poll the status of a non-interrupting device or
6910 to refresh a display device. For these cases, it is known that precise periodic activation cannot be
6911 achieved with a relative sleep() or nanosleep() function call. Suppose, for example, a periodic
6912 process that is activated at time TO, executes for a while, and then wants to suspend itself until
6913 time TO+T, the period being T. If this process wants to use the nanosleep () function, it must first
6914 call clock_gettime() to get the current time, then calculate the difference between the current time
6915 and TO+T and, finally, call nanosleep() using the computed interval. However, the process could
6916 be preempted by a different process between the two function calls, and in this case the interval
6917 computed would be wrong; the process would wake up later than desired. This problem would
6918 not occur with the absolute clock _nanosleep() function, since only one function call would be
6919 necessary to suspend the process until the desired time. In other cases, however, a relative sleep
6920 is needed, and that is why both functionalities are required.

6921 Although it is possible to implement periodic processes using the timers interface, this
6922 implementation would require the use of signals, and the reservation of some signal numbers. In
6923 this regard, the reasons for including an absolute version of the clock_nanosleep() function in
6924 IEEE Std. 1003.1-200x are the same as for the inclusion of the relative nanosleep ().

6925 It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in
6926 which an absolute timeout is specified that takes effect if the condition variable involved is
6927 never signaled. However, the use of this interface is unnatural, and involves performing other
6928 operations on mutexes and condition variables that imply an unnecessary overhead.
6929 Furthermore, pthread_cond_timedwait() is not available in implementations that do not support
6930 threads.

6931 Although the interface of the relative and absolute versions of the new high resolution sleep
6932 service is the same clock_nanosleep() function, the rmtp argument is only used in the relative
6933 sleep. This argument is needed in the relative clock_nanosleep() function to reissue the function

System Interfaces, Issue 6 701

6934
6935
6936

6937
6938

6939
6940
6941

6942
6943

clock_nanosleep() System Interfaces

call if it is interrupted by a signal, but it is not needed in the absolute clock_nanosleep() function
call; if the call is interrupted by a signal, the absolute clock_nanosleep() function can be invoked
again with the same rqtp argument used in the interrupted call.

FUTURE DIRECTIONS

None.

SEE ALSO

clock_getres(), nanosleep(), pthread_cond_timedwait(), sleep(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <time.h>

CHANGE HISTORY

702

First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

Technical Standard (2000) (Draft July 31, 2000)

6944
6945

6946
6947

6948
6949
6950

6951
6952
6953
6954

6955
6956

6957
6958
6959
6960

6961
6962

6963
6964

6965
6966

6967
6968

6969
6970

6971
6972

6973
6974

System Interfaces clog()

NAME
clog, clogf, clogl — complex natural logarithm functions

SYNOPSIS
#include <complex.h> |

double complex clog(double complex 2);
float complex clogf(float complex 2);
long double complex clogl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex natural (base e) logarithm of z, with a branch cut
along the negative real axis.

RETURN VALUE
These functions shall return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iT, +iT1] along the imaginary
axis.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cexp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 703

6975 NAME

6976

close() System Interfaces

close — close a file descriptor

6977 SYNOPSIS

6978

6979

6980
6981
6982
6983
6984

6985
6986
6987
6988

6989
6990

6991
6992

6993
6994

6995
6996
6997
6998
6999
7000
7001
7002
7003

7004
7005
7006
7007
7008

7009
7010
7011
7012

7013
7014

7015
7016
7017
7018
7019
7020

#include <unistd.h>

int close(int fildes);

DESCRIPTION

XSR

AIO

704

The close() function shall deallocate the file descriptor indicated by fildes. To deallocate means
to make the file descriptor available for return by subsequent calls to open() or other functions
that allocate file descriptors. All outstanding record locks owned by the process on the file
associated with the file descriptor shall be removed (that is, unlocked).

If close() is interrupted by a signal that is to be caught, it shall return —1 with errno set to [EINTR]
and the state of fildes is unspecified. If an I/0 error occurred while reading from or writing to the
file system during close(), it may return —1 with errno set to [EIO]; if this error is returned, the
state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file are closed, any data
remaining in the pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been closed the open file
description shall be freed.

If the link count of the file is 0, when all file descriptors associated with the file are closed, the
space occupied by the file shall be freed and the file shall no longer be accessible.

If a STREAMS-based fildes is closed and the calling process was previously registered to receive
a SIGPOLL signal for events associated with that STREAM, the calling process shall be
unregistered for events associated with the STREAM. The last close() for a STREAM causes the
STREAM associated with fildes to be dismantled. If O_NONBLOCK is not set and there have
been no signals posted for the STREAM, and if there is data on the module’s write queue, close()
waits for an unspecified time (for each module and driver) for any output to drain before
dismantling the STREAM. The time delay can be changed via an |_SETCLTIME ioctl () request. If
the O_NONBLOCK flag is set, or if there are any pending signals, close() does not wait for
output to drain, and dismantles the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a
pipe, the last close() causes a hangup to occur on the other end of the pipe. In addition, if the
other end of the pipe has been nhamed by fattach (), then the last close() forces the named end to
be detached by fdetach(). If the named end has no open file descriptors associated with it and
gets detached, the STREAM associated with that end is also dismantled.

If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal
is sent to the process group, if any, for which the slave side of the pseudo-terminal is the
controlling terminal. It is unspecified whether closing the master side of the pseudo-terminal
flushes all queued input and output.

If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message
may be sent to the master.

When there is an outstanding cancelable asynchronous 1/0 operation against fildes when close()
is called, that 1/0 operation may be canceled. An 1/0 operation that is not canceled completes
as if the close() operation had not yet occurred. All operations that are not canceled shall
complete as if the close() blocked until the operations completed. The close() operation itself
need not block awaiting such I/0 completion. Whether any 1I/0 operation is canceled, and
which 170 operation may be canceled upon close(), is implementation-defined.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces close()

7021 MF|SHM
7022
7023
7024
7025

7026
7027
7028
7029

If a shared memory object or a memory mapped file remains referenced at the last close (that is,
a process has it mapped), then the entire contents of the memory object shall persist until the
memory object becomes unreferenced. If this is the last close of a shared memory object or a
memory mapped file and the close results in the memory object becoming unreferenced, and the
memory object has been unlinked, then the memory object shall be removed.

If fildes refers to a socket, close() shall cause the socket to be destroyed. If the socket is in
connection-mode, and the SO_LINGER option is set for the socket with non-zero linger time,
and the socket has untransmitted data, then close() shall block for up to the current linger
interval until all data is transmitted.

7030 RETURN VALUE

7031
7032

Upon successful completion, 0 shall be returned; otherwise, —1 shall be returned and errno set to
indicate the error.

7033 ERRORS

7034

7035

7036

7037

7038

The close () function shall fail if:
[EBADF] The fildes argument is not a valid file descriptor.
[EINTR] The close () function was interrupted by a signal.
The close () function may fail if:

[EIO] An I/0 error occurred while reading from or writing to the file system.

7039 EXAMPLES

7040

7041
7042
7043
7044

7045
7046
7047
7048
7049
7050
7051
7052

7053

7054
7055

7056

7057
7058

7059
7060
7061

Reassigning a File Descriptor

The following example closes the file descriptor associated with standard output for the current
process, re-assigns standard output to a new file descriptor, and closes the original file
descriptor to clean up. This example assumes that the file descriptor 0 (which is the descriptor
for standard input) is not closed.

#include <unistd.h>
int pfd;

;:'I.ose(l);
dup(pfd);
close(pfd);

Incidentally, this is exactly what could be achieved using:

dup2(pfd, 1);
close(pfd);

Closing a File Descriptor

In the following example, close() is used to close a file descriptor after an unsuccessful attempt is
made to associate that file descriptor with a stream.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

System Interfaces, Issue 6 705

7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072

7073
7074
7075
7076

7077
7078
7079
7080

7081
7082

7083
7084
7085

7086
7087

7088
7089

7090
7091

7092
7093

7094

7095
7096

7097
7098
7099

7100
7101

7102

7103
7104

7105

close() System Interfaces

#define LOCKFILE "/etc/ptmp"

int pfd;

FILE *fpfd;

if ((fofd = fdopen (pfd, "w")) == NULL) {
close(pfd);
unlink(LOCKFILE);
exit(1);

APPLICATION USAGE

An application that had used the stdio routine fopen() to open a file should use the
corresponding fclose() routine rather than close(). Once a file is closed, the file descriptor no
longer exists, since the integer corresponding to it no longer refers to a file.

RATIONALE

The use of interruptible device close routines should be discouraged to avoid problems with the
implicit closes of file descriptors by exec and exit(). This volume of IEEE Std. 1003.1-200x only
intends to permit such behavior by specifying the [EINTR] error condition.

FUTURE DIRECTIONS

None.

SEE ALSO

fattach(), fclose(), fdetach(), fopen(), ioctl(), open(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <unistd.h>, Section 2.6 (on page 539)

CHANGE HISTORY

Issue 4

First released in Issue 1. Derived from Issue 1 of the SVID.

The <unistd.h> header is added to the SYNOPSIS section.

Issue 4, Version 2

Issue 5

Issue 6

706

The following changes are incorporated for X/OPEN UNIX conformance;

- The DESCRIPTION is updated to describe the actions of closing a file descriptor referring to
a STREAMS-based file or either side of a pseudo-terminal.

- The ERRORS section describes a condition under which the [EIO] error may be returned.

The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

The DESCRIPTION related to a STREAMS-based file or pseudo-terminal is marked as part of the
XSI STREAMS Option Group.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The [EIO] error condition is added as an optional error.

- The DESCRIPTION is updated to describe the state of the fildes file descriptor as unspecified
if an 170 error occurs and an [EIO] error condition is returned.

Text referring to sockets is added to the DESCRIPTION.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces close()

7106 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
7107 shared memory objects and memory mapped files (and not typed memory objects) are the types
7108 of memory objects to which the paragraph on last closes applies.

System Interfaces, Issue 6 707

7109
7110

7111
7112

7113

7114
7115
7116
7117

7118
7119
7120

7121
7122

7123

7124

7125

7126

7127

7128
7129
7130
7131
7132
7133
7134

7135
7136
7137

7138
7139

7140
7141

7142
7143

7144
7145

7146
7147

closedir() System Interfaces

NAME
closedir — close a directory stream

SYNOPSIS
#include <dirent.h>

int closedir(DIR * dirp);

DESCRIPTION
The closedir() function shall close the directory stream referred to by the argument dirp. Upon
return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
descriptor is used to implement type DIR, that file descriptor shall be closed.

RETURN VALUE
Upon successful completion, closedir () shall return 0; otherwise, -1 shall be returned and errno
set to indicate the error.

ERRORS
The closedir () function may fail if:

[EBADF] The dirp argument does not refer to an open directory stream.
[EINTR] The closedir () function was interrupted by a signal.
EXAMPLES

Closing a Directory Stream

The following program fragment demonstrates how the closedir () function is used.

DIR *dir;
struct dirent *dp;

if ((dir = opendir (".")) == NULL) {

}
while ((dp = readdir (dir)) '= NULL) {

}

closedir(dir);

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
opendir (), the Base Definitions volume of IEEE Std. 1003.1-200x, <dirent.h>

708 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closedir()

7148 CHANGE HISTORY

7149 First released in Issue 2.

7150 Issue 4

7151 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
7152 XSl-conformant systems.

7153 The [EINTR] error is marked as an extension.

7154 Issue 6

7155 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

7156 The following new requirements on POSIX implementations derive from alignment with the
7157 Single UNIX Specification:

7158 « The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
7159 required for conforming implementations of previous POSIX specifications, it was not
7160 required for UNIX applications.

7161 - The [EINTR] error condition is added as an optional error condition.

System Interfaces, Issue 6 709

7162
7163

7164
7165

7166
7167
7168
7169
7170

7171
7172
7173
7174
7175
7176

7177
7178
7179
7180

7181
7182

7183

7184

7185
7186

7187

7188

7189
7190

7191
7192

7193

7194
7195

7196
7197

7198
7199

7200

7201

7202

closelog() System Interfaces

NAME
closelog, openlog, setlogmask, syslog — control system log
SYNOPSIS
Xsl #include <syslog.h>
void closelog(void);
void openlog(const char * ident , int logopt , int facility);
int setlogmask(int maskpri);
void syslog(int priority ~ , const char * message, ... I* arguments */);
DESCRIPTION
The syslog () function shall send a message to an implementation-defined logging facility, which
may log it in an implementation-defined system log, write it to the system console, forward it to
a list of users, or forward it to the logging facility on another host over the network. The logged
message shall include a message header and a message body. The message header contains at
least a timestamp and a tag string.
The message body is generated from the message and following arguments in the same manner
as if these were arguments to printf(), except that occurrences of %m in the format string
pointed to by the message argument are replaced by the error message string associated with the
current value of errno. A trailing <newline> character is added if needed.
Values of the priority argument are formed by OR’ing together a severity level value and an
optional facility value. If no facility value is specified, the current default facility value is used.
Possible values of severity level include;
LOG_EMERG A panic condition.
LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.
LOG_CRIT Critical conditions, such as hard device errors.
LOG_ERR Errors.
LOG_WARNING
Warning messages.
LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.
LOG_INFO Informational messages.
LOG_DEBUG Messages that contain information normally of use only when debugging a
program.
The facility indicates the application or system component generating the message. Possible
facility values include:
LOG_USER Messages generated by arbitrary processes. This is the default facility
identifier if none is specified.
LOG_LOCALO Reserved for local use.
LOG_LOCAL1 Reserved for local use.
LOG_LOCAL2 Reserved for local use.
710 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closelog()

7203 LOG_LOCAL3 Reserved for local use.

7204 LOG_LOCAL4 Reserved for local use.

7205 LOG_LOCALS5 Reserved for local use.

7206 LOG_LOCAL6 Reserved for local use.

7207 LOG_LOCAL7 Reserved for local use.

7208 The openlog () function shall set process attributes that affect subsequent calls to syslog(). The
7209 ident argument is a string that is prepended to every message. The logopt argument indicates
7210 logging options. Values for logopt are constructed by a bitwise-inclusive OR of zero or more of
7211 the following:

7212 LOG_PID Log the process ID with each message. This is useful for identifying specific
7213 processes.

7214 LOG_CONS Write messages to the system console if they cannot be sent to the logging
7215 facility. The syslog() function ensures that the process does not acquire the
7216 console as a controlling terminal in the process of writing the message.

7217 LOG_NDELAY Open the connection to the logging facility immediately. Normally the open is
7218 delayed until the first message is logged. This is useful for programs that need
7219 to manage the order in which file descriptors are allocated.

7220 LOG_ODELAY Delay open until syslog() is called.

7221 LOG_NOWAIT Do not wait for child processes that may have been created during the course
7222 of logging the message. This option should be used by processes that enable
7223 notification of child termination using SIGCHLD, since syslog() may
7224 otherwise block waiting for a child whose exit status has already been
7225 collected.

7226 The facility argument encodes a default facility to be assigned to all messages that do not have
7227 an explicit facility already encoded. The initial default facility is LOG_USER.

7228 The openlog () and syslog() functions may allocate a file descriptor. It is not necessary to call
7229 openlog () prior to calling syslog().

7230 The closelog() function shall close any open file descriptors allocated by previous calls to
7231 openlog () or syslog().

7232 The setlogmask () function shall set the log priority mask for the current process to maskpri and
7233 return the previous mask. If the maskpri argument is 0, the current log mask is not modified.
7234 Calls by the current process to syslog() with a priority not set in maskpri shall be rejected. The
7235 default log mask allows all priorities to be logged. A call to openlog() is not required prior to
7236 calling setlogmask ().

7237 Symbolic constants for use as values of the logopt, facility, priority, and maskpri arguments are
7238 defined in the <syslog.h> header.

7239 RETURN VALUE

7240 The setlogmask () function shall return the previous log priority mask. The closelog (), openlog(),
7241 and syslog () functions shall return no value.

7242 ERRORS

7243 No errors are defined.

System Interfaces, Issue 6 711

closelog()

7244 EXAMPLES

7245

7246
7247
7248

7249

7250
7251
7252
7253
7254

7255

7256
7257

7258

7259
7260
7261
7262

7263

7264
7265

7266

7267
7268
7269
7270

7271
7272

7273
7274

7275
7276

7277
7278

7279
7280

Using openlog()

System Interfaces

The following example causes subsequent calls to syslog() to log the process ID with each
message, and to write messages to the system console if they cannot be sent to the logging

facility.
#include <syslog.h>

char *ident = "Process demo";
int logopt = LOG_PID | LOG_CONS;
int facility = LOG_USER,;

openlog(ident, logopt, facility);

Using setlogmask()

The following example causes subsequent calls to syslog() to accept error messages or messages
generated by arbitrary processes, and to reject all other messages.

#include <syslog.h>

int result;

int mask = LOG_MASK (LOG_ERR | LOG_USER);

result = setlogmask(mask);

Using syslog

The following example sends the message "This is a message" to the default logging
facility, marking the message as an error message generated by random processes.

#include <syslog.h>

char *message = "This is a message";
int priority = LOG_ERR | LOG_USER;

syslog(priority, message);

APPLICATION USAGE

None.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO
printf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <syslog.h>

CHANGE HISTORY

712

First released in Issue 4, Version 2.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closelog()

7281 Issue 5
7282 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 713

confstr() System Interfaces

7283 NAME

7284 confstr — get configurable variables

7285 SYNOPSIS

7286 #include <unistd.h>

7287 size_t confstr(int name, char * buf, size_t len);

7288 DESCRIPTION

7289 The confstr() function provides a method for applications to get configuration-defined string
7290 values. Its use and purpose are similar to sysconf(), but it is used where string values rather than
7291 numeric values are returned.

7292 The name argument represents the system variable to be queried. The implementation shall
7293 support the following name values, defined in <unistd.h>. It may support others:

7294 _CS_PATH

7295 _CS_POSIX_V6_ILP32_OFF32_CFLAGS

7296 _CS_POSIX_V6_ILP32_OFF32_LDFLAGS

7297 _CS_POSIX_V6_ILP32_OFF32_LIBS

7298 _CS_POSIX_V6_ILP32_OFF32_LINTFLAGS

7299 _CS_POSIX_V6_ILP32_OFFBIG_CFLAGS

7300 _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS

7301 _CS_POSIX_V6_ILP32_OFFBIG_LIBS

7302 _CS_POSIX_V6_ILP32_OFFBIG_LINTFLAGS

7303 _CS_POSIX_V6_LP64_OFF64_CFLAGS

7304 _CS_POSIX_V6_LP64 _OFF64_LDFLAGS

7305 _CS_POSIX_V6_LP64_OFF64_LIBS

7306 _CS_POSIX_V6_LP64 OFF64_LINTFLAGS

7307 _CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS

7308 _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS

7309 _CS_POSIX_V6_LPBIG_OFFBIG_LIBS

7310 _CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS

7311 XSl _CS_XBS5_ILP32_OFF32_CFLAGS (LEGACY)

7312 _CS_XBS5_ILP32_OFF32_LDFLAGS (LEGACY)

7313 _CS_XBS5_ILP32_OFF32_LIBS (LEGACY)

7314 _CS_XBS5_ILP32_OFF32_LINTFLAGS (LEGACY)

7315 _CS_XBS5_ILP32_OFFBIG_CFLAGS (LEGACY)

7316 _CS_XBS5_ILP32_OFFBIG_LDFLAGS (LEGACY)

7317 _CS_XBS5_ILP32_OFFBIG_LIBS (LEGACY)

7318 _CS_XBS5_ILP32_OFFBIG_LINTFLAGS (LEGACY)

7319 _CS_XBS5_LP64_OFF64_CFLAGS (LEGACY)

7320 _CS_XBS5_LP64 OFF64_LDFLAGS (LEGACY)

7321 _CS_XBS5_LP64 OFF64_LIBS (LEGACY)

7322 _CS_XBS5_LP64 OFF64_LINTFLAGS (LEGACY)

7323 _CS_XBS5_LPBIG_OFFBIG_CFLAGS (LEGACY)

7324 _CS_XBS5_LPBIG_OFFBIG_LDFLAGS (LEGACY)

7325 _CS_XBS5_LPBIG_OFFBIG_LIBS (LEGACY)

7326 _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS (LEGACY)

7327

7328 If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into
7329 the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
7330 including the terminating null, then confstr() shall truncate the string to len-1 bytes and null-
7331 terminate the result. The application can detect that the string was truncated by comparing the

714 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces confstr()

7332 value returned by confstr() with len.

7333 If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined
7334 below, but shall not return a string. If len is 0 but buf is not a null pointer, the result is
7335 unspecified.

7336 If the implementation supports the Shell option, the string stored in buf after a call to:

7337 confstr(_CS_PATH, buf, sizeof(buf))

7338 can be used as a value of the PATH environment variable that accesses all of the standard
7339 utilities of IEEE Std. 1003.1-200x, if the return value is less than or equal to sizeof (buf).

7340 RETURN VALUE

7341 If name has a configuration-defined value, confstr() shall return the size of buffer that would be
7342 needed to hold the entire configuration-defined value including the terminating null. If this
7343 return value is greater than len, the string returned in buf is truncated.

7344 If name is invalid, confstr () shall return 0 and set errno to indicate the error.

7345 If name does not have a configuration-defined value, confstr() shall return 0 and leave errno
7346 unchanged.

7347 ERRORS

7348 The confstr() function shall fail if:

7349 [EINVAL] The value of the name argument is invalid.

7350 EXAMPLES

7351 None.

7352 APPLICATION USAGE

7353 An application can distinguish between an invalid name parameter value and one that
7354 corresponds to a configurable variable that has no configuration-defined value by checking if
7355 errno is modified. This mirrors the behavior of sysconf().

7356 The original need for this function was to provide a way of finding the configuration-defined
7357 default value for the environment variable PATH. Since PATH can be modified by the user to
7358 include directories that could contain utilities replacing the standard utilities in the Shell and
7359 Utilities volume of IEEE Std. 1003.1-200x, applications need a way to determine the system-
7360 supplied PATH environment variable value that contains the correct search path for the standard
7361 utilities.

7362 An application could use:

7363 confstr(name, (char *)NULL, (size_t)0)

7364 to find out how big a buffer is needed for the string value; use malloc() to allocate a buffer to
7365 hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
7366 static buffer that is big enough to hold most answers (perhaps 512 or 1024 bytes), but then use
7367 malloc () to allocate a larger buffer if it finds that this is too small.

7368 RATIONALE

7369 Application developers can normally determine any configuration variable by means of reading
7370 from the stream opened by a call to:

7371 popen("command -p getconf variable", "r");

7372 The confstr() function with a name argument of _CS_PATH returns a string that can be used as a
7373 PATH environment variable setting that will reference the standard shell and utilities as
7374 described in the Shell and Utilities volume of IEEE Std. 1003.1-200x.

System Interfaces, Issue 6 715

7375
7376
7377
7378

7379
7380

7381
7382
7383

7384
7385

7386
7387
7388

7389
7390
7391

7392
7393

7394
7395
7396

7397

7398
7399

7400
7401

confstr() System Interfaces

The confstr() function copies the returned string into a buffer supplied by the application instead
of returning a pointer to a string. This allows a cleaner function in some implementations (such
as those with lightweight threads) and resolves questions about when the application must copy
the string returned.

FUTURE DIRECTIONS

None.

SEE ALSO

pathconf(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200%, <unistd.h>, the Shell
and Utilities volume of IEEE Std. 1003.1-200x, c99

CHANGE HISTORY

Issue 5

Issue 6

716

First released in Issue 4. Derived from the ISO POSIX-2 standard.

A table indicating the permissible values of name are added to the DESCRIPTION. All those
marked EX are new in this issue.

The Open Group corrigenda item U033/7 has been applied. The return value for the case
returning the size of the buffer now explicitly states that this includes the terminating null.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The DESCRIPTION is updated with new arguments which can be used to determine
configuration strings for C compiler flags, linker/loader flags, and libraries for each different
supported programming environment. This is a change to support data size neutrality.

The following changes were made to align with the IEEE P1003.1a draft standard:

« The DESCRIPTION is updated to include text describing how CS PATH can be used to
obtain a PATH to access the standard utilities.

The macros associated with the ¢89 programming models are marked LEGACY and new
equivalent macros associated with ¢99 are introduced.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces conj()

7402 NAME

7403 conj, conjf, conjl — complex conjugate functions

7404 SYNOPSIS

7405 #include <complex.h> |
7406 double complex conj(double complex 2);

7407 float complex conijf(float complex 2);

7408 long double complex conjl(long double complex 2);

7409 DESCRIPTION

7410 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7411 conflict between the requirements described here and the ISO C standard is unintentional. This
7412 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7413 These functions shall compute the complex conjugate of z, by reversing the sign of its imaginary
7414 part.

7415 RETURN VALUE

7416 These functions return the complex conjugate value.

7417 ERRORS

7418 No errors are defined.

7419 EXAMPLES

7420 None.

7421 APPLICATION USAGE

7422 None.

7423 RATIONALE

7424 None.

7425 FUTURE DIRECTIONS

7426 None.

7427 SEE ALSO

7428 carg(), cimag(), cproj(), creal(), the Base Definitions volume of IEEE Std.1003.1-200x,
7429 <complex.h>

7430 CHANGE HISTORY

7431 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 717

connect() System Interfaces

7432 NAME
7433

connect — connect a socket

7434 SYNOPSIS

7435

7436
7437

#include <sys/socket.h>

int connect(int socket , const struct sockaddr * address ,
socklen_t address len);

7438 DESCRIPTION

7439
7440

7441

7442
7443

7444
7445

7446
7447

7448
7449
7450
7451
7452

7453
7454

7455
7456
7457
7458
7459
7460
7461

7462
7463
7464
7465
7466

7467
7468

7469
7470

The connect() function requests a connection to be made on a socket. The function takes the
following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The length and
format of the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the address
argument.

If the socket has not already been bound to a local address, connect() shall bind it to an address
which, unless the socket’s address family is AF_UNIX, is an unused local address.

If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
recv() functions. If address is a null address for the protocol, the socket’s peer address shall be
reset.

If the initiating socket is connection-mode, then connect() attempts to establish a connection to
the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for the file
descriptor for the socket, connect() shall block for up to an unspecified timeout interval until the
connection is established. If the timeout interval expires before the connection is established,
connect() shall fail and the connection attempt shall be aborted. If connect() is interrupted by a
signal that is caught while blocked waiting to establish a connection, connect() shall fail and set
errno to [EINTR], but the connection request shall not be aborted, and the connection shall be
established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the file
descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
request shall not be aborted, and the connection shall be established asynchronously.
Subsequent calls to connect() for the same socket, before the connection is established, shall fail
and set errno to [EALREADY].

When the connection has been established asynchronously, select() and poll () shall indicate that
the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use the connect()
function.

7471 RETURN VALUE

7472
7473

718

Upon successful completion, connect() shall return 0; otherwise, -1 shall be returned and errno
set to indicate the error.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces connect()

7474 ERRORS

7475 The connect() function shall fail if:

7476 [EADDRNOTAVAIL]

7477 The specified address is not available from the local machine.

7478 [EAFNOSUPPORT]

7479 The specified address is not a valid address for the address family of the
7480 specified socket.

7481 [EALREADY] A connection request is already in progress for the specified socket.

7482 [EBADF] The socket argument is not a valid file descriptor.

7483 [ECONNREFUSED]

7484 The target address was not listening for connections or refused the connection
7485 request.

7486 [EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the connection
7487 cannot be immediately established; the connection shall be established
7488 asynchronously.

7489 [EINTR] The attempt to establish a connection was interrupted by delivery of a signal
7490 that was caught; the connection shall be established asynchronously.

7491 [EISCONN] The specified socket is connection-mode and is already connected.

7492 [ENETUNREACH]

7493 No route to the network is present.

7494 [ENOTSOCK] The socket argument does not refer to a socket.

7495 [EPROTOTYPE] The specified address has a different type than the socket bound to the
7496 specified peer address.

7497 [ETIMEDOUT] The attempt to connect timed out before a connection was made.

7498 If the address family of the socket is AF_UNIX, then connect() shall fail if:

7499 [EIO] An I/0 error occurred while reading from or writing to the file system.

7500 [ELOOP] A loop exists in symbolic links encountered during resolution of the path
7501 name in address.

7502 [ENAMETOOLONG]

7503 A component of a path name exceeded {NAME_MAX} characters, or an entire
7504 path name exceeded {PATH_MAX} characters.

7505 [ENOENT] A component of the path name does not name an existing file or the path
7506 name is an empty string.

7507 [ENOTDIR] A component of the path prefix of the path name in address is not a directory.
7508 The connect() function may fail if:

7509 [EACCES] Search permission is denied for a component of the path prefix; or write
7510 access to the named socket is denied.

7511 [EADDRINUSE] Attempt to establish a connection that uses addresses that are already in use.
7512 [ECONNRESET] Remote host reset the connection request.

7513 [EHOSTUNREACH]

7514 The destination host cannot be reached (probably because the host is down or

System Interfaces, Issue 6 719

7515

7516
7517

7518
7519

7520
7521
7522

7523

7524

7525

7526
7527

7528
7529
7530

7531
7532

7533
7534

7535
7536
7537

7538
7539

7540
7541

connect() System Interfaces

a remote router cannot reach it).

[EINVAL] The address_len argument is not a valid length for the address family; or
invalid address family in the sockaddr structure.

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path name in address.

[ENAMETOOLONG]

Path name resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

[ENETDOWN] The local network interface used to reach the destination is down.

[ENOBUFS] No buffer space is available.

[EOPNOTSUPP] The socket is listening and cannot be connected.
EXAMPLES

None.

APPLICATION USAGE
If connect() fails, the state of the socket is unspecified. Portable applications should close the file
descriptor and create a new socket before attempting to reconnect.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
accept(), bind(), close(), getsockname(), poll(), select(), send(), shutdown(), socket(), the Base
Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional
[ELOOP] error condition is added.

720 Technical Standard (2000) (Draft July 31, 2000)

7542
7543

7544
7545

7546
7547
7548

7549
7550
7551
7552

7553
7554
7555
7556

7557
7558

7559
7560
7561

7562

7563

7564
7565

7566

7567
7568

7569
7570

7571
7572
7573
7574
7575

7576
7577

7578
7579

7580
7581

System Interfaces copysign()

NAME
copysign, copysignf, copysignl — number manipulation function

SYNOPSIS
#include <math.h>

double copysign(double X, double y);
float copysignf(float X, float)i
long double copysignl(long double X, long double)i
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall produce a value with the magnitude of x and the sign of y. They produce a
NaN (with the sign of y) if x is a NaN. On implementations that represent a signed zero but do
not treat negative zero consistently in arithmetic operations, these functions regard the sign of
Zero as positive.

An application wishing to check for error situations should set errno to 0 before calling these
functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return a value with the magnitude of x and
the sign of y.

If x is £Inf, these functions shall return x.
If x is NaN, NaN shall be returned and errno may be set to [EDOM].

ERRORS
These functions may fail if:

[EDOM] The value of x is NaN.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
copysign () and signbit() need not be consistent with each other if the arithmetic is not consistent
in its treatment of zeros. For example, the IBM S/370 has instructions to flip the sign bit making
it possible to create a negative zero, but +0.0 x £1.0 is always +0.0. In this case, copysign() will
treat 0.0 as positive, while signbit() will treat it as negative.

FUTURE DIRECTIONS
None.

SEE ALSO
signbit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 721

7582
7583

7584
7585

7586
7587
7588

7589
7590
7591
7592

7593

7594
7595

7596
7597

7598

7599
7600

7601

7602
7603

7604

7605

7606

7607

7608

7609
7610
7611
7612
7613
7614

7615
7616

7617
7618

7619
7620

cos() System Interfaces

NAME
cos, cosf, cosl — cosine function |
SYNOPSIS
#include <math.h>
double cos(double X);
float cosf(float X); |
long double cosl(long double X); |
DESCRIPTION [
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute the cosine of x, measured in radians. |
An application wishing to check for error situations should set errno to 0 before calling cos(). If
errno is non-zero on return, or the returned value is NaN, an error has occurred.
RETURN VALUE
Upon successful completion, these functions shall return the cosine of x. |
Xsl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |
Xsl If x is £Inf, either 0 shall be returned and errno set to [EDOM], or NaN shall be returned and errno
may be set to [EDOM].
If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |
ERRORS
These functions may fail if: |
Xsl [EDOM] The value of x is NaN or x is £Inf. |
[ERANGE] The result underflows |
Xsl No other errors shall occur.
EXAMPLES

Taking the Cosine of a 45-Degree Angle
#include <math.h>

double radians = 45 * M_PI / 180;
double result;

result = cos(radians);

APPLICATION USAGE
The cos() function may lose accuracy when its argument is far from 0.

RATIONALE
None.

FUTURE DIRECTIONS
None.

722 Technical Standard (2000) (Draft July 31, 2000)

7621
7622

7623
7624

7625
7626

7627
7628

7629

7630
7631
7632

7633
7634

System Interfaces cos()

SEE ALSO
acos(), isnan(), sin(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
References to matherr() are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the

ISO C standard and to rationalize error handling in the mathematics functions.
The return value specified for [EDOM] is marked as an extension.

Issue 5

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The cosf() and cosl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

723

cosh() System Interfaces

7635 NAME

7636 cosh, coshf, coshl — hyperbolic cosine function |
7637 SYNOPSIS

7638 #include <math.h>

7639 double cosh(double X);

7640 float coshf(float X); |
7641 long double coshl(long double X); |
7642 DESCRIPTION [
7643 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7644 conflict between the requirements described here and the ISO C standard is unintentional. This
7645 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7646 These functions shall compute the hyperbolic cosine of x. |
7647 An application wishing to check for error situations should set errno to 0 before calling cosh(). If
7648 errno is non-zero on return, or the returned value is NaN, an error has occurred.

7649 RETURN VALUE

7650 Upon successful completion, these functions shall return the hyperbolic cosine of x. |
7651 If the result would cause an overflow, HUGE_VAL shall be returned and errno set to [ERANGE]. |
7652 Xsl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |
7653 ERRORS

7654 These functions shall fail if: |
7655 [ERANGE] The result would cause an overflow. |
7656 These functions may fail if: |
7657 Xsl [EDOM] The value of x is NaN.

7658 XSl No other errors shall occur.

7659 EXAMPLES

7660 None.

7661 APPLICATION USAGE

7662 None.

7663 RATIONALE

7664 None.

7665 FUTURE DIRECTIONS

7666 None.

7667 SEE ALSO

7668 acosh(), isnan(), sinh(), tanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |
7669 CHANGE HISTORY

7670 First released in Issue 1. Derived from Issue 1 of the SVID. |
7671 Issue 4

7672 References to matherr() are removed.

7673 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
7674 ISO C standard and to rationalize error handling in the mathematics functions.

724 Technical Standard (2000) (Draft July 31, 2000)

7675

7676
7677
7678

7679
7680

System Interfaces

The return value specified for [EDOM] is marked as an extension.

Issue 5

cosh()

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The coshf() and coshl() functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

725

7681
7682

7683
7684

7685
7686
7687
7688

7689
7690
7691
7692

7693
7694

7695
7696

7697
7698

7699
7700

7701
7702

7703
7704

7705
7706

7707
7708

7709
7710

cpow() System Interfaces

NAME
cpow, cpowf, cpowl — complex power functions
SYNOPSIS
#include <complex.h> |
double complex cpow(double complex X, double complex)i
float complex cpowf(float complex X, float complex)i
long double complex cpowl(long double complex X,
long double complex)i
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute the complex power function x¥, with a branch cut for the first
parameter along the negative real axis.
RETURN VALUE
These functions shall return the complex power function value.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

cabs(), csqrt(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY

726

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

7711
7712

7713
7714

7715
7716
7717

7718
7719
7720
7721

7722
7723
7724

7725

7726
7727

7728
7729

7730
7731

7732
7733

7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744

7745
7746

7747
7748
7749

7750
7751

System Interfaces cproj()

NAME
cproj, cprojf, cprojl — complex projection functions

SYNOPSIS
#include <complex.h> |
double complex cproj(double complex 2);
float complex cprojf(float complex 2);
long double complex cprojl(long double complex 2);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute a projection of z onto the Riemann sphere: z projects to z, except
that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, then cproj(z) is equivalent to:
INFINIT Y + | * copysign(0.0, cimag(z))

RETURN VALUE
These functions shall return the value of the projection onto the Riemann sphere.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE

Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is
better suited for transcendental functions, the Riemann sphere for algebraic functions. The
complex types with their multiplicity of infinities provide a useful (though imperfect) model for
the complex plane. The cproj() function helps model the Riemann sphere by mapping all
infinities to one, and should be used just before any operation, especially comparisons, that
might give spurious results for any of the other infinities. Note that a complex value with one
infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is
infinite, the complex value is infinite independent of the value of the other part. For the same
reason, cabs() returns an infinity if its argument has an infinite part and a NaN part.

FUTURE DIRECTIONS

None.

SEE ALSO

carg(), cimag(), conj(), creal(), the Base Definitions volume of IEEE Std.1003.1-200x,
<complex.h>

CHANGE HISTORY

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 727

7752
7753

7754
7755

7756
7757
7758

7759
7760
7761
7762

7763

7764
7765

7766
7767

7768
7769

7770
7771

7772

7773
7774

7775
7776

Tt
7778
7779

7780
7781

creal() System Interfaces

NAME
creal, crealf, creall — complex real functions
SYNOPSIS
#include <complex.h> |
double creal(double complex 2);
float crealf(float complex 2);
long double creall(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute the real part of z.
RETURN VALUE
These functions shall return the real part value.
ERRORS
No errors are defined.
EXAMPLES

None.

APPLICATION USAGE

For a variable z of complex type:

z == creal(z) + cimag(z)*l

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

carg(), cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std.1003.1-200x,
<complex.h>

CHANGE HISTORY

728

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

7782
7783

7784
7785
7786

7787

7788
7789

7790

7791

7792

7793
7794

7795
7796

7797

7798

7799
7800
7801

7802
7803
7804
7805
7806
7807
7808
7809

7810
7811

7812
7813
7814
7815
7816

7817
7818

7819
7820
7821

System Interfaces

NAME

creat — create a new file or rewrite an existing one
SYNOPSIS
OH #include <sys/stat.h>

#include <fentl.h>

int creat(const char * path , mode_t mode);
DESCRIPTION

The function call:

creat(path, mode)

is equivalent to:

open(path, O_WRONLY|O_CREAT|O_TRUNC, mode)
RETURN VALUE

Refer to open().
ERRORS

Refer to open().
EXAMPLES

Creating a File

creat()

The following example creates the file /tmp/file with read and write permissions for the file
owner and read permission for group and others. The resulting file descriptor is assigned to the

fd variable.
#include <fcntl.h>
int fd;

mode_t mode =
char *filename = "/tmp/file";

fd = creat(filename, mode);

APPLICATION USAGE
None.

RATIONALE

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;

The creat() function is redundant. Its services are also provided by the open() function. It has

been included primarily for historical purposes since many existing applications depend on it. It
is best considered a part of the C binding rather than a function that should be provided in other

languages.

FUTURE DIRECTIONS
None.

SEE ALSO
open(), the Base Definitions volume of
<sys/types.h>

System Interfaces, Issue 6

IEEE Std. 1003.1-200x,

<fcntl.h>,

<sys/stat.h>,

729

7822
7823

7824
7825
7826

7827

7828

7829
7830

7831
7832

7833
7834
7835

creat() System Interfaces

CHANGE HISTORY

Issue 4

Issue 6

730

First released in Issue 1. Derived from Issue 1 of the SVID.

The <sys/types.h> and <sys/stat.h> headers are now marked as optional (OH); these headers
need not be included on XSI-conformant systems.

The following change is incorporated for alignment with the 1ISO POSIX-1 standard:

- The type of argument path is changed from char* to const char*.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces crypt()

7836 NAME

7837 crypt — string encoding function (CRYPT)

7838 SYNOPSIS

7839 Xl #include <unistd.h>

7840 char *crypt(const char * key, const char * salt);

7841

7842 DESCRIPTION

7843 The crypt() function is a string encoding function. The algorithm is implementation-defined.

7844 The key argument points to a string to be encoded. The salt argument is a string chosen from the
7845 set:

7846 abcdefghijklmnopgrstuvwxyz

7847 ABCDEFGHIJKLMNOPQRSTUVWXYZ

7848 0123456789./

7849 The first two characters of this string may be used to perturb the encoding algorithm.

7850 The return value of crypt() points to static data that is overwritten by each call.

7851 The crypt() function need not be reentrant. A function that is not required to be reentrant is not
7852 required to be thread-safe.

7853 RETURN VALUE

7854 Upon successful completion, crypt() shall return a pointer to the encoded string. The first two
7855 characters of the returned value are those of the salt argument. Otherwise, it shall return a null
7856 pointer and set errno to indicate the error.

7857 ERRORS

7858 The crypt() function shall fail if:

7859 [ENOSYS] The functionality is not supported on this implementation.

7860 EXAMPLES

7861 Encoding Passwords

7862 The following example finds a user database entry matching a particular user name and changes
7863 the current password to a new password. The crypt() function is used to generate an encoded
7864 version of each password. The first call to crypt() produces an encoded version of the old
7865 password; that encoded password is then compared to the password stored in the user database.
7866 The second call to crypt() encodes the new password before it is stored.

7867 The putpwent() function, used in the following example, is not part of IEEE Std. 1003.1-200x.

7868 #include <unistd.h>

7869 #include <pwd.h>

7870 #include <string.h>

7871 #include <stdio.h>

7872

7873 int valid_change;

7874 int pfd; /* Integer for file descriptor returned by open(). */

7875 FILE *fpfd; /* File pointer for use in putpwent(). */

7876 struct passwd *p;

7877 char user[100];

7878 char oldpasswd[100];

7879 char newpasswd[100];

System Interfaces, Issue 6 731

7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897

7898
7899

7900
7901

7902
7903

7904
7905

7906
7907

7908
7909

7910

7911

7912
7913
7914

crypt() System Interfaces

char savepasswd[100];

valid_change = 0;
while ((p = getpwent()) !'= NULL) {
/* Change entry if found. */
if (strcmp(p->pw_name, user) == 0) {
if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
strcpy(savepasswd, crypt(newpasswd, user));
p->pw_passwd = savepasswd,;
valid_change = 1,

}
else {

fprintf(stderr, "Old password is not valid\n");
}

}
[* Put passwd entry into ptmp. */
putpwent(p, fpfd);

}

APPLICATION USAGE

The values returned by this function need not be portable among XSl-conformant systems.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

encrypt(), setkey(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h>

CHANGE HISTORY

Issue 4

Issue 5

732

First released in Issue 1. Derived from Issue 1 of the SVID.

The <unistd.h> header is added to the SYNOPSIS section.
The type of arguments key and salt are changed from char* to const char*.

The DESCRIPTION now explicitly defines the characters that can appear in the salt argument.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces csin()

7915 NAME

7916 csin, csinf, csinl — complex sine functions

7917 SYNOPSIS

7918 #include <complex.h> |
7919 double complex csin(double complex 2);

7920 float complex csinf(float complex 2);

7921 long double complex csinl(long double complex 2);

7922 DESCRIPTION

7923 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7924 conflict between the requirements described here and the ISO C standard is unintentional. This
7925 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7926 These functions shall compute the complex sine of z.

7927 RETURN VALUE

7928 These functions shall return the complex sine value.

7929 ERRORS

7930 No errors are defined.

7931 EXAMPLES

7932 None.

7933 APPLICATION USAGE

7934 None.

7935 RATIONALE

7936 None.

7937 FUTURE DIRECTIONS

7938 None.

7939 SEE ALSO

7940 casin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

7941 CHANGE HISTORY

7942 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 733

csinh() System Interfaces

7943 NAME

7944 csinh, csinhf, csinhl — complex hyperbolic sine functions

7945 SYNOPSIS

7946 #include <complex.h> |
7947 double complex csinh(double complex 2);

7948 float complex csinhf(float complex 2);

7949 long double complex csinhl(long double complex 2);

7950 DESCRIPTION

7951 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7952 conflict between the requirements described here and the ISO C standard is unintentional. This
7953 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7954 These functions shall compute the complex hyperbolic sine of z.

7955 RETURN VALUE

7956 These functions shall return the complex hyperbolic sine value.

7957 ERRORS

7958 No errors are defined.

7959 EXAMPLES

7960 None.

7961 APPLICATION USAGE

7962 None.

7963 RATIONALE

7964 None.

7965 FUTURE DIRECTIONS

7966 None.

7967 SEE ALSO

7968 casinh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

7969 CHANGE HISTORY

7970 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

734 Technical Standard (2000) (Draft July 31, 2000)

7971
7972

7973
7974

7975
7976
7977

7978
7979
7980
7981

7982
7983

7984
7985
7986

7987
7988

7989
7990

7991
7992

7993
7994

7995
7996

7997
7998

7999
8000

System Interfaces csqrt()

NAME
csqrt, csqrtf, csqrtl — complex square root functions

SYNOPSIS
#include <complex.h> |

double complex csqrt(double complex 2);
float complex csqrtf(float complex 2);
long double complex csqrtl(long double complex 2);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the complex square root of z, with a branch cut along the
negative real axis.

RETURN VALUE
These functions shall return the complex square root value, in the range of the right half-plane
(including the imaginary axis).

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
cabs(), cpow (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 735

ctan() System Interfaces

8001 NAME

8002 ctan, ctanf, ctanl — complex tangent functions

8003 SYNOPSIS

8004 #include <complex.h> |
8005 double complex ctan(double complex 2);

8006 float complex ctanf(float complex 2);

8007 long double complex ctanl(long double complex 2);

8008 DESCRIPTION

8009 cCX The functionality described on this reference page is aligned with the ISO C standard. Any
8010 conflict between the requirements described here and the ISO C standard is unintentional. This
8011 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

8012 These functions shall compute the complex tangent of z.

8013 RETURN VALUE

8014 These functions shall return the complex tangent value.

8015 ERRORS

8016 No errors are defined.

8017 EXAMPLES

8018 None.

8019 APPLICATION USAGE

8020 None.

8021 RATIONALE

8022 None.

8023 FUTURE DIRECTIONS

8024 None.

8025 SEE ALSO

8026 catan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

8027 CHANGE HISTORY

8028 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

736 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctanh()

8029 NAME

8030 ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

8031 SYNOPSIS

8032 #include <complex.h> |
8033 double complex ctanh(double complex 2);

8034 float complex ctanhf(float complex 2);

8035 long double complex ctanhl(long double complex 2);

8036 DESCRIPTION

8037 cCX The functionality described on this reference page is aligned with the ISO C standard. Any
8038 conflict between the requirements described here and the ISO C standard is unintentional. This
8039 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

8040 These functions shall compute the complex hyperbolic tangent of z.

8041 RETURN VALUE

8042 These functions shall return the complex hyperbolic tangent value.

8043 ERRORS

8044 No errors are defined.

8045 EXAMPLES

8046 None.

8047 APPLICATION USAGE

8048 None.

8049 RATIONALE

8050 None.

8051 FUTURE DIRECTIONS

8052 None.

8053 SEE ALSO

8054 catanh (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h>

80s5 CHANGE HISTORY

8056 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 737

8057
8058

8059
8060

8061

8062
8063
8064
8065

8066
8067

8068
8069
8070
8071
8072
8073

8074
8075

8076
8077

8078

8079

8080
8081
8082

8083
8084
8085
8086

8087

8088
8089
8090
8091
8092

8093
8094
8095
8096

8097
8098
8099
8100

ctermid() System Interfaces

NAME
ctermid — generate a path name for controlling terminal

SYNOPSIS
#include <stdio.h>
char *ctermid(char * s);

DESCRIPTION
The ctermid() function shall generate a string that, when used as a path name, refers to the
current controlling terminal for the current process. If ctermid() returns a path name, access to
the file is not guaranteed.
If the application uses any of the POSIX THREAD_SAFE_FUNCTIONS or POSIX THREADS
functions, it shall ensure that the ctermid() function is called with a non-NULL parameter.

RETURN VALUE
If s is a null pointer, the string is generated in an area that may be static (and therefore may be
overwritten by each call), the address of which shall be returned. Otherwise, s is assumed to
point to a character array of at least {L_ctermid} bytes; the string is placed in this array and the
value of s shall be returned. The symbolic constant {L_ctermid} is defined in <stdio.h>, and shall
have a value greater than 0.
The ctermid() function shall return an empty string if the path name that would refer to the
controlling terminal cannot be determined, or if the function is unsuccessful.

ERRORS
No errors are defined.

EXAMPLES

Determining the Controlling Terminal for the Current Process

The following example returns a pointer to a string that identifies the controlling terminal for the
current process. The path name for the terminal is stored in the array pointed to by the ptr
argument, which has a size of {L_ctermid} bytes, as indicated by the term argument.

#include <stdio.h>
char term[L_ctermid];
char *ptr;

ptr = ctermid(term);

APPLICATION USAGE

The difference between ctermid() and ttyname() is that ttyname() must be handed a file
descriptor and return a path of the terminal associated with that file descriptor, while ctermid()
returns a string (such as "/dev/tty") that refers to the current controlling terminal if used as a
path name.

RATIONALE

738

{L_ctermid} must be defined appropriately for a given implementation and must be greater than
zero so that array declarations using it are accepted by the compiler. The value includes the
terminating null byte.

Portable applications that use threads cannot call ctermid() with NULL as the parameter if either
_POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS is defined. If s is not NULL, the
ctermid() function generates a string that, when used as a path name, refers to the current
controlling terminal for the current process. If s is NULL, the return value of ctermid() is

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctermid()

8101 undefined.

8102 If the ctermid() function returns a path name, access to the file is not guaranteed.

8103 There is no additional burden on the programmer—changing to use a hypothetical thread-safe
8104 version of ctermid() along with allocating a buffer is more of a burden than merely allocating a
8105 buffer. Application code should not assume that the returned string is short, as some
8106 implementations have more than two path name components before reaching a logical device
8107 name.

8108 FUTURE DIRECTIONS

8109 None.

8110 SEE ALSO

8111 ttyname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

8112 CHANGE HISTORY

8113 First released in Issue 1. Derived from Issue 1 of the SVID.

8114 Issue 4

8115 The following change is incorporated for alignment with the 1ISO POSIX-1 standard:

8116 » The DESCRIPTION and RETURN VALUE sections, though functionally identical to Issue 3,
8117 are rewritten.

8118 Issue 5

8119 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

8120 Issue 6

8121 The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

System Interfaces, Issue 6 739

8122
8123

8124
8125

8126
8127
8128

8129
8130
8131
8132

8133
8134

8135

8136
8137
8138

8139
8140

8141
8142
8143

8144

8145
8146
8147

8148
8149

8150
8151

8152
8153

8154
8155
8156
8157
8158

8159
8160

8161
8162

ctime() System Interfaces

NAME
ctime, ctime_r — convert a time value to date and time string

SYNOPSIS
#include <time.h>

char *ctime(const time_t * clock);
TSF char *ctime_r(const time_t * clock , char * buf);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The ctime() function shall convert the time pointed to by clock, representing time in seconds
since the Epoch, to local time in the form of a string. It is equivalent to:

asctime(localtime(clock))

cx The asctime(), ctime(), gmtime(), and localtime() functions return values in one of two static
objects: a broken-down time structure and an array of char. Execution of any of the functions
may overwrite the information returned in either of these objects by any of the other functions.

The ctime() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

TSF The ctime_r() function shall convert the calendar time pointed to by clock to local time in exactly
the same form as ctime() and puts the string into the array pointed to by buf (which contains at
least 26 bytes) and return buf.

Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname.

RETURN VALUE
The ctime() function shall return the pointer returned by asctime() with that broken-down time
as an argument.

TSF Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf.
When an error is encountered, a null pointer shall be returned.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
Values for the broken-down time structure can be obtained by calling gmtime() or localtime().
The ctime() function is included for compatibility with older implementations, and does not
support localized date and time formats. Applications should use the strftime() function to
achieve maximum portability.

The ctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of
possibly using a static data area that may be overwritten by each call.

RATIONALE
None.

740 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctime()

8163 FUTURE DIRECTIONS

8164 None.

8165 SEE ALSO

8166 asctime(), clock (), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(),
8167 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h>

8168 CHANGE HISTORY

8169 First released in Issue 1. Derived from Issue 1 of the SVID.

8170 Issue 4

8171 The APPLICATION USAGE section is expanded to describe the time-handling functions
8172 generally and to refer users to strftime(), which is a locale-dependent time-handling function.
8173 The following change is incorporated for alignment with the ISO C standard:

8174 « The type of argument clock is changed from time_t* to const time_t*.

8175 Issue 5

8176 Normative text previously in the APPLICATION USAGE section is moved to the
8177 DESCRIPTION.

8178 The ctime_r() function is included for alignment with the POSIX Threads Extension.

8179 A note indicating that the ctime() function need not be reentrant is added to the DESCRIPTION.
8180 Issue 6

8181 Extensions beyond the ISO C standard are now marked.

8182 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

8183 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
8184 its avoidance of possibly using a static data area.

System Interfaces, Issue 6 741

8185
8186

8187
8188

8189
8190

8191
8192

daylight

NAME
daylight — daylight savings time flag

SYNOPSIS
XSl #include <time.h>

extern int daylight;

DESCRIPTION
Refer to tzset().

742

System Interfaces

Technical Standard (2000) (Draft July 31, 2000)

8193
8194
8195

8196
8197

8198
8199
8200
8201
8202
8203
8204
8205
8206
8207

8208
8209

8210
8211
8212

8213
8214

8215
8216
8217
8218
8219
8220

8221
8222

8223
8224
8225
8226

8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239

System Interfaces dbm_clearerr()

NAME
dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store — database functions
SYNOPSIS
XSl #include <ndbm.h>
int dbm_clearerr(DBM * db);
void dbm_close(DBM * db);
int dobm_delete(DBM * db, datum key);
int dbm_error(DBM * db);
datum dbm_fetch(DBM * db, datum key);
datum dbm_firstkey(DBM * db);
datum dbm_nextkey(DBM * db);
DBM *dbm_open(const char * file , int open flags , mode_ t file_mode);
int dobm_store(DBM * db, datum key, datum content , int store_mode);
DESCRIPTION

These functions create, access, and modify a database.

A datum consists of at least two members, dptr and dsize. The dptr member points to an object
that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
the object pointed to by dptr.

The database is stored in two files. One file is a directory containing a bit map of keys and has
.dir as its suffix. The second file contains all data and has .pag as its suffix.

The dbm_open() function shall open a database. The file argument to the function is the path
name of the database. The function opens two files named file.dir and file.pag. The open_flags
argument has the same meaning as the flags argument of open() except that a database opened
for write-only access opens the files for read and write access and the behavior of the
O_APPEND flag is unspecified. The file_mode argument has the same meaning as the third
argument of open().

The dbm_close() function shall close a database. The application shall ensure that argument db is
a pointer to a dbm structure that has been returned from a call to dom_open().

The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that matches the key of
the record the program is fetching.

The dbm_store() function shall write a record to a database. The argument db is a pointer to a
database structure that has been returned from a call to dbm_open(). The argument key is a
datum that has been initialized by the application to the value of the key that identifies (for
subsequent reading, writing, or deleting) the record the application is writing. The argument
content is a datum that has been initialized by the application to the value of the record the
program is writing. The argument store_mode controls whether dbm_store() replaces any pre-
existing record that has the same key that is specified by the key argument. The application shall
set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains a record that
matches the key argument and store_mode is DBM_REPLACE, the existing record is replaced with
the new record. If the database contains a record that matches the key argument and store_mode
is DBM_INSERT, the existing record is left unchanged and the new record ignored. If the
database does not contain a record that matches the key argument and store_mode is either
DBM_INSERT or DBM_REPLACE, the new record is inserted in the database.

System Interfaces, Issue 6 743

8240
8241
8242
8243

8244
8245
8246
8247

8248
8249

8250
8251
8252
8253
8254

8255
8256

8257
8258

8259
8260

8261
8262

8263
8264

8265
8266
8267

8268
8269

8270
8271

8272

8273
8274
8275

8276
8277
8278

8279
8280

dbm_clearerr() System Interfaces

The application shall ensure that the sum of the sizes of a key/content pair does not exceed the
internal block size. Moreover, the application shall ensure that all key/content pairs that hash
together fit on a single block. The dbm_store() function shall return an error in the event that a
disk block fills with inseparable data.

The dbm_delete() function shall delete a record and its key from the database. The argument db is
a pointer to a database structure that has been returned from a call to dom_open(). The argument
key is a datum that has been initialized by the application to the value of the key that identifies
the record the program is deleting.

The dbm_firstkey () function shall return the first key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function shall return the next key in the database. The argument db is a
pointer to a database structure that has been returned from a call to dom_open(). The application
shall ensure that the dbm_firstkey () function is called before calling dom_nextkey(). Subsequent
calls to dbm_nextkey() return the next key until all of the keys in the database have been
returned.

The dbm_error() function shall return the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

The dbm_clearerr() function shall clear the error condition of the database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open().

These database functions shall support an internal block size large enough to support
key/content pairs of at least 1 023 bytes.

The dptr pointers returned by these functions may point into static storage that may be changed
by subsequent calls.

These functions need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE

744

The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative
value when they fail.

The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the
function finds an existing record with the same key.

The dbm_error() function shall return 0 if the error condition is not set and return a non-zero
value if the error condition is set.

The return value of dbm_clearerr() is unspecified.

The dbm_firstkey () and dbm_nextkey() functions shall return a key datum. When the end of the
database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
member of the key shall be a null pointer and the error condition of the database shall be set.

The dbm_fetch () function shall return a content datum. If no record in the database matches the
key or if an error condition has been detected in the database, the dptr member of the content
shall be a null pointer.

The dbm_open() function shall return a pointer to a database structure. If an error is detected
during the operation, dbm_open() shall return a (DBM*)0.

Technical Standard (2000) (Draft July 31, 2000)

8281
8282

8283
8284

8285
8286

8287

8288
8289
8290
8291
8292
8293
8294
8295

8296
8297

8298
8299
8300

8301
8302

8303
8304

8305
8306

8307
8308

8309
8310

8311
8312

8313

8314
8315

System Interfaces dbm_clearerr()

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

The following code can be used to traverse the database:
for(key = dbm_firstkey(db); key.dptr !'= NULL; key = dbm_nextkey(db))

The dbm_ functions provided in this library should not be confused in any way with those of a
general-purpose database management system. These functions do not provide for multiple
search keys per entry, they do not protect against multi-user access (in other words they do not
lock records or files), and they do not provide the many other useful database functions that are
found in more robust database management systems. Creating and updating databases by use of
these functions is relatively slow because of data copies that occur upon hash collisions. These
functions are useful for applications requiring fast lookup of relatively static information that is
to be indexed by a single key.

The dbm_delete() function need not physically reclaim file space, although it does make it
available for reuse by the database.

After calling dbm_store() or dom_delete() during a pass through the keys by dbm_firstkey() and
dbm_nextkey (), the application should reset the database by calling dbm_firstkey () before again
calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ndbm.h>

CHANGE HISTORY

Issue 5

Issue 6

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

The DESCRIPTION is updated to avoid use of the term “must’ for application requirements.

System Interfaces, Issue 6 745

8316
8317

8318
8319

8320

8321
8322
8323
8324

8325
8326

8327
8328

8329
8330

8331
8332

8333
8334

8335
8336

8337
8338

8339
8340
8341

8342
8343

difftime() System Interfaces

NAME
difftime — compute the difference between two calendar time values
SYNOPSIS
#include <time.h>
double difftime(time_t timel , time_t time0);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The difftime () function shall compute the difference between two calendar times (as returned by
time()): timel- timeO.
RETURN VALUE
The difftime () function shall return the difference expressed in seconds as a type double.
ERRORS
No errors are defined.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO

asctime(), clock(), ctime(), gmtime(), localtime(), mktime(), strftime(), strptime(), time(), utime(),
the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h>

CHANGE HISTORY

746

First released in Issue 4. Derived from the ISO C standard.

Technical Standard (2000) (Draft July 31, 2000)

8344
8345

8346
8347

8348
8349

8350
8351
8352
8353

8354
8355

8356
8357

8358
8359
8360

8361
8362

8363
8364

8365
8366
8367

8368
8369
8370
8371
8372
8373

8374

8375
8376

8377

8378
8379
8380
8381
8382
8383

System Interfaces dirname()

NAME
dirname — report the parent directory name of a file path name

SYNOPSIS
Xsl #include <libgen.h>

char *dirname(char * path);

DESCRIPTION
The dirname() function shall take a pointer to a character string that contains a path name, and
return a pointer to a string that is a path name of the parent directory of that file. Trailing '/’
characters in the path are not counted as part of the path.

If path does not contain a’/’ , then dirname() shall return a pointer to the string"." . If pathisa

null pointer or points to an empty string, dirname() shall return a pointer to the string ".

The dirname() function need not be reentrant. A function that is not required to be reentrant is
not required to be thread-safe.

RETURN VALUE
The dirname() function shall return a pointer to a string that is the parent directory of path. If

path is a null pointer or points to an empty string, a pointer to a string "." is returned.

The dirname() function may modify the string pointed to by path, and may return a pointer to
static storage that may then be overwritten by subsequent calls to dirname().

ERRORS
No errors are defined.

EXAMPLES
The following code fragment reads a path name, changes the current working directory to the
parent directory, and opens the file.

char path[MAXPATHLEN], *pathcopy;

int fd;

fgets(path, MAXPATHLEN, stdin);
pathcopy = strdup(path);
chdir(dirname(pathcopy));

fd = open(basename(path), O_RDONLY);

Sample Input and Output Strings for dirname()

In the following table, the input string is the value pointed to by path, and the output string is
the return value of the dirname() function.

InputString Output String

"lusr/lib” "lusr"
"fusr/" "

"usr"
II/II Il/ll

System Interfaces, Issue 6 747

8384

8385
8386

8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400

8401
8402
8403

8404
8405

8406
8407

8408
8409

8410
8411

8412
8413

8414
8415

8416
8417

8418

dirname() System Interfaces

Changing the Current Directory to the Parent Directory

The following program fragment reads a path name, changes the current working directory to
the parent directory, and opens the file.

#include <unistd.h>
#include <limits.h>
#include <stdio.h>
#include <fcntl.h>

#include <string.h>
#include <libgen.h>

char path[PATH_MAX], *pathcopy;
int fd;

fgets(path, PATH_MAX, stdin);

pathcopy = strdup(path);
chdir(dirname(pathcopy));

fd = open(basename(path), O_RDONLY);

APPLICATION USAGE
The dirname() and basename() functions together yield a complete path name. The expression
dirname(path) obtains the path name of the directory where basename(path) is found.

Since the meaning of the leading "//" is implementation-defined, dirname("//foo) may return
either"//" or’l" (but nothing else).

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
basename(), the Base Definitions volume of IEEE Std. 1003.1-200x, <libgen.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

748 Technical Standard (2000) (Draft July 31, 2000)

8419
8420

8421
8422

8423

8424
8425
8426
8427

8428
8429
8430
8431

8432
8433
8434

8435
8436

8437
8438

8439
8440

8441
8442

8443
8444

8445
8446

8447
8448

8449
8450

System Interfaces div()

NAME
div — compute the quotient and remainder of an integer division

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any

conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The div() function shall compute the quotient and remainder of the division of the numerator
numer by the denominator denom. If the division is inexact, the resulting quotient is the integer
of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
represented, the behavior is undefined; otherwise, quot*denom+rem shall equal numer.

RETURN VALUE
The div() function shall return a structure of type div_t, comprising both the quotient and the
remainder. The structure includes the following members, in any order:

int quot; /* quotient */
int rem; /* remainder */

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
Idiv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

System Interfaces, Issue 6 749

8451
8452

8453
8454

8455
8456

8457
8458
8459

8460
8461
8462
8463
8464

8465
8466
8467
8468
8469
8470
8471
8472

8473
8474
8475
8476

8477
8478

8479
8480

8481
8482

8483
8484
8485

8486
8487
8488
8489

8490
8491
8492
8493
8494
8495
8496

dlclose() System Interfaces

NAME
diclose — close a dlopen () object

SYNOPSIS

XSl #include <dlfcn.h>
int diclose(void * handle);

DESCRIPTION
The dlclose () function is used to inform the system that the object referenced by a handle returned
from a previous dlopen() invocation is no longer needed by the application.
The use of diclose() reflects a statement of intent on the part of the process, but does not create
any requirement upon the implementation, such as removal of the code or symbols referenced
by handle. Once an object has been closed using diclose () an application should assume that its
symbols are no longer available to dlsym(). All objects loaded automatically as a result of
invoking dlopen () on the referenced object are also closed if this is the last reference to it.
Although a diclose() operation is not required to remove structures from an address space,
neither is an implementation prohibited from doing so. The only restriction on such a removal is
that no object shall be removed to which references have been relocated, until or unless all such
references are removed. For instance, an object that had been loaded with a dlopen() operation
specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
the processing of other objects—in such environments, an application may assume that no
relocation, once made, shall be undone or remade unless the object requiring the relocation has
itself been removed.

RETURN VALUE
If the referenced object was successfully closed, diclose() shall return 0. If the object could not be
closed, or if handle does not refer to an open object, diclose() shall return a non-zero value. More
detailed diagnostic information shall be available through dlerror ().

ERRORS
No errors are defined.

EXAMPLES
The following example illustrates use of dlopen() and diclose ():
[* Open a dynamic library and then close it ... */
#include <dlfcn.h>
void *mylib;
int eret;
mylib = dlopen("mylib.so.1", RTLD_LAZY);
eret = diclose(mylib);

APPLICATION USAGE

750

A portable application should employ a handle returned from a dlopen() invocation only within a
given scope bracketed by the dlopen() and diclose() operations. Implementations are free to use
reference counting or other techniques such that multiple calls to dlopen() referencing the same
object may return the same object for handle. Implementations are also free to reuse a handle.
For these reasons, the value of a handle must be treated as an opaque object by the application,
used only in calls to dlsym() and diclose ().

Technical Standard (2000) (Draft July 31, 2000)

8497
8498

8499
8500

8501
8502

8503
8504

8505
8506
8507

System Interfaces dlclose()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
dlerror(), dlopen (), disym(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h>

CHANGE HISTORY
First released in Issue 5.

Issue 6

The DESCRIPTION is updated to say that the referenced object is closed “if this is the last

reference to it”.

System Interfaces, Issue 6

751

8508
8509

8510
8511

8512
8513

8514
8515
8516
8517
8518
8519

8520
8521

8522
8523
8524

8525
8526

8527
8528

8529
8530

8531

8532
8533
8534
8535

8536
8537
8538
8539
8540
8541
8542

8543
8544

8545
8546

8547
8548

dlerror() System Interfaces

NAME
dlerror — get diagnostic information

SYNOPSIS

XSl #include <dlfcn.h>
char *dlerror(void);

DESCRIPTION
The dlerror() function shall return a null-terminated character string (with no trailing <newline>)
that describes the last error that occurred during dynamic linking processing. If no dynamic
linking errors have occurred since the last invocation of dlerror(), dlerror() shall return NULL.
Thus, invoking dlerror() a second time, immediately following a prior invocation, shall result in
NULL being returned.
The dlerror() function need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE
If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be
returned.

ERRORS
No errors are defined.

EXAMPLES
The following example prints out the last dynamic linking error:
#include <dlfcn.h>
char *errstr;
errstr = dlerror();
if (errstr '= NULL)
printf ("A dynamic linking error occurred: (%s)\n", errstr);

APPLICATION USAGE

The messages returned by dlerror() may reside in a static buffer that is overwritten on each call
to dlerror(). Application code should not write to this buffer. Programs wishing to preserve an
error message should make their own copies of that message. Depending on the application
environment with respect to asynchronous execution events, such as signals or other
asynchronous computation sharing the address space, portable applications should use a critical
section to retrieve the error pointer and buffer.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

752

diclose (), dlopen(), disym(), the Base Definitions volume of IEEE Std. 1003.1-200x%, <dlfcn.h>

Technical Standard (2000) (Draft July 31, 2000)

8549
8550

8551
8552

System Interfaces

CHANGE HISTORY
First released in Issue 5.

Issue 6
In the DESCRIPTION the note about reentrancy and thread-safety is added.

System Interfaces, Issue 6

dlerror()

753

8553
8554

8555
8556

8557
8558

8559
8560
8561
8562
8563
8564
8565
8566
8567

8568
8569

8570
8571
8572

8573
8574
8575
8576
8577
8578

8579
8580
8581

8582
8583
8584
8585
8586
8587

8588
8589
8590
8591
8592
8593
8594
8595

8596
8597
8598
8599

dlopen() System Interfaces

NAME

dlopen — gain access to an executable object file

SYNOPSIS

XSl

#include <dlfcn.h>

void *dlopen(const char * file , int mode);

DESCRIPTION

754

The dlopen () function shall make an executable object file specified by file available to the calling
program. The class of files eligible for this operation and the manner of their construction are
specified by the implementation, though typically such files are executable objects such as
shared libraries, relocatable files, or programs. Note that some implementations permit the
construction of dependencies between such objects that are embedded within files. In such
cases, a dlopen () operation shall load such dependencies in addition to the object referenced by
file. Implementations may also impose specific constraints on the construction of programs that
can employ dlopen() and its related services.

A successful dlopen() shall return a handle which the caller may use on subsequent calls to
disym() and diclose(). The value of this handle should not be interpreted in any way by the caller.

file is used to construct a path name to the object file. If file contains a slash character, the file
argument is used as the path name for the file. Otherwise, file is used in an implementation-
defined manner to yield a path name.

If the value of file is 0, dlopen() shall provide a handle on a global symbol object. This object
provides access to the symbols from an ordered set of objects consisting of the original program
image file, together with any objects loaded at program start-up as specified by that process
image file (for example, shared libraries), and the set of objects loaded using a dlopen () operation
together with the RTLD_GLOBAL flag. As the latter set of objects can change during execution,
the set identified by handle can also change dynamically.

Only a single copy of an object file is brought into the address space, even if dlopen() is invoked
multiple times in reference to the file, and even if different path names are used to reference the
file.

The mode parameter describes how dlopen () shall operate upon file with respect to the processing
of relocations and the scope of visibility of the symbols provided within file. When an object is
brought into the address space of a process, it may contain references to symbols whose
addresses are not known until the object is loaded. These references shall be relocated before the
symbols can be accessed. The mode parameter governs when these relocations take place and
may have the following values:

RTLD LAZY Relocations shall be performed at an implementation-defined time,
ranging from the time of the dlopen() call until the first reference to a
given symbol occurs. Specifying RTLD_LAZY should improve
performance on implementations supporting dynamic symbol binding as
a process may not reference all of the functions in any given object. And,
for systems supporting dynamic symbol resolution for normal process
execution, this behavior mimics the normal handling of process
execution.

RTLD_NOW All necessary relocations shall be performed when the object is first
loaded. This may waste some processing if relocations are performed for
functions that are never referenced. This behavior may be useful for
applications that need to know as soon as an object is loaded that all

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dlopen()

8600 symbols referenced during execution are available.

8601 Any object loaded by dlopen() that requires relocations against global symbols can reference the
8602 symbols in the original process image file, any objects loaded at program start-up, from the
8603 object itself as well as any other object included in the same dlopen () invocation, and any objects
8604 that were loaded in any dlopen() invocation and which specified the RTLD_GLOBAL flag. To
8605 determine the scope of visibility for the symbols loaded with a dlopen() invocation, the mode
8606 parameter should be a bitwise-inclusive OR with one of the following values:

8607 RTLD_GLOBAL The object’s symbols shall be made available for the relocation processing
8608 of any other object. In addition, symbol lookup using dlopen(0, mode) and
8609 an associated dlsym() allows objects loaded with this mode to be searched.
8610 RTLD _LOCAL The object’s symbols shall not be made available for the relocation
8611 processing of any other object.

8612 If neither RTLD_GLOBAL nor RTLD_LOCAL are specified, then an implementation-defined
8613 default behavior shall be applied.

8614 If a file is specified in multiple dlopen() invocations, mode is interpreted at each invocation. Note,
8615 however, that once RTLD_NOW has been specified all relocations shall have been completed
8616 rendering further RTLD_NOW operations redundant and any further RTLD_LAZY operations
8617 irrelevant. Similarly, note that once RTLD_GLOBAL has been specified the object shall maintain
8618 the RTLD_GLOBAL status regardless of any previous or future specification of RTLD _LOCAL,
8619 as long as the object remains in the address space (see dlclose()).

8620 Symbols introduced into a program through calls to dlopen() may be used in relocation
8621 activities. Symbols so introduced may duplicate symbols already defined by the program or
8622 previous dlopen() operations. To resolve the ambiguities such a situation might present, the
8623 resolution of a symbol reference to symbol definition is based on a symbol resolution order. Two
8624 such resolution orders are defined: load or dependency ordering. Load order establishes an
8625 ordering among symbol definitions, such that the definition first loaded (including definitions
8626 from the image file and any dependent objects loaded with it) has priority over objects added
8627 later (via dlopen()). Load ordering is used in relocation processing. Dependency ordering uses a
8628 breadth-first order starting with a given object, then all of its dependencies, then any dependents
8629 of those, iterating until all dependencies are satisfied. With the exception of the global symbol
8630 object obtained via a dlopen() operation on a file of 0, dependency ordering is used by the
8631 disym() function. Load ordering is used in dlsym() operations upon the global symbol object.

8632 When an object is first made accessible via dlopen() it and its dependent objects are added in
8633 dependency order. Once all the objects are added, relocations are performed using load order.
8634 Note that if an object or its dependencies had been previously loaded, the load and dependency
8635 orders may yield different resolutions.

8636 The symbols introduced by dlopen() operations, and available through disym() are at a
8637 minimum those which are exported as symbols of global scope by the object. Typically such
8638 symbols shall be those that were specified in (for example) C source code as having extern
8639 linkage. The precise manner in which an implementation constructs the set of exported symbols
8640 for a dlopen () object is specified by that implementation.

8641 RETURN VALUE

8642 If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
8643 processing by dlopen(), or if an error occurs during the process of loading file or relocating its
8644 symbolic references, dlopen() shall return NULL. More detailed diagnostic information shall be
8645 available through dlerror ().

System Interfaces, Issue 6 755

8646
8647

8648
8649

8650
8651

8652
8653

8654
8655

8656
8657

8658
8659

dlopen()

ERRORS

No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

System Interfaces

diclose (), dlerror(), disym(), the Base Definitions volume of IEEE Std. 1003.1-200x%, <dlfcn.h>

CHANGE HISTORY

First released in Issue 5.

756

Technical Standard (2000) (Draft July 31, 2000)

8660
8661

8662
8663

8664
8665

8666
8667
8668
8669
8670

8671
8672
8673
8674

8675

8676
8677
8678
8679

8680
8681

8682
8683
8684

8685
8686

8687
8688

8689
8690
8691

8692
8693

8694
8695
8696

8697
8698
8699
8700
8701
8702
8703

System Interfaces dlsym()

NAME
disym — obtain the address of a symbol from a dlopen() object

SYNOPSIS

XSl #include <dlfcn.h>
void *dlsym(void *restrict handle , const char *restrict name);

DESCRIPTION
The dlsym() function allows a process to obtain the address of a symbol defined within an object
made accessible through a dlopen() call. handle is the value returned from a call to dlopen() (and
which has not since been released via a call to diclose()), and name is the symbol’s name as a
character string.
The disym() function shall search for the named symbol in all objects loaded automatically as a
result of loading the object referenced by handle (see dlopen()). Load ordering is used in disym()
operations upon the global symbol object. The symbol resolution algorithm used shall be
dependency order as described in dlopen ().
The RTLD_NEXT flag is reserved for future use.

RETURN VALUE
If handle does not refer to a valid object opened by dlopen(), or if the named symbol cannot be
found within any of the objects associated with handle, disym() shall return NULL. More
detailed diagnostic information shall be available through dlerror ().

ERRORS
No errors are defined.

EXAMPLES

The following example shows how dlopen() and dlsym() can be used to access either function or
data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

[* open the needed object */
handle = dlopen("/usr’fhome/me/libfoo.so.1", RTLD_LAZY);

[* find the address of function and data objects */
fptr = (int (*)(int))dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

[* invoke function, passing value of integer as a parameter */
(*fptr)(*iptr);

APPLICATION USAGE

Special purpose values for handle are reserved for future use. These values and their meanings
are:

RTLD_NEXT Specifies the next object after this one that defines name. This one refers to the
object containing the invocation of dlsym(). The next object is the one found
upon the application of a load order symbol resolution algorithm (see
dlopen()). The next object is either one of global scope (because it was
introduced as part of the original process image or because it was added with
a dlopen () operation including the RTLD_GLOBAL flag), or is an object that
was included in the same dlopen() operation that loaded this one.

System Interfaces, Issue 6 757

8704
8705
8706
8707
8708
8709

8710
8711

8712
8713

8714
8715

8716
8717

8718
8719
8720

dlsym()

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO

System Interfaces

The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy
of multiply-defined symbols created through interposition. For example, if a
program wished to create an implementation of malloc() that embedded some
statistics gathering about memory allocations, such an implementation could
use the real malloc() definition to perform the memory allocation—and itself
only embed the necessary logic to implement the statistics gathering function.

diclose (), dlerror(), dlopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h>

CHANGE HISTORY

First released in Issue 5.

Issue 6

The restrict keyword is added to the dlsym() prototype for alignment with the
ISO/IEC 9899: 1999 standard.

758

Technical Standard (2000) (Draft July 31, 2000)

8721
8722
8723

8724
8725

8726
8727
8728
8729
8730
8731
8732
8733
8734
8735

8736
8737
8738

8739
8740

8741
8742

8743
8744

8745
8746
8747
8748
8749
8750

8751
8752

8753

8754
8755

8756

8757

8758
8759
8760
8761

8762
8763
8764
8765

System Interfaces drand48()

NAME
drand48, erand48, jrand48, Icong48, Irand48, mrand48, nrand48, seed48, srand48 — generate
uniformly distributed pseudo-random numbers

SYNOPSIS

XSl #include <stdlib.h>
double drand48(void);
double erand48(unsigned short xsubi [3]); |
long jrand48(unsigned short xsubi [3]); |
void Icong48(unsigned short param|7]); |
long Irand48(void);
long mrand48(void);
long nrand48(unsigned short xsubi [3]); |
unsigned short *seed48(unsigned short seed16v [3)); |
void srand48(long seedval);

DESCRIPTION

This family of functions generates pseudo-random numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

The drand48() and erand48() functions shall return non-negative, double-precision, floating-
point values, uniformly distributed over the interval [0.0,1.0).

The Irand48() and nrand48() functions shall return non-negative, long integers, uniformly
distributed over the interval [0,231).

The mrand48() and jrand48() functions shall return signed long integers uniformly distributed
over the interval [-2 1,231)

The srand48(), seed48(), and lcong48() are initialization entry points, one of which should be
invoked before either drand48(), Irand48(), or mrand48() is called. (Although it is not
recommended practice, constant default initializer values shall be supplied automatically if
drand48(), lrand48(), or mrand48() is called without a prior call to an initialization entry point.)
The erand48(), nrand48(), and jrand48() functions do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, according to the
linear congruential formula:

Xn+1 = (axn + C)mod m n=0

The parameter m = 2*; hence 48-bit integer arithmetic is performed. Unless lcong48() is invoked,
the multiplier value a and the addend value c are given by:

a = 5SDEECE66D ;5 = 273673163155 4
c= BlB = 138

The value returned by any of the drand48(), erand48(), jrand48(), Irand48(), mrand48(), or
nrand48() functions is computed by first generating the next 48-bit X; in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from
the high-order (leftmost) bits of X; and transformed into the returned value.

The drand48(), Irand48(), and mrand48() functions store the last 48-bit X; generated in an
internal buffer; that is why the application shall ensure that these are initialized prior to being
invoked. The erand48(), nrand48(), and jrand48() functions require the calling program to
provide storage for the successive X; values in the array specified as an argument when the

System Interfaces, Issue 6 759

8766
8767
8768
8769
8770
8771

8772
8773

8774
8775
8776
8777
8778
8779
8780
8781

8782
8783
8784
8785
8786

8787
8788

8789
8790

8791
8792

8793
8794

8795
8796

8797
8798

8799
8800

8801
8802

8803
8804

8805
8806
8807

8808
8809
8810

drand48() System Interfaces

functions are invoked. That is why these routines do not have to be initialized; the calling
program merely has to place the desired initial value of X; into the array and pass it as an
argument. By using different arguments, erand48(), nrand48(), and jrand48() allow separate
modaules of a large program to generate several independent streams of pseudo-random numbers;
that is, the sequence of numbers in each stream shall not depend upon how many times the
routines are called to generate numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of X; to the low-order 32 bits
contained in its argument. The low-order 16 bits of X; are set to the arbitrary value 330E ;.

The initializer function seed48() sets the value of X; to the 48-bit value specified in the argument
array. The low-order 16 bits of X; are set to the low-order 16 bits of seed16v[0]. The mid-order 16
bits of X; are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of X; are set to the
low-order 16 bits of seed16v[2]. In addition, the previous value of X; is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
to be restarted from a given point at some future time—use the pointer to get at and store the
last X; value, and then use this value to re-initialize via seed48() when the program is restarted.

The initializer function lcong48() allows the user to specify the initial X;, the multiplier value a,
and the addend value ¢. Argument array elements param[0-2] specify X;, param[3-5] specify the
multiplier a, and param[6] specifies the 16-bit addend c. After lcong48() is called, a subsequent
call to either srand48() or seed48() shall restore the standard multiplier and addend values, a and
¢, specified above.

The drand48(), Irand48(), and mrand48() functions need not be reentrant. A function that is not
required to be reentrant is not required to be thread-safe.

RETURN VALUE

As described in the DESCRIPTION above.

ERRORS

No errors are defined.

EXAMPLES

None.

APPLICATION USAGE

None.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

rand(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANGE HISTORY

Issue 4

760

First released in Issue 1. Derived from Issue 1 of the SVID.

The type long is replaced by long and the type unsigned short is replaced by unsigned short in
the SYNOPSIS section.

In the DESCRIPTION, the description of srand48() is amended to fix a limitation in Issue 3,
which indicates that the high-order 32 bits of X; are set to the {LONG_BIT} bits in the argument.
Though unintentional, the implication of this statement is that {LONG_BIT} would be 32 on all

Technical Standard (2000) (Draft July 31, 2000)

8811

8812

8813

8814
8815

8816
8817

System Interfaces drand48()

systems compliant with Issue 3, when in fact Issue 3 imposes no such restriction.
The <stdlib.h> header is added to the SYNOPSIS section.
The argument list for the Irand48() and mrand48() functions now contains void.

Issue 5
A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

System Interfaces, Issue 6 761

8818
8819

8821

8822
8823

8824
8825
8826

8827

8828

8829

8830

8831

8832

8833
8834

8835

8836
8837

8838
8839

8840

8841
8842

8843
8844
8845

8846
8847

8848

8849
8850

8851

8852
8853

8854

dup()

NAME

System Interfaces

dup, dup2 — duplicate an open file descriptor

8820 SYNOPSIS
#include <unistd.h>

int dup(int
int dup2(int

DESCRIPTION
The dup() and dup2() functions provide an alternative interface to the service provided by

fentl () using the

fildes);
fildes , int fildes2);

F_DUPFD command. The call:

fid = dup(fildes);

is equivalent to:
fid = fentl(
The call:

fildes , F_DUPFD, 0);

fid = dup2(fildes , fildes2);

is equivalent to:

close(fildes2
fid = fentl(

)i
fildes , F_DUPFD, fildes2);

except for the following:

« If fildes2 is less than 0 or greater than or equal to {OPEN_MAX}, dup2() shall return -1 with
errno set to [EBADF].

- If fildes is a valid file descriptor and is equal to fildes2, dup2() shall return fildes2 without

closing it.

- If fildes is not a valid file descriptor, dup2() shall return -1 and shall not close fildes2.

« The value returned shall be equal to the value of fildes2 upon successful completion, or -1

upon failure.

RETURN VALUE

762

Upon successful

completion a non-negative integer, namely the file descriptor, shall be returned,;

otherwise, —1 shall be returned and errno set to indicate the error.
ERRORS

The dup() functi
[EBADF]
[EMFILE]

on shall fail if:
The fildes argument is not a valid open file descriptor.

The number of file descriptors in use by this process would exceed
{OPEN_MAX]}.

The dup2() function shall fail if:

[EBADF]

[EINTR]

The fildes argument is not a valid open file descriptor or the argument fildes2 is
negative or greater than or equal to {OPEN_MAX]}.

The dup2() function was interrupted by a signal.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dup()

8855 EXAMPLES

8856 Redirecting Standard Output to a File

8857 The following example closes standard output for the current processes, re-assigns standard
8858 output to go to the file referenced by pfd, and closes the original file descriptor to clean up.

8859 #include <unistd.h>

8860

8861 int pfd;

8862

8863 close(1);

8864 dup(pfd);

8865 close(pfd);

8866

8867 Redirecting Error Messages

8868 The following example redirects messages from stderr to stdout.

8869 #include <unistd.h>

8870

8871 dup2(1, 2);

8872

8873 APPLICATION USAGE

8874 None.

8875 RATIONALE

8876 The dup() and dup2() functions are redundant. Their services are also provided by the fentl()
8877 function. They have been included in this volume of IEEE Std.1003.1-200x primarily for
8878 historical reasons, since many existing applications use them.

8879 While the brief code segment shown is very similar in behavior to dup2(), a conforming
8880 implementation based on other functions defined in this volume of IEEE Std. 1003.1-200x is
8881 significantly more complex. Least obvious is the possible effect of a signal-catching function that
8882 could be invoked between steps and allocate or deallocate file descriptors. This could be avoided
8883 by blocking signals.

8884 The dup2() function is not marked obsolescent because it presents a type-safe version of
8885 functionality provided in a type-unsafe version by fentl (). It is used in the POSIX Ada binding.
8886 The dup2() function is not intended for use in critical regions as a synchronization mechanism.
8887 In the description of [EBADF], the case of fildes being out of range is covered by the given case of
8888 fildes not being valid. The descriptions for fildes and fildes2 are different because the only kind of
8889 invalidity that is relevant for fildes2 is whether it is out of range; that is, it does not matter
8890 whether fildes2 refers to an open file when the dup2() call is made.

8891 FUTURE DIRECTIONS

8892 None.

8893 SEE ALSO

8894 close(), fentl (), open(), the Base Definitions volume of IEEE Std. 1003.1-200x%, <unistd.h>

System Interfaces, Issue 6 763

8895
8896

8897
8898

8899

8900

8901
8902

8903
8904

8905
8906

dup()

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4

Issue 6

764

System Interfaces

The <unistd.h> header is added to the SYNOPSIS section.
[EINTR] is no longer required for dup() because fcntl () does not return [EINTR] for F_DUPFD.

The following changes are incorporated for alignment with the ISO POSIX-1 standard:

« In the DESCRIPTION, the fourth bullet item describing differences between dup() and

dup2() is added.

- In the ERRORS section, error values returned by dup() and dup2() are now described

separately.

The RATIONALE section is added.

Technical Standard (2000) (Draft July 31, 2000)

8907
8908

8909
8910

8911
8912
8913
8914
8915
8916

8917
8918
8919

8920
8921
8922
8923
8924
8925
8926
8927

8928
8929

8930
8931
8932

8933
8934
8935
8936
8937
8938
8939
8940
8941

8942
8943

8944
8945

8946

8947
8948

8949
8950

System Interfaces ecvt()

NAME

ecvt, fcvt, gevt — convert a floating-point number to a string (LEGACY)

SYNOPSIS

XSl

#include <stdlib.h>

char *ecvt(double value , int ndigit , int *restrict decpt ,
int *restrict sign);

char *fcvt(double value , int ndigit , int *restrict decpt ,
int *restrict sign);

char *gcvt(double value , int ndigit , char * buf);

DESCRIPTION

The ecvt(), fevt(), and gevt() functions shall convert floating-point numbers to null-terminated
strings.

The ecvt() function shall convert value to a null-terminated string of ndigit digits (where ndigit is
reduced to an unspecified limit determined by the precision of a double) and return a pointer to
the string. The high-order digit is non-zero, unless the value is 0. The low-order digit is rounded.
The position of the radix character relative to the beginning of the string is stored in the integer
pointed to by decpt (negative means to the left of the returned digits). If value is zero, it is
unspecified whether the integer pointed to by decpt would be 0 or 1. The radix character is not
included in the returned string. If the sign of the result is negative, the integer pointed to by sign
is non-zero; otherwise, it is 0.

If the converted value is out of range or is not representable, the contents of the returned string
are unspecified.

The fevt() function is identical to ecvt() except that ndigit specifies the number of digits desired
after the radix character. The total number of digits in the result string is restricted to an
unspecified limit as determined by the precision of a double.

The gevt() function shall convert value to a null-terminated string (similar to that of the %g
format of printf()) in the array pointed to by buf and return buf. It produces ndigit significant
digits (limited to an unspecified value determined by the precision of a double) in %f if possible,
or %e (scientific notation) otherwise. A minus sign is included in the returned string if value is
less than 0. A radix character is included in the returned string if value is not a whole number.
Trailing zeros are suppressed where value is not a whole number. The radix character is
determined by the current locale. If setlocale () has not been called successfully, the default locale,
POSIX, is used. The default locale specifies a period (') as the radix character. The
LC_NUMERIC category determines the value of the radix character within the current locale.

These functions need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE

The ecvt() and fevt () functions shall return a pointer to a null-terminated string of digits.
The gevt() function shall return buf.

The return values from ecvt() and fevt() may point to static data which may be overwritten by
subsequent calls to these functions.

ERRORS

No errors are defined.

System Interfaces, Issue 6 765

8951
8952

8953
8954

8955
8956

8957
8958

8959
8960

8961
8962

8963
8964

8965
8966

8967

8968
8969

8970

8971
8972

ecvt()

EXAMPLES

None.

APPLICATION USAGE

sprintf() is preferred over this function.

RATIONALE

None.

FUTURE DIRECTIONS

These functions may be withdrawn in a future version.

SEE ALSO
printf(), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>

CHANG

Issue 5

Issue 6

766

E HISTORY
First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

System Interfaces

Normative text previously in the APPLICATION USAGE section is moved to the

DESCRIPTION.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

In the DESCRIPTION, the note about reentrancy is exp
This function is marked LEGACY.

anded to cover thread-safety.

The restrict keyword is added to the ecvt() and fcvt() prototypes for alignment with the

ISO/I1EC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

8973
8974

8975
8976

8977
8978

8979
8980
8981
8982

8983
8984
8985
8986
8987

8988
8989
8990

8991
8992

8993
8994

8995
8996

8997

8998
8999

9000
9001
9002
9003
9004
9005

9006
9007

9008
9009

9010
9011

9012
9013

System Interfaces encrypt()

NAME
encrypt — encoding function (CRYPT)

SYNOPSIS

XSl #include <unistd.h>
void encrypt(char block [64], int edflag);

DESCRIPTION
The encrypt() function provides (rather primitive) access to an implementation-defined
encoding algorithm. The key generated by setkey() is used to encrypt the string block with
encrypt().
The block argument to encrypt() is an array of length 64 bytes containing only the bytes with
numerical value of 0 and 1. The array is modified in place to a similar array using the key set by
setkey (). If edflag is O, the argument is encoded. If edflag is 1, the argument may be decoded (see
the APPLICATION USAGE section); if the argument is not decoded, errno shall be set to
[ENOSYS].
The encrypt() function shall not change the setting of errno if successful. An application wishing
to check for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on
return, an error has occurred.
The encrypt() function need not be reentrant. A function that is not required to be reentrant is
not required to be thread-safe.

RETURN VALUE
The encrypt() function shall return no value.

ERRORS
The encrypt() function shall fail if:
[ENOSYS] The functionality is not supported on this implementation.

EXAMPLES
None.

APPLICATION USAGE
In some environments, decoding might not be implemented. This is related to U.S. Government
restrictions on encryption and decryption routines: the DES decryption algorithm cannot be
exported outside the U.S. Historical practice has been to ship a different version of the
encryption library without the decryption feature in the routines supplied. Thus the exported
version of encrypt() does encoding but not decoding.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
crypt(), setkey(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

System Interfaces, Issue 6 767

9014
9015

9016

9017

9018

9019

9020
9021

9022
9023

9024
9025

encrypt() System Interfaces

Issue 4

Issue 5

Issue 6

768

The <unistd.h> header is added to the SYNOPSIS section.

The DESCRIPTION is amended:
- To specify the encoding algorithm as implementation-defined
« To change entry to function
- To make decoding optional

The APPLICATION USAGE section is expanded to explain the restrictions on the availability of
the DES decryption algorithm.

A note indicating that this function need not be reentrant is added to the DESCRIPTION.

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

Technical Standard (2000) (Draft July 31, 2000)

9026
9027

9028
9029

9030
9031
9032
9033

9034
9035

9036
9037
9038
9039
9040

9041
9042
9043
9044
9045

9046

9047
9048

9049
9050
9051
9052
9053

9054
9055

9056
9057

9058

9059

9060

9061

System Interfaces endgrent()

NAME
endgrent, getgrent, setgrent — group database entry functions

SYNOPSIS

Xsl #include <grp.h>
void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

DESCRIPTION
The endgrent() function may be called to close the group database when processing is complete.
An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the group database. In particular, the system
may deny the existence of some or all of the group database entries associated with groups other
than those groups associated with the caller and may omit users other than the caller from the
list of members of groups in database entries that are returned.
The getgrent() function shall return a pointer to a structure containing the broken-out fields of an
entry in the group database. When first called, getgrent() shall return a pointer to a group
structure containing the first entry in the group database. Thereafter, it shall return a pointer to a
group structure containing the next group structure in the group database, so successive calls
may be used to search the entire database.
The setgrent() function effectively rewinds the group database to allow repeated searches.
These functions need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE
When first called, getgrent() shall return a pointer to the first group structure in the group
database. Upon subsequent calls it shall return the next group structure in the group database.
The getgrent() function shall return a null pointer on end-of-file or an error and errno may be set
to indicate the error.
The return value may point to a static area which is overwritten by a subsequent call to
getgrgid (), getgrnam(), or getgrent().

ERRORS
The getgrent() function may fail if:
[EINTR] A signal was caught during the operation.
[EIO] An I/0 error has occurred.
[EMFILE] {OPEN_MAXj} file descriptors are currently open in the calling process.
[ENFILE] The maximum allowable number of files is currently open in the system.

System Interfaces, Issue 6 769

9062
9063

9064
9065
9066
9067
9068

9069
9070

9071
9072

9073
9074
9075

9076
9077

9078
9079

9080
9081

9082

9083
9084

endgrent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the group database, whether the database is a single file, or where in
the file system name space the database resides. Applications should use getgrnam() and
getgrgid () whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
getgrgid(), getgrnam(), getlogin(), getpwent(), the Base Definitions wvolume of
IEEE Std. 1003.1-200x, <grp.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

770 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endhostent()

9085 NAME

9086 endhostent, freehostent, gethostent, sethostent — network host database functions

9087 SYNOPSIS

9088 #include <netdb.h>

9089 void endhostent(void);

9090 void freehostent(struct hostent * ptr);

9091 struct hostent *gethostent(void);

9092 void sethostent(int stayopen);

9093 DESCRIPTION

9094 These functions enable applications to retrieve information about hosts. This information is
9095 considered to be stored in a database that can be accessed sequentially or randomly.
9096 Implementation of this database is unspecified.

9097 Note: In many cases it is implemented by the Domain Name System, as documented in
9098 RFC 1034, RFC 1035, and RFC 1886.

9099 Entries are returned in hostent structures. Refer to gethostbyaddr () for a definition of the hostent
9100 structure.

9101 The endhostent() function shall close the connection to the database, releasing any open file
9102 descriptor.

9103 The freehostent() function shall free the memory occupied by the hostent structure pointed to by
9104 ptr and any structures pointed to from that structure, provided that hostent was obtained by a
9105 call to getipnodebyaddr() or getipnodebyname(). Applications shall not call freehostent() except to
9106 pass it a pointer that was obtained from getipnodebyaddr() or getipnodebyname().

9107 The gethostent() function shall read the next entry in the database, opening and closing a
9108 connection to the database as necessary.

9109 The sethostent() function shall open a connection to the database and set the next entry for
9110 retrieval to the first entry in the database. If the stayopen argument is non-zero, the connection
9111 shall not be closed by a call to gethostent(), getipnodebyname(), gethostbyname(), getipnodebyaddr(),
9112 or gethostbyaddr (), and the implementation may maintain an open file descriptor.

9113 These functions need not be reentrant. A function that is not required to be reentrant is not
9114 required to be thread-safe.

9115 RETURN VALUE

9116 Upon successful completion, the gethostent() function shall return a pointer to a hostent
9117 structure if the requested entry was found, and a null pointer if the end of the database was
9118 reached or the requested entry was not found.

9119 ERRORS

9120 No errors are defined for endhostent(), gethostent(), and sethostent().

9121 EXAMPLES

9122 None.

9123 APPLICATION USAGE

9124 The hostent structure returned by getipnodebyaddr() and getipnodebyname(), and any structures
9125 pointed to from those structures, are dynamically allocated. Applications should -call
9126 freehostent() to free the memory used by these structures.

9127 The gethostent() function may return pointers to static data, which may be overwritten by
9128 subsequent calls to any of these functions. Applications shall not call freehostent() for this area.

System Interfaces, Issue 6 771

9129
9130

9131
9132

9133
9134
9135

9136
9137

endhostent() System Interfaces

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

endservent(), gethostbyaddr(), gethostbyname(), getipnodebyaddr(), getipnodebyname(), the Base
Definitions volume of IEEE Std. 1003.1-200x%, <netdb.h>

CHANGE HISTORY

772

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endnetent()

9138 NAME

9139 endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

9140 SYNOPSIS

9141 #include <netdb.h>

9142 void endnetent(void);

9143 struct netent *getnetbyaddr(uint32_t net, int type);

9144 struct netent *getnetbyname(const char * name);

9145 struct netent *getnetent(void);

9146 void setnetent(int stayopen);

9147 DESCRIPTION

9148 These functions enable applications to retrieve information about networks. This information is
9149 considered to be stored in a database that can be accessed sequentially or randomly.
9150 Implementation of this database is unspecified.

9151 The endnetent() function shall close the database, releasing any open file descriptor.

9152 The getnetbyaddr () function shall search the database from the beginning, and find the first entry
9153 for which the address family specified by type matches the n_addrtype member and the network
9154 number net matches the n_net member, opening a connection to the database if necessary. The
9155 net argument shall be the network number in host byte order.

9156 The getnetbyname() function shall search the database from the beginning and find the first entry
9157 for which the network name specified by name matches the n_name member, opening and
9158 closing a connection to the database as necessary.

9159 The getnetent() function shall read the next entry of the database, opening a connection to the
9160 database if necessary.

9161 The setnetent() function shall open and rewind the database. If the stayopen argument is non-
9162 zero, the connection to the net database shall not be closed after each call to getnetent() (either
9163 directly, or indirectly through one of the other getnet*() functions), and the implementation may
9164 maintain an open file descriptor to the database.

9165 The getnetbyaddr(), getnetbyname(), and getnetent(), functions shall each return a pointer to a
9166 netent structure, the members of which shall contain the fields of an entry in the network
9167 database.

9168 These functions need not be reentrant. A function that is not required to be reentrant is not
9169 required to be thread-safe.

9170 RETURN VALUE

9171 Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent(), shall return a
9172 pointer to a netent structure if the requested entry was found, and a null pointer if the end of the
9173 database was reached or the requested entry was not found. Otherwise, a null pointer shall be
9174 returned.

9175 ERRORS

9176 No errors are defined.

System Interfaces, Issue 6 773

9177
9178

9179
9180
9181

9182
9183

9184
9185

9186
9187

9188
9189

endnetent() System Interfaces

EXAMPLES

None.

APPLICATION USAGE

The getnetbyaddr (), getnetbyname(), and getnetent(), functions may return pointers to static data,
which may be overwritten by subsequent calls to any of these functions.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

The Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h>

CHANGE HISTORY

774

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endprotoent()

9190 NAME

9191 endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol
9192 database functions

9193 SYNOPSIS

9194 #include <netdb.h>

9195 void endprotoent(void);

9196 struct protoent *getprotobyname(const char * name);

9197 struct protoent *getprotobynumber(int proto);

9198 struct protoent *getprotoent(void);

9199 void setprotoent(int stayopen);

9200 DESCRIPTION

9201 These functions enable applications to retrieve information about protocols. This information is
9202 considered to be stored in a database that can be accessed sequentially or randomly.
9203 Implementation of this database is unspecified.

9204 The endprotoent() function shall close the connection to the database, releasing any open file
9205 descriptor.

9206 The getprotobyname() function shall search the database from the beginning and find the first
9207 entry for which the protocol name specified by name matches the p_name member, opening a
9208 connection to the database if necessary.

9209 The getprotobynumber () function shall search the database from the beginning and find the first
9210 entry for which the protocol number specified by proto matches the p_proto member, opening a
9211 connection to the database if necessary.

9212 The getprotoent() function shall read the next entry of the database, opening and closing a
9213 connection to the database as necessary.

9214 The setprotoent() function shall open a connection to the database, and set the next entry to the
9215 first entry. If the stayopen argument is non-zero, the connection to the network protocol database
9216 shall not be closed after each call to getprotoent() (either directly, or indirectly through one of the
9217 other getproto*() functions), and the implementation may maintain an open file descriptor for
9218 the database.

9219 The getprotobyname(), getprotobynumber (), and getprotoent(), functions shall each return a pointer
9220 to a protoent structure, the members of which shall contain the fields of an entry in the network
9221 protocol database.

9222 These functions need not be reentrant. A function that is not required to be reentrant is not
9223 required to be thread-safe.

9224 RETURN VALUE

9225 Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a
9226 pointer to a protoent structure if the requested entry was found, and a null pointer if the end of
9227 the database was reached or the requested entry was not found. Otherwise, a null pointer is
9228 returned.

9229 ERRORS

9230 No errors are defined.

System Interfaces, Issue 6 775

9231
9232

9233
9234
9235

9236
9237

9238
9239

9240
9241

9242
9243

endprotoent() System Interfaces

EXAMPLES

None.

APPLICATION USAGE

The getprotobyname(), getprotobynumber(), and getprotoent() functions may return pointers to
static data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

The Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h>

CHANGE HISTORY

776

First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

Technical Standard (2000) (Draft July 31, 2000)

9244
9245

9246
9247

9248
9249
9250
9251

9252
9253

9254
9255
9256
9257

9258
9259
9260
9261
9262

9263

9264

9265
9266

9267
9268

9269
9270

9271

9272

9273

9274

9275
9276

9277

9278

9279
9280
9281

9282
9283
9284
9285

System Interfaces endpwent()

NAME
endpwent, getpwent, setpwent — user database functions

SYNOPSIS

XSl #include <pwd.h>
void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

DESCRIPTION
The endpwent() function may be called to close the user database when processing is complete.
An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the user database. In particular, the system
may deny the existence of some or all of the user database entries associated with users other
than the caller.
The getpwent() function shall return a pointer to a structure containing the broken-out fields of
an entry in the user database. Each entry in the user database contains a passwd structure. When
first called, getpwent() shall return a pointer to a passwd structure containing the first entry in
the user database. Thereafter, it shall return a pointer to a passwd structure containing the next
entry in the user database. Successive calls can be used to search the entire user database.
If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.
The setpwent() function effectively rewinds the user database to allow repeated searches.
These functions need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.

RETURN VALUE
The getpwent() function shall return a null pointer on end-of-file or error.

ERRORS
The getpwent(), setpwent(), and endpwent() functions may fail if:
[EIO] An I/0 error has occurred.
In addition, getpwent() and setpwent() may fail if:
[EMFILE] {OPEN_MAXj} file descriptors are currently open in the calling process.
[ENFILE] The maximum allowable number of files is currently open in the system.
The return value may point to a static area which is overwritten by a subsequent call to
getpwuid (), getpwnam(), or getpwent ().

EXAMPLES

Searching the User Database

The following example uses the getpwent() function to get successive entries in the user
database, returning a pointer to a passwd structure that contains information about each user.
The call to endpwent() closes the user database and cleans up.

#include <pwd.h>

struct passwd *p;

System Interfaces, Issue 6 777

9286
9287
9288

9289
9290

9291
9292
9293
9294
9295

9296
9297

9298
9299

9300
9301
9302

9303
9304

9305
9306

9307
9308

9309

9310
9311

endpwent() System Interfaces

while ((p = getpwent ()) != NULL) {

}

endpwent();

APPLICATION USAGE
These functions are provided due to their historical usage. Applications should avoid
dependencies on fields in the password database, whether the database is a single file, or where
in the file system name space the database resides. Applications should use getpwuid()
whenever possible because it avoids these dependencies.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endgrent(), getlogin(), getpwnam(), getpwuid(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <pwd.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.

Normative text previously in the APPLICATION USAGE section is moved to the RETURN
VALUE section.

A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

Issue 6
In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

778 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endservent()

9312 NAME

9313 endservent, getservbyname, getservbyport, getservent, setservent — network services database
9314 functions

9315 SYNOPSIS

9316 #include <netdb.h>

9317 void endservent(void);

9318 struct servent *getservbyname(const char * name, const char * proto);

9319 struct servent *getservbyport(int port , const char * proto);

9320 struct servent *getservent(void);

9321 void setservent(int stayopen);

9322 DESCRIPTION

9323 These functions enable applications to retrieve information about network services. This
9324 information is considered to be stored in a database that can be accessed sequentially or
9325 randomly. Implementation of this database is unspecified.

9326 The endservent() function shall close the database, releasing any open file descriptor.

9327 The getservbyname() function shall search the database from the beginning and find the first
9328 entry for which the service name specified by name matches the s_name member and the protocol
9329 name specified by proto matches the s_proto member, opening a connection to the database if
9330 necessary. If proto is a null pointer, any value of the s_proto member shall be matched.

9331 The getservbyport() function shall search the database from the beginning and find the first entry
9332 for which the port specified by port matches the s_port member and the protocol name specified
9333 by proto matches the s_proto member, opening a connection to the database if necessary. If proto
9334 is a null pointer, any value of the s_proto member shall be matched. The port argument shall be in
9335 network byte order.

9336 The getservent() function shall read the next entry of the database, opening and closing a
9337 connection to the database as necessary.

9338 The setservent() function shall open a connection to the database, and set the next entry to the
9339 first entry. If the stayopen argument is non-zero, the net database shall not be closed after each
9340 call to the getservent() function (either directly, or indirectly through one of the other getserv*()
9341 functions), and the implementation may maintain an open file descriptor for the database.

9342 The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a
9343 servent structure, the members of which shall contain the fields of an entry in the network
9344 services database.

9345 These functions need not be reentrant. A function that is not required to be reentrant is not
9346 required to be thread-safe.

9347 RETURN VALUE

9348 Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to
9349 a servent structure if the requested entry was found, and a null pointer if the end of the database
9350 was reached or the requested entry was not found. Otherwise, a null pointer is returned.

9351 ERRORS

9352 No errors are defined.

System Interfaces, Issue 6 779

9353
9354

9355
9356
9357

9358
9359

9360
9361

9362
9363

9364
9365
9366

9367
9368

endservent() System Interfaces

EXAMPLES
None.

APPLICATION USAGE
The port argument of getservbyport() need not be compatible with the port values of all address
families.

The getservbyname(), getservbyport(), and getservent() functions may return pointers to static
data, which may be overwritten by subsequent calls to any of these functions.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
endhostent(), endprotoent(), htonl(), inet_addr(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <netdb.h>

CHANGE HISTORY
First released in Issue 6. Derived from the XNS, Issue 5.2 specification.

780 Technical Standard (2000) (Draft July 31, 2000)

9369
9370
9371

9372
9373

9374
9375
9376
9377
9378
9379
9380

9381
9382

9383

9384
9385
9386
9387

9388
9389

9390
9391
9392
9393
9394
9395
9396

9397
9398
9399

9400
9401
9402
9403
9404

9405
9406
9407

System Interfaces endutxent()

NAME
endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
functions

SYNOPSIS
Xsl #include <utmpx.h>

void endutxent(void);

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx * id);
struct utmpx *getutxline(const struct utmpx * line);
struct utmpx *pututxline(const struct utmpx * utmpx);
void setutxent(void);

DESCRIPTION
These functions provide access to the user accounting database.

The endutxent() function closes the user accounting database.

An implementation that provides extended security controls may impose further
implementation-defined restrictions on accessing the user accounting database. In particular, the
system may deny the existence of some or all of the user accounting database entries associated
with users other than the caller.

The getutxent() function reads in the next entry from the user accounting database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the database. If the ut_type
value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or NEW_TIME, then
it stops when it finds an entry with a matching ut _type value. If the ut type value is
INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then it stops when
it finds an entry whose type is one of these four and whose ut_id member matches the ut id
member of the utmpx structure pointed to by id. If the end of the database is reached without a
match, getutxid() fails.

The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to
search for multiple occurrences, it is necessary to zero out the static data after each success, or
getutxline() could just return a pointer to the same utmpx structure over and over again.

There is one exception to the rule about removing the structure before further reads are done.
The implicit read done by pututxline() (if it finds that it is not already at the correct place in the
user accounting database) shall not modify the static structure returned by getutxent(),
getutxid(), or getutxline(), if the application has just modified this structure and passed the
pointer back to pututxline().

For all entries that match a request, the ut_type member indicates the type of the entry. Other
members of the entry shall contain meaningful data based on the value of the ut_type member as
follows:

System Interfaces, Issue 6 781

9408
9409

9410
9411
9412
9413
9414
9415
9416
9417

9418

9419
9420
9421
9422

9423
9424
9425
9426

9427
9428

9429
9430

9431
9432
9433
9434

9435
9436

9437
9438
9439

9440

9441
9442
9443

9444

9445

endutxent() System Interfaces

ut_type Member Other Members with Meaningful Data
EMPTY No others
BOOT_TIME ut_tv
OLD_TIME ut_tv
NEW_TIME ut_tv
USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
INIT_PROCESS ut_id, ut_pid, ut_tv
LOGIN_PROCESS | ut_id, ut_user (implementation-defined name of the login
process), ut_pid, ut_tv
DEAD_PROCESS ut_id, ut_pid, ut_tv
The getutxline() function searches forward from the current point in the database until it finds an
entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value matching
that in the utmpx structure pointed to by line. If the end of the database is reached without a
match, getutxline() fails.
If the process has appropriate privileges, the pututxline() function writes out the structure into
the user accounting database. It uses getutxid() to search for a record that satisfies the request. If
this search succeeds, then the entry is replaced. Otherwise, a new entry is made at the end of the
user accounting database.
The setutxent() function resets the input to the beginning of the database. This should be done
before each search for a new entry if it is desired that the entire database be examined.
These functions need not be reentrant. A function that is not required to be reentrant is not
required to be thread-safe.
RETURN VALUE
Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a
utmpx structure containing a copy of the requested entry in the user accounting database.
Otherwise, a null pointer shall be returned.
The return value may point to a static area which is overwritten by a subsequent call to
getutxid () or getutxline().
Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a
copy of the entry added to the user accounting database. Otherwise, a null pointer shall be
returned.
The endutxent() and setutxent() functions shall return no value.
ERRORS
No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent()
functions.
The pututxline() function may fail if:
[EPERM] The process does not have appropriate privileges.
782 Technical Standard (2000) (Draft July 31, 2000)

9446
9447

9448
9449

9450
9451

9452
9453

9454
9455

9456
9457

9458
9459

9460
9461

9462

9463
9464

System Interfaces endutxent()

EXAMPLES
None.

APPLICATION USAGE
The sizes of the arrays in the structure can be found using the sizeof operator.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
The Base Definitions volume of IEEE Std. 1003.1-200x, <utmpx.h>

CHANGE HISTORY
First released in Issue 4, Version 2.

Issue 5
Moved from X/OPEN UNIX extension to BASE.
Normative text previously in the APPLICATION USAGE section is moved to the
DESCRIPTION.
A note indicating that these functions need not be reentrant is added to the DESCRIPTION.
Issue 6

In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

System Interfaces, Issue 6

783

9465
9466

9467
9468

9469
9470
9471

environ

NAME

System Interfaces

environ — array of character pointers to the environment strings
SYNOPSIS

extern char **environ;

DESCRIPTION
Refer to the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables

784

and exec.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces erand48()

9472 NAME

9473 erand48 — generate uniformly distributed pseudo-random numbers

9474 SYNOPSIS

9475 Xl #include <stdlib.h>

9476 double erand48(unsigned short xsubi [3]); |
9477

9478 DESCRIPTION

9479 Refer to drand48().

System Interfaces, Issue 6 785

9480
9481

9482
9483

9484
9485
9486
9487
9488
9489
9490

9491
9492

9493

9494

9495
9496

9497
9498
9499

9500

9501
9502

9503
9504

9505

9506

9507

9508

9509

9510
9511

9512
9513
9514

9515
9516

9517
9518

erf() System Interfaces

NAME
erf, erfc, erfcf, erfcl, erff, erfl — error and complementary error functions |

SYNOPSIS
XSl #include <math.h>

double erf(double X);

double erfc(double X);

float erfcf(float X);

long double erfcl(long double X);
float erff(float X);

long double erfl(long double X);

DESCRIPTION
The erf(), erff,() and erfl () functions shall compute the error function of x, defined as: |

X

2
—le " dt
\/n{

The erfc(), erfcf(), and erfcl () functions shall compute 1.0 — erf(x). |

An application wishing to check for error situations should set errno to 0 before calling erf(). If
errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the value of the error function and |
complementary error function, respectively. |

If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

If the correct value would cause underflow, 0 shall be returned and errno may be set to
[ERANGE]. |

ERRORS
The erfc(), erfcf(), and erfcl () functions shall fail if:

[ERANGE] The value of x is too large.
The erf() and erfc() functions may fail if:
[EDOM] The value of x is NaN.
[ERANGE] The result underflows

No other errors shall occur.

EXAMPLES
None.

APPLICATION USAGE
The erfc() function is provided because of the extreme loss of relative accuracy if erf(x) is called
for large x and the result subtracted from 1.0.

RATIONALE
None.

FUTURE DIRECTIONS
None.

786 Technical Standard (2000) (Draft July 31, 2000)

9519
9520

9521
9522

9523
9524

9525
9526

9527
9528
9529

9530
9531
9532

System Interfaces erf()

SEE ALSO
isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
References to matherr() are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
handling in the mathematics functions.

Issue 5
The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

Issue 6
The erfcf(), erfcl(), erff(), and erfl() functions are added for alignment with the
ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 787

9533
9534

9535
9536

9537
9538

9539
9540
9541
9542
9543
9544

9545
9546
9547

9548
9549

9550
9551

9552
9553

9554
9555

9556
9557
9558
9559

9560
9561

9562
9563

9564
9565

9566
9567

9568
9569

9570
9571

9572

9573
9574

errno System Interfaces

NAME
errno — error return value

SYNOPSIS
#include <errno.h>

DESCRIPTION
errno is used by many functions to return error values.
Many functions provide an error number in errno which has type int and is defined in <errno.h>.
The value of errno shall be defined only after a call to a function for which it is explicitly stated to
be set and until it is changed by the next function call. The value of errno should only be
examined when it is indicated to be valid by a function’s return value. Programs should obtain
the definition of errno by the inclusion of <errno.h> No function in this volume of
IEEE Std. 1003.1-200x shall set errno to 0.
It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
macro definition is suppressed in order to access an actual object, or a program defines an
identifier with the name errno, the behavior is undefined.
The symbolic values stored in errno are documented in the ERRORS sections on all relevant
pages.

RETURN VALUE
None.

ERRORS
None.

EXAMPLES
None.

APPLICATION USAGE

Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
in that they required errno to be defined as an external variable, whereas the ISO C standard
required only that errno be defined as a modifiable Ivalue with type int.

A program that uses errno for error checking should set it to 0 before a function call, then inspect
it before a subsequent function call.

RATIONALE

None.

FUTURE DIRECTIONS

None.

SEE ALSO

Section 2.3, the Base Definitions volume of IEEE Std. 1003.1-200x, <errno.h>

CHANGE HISTORY

Issue 4

788

First released in Issue 1. Derived from Issue 1 of the SVID.

The FUTURE DIRECTIONS section is deleted.
The following changes are incorporated for alignment with the ISO C standard:

« The DESCRIPTION now guarantees that errno is set to 0 at program start-up, and that it is
never reset to 0 by any XSl function.

Technical Standard (2000) (Draft July 31, 2000)

9575
9576

9577
9578
9579
9580

9581

9582
9583

9584

9585

9586
9587

System Interfaces

errno

« The APPLICATION USAGE section is added. This issue is aligned with the ISO C standard,

which permits errno to be a macro.

Issue 5

The following sentence is deleted from the DESCRIPTION: “The value of errno is 0 at program
start-up, but is never set to 0 by any XSI function”. The DESCRIPTION also no longer states that

conforming implementations may support the declaration:
extern int errno;

Issue 6
Obsolescent text regarding defining errno as:

extern int errno

is removed.

Text regarding no function setting errno to zero to indicate an error is changed to no function

shall set errno to zero. This is for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

789

exec System Interfaces
9588 NAME
9589 environ, execl, execv, execle, execve, execlp, execvp — execute a file
9590 SYNOPSIS
9591 #include <unistd.h>
9592 extern char **environ;
9593 int execl(const char * path , const char * arg0, ... I*, (char *)0 */);
9594 int execv(const char * path , char *const argv [);
9595 int execle(const char * path , const char * arg0, ... I*
9596 (char *)0, char *const envp [I*));
9597 int execve(const char * path , char *const argv [], char *const envpl]);
9598 int execlp(const char * file , const char * arg0, ... I*, (char *)0 */);
9599 int execvp(const char * file , char *const argv [);
9600 DESCRIPTION
9601 The exec functions shall replace the current process image with a new process image. The new
9602 image is constructed from a regular, executable file called the new process image file. There shall
9603 be no return from a successful exec, because the calling process image is overlaid by the new
9604 process image.
9605 When a C-language program is executed as a result of this call, it shall be entered as a C-
9606 language function call as follows:
9607 int main (int argc, char *argv m;
9608 where argc is the argument count and argv is an array of character pointers to the arguments
9609 themselves. In addition, the following variable:
9610 extern char **environ;
9611 is initialized as a pointer to an array of character pointers to the environment strings. The argv
9612 and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
9613 array is not counted in argc.
9614 THR Conforming multi-threaded applications shall not use the environ variable to access or modify
9615 any environment variable while any other thread is concurrently modifying any environment
9616 variable. A call to any function dependent on any environment variable shall be considered a use
9617 of the environ variable to access that environment variable.
9618 The arguments specified by a program with one of the exec functions shall be passed on to the
9619 new process image in the corresponding main() arguments.
9620 The argument path points to a path name that identifies the new process image file.
9621 The argument file is used to construct a path name that identifies the new process image file. If
9622 the file argument contains a slash character, the file argument shall be used as the path name for
9623 this file. Otherwise, the path prefix for this file is obtained by a search of the directories passed
9624 as the environment variable PATH (see the Base Definitions volume of IEEE Std. 1003.1-200x,
9625 Chapter 8, Environment Variables). If this environment variable is not present, the results of the
9626 search are implementation-defined.
9627 If the process image file is not a valid executable object, execlp() and execvp() shall use the
9628 contents of that file as standard input to a command interpreter conforming to system(). In this
9629 case, the command interpreter becomes the new process image.
9630 The arguments represented by arg0,... are pointers to null-terminated character strings. These
9631 strings constitute the argument list available to the new process image. The list is terminated by
9632 a null pointer. The argument arg0 should point to a file name that is associated with the process
790 Technical Standard (2000) (Draft July 31, 2000)

9633

9634
9635
9636
9637

9638
9639
9640

9641
9642
9643

9644
9645
9646

9647
9648
9649
9650
9651

9652

9653
9654

9655

9656

9657
9658
9659
9660
9661
9662

9663
9664

9665
9666
9667
9668
9669
9670
9671
9672
9673
9674

9675
9676

System Interfaces exec

XSl

XSl

XSl

XSl

being started by one of the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application
shall ensure that the last member of this array is a null pointer. These strings constitute the
argument list available to the new process image. The value in argv[0] should point to a file
name that is associated with the process being started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process image. The envp array is terminated by a null
pointer.

For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the
environment for the new process image is taken from the external variable environ in the calling
process.

The number of bytes available for the new process’ combined argument and environment lists is
{ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any
alignment bytes are included in this total.

File descriptors open in the calling process image remain open in the new process image, except
for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that remain
open, all attributes of the open file description remain unchanged. For any file descriptor that is
closed for this reason, file locks are removed as a result of the close as described in close(). Locks
that are not removed by closing of file descriptors remain unchanged.

Directory streams open in the calling process image shall be closed in the new process image.

The state of conversion descriptors and message catalog descriptors in the new process image is
undefined. For the new process, the equivalent of;

setlocale(LC_ALL, "C")
is executed at start-up.

Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default
action in the new process image. Signals set to be ignored (SIG_IGN) by the calling process
image shall be set to be ignored by the new process image. Signals set to be caught by the calling
process image shall be set to the default action in the new process image (see <signal.h>). After
a successful call to any of the exec functions, alternate signal stacks are not preserved and the
SA_ONSTACK flag shall be cleared for all signals.

After a successful call to any of the exec functions, any functions previously registered by atexit()
are no longer registered.

If the ST_NOSUID bit is set for the file system containing the new process image file, then the
effective user ID, effective group ID, saved set-user-1D, and saved set-group-ID are unchanged
in the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
set, the effective user ID of the new process image is set to the user ID of the new process image
file. Similarly, if the set-group-ID mode bit of the new process image file is set, the effective
group ID of the new process image is set to the group ID of the new process image file. The real
user 1D, real group ID, and supplementary group IDs of the new process image remain the same
as those of the calling process image. The effective user ID and effective group ID of the new
process image shall be saved (as the saved set-user-ID and the saved set-group-ID) for use by
setuid().

Any shared memory segments attached to the calling process image shall not be attached to the
new process image.

System Interfaces, Issue 6 791

9677
9678

9679
9680

9681
9682
9683
9684
9685

9686
9687

9688
9689
9690

9691
9692

9693
9694

9695
9696
9697
9698
9699
9700
9701

9702
9703
9704
9705

9706
9707

9708
9709
9710
9711
9712

9713
9714

9715

9716

9717

9718

9719

exec

SEM

TYM

ML

MF|SHM

PS

TMR

MSG

AIO

CPT

TCT

TRC

XSl

XSl

792

System Interfaces

Any named semaphores open in the calling process shall be closed as if by appropriate calls to
sem_close().

Any blocks of typed memory that were mapped in the calling process are unmapped, as if
munmap () was implicitly called to unmap them.

Memory locks established by the calling process via calls to mlockall () or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by the
other processes shall be unaffected by the call by this process to the exec function. If the exec
function fails, the effect on memory locks is unspecified.

Memory mappings created in the process are unmapped before the address space is rebuilt for
the new process image.

For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority settings shall
not be changed by a call to an exec function. For other scheduling policies, the policy and priority
settings on exec are implementation-defined.

Per-process timers created by the calling process shall be deleted before replacing the current
process image with the new process image.

All open message queue descriptors in the calling process shall be closed, as described in
mq_close().

Any outstanding asynchronous 1/0 operations may be canceled. Those asynchronous 1/0
operations that are not canceled shall complete as if the exec function had not yet occurred, but
any associated signal notifications shall be suppressed. It is unspecified whether the exec
function itself blocks awaiting such 1/0 completion. In no event, however, shall the new process
image created by the exec function be affected by the presence of outstanding asynchronous 1/0
operations at the time the exec function is called. Whether any 1/0 is canceled, and which 170
may be canceled upon exec, is implementation-defined.

The new process image shall inherit the CPU-time clock of the calling process image. This
inheritance means that the process CPU-time clock of the process being execed shall not be
reinitialized or altered as a result of the exec function other than to reflect the time spent by the
process executing the exec function itself.

The initial value of the CPU-time clock of the initial thread of the new process image shall be set
to zero.

If the calling process is being traced, the new process image continues to be traced into the same
trace stream as the original process image, but the new process image shall not inherit the
mapping of trace event names to trace event type identifiers that was defined by calls to the
posix_trace_eventid_open() or the posix_trace_trid_eventid_open() functions in the calling process
image.

If the calling process is a trace controller process, any trace streams that were created by the
calling process shall be shut down as described in the posix_trace_shutdown () function.

The new process also inherits at least the following attributes from the calling process image:
« Nice value (see nice())
- semadj values (see semop())
+ Process ID

» Parent process ID

Technical Standard (2000) (Draft July 31, 2000)

9720

9721

9722

9723

9724

9725

9726

9727

9728

9729

9730

9731

9732

9733

9734

9735

9736
9737
9738

9739
9740
9741

9742
9743
9744
9745
9746
9747
9748
9749

9750
9751

9752
9753
9754

9755
9756

9757
9758
9759

System Interfaces exec

» Process group ID

« Session membership

+ Real user ID

« Real group ID

« Supplementary group IDs

- Time left until an alarm clock signal (see alarm())
« Current working directory

- Root directory

- File mode creation mask (see umask())

Xsl « File size limit (see ulimit())
« Process signal mask (see sigprocmask())
« Pending signal (see sigpending())
« tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())
XSl - Resource limits
XSl « Controlling terminal
XSl - Interval timers
All other process attributes defined in this volume of IEEE Std. 1003.1-200x shall be the same in
the new and old process images. The inheritance of process attributes not defined by this
volume of IEEE Std. 1003.1-200x is implementation-defined.
A call to any exec function from a process with more than one thread results in all threads being
terminated and the new executable image being loaded and executed. No destructor functions
shall be called.
Upon successful completion, the exec functions shall mark for update the st_atime field of the file.
If an exec function failed but was able to locate the process image file, whether the st_atime field is
marked for update is unspecified. Should the exec function succeed, the process image file shall
be considered to have been opened with open(). The corresponding close() shall be considered
to occur at a time after this open, but before process termination or successful completion of a
subsequent call to one of the exec functions. The argv[] and envp[] arrays of pointers and the
strings to which those arrays point shall not be modified by a call to one of the exec functions,
except as a consequence of replacing the process image.
XSl The saved resource limits in the new process image are set to be a copy of the process’
corresponding hard and soft limits.
RETURN VALUE
If one of the exec functions returns to the calling process image, an error has occurred; the return
value shall be -1, and errno shall be set to indicate the error.
ERRORS

The exec functions shall fail if:

[E2BIG] The number of bytes used by the new process image’s argument list and
environment list is greater than the system-imposed limit of {ARG_MAX}
bytes.

System Interfaces, Issue 6 793

9760
9761
9762
9763

9764
9765
9766

9767
9768

9769
9770
9771

9772
9773

9774

9775

9776
9777

9778

9779
9780

9781
9782
9783

9784
9785

9786
9787

9788

9789

9790
9791
9792

9793

9794
9795
9796

exec System Interfaces

[EACCES] Search permission is denied for a directory listed in the new process image
file’s path prefix, or the new process image file denies execution permission,
or the new process image file is not a regular file and the implementation does
not support execution of files of its type.

[EINVAL] The new process image file has the appropriate permission and has a
recognized executable binary format, but the system does not support
execution of a file with this format.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path or file
argument.

[ENAMETOOLONG]

The length of the path or file arguments exceeds {PATH_MAX} or a path name
component is longer than {(NAME_MAX]}.

[ENOENT] A component of path or file does not name an existing file or path or file is an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix is not a directory.

The exec functions, except for execlp() and execvp(), shall fail if:

[ENOEXEC] The new process image file has the appropriate access permission but has an
unrecognized format.

The exec functions may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path or file argument.

[ENAMETOOLONG]

As a result of encountering a symbolic link in resolution of the path argument,
the length of the substituted path name string exceeded {PATH_MAX]}.

[ENOMEM] The new process image requires more memory than is allowed by the
hardware or system-imposed memory management constraints.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

EXAMPLES

Using execl()

The following example executes the Is command, specifying the path name of the executable

(/bin/ls) and using arguments supplied directly to the command to produce single-column

output.

#include <unistd.h>

int ret;

ret = execl ("/bin/ls", "Is", "-1", NULL);

794 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9797 Using execle()

9798 The following example is similar to Using execl() (on page 794). In addition, it specifies the
9799 environment for the new process image using the env argument.

9800 #include <unistd.h>

9801 int ret;

9802 char *env[] = { "HOME=/usr/home", "LOGNAME=home", NULL };

9803

9804 ret = execle ("/bin/ls", "Is", "-I', NULL, env);

9805 Using execlp()

9806 The following example searches for the location of the Is command among the directories
9807 specified by the PATH environment variable.

9808 #include <unistd.h>

9809 int ret;

9810

9811 ret = execlp ("ls", "Is", "-I", NULL);

9812 Using execv()

9813 The following example passes arguments to the Is command in the cmd array.

9814 #include <unistd.h>

9815 int ret;

9816 char *emd[] = { "Is", "-I", NULL }

9817

9818 ret = execv ("/bin/ls", cmd);

9819 Using execve()

9820 The following example passes arguments to the Is command in the cmd array, and specifies the
9821 environment for the new process image using the env argument.

9822 #include <unistd.h>

9823 int ret;

9824 char *emd[] = { "Is", "-I", NULL }

9825 char *env[] = { "HOME=/usr/home", "LOGNAME=home", NULL };

9826

9827 ret = execve ("/bin/ls", cmd, env);

9828 Using execvp()

9829 The following example searches for the location of the Is command among the directories
9830 specified by the PATH environment variable, and passes arguments to the Is command in the
9831 cmd array.

9832 #include <unistd.h>

9833 int ret;

9834 char *emd[] = { "Is", "-I", NULL }

9835

System Interfaces, Issue 6 795

exec System Interfaces

9836 ret = execvp ("Is", cmd);

9837 APPLICATION USAGE

9838 As the state of conversion descriptors and message catalog descriptors in the new process image
9839 is undefined, portable applications should not rely on their use and should close them prior to
9840 calling one of the exec functions.

9841 Applications that require other than the default POSIX locale should call setlocale() with the
9842 appropriate parameters to establish the locale of the new process.

9843 The environ array should not be accessed directly by the application.

9844 RATIONALE

9845 Early proposals required that the value of argc passed to main() be ‘“‘one or greater’. This was
9846 driven by the same requirement in drafts of the ISOC standard. In fact, historical
9847 implementations have passed a value of zero when no arguments are supplied to the caller of
9848 the exec functions. This requirement was removed from the ISO C standard and subsequently
9849 removed from this volume of IEEE Std. 1003.1-200x as well. The wording, in particular the use of
9850 the word should, requires a Strictly Conforming POSIX Application to pass at least one argument
9851 to the exec function, thus guaranteeing that argc be one or greater when invoked by such an
9852 application. In fact, this is good practice, since many existing applications reference argv[0]
9853 without first checking the value of argc.

9854 The requirement on a Strictly Conforming POSIX Application also states that the value passed
9855 as the first argument be a file name associated with the process being started. Although some
9856 existing applications pass a path name rather than a file name in some circumstances, a file
9857 name is more generally useful, since the common usage of argv[0] is in printing diagnostics. In
9858 some cases the file name passed is not the actual file name of the file; for example, many
9859 implementations of the login utility use a convention of prefixing a hyphen (" -) to the actual
9860 file name, which indicates to the command interpreter being invoked that it is a “‘login shell”.
9861 Some systems can exec shell scripts.

9862 One common historical implementation is that the execl(), execv(), execle(), and execve()
9863 functions return an [ENOEXEC] error for any file not recognizable as executable, including a
9864 shell script. When the execlp() and execvp() functions encounter such a file, they assume the file
9865 to be a shell script and invoke a known command interpreter to interpret such files. These
9866 implementations of execvp() and execlp() only give the [ENOEXEC] error in the rare case of a
9867 problem with the command interpreter’s executable file. Because of these implementations, the
9868 [ENOEXEC] error is not mentioned for execlp() or execvp(), although implementations can still
9869 give it.

9870 Another way that some historical implementations handle shell scripts is by recognizing the first
9871 two bytes of the file as the character string "#!" and using the remainder of the first line of the
9872 file as the name of the command interpreter to execute.

9873 Some implementations provide a third argument to main() called envp. This is defined as a
9874 pointer to the environment. The ISO C standard specifies invoking main() with two arguments,
9875 so implementations must support applications written this way. Since this volume of
9876 IEEE Std. 1003.1-200x defines the global variable environ, which is also provided by historical
9877 implementations and can be used anywhere that envp could be used, there is no functional need
9878 for the envp argument. Applications should use the getenv() function rather than accessing the
9879 environment directly via either envp or environ. Implementations are required to support the
9880 two-argument calling sequence, but this does not prohibit an implementation from supporting
9881 envp as an optional third argument.

796 Technical Standard (2000) (Draft July 31, 2000)

9882
9883
9884
9885
9886
9887
9888
9889
9890

9891
9892
9893

9894
9895
9896
9897
9898
9899
9900
9901

9902

9903
9904
9905
9906
9907

9908
9909
9910
9911
9912

9913
9914
9915
9916
9917
9918
9919

9920
9921

9922
9923

9924
9925
9926
9927
9928
9929

System Interfaces exec

This volume of IEEE Std. 1003.1-200x specifies that signals set to SIG_IGN remain set to
SIG_IGN, and that the process signhal mask be unchanged across an exec. This is consistent with
historical implementations, and it permits some useful functionality, such as the nohup
command. However, it should be noted that many existing applications wrongly assume that
they start with certain signals set to the default action and/or unblocked. In particular,
applications written with a simpler signal model that does not include blocking of signals, such
as the one in the ISO C standard, may not behave properly if invoked with some signals blocked.
Therefore, it is best not to block or ignore signals across execs without explicit reason to do so,
and especially not to block signals across execs of arbitrary (not closely co-operating) programs.

The exec functions always save the value of the effective user ID and effective group ID of the
process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of
the process image file is set.

The statement about argv[] and envp[] being constants is included to make explicit to future
writers of language bindings that these objects are completely constant. Due to a limitation of
the ISO C standard, it is not possible to state that idea in standard C. Specifying two levels of
const—qualification for the argv[] and envp[] parameters for the exec functions may seem to be the
natural choice, given that these functions do not modify either the array of pointers or the
characters to which the function points, but this would disallow existing correct code. Instead,
only the array of pointers is noted as constant. The table of assignment compatibility for dst=src,
derived from the ISO C standard summarizes the compatibility:

dst: | char*[] | constchar*[] | char*const[] | constchar *const[]
src:
char *[] VALID — VALID —
const char *[] — VALID — VALID
char * const [] — — VALID —
const char *const|[] — — — VALID

Since all existing code has a source type matching the first row, the column that gives the most
valid combinations is the third column. The only other possibility is the fourth column, but
using it would require a cast on the argv or envp arguments. It is unfortunate that the fourth
column cannot be used, because the declaration a non-expert would naturally use would be that
in the second row.

The 1SO C standard and this volume of IEEE Std. 1003.1-200x do not conflict on the use of
environ, but some historical implementations of environ may cause a conflict. As long as environ
is treated in the same way as an entry point (for example, fork()), it conforms to both standards.
A library can contain fork(), but if there is a user-provided fork (), that fork() is given precedence
and no problem ensues. The situation is similar for environ: the definition in this volume of
IEEE Std. 1003.1-200x is to be used if there is no user-provided environ to take precedence. At
least three implementations are known to exist that solve this problem.

[E2BIG] The limit {ARG_MAX} applies not just to the size of the argument list, but to
the sum of that and the size of the environment list.

[EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the
new process image file is corrupted. They are non-conforming.

[EINVAL] This error condition was added to IEEE Std. 1003.1-200x to allow an

implementation to detect executable files generated for different architectures,
and indicate this situation to the application. Historical implementations of
shells, execvp(), and execlp() that encounter an [ENOEXEC] error will execute
a shell on the assumption that the file is a shell script. This will not produce
the desired effect when the file is a valid executable for a different

System Interfaces, Issue 6 797

9930
9931
9932
9933
9934
9935

9936
9937

9938
9939

9940
9941
9942
9943

9944
9945
9946

9947
9948
9949

9950
9951

9952
9953
9954
9955
9956
9957
9958

9959
9960

9961
9962

9963

9964

9965
9966

9967

9968

9969

9970

9971
9972

exec

FUTURE DIRECTIONS

System Interfaces

architecture. An implementation may now choose to avoid this problem by
returning [EINVAL] when a valid executable for a different architecture is
encountered. Some historical implementations return [EINVAL] to indicate
that the path argument contains a character with the high order bit set. The
standard developers chose to deviate from historical practice for the following
reasons:

1. The new utilization of [EINVAL] will provide some measure of utility to
the user community.

2. Historical use of [EINVAL] is not acceptable in an internationalized
operating environment.

[ENAMETOOLONG]

[ETXTBSY]

Since the file path name may be constructed by taking elements in the PATH
variable and putting them together with the file name, the
[ENAMETOOLONG] error condition could also be reached this way.

System V returns this error when the executable file is currently open for
writing by some process. This volume of IEEE Std. 1003.1-200x neither
requires nor prohibits this behavior.

Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this
volume of IEEE Std. 1003.1-200x%, but implementations may have a window between the call to
exec and the time that a signal could cause one of the exec calls to return with [EINTR].

None.

SEE ALSO
alarm (), atexit(), chmod(), close(), exit(), fcntl (), fork (), fstatvfs(), getenv(), getitimer(), getrlimit(),
mmap(), nice(), <REFERENCE UNDEFINED>(posix_trace_eventid), posix_trace_shutdown(),
posix_trace_trid_eventid_open(), putenv(), semop(), setlocale(), shmat(), sigaction(), sigaltstack(),
sigpending (), sigprocmask (), system(), times(), ulimit(), umask(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <unistd.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter
11, General Terminal Interface

CHANGE HISTORY

Issue 4

798

First released in Issue 1. Derived from Issue 1 of the SVID.

The <unistd.h> header is added to the SYNOPSIS section.

The const keyword is added to identifiers of constant type (for example, path, file).
In the DESCRIPTION:

- An indication of the disposition of conversion descriptors after a call to one of the exec
functions is added.

- A statement about the interaction between exec and atexit() is added.

- usually in the descriptions of argument pointers is removed.

- owner ID is changed to user ID.

- Shared memory is no longer optional.

- The penultimate paragraph is changed to correct an error in Issue 3. It now refers to “All
other process attributes ...” instead of ““All the process attributes ...”

Technical Standard (2000) (Draft July 31, 2000)

9973

9974

9975
9976

9977

9978
9979
9980

9981
9982

9983

9984
9985

9986

9987
9988

9989
9990

9991

9992
9993

9994
9995

9996
9997
9998

9999

10000
10001

10002
10003

10004
10005

10006
10007

10008
10009
10010

10011

10012

System Interfaces exec

A note about the initialization of locales is added to the APPLICATION USAGE section.
The following change is incorporated for alignment with the ISO POSIX-1 standard:

- In the ERRORS section, the description of the [ENOEXEC] error is changed to indicate that
this error does not apply to execlp() and execvp(), and the [ENOMEM] error is added.

The following change is incorporated for alignment with the FIPS requirements:

« In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
name component is larger that {NAME_MAX} is how defined as mandatory and marked as
an extension.

Issue 4, Version 2
The following changes are incorporated for X/OPEN UNIX conformance;

« The DESCRIPTION is changed:

— To indicate the disposition of alternate signal stacks, the SA ONSTACK flag, and
mappings established through mmap () after a successful call to one of the exec functions.

— The effects of ST_NOSUID being set for a file system are defined.

— A statement is added that mappings established through mmap() are not preserved across
an exec.

— The list of inherited process attributes is extended to include resource limits, the
controlling terminal, and interval timers.

- In the ERRORS section:

— The condition whereby [ELOOP] is returned if too many symbolic links are encountered
during path name resolution is defined as mandatory.

— A second [ENAMETOOLONG] condition is defined that may report excessive length of
an intermediate result of path name resolution of a symbolic link.

Issue 5
The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

Issue 6
The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

« The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
This is since behavior may vary from one file system to another.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« In the DESCRIPTION, behavior is defined for when the process image file is not a valid
executable.

« Inthisissue, POSIX_SAVED IDS is mandated, thus the effective user ID and effective group
ID of the new process image shall be saved (as the saved set-user-ID and the saved set-
group-1D) for use by the setuid() function.

« The [ELOOP] mandatory error condition is added.
A second [ENAMETOOLONG] is added as an optional error condition.

System Interfaces, Issue 6 799

10013

10014

10015

10016

10017
10018

10019
10020

10021

10022

exec

800

System Interfaces

« The [ETXTBSY] optional error condition is added.

The following changes were made to align with the IEEE P1003.1a draft standard:
« The [EINVAL] mandatory error condition is added.
« The [ELOOP] optional error condition is added.

The description of CPU-time clock semantics is added for alignment with
IEEE Std. 1003.1d-1999.

The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding semantics
for typed memory.

The DESCRIPTION is updated to avoid use of the term “must” for application requirements.
The description of tracing semantics is added for alignment with IEEE Std. 1003.1g-2000.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exit()

10023 NAME

10024 exit, EXxit, exit— terminate a process

10025 SYNOPSIS

10026 #include <stdlib.h>

10027 void exit(int status);

10028 #include <unistd.h>

10029 void _Exit(int status);

10030 void _exit(int status);

10031 DESCRIPTION

10032 cX The functionality described on this reference page for the exit() function is aligned with the
10033 ISO C standard. Any conflict between the requirements described here and the 1SO C standard
10034 are unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10035 The exit() function shall first call all functions registered by atexit(), in the reverse order of their
10036 registration, except that a function is called after any previously registered functions that had
10037 already been called at the time it was registered. Each function is called as many times as it was
10038 registered. If, during the call to any such function, a call to the longjmp() function is made that
10039 would terminate the call to the registered function, the behavior is undefined.

10040 If a function registered by a call to atexit() fails to return, the remaining registered functions shall
10041 not be called and the rest of the exit() processing shall not be completed. If exit() is called more
10042 than once, the effects are undefined.

10043 cX The exit() function then flushes all output streams, closes all open streams, and removes all files
10044 created by tmpfile(). Finally, control is returned to the host environment as described below. The
10045 values of status can be EXIT_SUCCESS or EXIT_FAILURE, as described in <stdlib.h>, or any
10046 CX implementation-defined value, although note that only the range 0 through 255 shall be
10047 available to a waiting parent process.

10048 The Exit() and _exit() functions shall be functionally identical.

10049 Cx The _Exit(), _exit(), and exit() functions shall terminate the calling process with the following
10050 consequences:

10051 XsI - All of the file descriptors, directory streams, conversion descriptors, and message catalog
10052 descriptorsopen in the calling process are closed.

10053 XsI - If the parent process of the calling process is executing a wait(), waitid (), or waitpid(), and has
10054 neither set its SA NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of the
10055 calling process’ termination and the low-order eight bits (that is, bits 0377) of status are made
10056 available to it. If the parent is not waiting, the child’s status shall be made available to it
10057 XsI when the parent subsequently executes wait (), waitid(),or waitpid ().

10058 Xsl - If the parent process of the calling process is not executing a wait (), waitid (), or waitpid(), and
10059 has not set its SA_ NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the calling process is
10060 transformed into a zombie process. A zombie process is an inactive process and it shall be
10061 Xl deleted at some later time when its parent process executes wait (), waitid (),or waitpid ().

10062 - Termination of a process does not directly terminate its children. The sending of a SIGHUP
10063 signal as described below indirectly terminates children in some circumstances.

10064 - If the implementation supports the SIGCHLD signal, a SIGCHLD shall be sent to the parent
10065 process.

System Interfaces, Issue 6 801

10066
10067
10068
10069

10070
10071
10072

10073
10074

10075
10076

10077
10078

10079
10080

10081
10082
10083

10084
10085

10086
10087
10088
10089

10090

10091
10092

10093
10094

10095
10096
10097
10098
10099
10100

10101
10102

10103
10104
10105
10106

exit()

XSl

XSl

XSl

SEM

ML

MF|SHM

TYM
MSG

AIO

TRC

802

System Interfaces

- If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the
status shall be discarded, and the lifetime of the calling process shall end immediately. If
SA_NOCLDWAIT is set, it is implementation-defined whether a SIGCHLD signal shall be
sent to the parent process.

- The parent process ID of all of the calling process’ existing child processes and zombie
processes is set to the process ID of an implementation-defined system process. That is, these
processes are inherited by a special system process.

. Each attached shared-memory segment is detached and the value of shm_nattch (see
shmget()) in the data structure associated with its shared memory ID is decremented by 1.

- For each semaphore for which the calling process has set a semadj value (see semop()), that
value is added to the semval of the specified semaphore.

- If the process is a controlling process, the SIGHUP signal shall be sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

- If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

- If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal shall be sent to each process in the newly-orphaned process group.

- All open named semaphores in the calling process shall be closed as if by appropriate calls to
sem_close().

- Any memory locks established by the process via calls to mlockall () or mlock() shall be
removed. If locked pages in the address space of the calling process are also mapped into the
address spaces of other processes and are locked by those processes, the locks established by
the other processes shall be unaffected by the call by this process to _Exit() or _exit().

- Memory mappings created in the process are unmapped before the process is destroyed.

- Any blocks of typed memory that were mapped in the calling process are unmapped, as if
munmap() was implicitly called to unmap them.

- All open message queue descriptors in the calling process shall be closed as if by appropriate
calls to mq_close().

. Any outstanding cancelable asynchronous 1/0 operations may be canceled. Those
asynchronous 170 operations that are not canceled shall complete as if the Exit() or _exit()
operation had not yet occurred, but any associated signal notifications shall be suppressed.
The Exit() or _exit() operation may block awaiting such 1/0 completion. Whether any 1/0
is canceled, and which I/0 may be canceled upon _Exit() or _exit(), is implementation-
defined.

- Threads terminated by a call to _Exit() or _exit() shall not invoke their cancelation cleanup
handlers or per-thread data destructors.

If the calling process is a trace controller process, any trace streams that were created by the
calling process shall be shut down as described by the posix_trace_shutdown() function, and any
process’ mapping of trace event names to trace event type identifiers built for these trace
streams may be deallocated.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exit()

10107 RETURN VALUE

10108 These functions do not return.

10109 ERRORS

10110 No errors are defined.

10111 EXAMPLES

10112 None.

10113 APPLICATION USAGE

10114 Normally applications should use exit() rather than _Exit() or _exit().

10115 RATIONALE

10116 Process Termination

10117 Early proposals drew a different distinction between normal and abnormal process termination.
10118 Abnormal termination was caused only by certain signals and resulted in implementation-
10119 defined ‘‘actions”, as discussed below. Subsequent proposals distinguished three types of
10120 termination; normal termination (as in the current specification), simple abnormal termination, and
10121 abnormal termination with actions. Again the distinction between the two types of abnormal
10122 termination was that they were caused by different signals and that implementation-defined
10123 actions would result in the latter case. Given that these actions were completely
10124 implementation-defined, the early proposals were only saying when the actions could occur and
10125 how their occurrence could be detected, but not what they were. This was of little or no use to
10126 portable applications, and thus the distinction is not made in this wvolume of
10127 IEEE Std. 1003.1-200x.

10128 The implementation-defined actions usually include, in most historical implementations, the
10129 creation of a file named core in the current working directory of the process. This file contains an
10130 image of the memory of the process, together with descriptive information about the process,
10131 perhaps sufficient to reconstruct the state of the process at the receipt of the signal.

10132 There is a potential security problem in creating a core file if the process was set-user-ID and the
10133 current user is not the owner of the program, if the process was set-group-ID and none of the
10134 user’s groups match the group of the program, or if the user does not have permission to write in
10135 the current directory. In this situation, an implementation either should not create a core file or
10136 should make it unreadable by the user.

10137 Despite the silence of this volume of IEEE Std. 1003.1-200x on this feature, applications are
10138 advised not to create files named core because of potential conflicts in many implementations.
10139 Some historical implementations use a different name than core for the file, such as by
10140 appending the process ID to the file name.

10141 Terminating a Process

10142 It is important that the consequences of process termination as described occur regardless of
10143 whether the process called _exit() (perhaps indirectly through exit()) or instead was terminated
10144 due to a signal or for some other reason. Note that in the specific case of exit() this means that
10145 the status argument to exit() is treated the same as the status argument to _exit().

10146 A language other than C may have other termination primitives than the C-language exit()
10147 function, and programs written in such a language should use its native termination primitives,
10148 but those should have as part of their function the behavior of _exit() as described.
10149 Implementations in languages other than C are outside the scope of the present version of this
10150 volume of IEEE Std. 1003.1-200x, however.

System Interfaces, Issue 6 803

exit() System Interfaces

10151 As required by the ISO C standard, using return from main() is equivalent to calling exit() with
10152 the same argument value. Also, reaching the end of the main() function is equivalent to using
10153 exit() with an unspecified value.

10154 A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status
10155 conventionally indicates successful termination. This corresponds to the specification for exit()
10156 in the ISO C standard. The convention is followed by utilities such as make and various shells,
10157 which interpret a zero status from a child process as success. For this reason, applications should
10158 not call exit(0) or _exit(0) when they terminate unsuccessfully; for example, in signal-catching
10159 functions.

10160 Historically, the implementation-defined process that inherits children whose parents have
10161 terminated without waiting on them is called init and has a process ID of 1.

10162 The sending of a SIGHUP to the foreground process group when a controlling process
10163 terminates corresponds to somewhat different historical implementations. In System V, the
10164 kernel sends a SIGHUP on termination of (essentially) a controlling process. In 4.2 BSD, the
10165 kernel does not send SIGHUP in a case like this, but the termination of a controlling process is
10166 usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
10167 process group with the vhangup() function. However, in 4.2 BSD, due to the behavior of the
10168 shells that support job control, the controlling process is usually a shell with no other processes
10169 in its process group. Thus, a change to make _exit() behave this way in such systems should not
10170 cause problems with existing applications.

10171 The termination of a process may cause a process group to become orphaned in either of two
10172 ways. The connection of a process group to its parent(s) outside of the group depends on both
10173 the parents and their children. Thus, a process group may be orphaned by the termination of the
10174 last connecting parent process outside of the group or by the termination of the last direct
10175 descendant of the parent process(es). In either case, if the termination of a process causes a
10176 process group to become orphaned, processes within the group are disconnected from their job
10177 control shell, which no longer has any information on the existence of the process group.
10178 Stopped processes within the group would languish forever. In order to avoid this problem,
10179 newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a
10180 SIGCONT signal to indicate that they have been disconnected from their session. The SIGHUP
10181 signal causes the process group members to terminate unless they are catching or ignoring
10182 SIGHUP. Under most circumstances, all of the members of the process group are stopped if any
10183 of them are stopped.

10184 The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned
10185 process group is similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each
10186 stopped child of an exiting process. If such children exit in response to the SIGHUP, any
10187 additional descendants receive similar treatment at that time. In this wvolume of
10188 IEEE Std. 1003.1-200x, the signals are sent to the entire process group at the same time. Also, in
10189 this volume of IEEE Std. 1003.1-200%, but not in 4.2 BSD, stopped processes may be orphaned,
10190 but may be members of a process group that is not orphaned; therefore, the action taken at
10191 _exit() must consider processes other than child processes.

10192 It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by
10193 process termination. This volume of IEEE Std. 1003.1-200x does not require sending SIGHUP
10194 and SIGCONT in those cases, because, unlike process termination, those cases are not caused
10195 accidentally by applications that are unaware of job control. An implementation can choose to
10196 send SIGHUP and SIGCONT in those cases as an extension; such an extension must be
10197 documented as required in <signal.h>.

10198 The ISO/IEC 9899: 1999 standard adds the _Exit() function that results in immediate program
10199 termination without triggering signals or atexit()-registered functions. In IEEE Std. 1003.1-200x,

804 Technical Standard (2000) (Draft July 31, 2000)

10200

System Interfaces exit()

this is equivalent to the _exit() function.

10201 FUTURE DIRECTIONS

10202

None.

10203 SEE ALSO

10204
10205
10206

10207
10208

10209
10210

10211
10212

10213
10214
10215

10216

10217
10218

10219
10220

10221
10222

10223

10224

10225
10226
10227

10228

10229

10230
10231

10232
10233

10234

10235

10236

10237

10238

atexit(), close(), fclose(), longjmp(), <REFERENCE UNDEFINED>(posix_trace_eventid),
posix_trace_shutdown(), posix_trace_trid_eventid_open(), semop(), shmget(), sigaction(), wait(),
waitid (), waitpid (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, <unistd.h>

CHANGE HISTORY

Issue 4

First released in Issue 1. Derived from Issue 1 of the SVID.

The <unistd.h> header is added to the SYNOPSIS for _exit().

In the DESCRIPTION, text is added describing the behavior when a function registered by
atexit() fails to return, and the consequences of calling exit() more than once.

The phrase “If the implementation supports job control” is removed from the last bullet in the
DESCRIPTION. This is because job control is now defined as mandatory for all conforming
implementations.

The following change is incorporated for alignment with the ISO C standard:

« In the DESCRIPTION, interactions between exit() and atexit() are defined, and it is now
stated explicitly that all files created by tmpfile() are removed.

Issue 4, Version 2

Issue 5

Issue 6

The following changes to the DESCRIPTION are incorporated for X/OPEN UNIX conformance:

- References to the functions wait3() and waitid () are added in appropriate places throughout
the text.

« Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are defined.

- It is specified that each mapped memory object is unmapped.

The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Interactions with the SA_ NOCLDWAIT flag and SIGCHLD signal are further clarified.

The values of status from exit() are better described.

Extensions beyond the ISO C standard are now marked.

The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding semantics
for typed memory.

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:
- The _Exit() function is included.
« The DESCRIPTION is updated.
The description of tracing semantics is added for alignment with IEEE Std. 1003.1g-2000.

References to the wait3() function are removed.

System Interfaces, Issue 6 805

exp()

System Interfaces

10239 NAME

10240 exp, expf, expl — exponential function |
10241 SYNOPSIS

10242 #include <math.h>

10243 double exp(double X);

10244 float expf(float X); |
10245 long double expl(long double X); |
10246 DESCRIPTION [
10247 cx The functionality described on this reference page is aligned with the ISO C standard. Any
10248 conflict between the requirements described here and the ISO C standard is unintentional. This
10249 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10250 These functions shall compute the exponent of x, defined as e*. |
10251 An application wishing to check for error situations should set errno to 0 before calling exp(). If
10252 errno is non-zero on return, or the return value is NaN, an error has occurred.

10253 RETURN VALUE

10254 Upon successful completion, these functions shall return the exponential value of x. |
10255 If the correct value would cause overflow, exp() shall return HUGE VAL and set errno to
10256 [ERANGE]. |
10257 If the correct value would cause underflow, exp() shall return 0 and may set errno to [ERANGE].
10258 XSl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |
10259 ERRORS

10260 These functions shall fail if: |
10261 [ERANGE] The result overflows. |
10262 These functions may fail if: |
10263 Xl [EDOM] The value of x is NaN. |
10264 [ERANGE] The result underflows |
10265 Xsl No other errors shall occur.

10266 EXAMPLES

10267 None.

10268 APPLICATION USAGE

10269

None.

10270 RATIONALE

10271

None.

10272 FUTURE DIRECTIONS

10273

None.

10274 SEE ALSO

10275

isnan(), log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

10276 CHANGE HISTORY

10277

806

First released in Issue 1. Derived from Issue 1 of the SVID. |

Technical Standard (2000) (Draft July 31, 2000)

10278
10279

10280
10281

10282

10283
10284
10285

10286
10287

System Interfaces

Issue 4
References to matherr() are removed.

exp()

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the

ISO C standard and to rationalize error handling in the mathematics functions.
The return value specified for [EDOM] is marked as an extension.

Issue 5

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The expf() and expl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

807

10288 NAME

10289

exp2() System Interfaces

exp2, exp2f, exp2l — exponential base 2 functions

10290 SYNOPSIS

10291

10292
10293
10294

10295
10296
10297
10298

10299

10300
10301

10302
10303

10304
10305

10306
10307

10308

10309
10310

10311

10312

10313

10314

10315

10316
10317

#include <math.h>

double exp2(double X);
float exp2f(float X);
long double exp2l(long double X);

DESCRIPTION

CX

The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

These functions shall compute the base 2 exponent of x, defined as e*.

An application wishing to check for error situations should set errno to 0 before calling these
functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE

Upon successful completion, these functions shall return 2%,

If the correct value would cause overflow, these functions shall return HUGE_VAL and set errno
to [ERANGE].

If the correct value would cause underflow, these functions shall return 0 and may set errno to
[ERANGE].

If x is NaN, NaN shall be returned and errno may be set to [EDOM].

ERRORS

These functions shall fail if:

[ERANGE] The result overflows.
These functions may fail if:

[EDOM] The value of x is NaN.
[ERANGE] The result underflows

No other errors shall occur.

EXAMPLES

None.

10318 APPLICATION USAGE

10319

None.

10320 RATIONALE

10321

None.

10322 FUTURE DIRECTIONS

10323

None.

10324 SEE ALSO

10325

808

exp(), isnan(), log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exp2()

10326 CHANGE HISTORY
10327 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 809

expml()

10328 NAME
10329

10331

10332
10333
10334

System Interfaces

expml, expmif, expmll — compute exponential functions
10330 SYNOPSIS

#include <math.h>

double expml(double X);
float expmif(float X);
long double expmll(long double X);

10335 DESCRIPTION

10336

These functions shall compute ¢*~1.0.

10337 RETURN VALUE
If x is NaN, then these functions shall return NaN and errno may be set to [EDOM].

10338

10339

10340

10341

10343

10344

10345

If x is positive infinity, these functions shall return positive infinity.

If x is negative infinity, these functions shall return -1.0.

If the value overflows, these functions shall return HUGE_VAL and may set errno to [ERANGE].
10342 ERRORS

These functions may fail if:
[EDOM] The value of x is NaN.
[ERANGE] The result overflows.

10346 EXAMPLES

10347

None.

10348 APPLICATION USAGE
The value of expm1(x) may be more accurate than exp(x)-1.0 for small values of x.

10349

10350

10351

10352
10353

10355

The expm1() and log1p () functions are useful for financial calculations of ((1+x)"-1)/x, namely:

expml(n* loglp(x))/x

when x is very small (for example, when calculating small daily interest rates). These functions
also simplify writing accurate inverse hyperbolic functions.

10354 RATIONALE

None.

10356 FUTURE DIRECTIONS

10357

None.

10358 SEE ALSO
exp(), ilogb (), loglp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

10360 CHANGE HISTORY

10359

10361

10362 Issue 5
10363

10364 Issue 6
10365
10366

810

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

The expmlf() and expmll() functions are added for alignment with the ISO/IEC 9899: 1999

standard.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fabs()

10367 NAME

10368 fabs, fabsf, fabsl — absolute value function |
10369 SYNOPSIS

10370 #include <math.h>

10371 double fabs(double X);

10372 float fabsf(float X); |
10373 long double fabsl(long double X); |
10374 DESCRIPTION [
10375 CX The functionality described on this reference page is aligned with the ISO C standard. Any
10376 conflict between the requirements described here and the ISO C standard is unintentional. This
10377 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10378 These functions shall compute the absolute value of x, | x]. |
10379 An application wishing to check for error situations should set errno to 0 before calling fabs(). If
10380 errno is non-zero on return, or the return value is NaN, an error has occurred.

10381 RETURN VALUE

10382 Upon successful completion, these functions shall return the absolute value of x. |
10383 XSl If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |
10384 If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |
10385 ERRORS

10386 These functions may fail if: |
10387 Xl [EDOM] The value of x is NaN. |
10388 [ERANGE] The result underflows |
10389 Xsl No other errors shall occur.

10390 EXAMPLES

10391 None.

10392 APPLICATION USAGE

10393 None.

10394 RATIONALE

10395 None.

10396 FUTURE DIRECTIONS

10397 None.

10398 SEE ALSO

10399 isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |
10400 CHANGE HISTORY

10401 First released in Issue 1. Derived from Issue 1 of the SVID. |
10402 Issue 4

10403 References to matherr() are removed.

10404 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
10405 ISO C standard and to rationalize error handling in the mathematics functions.

10406 The return value specified for [EDOM] is marked as an extension.

System Interfaces, Issue 6 811

fabs() System Interfaces

10407 Issue 5
10408 The DESCRIPTION is updated to indicate how an application should check for an error. This
10409 text was previously published in the APPLICATION USAGE section. |

10410 Issue 6 |
10411 The fabsf() and fabsl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

812 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fattach()

10412 NAME

10413 fattach — attach a STREAMS-based file descriptor to a file in the file system name space
10414 (STREAMS)

10415 SYNOPSIS

10416 XSR #include <stropts.h>

10417 int fattach(int fildes , const char * path);

10418

10419 DESCRIPTION

10420 Notes to Reviewers

10421 This section with side shading will not appear in the final copy. - Ed.

10422 Re D1, XSH, ERN 111: if the original file had multiple links, the streams file still has only one? |
10423 presume that a stream is actually attached to an inode, not a file name. If so, there continue to
10424 exist multiple links to the object, even though it shows a link count of 1. If it associated the
10425 stream with a file name, then the following sentence is wrong.

10426 The fattach () function attaches a STREAMS-based file descriptor to a file, effectively associating
10427 a path name with fildes. The application shall ensure that the fildes argument is a valid open file
10428 descriptor associated with a STREAMS file. The path argument points to a path name of an
10429 existing file. The application shall ensure that the process has appropriate privileges, or is the
10430 owner of the file named by path and has write permission. A successful call to fattach() shall
10431 cause all path names that name the file named by path to name the STREAMS file associated
10432 with fildes, until the STREAMS file is detached from the file. A STREAMS file can be attached to
10433 more than one file and can have several path names associated with it.

10434 The attributes of the named STREAMS file shall be initialized as follows: the permissions, user
10435 ID, group ID, and times are set to those of the file named by path, the number of links is set to 1,
10436 and the size and device identifier are set to those of the STREAMS file associated with fildes. If
10437 any attributes of the named STREAMS file are subsequently changed (for example, by chmod()),
10438 neither the attributes of the underlying file nor the attributes of the STREAMS file to which fildes
10439 refers shall be affected.

10440 File descriptors referring to the underlying file, opened prior to an fattach () call, shall continue to
10441 refer to the underlyingfile.

10442 RETURN VALUE

10443 Upon successful completion, fattach() shall return 0. Otherwise, -1 shall be returned and errno
10444 set to indicate the error.

10445 ERRORS

10446 The fattach () function shall fail if:

10447 [EACCES] Search permission is denied for a component of the path prefix, or the process
10448 is the owner of path but does not have write permissions on the file named by
10449 path.

10450 [EBADF] The fildes argument is not a valid open file descriptor.

10451 [EBUSY] The file named by path is currently a mount point or has a STREAMS file
10452 attached to it.

10453 [ELOOP] A loop exists in symbolic links encountered during resolution of the path
10454 argument.

System Interfaces, Issue 6 813

fattach() System Interfaces

10455 [ENAMETOOLONG]

10456 The size of path exceeds {PATH_MAX} or a component of path is longer than
10457 {NAME_MAX}.

10458 [ENOENT] A component of path does not name an existing file or path is an empty string.
10459 [ENOTDIR] A component of the path prefix is not a directory.

10460 [EPERM] The effective user ID of the process is not the owner of the file named by path
10461 and the process does not have appropriate privilege.

10462 The fattach () function may fail if:

10463 [EINVAL] The fildes argument does not refer to a STREAMS file.

10464 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
10465 resolution of the path argument.

10466 [ENAMETOOLONG]

10467 Path name resolution of a symbolic link produced an intermediate result
10468 whose length exceeds {PATH_MAX}.

10469 [EXDEV] A link to a file on another file system was attempted.

10470 EXAMPLES

10471 Attaching a File Descriptor to a File

10472 In the following example, fd refers to an open STREAMS file. The call to fattach () associates this
10473 STREAM with the file /tmp/named-STREAM, such that any future calls to open /tmp/named-
10474 STREAM, prior to breaking the attachment via a call to fdetach(), will instead create a new file
10475 handle referring to the STREAMS file associated with fd.

10476 #include <stropts.h>

10477

10478 int fd;

10479 char *filename = "/tmp/named-STREAM";

10480 int ret;

10481 ret = fattach(fd, filename);

10482 APPLICATION USAGE

10483 The fattach () function behaves similarly to the traditional mount() function in the way a file is
10484 temporarily replaced by the root directory of the mounted file system. In the case of fattach (), the
10485 replaced file need not be a directory and the replacing file is a STREAMS file.

10486 RATIONALE

10487 None.

10488 FUTURE DIRECTIONS

10489 None.

10490 SEE ALSO

10491 fdetach (), isastream(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stropts.h>

10492 CHANGE HISTORY

10493 First released in Issue 4, Version 2.

814 Technical Standard (2000) (Draft July 31, 2000)

10494
10495

10496

10497
10498

10499

10500
10501

System Interfaces fattach()

Issue 5
Moved from X/OPEN UNIX extension to BASE.

The [EXDEV] error is added to the list of optional errors in the ERRORS section.

Issue 6
This function is marked as part of the XSI STREAMS Option Group.

The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

The wording of the mandatory [ELOOP] error condition is updated, and a second optional

[ELOOP] error condition is added.

System Interfaces, Issue 6

815

fchdir() System Interfaces

10502 NAME

10503 fchdir — change working directory |
10504 SYNOPSIS

10505 Xsl #include <unistd.h>

10506 int fchdir(int fildes);

10507

10508 DESCRIPTION

10509 The fchdir () function has the same effect as chdir() except that the directory that is to be the new
10510 current working directory is specified by the file descriptor fildes.

10511 RETURN VALUE

10512 Upon successful completion, fchdir () shall return 0. Otherwise, it shall return -1 and set errno to
10513 indicate the error. On failure the current working directory shall remain unchanged.

10514 ERRORS

10515 The fchdir () function shall fail if:

10516 [EACCES] Search permission is denied for the directory referenced by fildes. |
10517 [EBADF] The fildes argument is not an open file descriptor. |
10518 [ENOTDIR] The open file descriptor fildes does not refer to a directory. |
10519 The fchdir () may fail if:

10520 [EINTR] A signal was caught during the execution of fchdir (). |
10521 [EIO] An I/0 error occurred while reading from or writing to the file system. |
10522 EXAMPLES

10523 None.

10524 APPLICATION USAGE

10525 None.

10526 RATIONALE

10527 None.

10528 FUTURE DIRECTIONS

10529 None.

10530 SEE ALSO

10531 chdir (), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |
10532 CHANGE HISTORY

10533 First released in Issue 4, Version 2.

10534 Issue 5
10535 Moved from X/OPEN UNIX extension to BASE.

816 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fchmod()

10536 NAME

10537 fchmod — change mode of a file

10538 SYNOPSIS

10539 #include <sys/stat.h>

10540 int fchmod(int fildes , mode_t mode);

10541 DESCRIPTION

10542 The fchmod() function has the same effect as chmod() except that the file whose permissions are
10543 changed is specified by the file descriptor fildes.

10544 SHM If fildes references a shared memory object, the fchmod() function need only affect the S _IRUSR,
10545 S IWUSR, S_IRGRP, S IWGRP, S IROTH, and S_IWOTH file permission bits.

10546 TYM If fildes references a typed memory object, the behavior of fchmod() is unspecified.

10547 Notes to Reviewers

10548 This section with side shading will not appear in the final copy. - Ed.

10549 D3, XSH, ERN 178 suggests adding text as follows: "If fildes refers to a STREAM (which is
10550 fattached() into the file system name space) the call returns successfully, doing nothing. If fildes
10551 refers to a stream, <do what?>."

10552 RETURN VALUE

10553 Upon successful completion, fchmod () shall return 0. Otherwise, it shall return —1 and set errno to
10554 indicate the error.

10555 ERRORS

10556 The fchmod () function shall fail if:

10557 [EBADF] The fildes argument is not an open file descriptor.

10558 [EPERM] The effective user ID does not match the owner of the file and the process
10559 does not have appropriate privilege.

10560 [EROFS] The file referred to by fildes resides on a read-only file system.

10561 The fchmod () function may fail if:

10562 Xl [EINTR] The fchmod () function was interrupted by a signal.

10563 Xl [EINVAL] The value of the mode argument is invalid.

10564 [EINVAL] The fildes argument refers to a pipe and the implementation disallows
10565 execution of fchmod() on a pipe.

10566 EXAMPLES

10567 Changing the Current Permissions for a File

10568 The following example shows how to change the permissions for a file named /home/cnd/mod1
10569 so that the owner and group have read/write/execute permissions, but the world only has
10570 read/write permissions.

10571 #include <sys/stat.h>

10572 #include <fentl.h>

10573 mode_t mode;

10574 int fildes;

10575

System Interfaces, Issue 6 817

10576
10577

fchmod() System Interfaces

fildes = open("/home/cnd/modl”, O _RDWR);
fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

10578 APPLICATION USAGE

10579

None.

10580 RATIONALE

10581

None.

10582 FUTURE DIRECTIONS

10583

None.

10584 SEE ALSO

10585
10586

10587
10588

10589
10590
10591
10592

10593
10594
10595

chmod(), chown(), creat(), fentl(), fstatvfs(), mknod(), open(), read(), stat(), write(), the Base
Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h>

CHANGE HISTORY

Issue 5

Issue 6

818

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
second instance of [EINVAL] is defined in the list of optional errors.

The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by stating that
fchmod () behavior is unspecified for typed memory objects.

Technical Standard (2000) (Draft July 31, 2000)

10596
10597

10599

10600

10601
10602
10603

10604
10605
10606

10607
10608

10609

10610
10611
10612

10613

10614

10615
10616
10617

10618
10619

10620
10621

10622

10623

10624

10625

10626
10627

10628
10629
10630
10631

10632
10633
10634
10635
10636

System Interfaces fchown()

NAME

fchown — change owner and group of a file
10598 SYNOPSIS

#include

<unistd.h>

int fchown(int fildes , uid t owner, gid t group);

DESCRIPTION

The fchown () function has the same effect as chown () except that the file whose owner and group
are changed is specified by the file descriptor fildes.

RETURN VALUE

Upon successful completion, fchown () shall return 0. Otherwise, it shall return —1 and set errno to
indicate the error.

ERRORS

The fchown () function shall fail if:

[EBADF]
[EPERM]

[EROFS]

The fildes argument is not an open file descriptor.

The effective user ID does not match the owner of the file or the process does
not have appropriate privilege and _POSIX_ CHOWN_RESTRICTED indicates
that such privilege is required.

The file referred to by fildes resides on a read-only file system.

The fchown () function may fail if:

[EINVAL] The owner or group ID is not a value supported by the implementation. The

fildes argument refers to a pipe and the implementation disallows execution of
fchown () on a pipe.

Notes to Reviewers

[EIO]
[EINTR]
EXAMPLES

This section with side shading will not appear in the final copy. - Ed.

D3, XSH, ERN 177 states that STREAMS ignore the call, but raises a question
about AF_UNIX sockets in the file system name space.

A physical 170 error has occurred.

The fchown () function was interrupted by a signal which was caught.

Changing the Current Owner of a File

The following example shows how to change the owner of a file hamed /home/cnd/mod1 to
““jones’” and the group to “‘cnd”’.

The numeric value for the user ID is obtained by extracting the user ID from the user database
entry associated with “‘jones”. Similarly, the numeric value for the group ID is obtained by
extracting the group ID from the group database entry associated with ‘“‘cnd”. This example
assumes the calling program has appropriate privileges.

#include
#include
#include
#include
#include

<sysl/types.h>
<unistd.h>
<fentl.h>
<pwd.h>
<grp.h>

System Interfaces, Issue 6 819

fchown() System Interfaces

10637 struct passwd *pwd;

10638 struct group *grp;

10639 int fildes;

10640

10641 fildes = open("/home/cnd/modl”, O _RDWR);

10642 pwd = getpwnam("jones");

10643 grp = getgrnam(“cnd");

10644 fchown(fildes, pwd->pw_uid, grp->gr_gid);

10645 APPLICATION USAGE

10646 None.

10647 RATIONALE

10648 None.

10649 FUTURE DIRECTIONS

10650 None.

10651 SEE ALSO

10652 chown (), the Base Definitions volume of IEEE Std. 1003.1-200x%, <unistd.h>
10653 CHANGE HISTORY

10654 First released in Issue 4, Version 2.

10655 Issue 5

10656 Moved from X/OPEN UNIX extension to BASE.

10657 Issue 6

10658 The following changes were made to align with the IEEE P1003.1a draft standard:
10659 - Clarification is added that a call to fchown () may not be allowed on a pipe.
10660 The fchwon () function is now defined as mandatory.

820 Technical Standard (2000) (Draft July 31, 2000)

10661
10662

10663
10664

10665

10666
10667
10668
10669

10670
10671
10672
10673
10674
10675
10676
10677
10678

10679

10680
10681
10682

10683
10684

10685
10686

10687

10688

10689

10690
10691

10692

10693
10694
10695
10696

10697

10698
10699

10700

10701
10702

System Interfaces fclose()

NAME
fclose — close a stream
SYNOPSIS
#include <stdio.h>
int fclose(FILE * stream);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The fclose () function shall cause the stream pointed to by stream to be flushed and the associated
file to be closed. Any unwritten buffered data for the stream shall be written to the file; any
unread buffered data shall be discarded. Whether or not the call succeeds, the stream shall be
disassociated from the file and any buffer set by the setbuf() or setvbuf() function shall be
disassociated from the stream. If the associated buffer was automatically allocated, it shall be
cX deallocated. It shall mark for update the st_ctime and st_mtime fields of the underlying file, if the
stream was writable, and if buffered data remains that has not yet been written to the file. The
fclose () function shall perform the equivalent of a close() on the file descriptor that is associated
with the stream pointed to by stream.
After the call to fclose (), any use of stream results in undefined behavior.
RETURN VALUE
cX Upon successful completion, fclose () shall return 0; otherwise, it shall return EOF and set errno to
indicate the error.
ERRORS
The fclose () function shall fail if:
cX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.
cX [EBADF] The file descriptor underlying stream is not valid.
cX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.
Xsl [EFBIG] An attempt was made to write a file that exceeds the process’ file size limit.
cX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.
cX [EINTR] The fclose () function was interrupted by a signal.
cX [EIO] The process is a member of a background process group attempting to write
to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.
cX [ENOSPC] There was no free space remaining on the device containing the file.
cX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.
The fclose () function may fail if:
cX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

System Interfaces, Issue 6 821

fclose() System Interfaces

10703 EXAMPLES

10704

None.

10705 APPLICATION USAGE

10706

None.

10707 RATIONALE

10708

None.

10709 FUTURE DIRECTIONS

10710

10711
10712
10713

None.

SEE ALSO

close(), fopen(), getrlimit(), ulimit(), the Base Definitions volume of IEEE Std. 1003.1-200x,
<stdio.h>

10714 CHANGE HISTORY

10715

10716
10717
10718

10719
10720
10721

10722
10723
10724
10725

10726

10727

Issue 4

First released in Issue 1. Derived from Issue 1 of the SVID.

The last sentence of the first paragraph in the DESCRIPTION is changed to say close() instead of
fclose(). This was an error in Issue 3.

The following paragraph is withdrawn from the DESCRIPTION (by POSIX as well as X/Open)
because of the possibility of causing applications to malfunction, and the impossibility of
implementing these mechanisms for pipes:

If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
underlying open file description is adjusted so that the next operation on the open file
description deals with the byte after the last one read from or written to the stream being
closed.

It is replaced with a statement that any subsequent use of stream is undefined.

The [EFBIG] error is marked to indicate the extensions.

10728 Issue 4, Version 2

10729

10730
10731

10732
10733

10734
10735

10736

10737

10738
10739

Issue 5

Issue 6

822

A cross-reference to getrlimit() is added.

Large File Summit extensions are added.

Extensions beyond the ISO C standard are now marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

- The [EFBIG] error is added as part of the large file support extensions.
« The [ENXIO] optional error condition is added.

The DESCRIPTION is updated to note that the stream and any buffer are disassociated whether
or not the call succeeds. This is for alignment with the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

10740
10741

10742
10743
10744

10745

10746
10747

10748

10749
10750
10751
10752
10753
10754

10755
10756
10757

10758
10759
10760
10761
10762

10763
10764
10765
10766
10767
10768

10769
10770
10771
10772
10773

10774
10775
10776
10777

10778
10779
10780
10781
10782

10783
10784

System Interfaces

NAME

fentl()

fcntl — file control

SYNOPSIS

OH #include <unistd.h>
#include <fcntl.h>

int fentl(int
DESCRIPTION

fildes , int cmda, ..);

The fentl () function provides for control over open files. The fildes argument is a file descriptor.

The available values for cmd are defined in <fcntl.h>, which include:

F_DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

F GETOWN

F SETOWN

Return a new file descriptor which is the lowest numbered available (that is,
not already open) file descriptor greater than or equal to the third argument,
arg, taken as an integer of type int. The new file descriptor refers to the same
open file description as the original file descriptor, and shares any locks. The
FD_CLOEXEC flag associated with the new file descriptor is cleared to keep
the file open across calls to one of the exec functions.

Get the file descriptor flags defined in <fcntl.h> that are associated with the
file descriptor fildes. File descriptor flags are associated with a single file
descriptor and do not affect other file descriptors that refer to the same file.

Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes,
to the third argument, arg, taken as type int. If the FD_CLOEXEC flag in the
third argument is 0, the file shall remain open across the exec functions;
otherwise, the file shall be closed upon successful execution of one of the exec
functions.

Get the file status flags and file access modes, defined in <fcntl.h>, for the file
description associated with fildes. The file access modes can be extracted from
the return value using the mask O_ ACCMODE, which is defined in <fcntl.h>.
File status flags and file access modes are associated with the file description
and do not affect other file descriptors that refer to the same file with different
open file descriptions.

Set the file status flags, defined in <fcntl.h>, for the file description associated
with fildes from the corresponding bits in the third argument, arg, taken as
type int. Bits corresponding to the file access mode and the oflag values that
are set in arg are ignored. If any bits in arg other than those mentioned here are
changed by the application, the result is unspecified.

If fildes refers to a socket, get the process or process group ID specified to
receive SIGURG signals when out-of-band data is available. Positive values
indicate a process ID; negative values, other than -1, indicate a process group
ID. If fildes does not refer to a socket, the results are unspecified.

If fildes refers to a socket, set the process or process group ID specified to
receive SIGURG signals when out-of-band data is available, using the value of
the third argument, arg, taken as type int. Positive values indicate a process
ID; negative values, other than -1, indicate a process group ID. If fildes does
not refer to a socket, the results are unspecified.

The following values for cmd are available for advisory record locking. Record locking is
supported for regular files, and may be supported for other files.

System Interfaces, Issue 6

823

10785
10786
10787
10788
10789
10790

10791
10792
10793
10794
10795
10796
10797

10798
10799
10800
10801
10802
10803

10804
10805

10806
10807
10808
10809

10810
10811
10812

10813
10814

10815
10816
10817
10818
10819
10820
10821

10822

10823

10824

10825

10826

10827
10828
10829
10830

fentl() System Interfaces

824

F GETLK Get the first lock which blocks the lock description pointed to by the third
argument, arg, taken as a pointer to type struct flock, defined in <fcntl.h>.
The information retrieved overwrites the information passed to fentl() in the
structure flock. If no lock is found that would prevent this lock from being
created, then the structure shall be left unchanged except for the lock type
which shall be set to F_ UNLCK.

F SETLK Set or clear a file segment lock according to the lock description pointed to by
the third argument, arg, taken as a pointer to type struct flock, defined in
<fcntl.h>. F_SETLK is used to establish shared (or read) locks (F_ RDLCK) or
exclusive (or write) locks (F_ WRLCK), as well as to remove either type of lock
(F_UNLCK). F_ RDLCK, F WRLCK, and F_UNLCK are defined in <fcntl.h>,
If a shared or exclusive lock cannot be set, fcntl() shall return immediately
with a return value of -1.

F_SETLKW This command is the same as F_SETLK except that if a shared or exclusive
lock is blocked by other locks, the thread shall wait until the request can be
satisfied. If a signal that is to be caught is received while fcntl () is waiting for a
region, fcntl() shall be interrupted. Upon return from the signal handler,
fentl () shall return —1 with errno set to [EINTR], and the lock operation shall
not be done.

Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names
shall start with F_.

When a shared lock is set on a segment of a file, other processes shall be able to set shared locks
on that segment or a portion of it. A shared lock prevents any other process from setting an
exclusive lock on any portion of the protected area. A request for a shared lock shall fail if the
file descriptor was not opened with read access.

An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock
on any portion of the protected area. A request for an exclusive lock shall fail if the file
descriptor was not opened with write access.

The structure flock describes the type (I_type), starting offset (I_whence), relative offset (I_start),
size (I_len), and process ID (I_pid) of the segment of the file to be affected.

The value of |_whence is {SEEK_SET}, {SEEK_CUR}, or {SEEK_ENDY}, to indicate that the relative
offset |_start bytes shall be measured from the start of the file, current position, or end of the file,
respectively. The value of |_len is the number of consecutive bytes to be locked. The value of
I_len may be negative (where the definition of off_t permits negative values of |_len). The |_pid
field is only used with F_GETLK to return the process ID of the process holding a blocking lock.
After a successful F_GETLK request, when a blocking lock is found, the values returned in the
flock structure shall be as follows:

| _type Type of blocking lock found.

I_whence {SEEK_SET}.

| start Start of the blocking lock.

| len Length of the blocking lock.

|_pid Process ID of the process that holds the blocking lock.

If the command is F_SETLKW and the process must wait for another process to release a lock,
then the range of bytes to be locked shall be determined before the fcntl () function blocks. If the
file size or file descriptor seek offset change while fentl() is blocked, this shall not affect the
range of bytes locked.

Technical Standard (2000) (Draft July 31, 2000)

10831
10832
10833
10834
10835
10836

10837
10838
10839
10840
10841
10842
10843

10844
10845
10846

10847
10848
10849

10850
10851
10852

10853

10854
10855
10856
10857
10858

10859
10860

10861

10862

10863

10864

10865

10866

10867

10868

10869

10870

10871

System Interfaces fentl()

If |_len is positive, the area affected starts at |_start and ends at |_start+ | _len-1. If |_len is
negative, the area affected starts at |_start+ |_len and ends at | _start-1. Locks may start and
extend beyond the current end of a file, but the application shall ensure that they are not
negative relative to the beginning of the file. A lock shall be set to extend to the largest possible
value of the file offset for that file by setting I_len to 0. If such a lock also has |_start set to 0 and
I_whence is set to {SEEK_SET}, the whole file shall be locked.
There shall be at most one type of lock set for each byte in the file. Before a successful return
from an F_SETLK or an F_SETLKW request when the calling process has previously existing
locks on bytes in the region specified by the request, the previous lock type for each byte in the
specified region shall be replaced by the new lock type. As specified above under the
descriptions of shared locks and exclusive locks, an F SETLK or an F _SETLKW request
(respectively) shall fail or block when another process has existing locks on bytes in the specified
region and the type of any of those locks conflicts with the type specified in the request.
All locks associated with a file for a given process shall be removed when a file descriptor for
that file is closed by that process or the process holding that file descriptor terminates. Locks are
not inherited by a child process.
A potential for deadlock occurs if a process controlling a locked region is put to sleep by
attempting to lock another process’ locked region. If the system detects that sleeping until a
locked region is unlocked would cause a deadlock, fcntl () shall fail with an [EDEADLK] error.
SHM When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be
the same as for a regular file except the effect of the following values for the argument cmd shall
be unspecified: F SETFL, F GETLK, F SETLK, and F_SETLKW.
TYM If fildes refers to a typed memory object, the result of the fcntl () function is unspecified.
An unlock (F_UNLCK) request in which |_len is non-zero and the offset of the last byte of the
requested segment is the maximum value for an object of type off _t, when the process has an
existing lock in which |_len is 0 and which includes the last byte of the requested segment, shall
be treated as a request to unlock from the start of the requested segment with an |_len equal to 0.
Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the requested segment.
RETURN VALUE
Upon successful completion, the value returned shall depend on cmd as follows:
F_DUPFD A new file descriptor.
F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.
F SETFD Value other than -1.
F GETFL Value of file status flags and access modes. The return value is not negative.
F SETFL Value other than -1.
F GETLK Value other than -1.
F SETLK Value other than -1.
F_SETLKW Value other than -1.
F_ GETOWN Value of the socket owner process or process group; this will not be -1.
F_ SETOWN Value other than -1.
Otherwise, -1 shall be returned and errno set to indicate the error.

System Interfaces, Issue 6 825

fentl() System Interfaces

10872 ERRORS

10873

10874
10875
10876
10877
10878
10879

10880
10881
10882
10883
10884

10885

10886
10887
10888
10889

10890
10891
10892

10893
10894
10895

10896

10897
10898
10899

10900

10901
10902
10903

The fentl () function shall fail if:

[EACCES] or [EAGAIN]
The cmd argument is F_SETLK; the type of lock (I_type) is a shared (F_RDLCK)
or exclusive (F_WRLCK) lock and the segment of a file to be locked is already
exclusive-locked by another process, or the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

[EBADF] The fildes argument is not a valid open file descriptor, or the argument cmd is
F_SETLK or F_SETLKW, the type of lock, |_type, is a shared lock (F_RDLCK),
and fildes is not a valid file descriptor open for reading, or the type of lock
|_type, is an exclusive lock (F_ WRLCK), and fildes is not a valid file descriptor
open for writing.

[EINTR] The cmd argument is F_SETLKW and the function was interrupted by a signal.

[EINVAL] The cmd argument is invalid, or the cmd argument is F_ DUPFD and arg is
negative or greater than or equal to {OPEN_MAX}, or the cmd argument is
F_GETLK, F_SETLK, or F_SETLKW and the data pointed to by arg is not valid,
or fildes refers to a file that does not support locking.

[EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descriptors are
currently open in the calling process, or no file descriptors greater than or
equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock
request would result in the number of locked regions in the system exceeding
a system-imposed limit.

[EOVERFLOW] One of the values to be returned cannot be represented correctly.

[EOVERFLOW] The cmd argumentis F_ GETLK, F_SETLK, or F_SETLKW and the smallest or,
if 1_len is non-zero, the largest offset of any byte in the requested segment
cannot be represented correctly in an object of type off t.

The fentl () function may fail if;

[EDEADLK] The cmd argument is F_SETLKW, the lock is blocked by some lock from
another process and putting the calling process to sleep, waiting for that lock
to become free would cause a deadlock.

10904 EXAMPLES

10905

None.

10906 APPLICATION USAGE

10907

None.

10908 RATIONALE

10909
10910
10911

10912
10913
10914
10915
10916

826

The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number
of arguments. It is used because System V uses pointers for the implementation of file locking
functions.

The arg values to F_ GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow
for future growth. Applications using these functions should do a read-modify-write operation
on them, rather than assuming that only the values defined by this volume of
IEEE Std. 1003.1-200x are valid. It is a common error to forget this, particularly in the case of
F_SETFD.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fentl()

10917 This volume of IEEE Std. 1003.1-200x permits concurrent read and write access to file data using
10918 the fentl() function; this is a change from the 1984 /usr/group standard and early proposals.
10919 Without concurrency controls, this feature may not be fully utilized without occasional loss of
10920 data.

10921 Data losses occur in several ways. One case occurs when several processes try to update the
10922 same record, without sequencing controls; several updates may occur in parallel and the last
10923 writer “‘wins’’. Another case is a bit-tree or other internal list-based database that is undergoing
10924 reorganization. Without exclusive use to the tree segment by the updating process, other reading
10925 processes chance getting lost in the database when the index blocks are split, condensed,
10926 inserted, or deleted. While fentl () is useful for many applications, it is not intended to be overly
10927 general and does not handle the bit-tree example well.

10928 This facility is only required for regular files because it is not appropriate for many devices such
10929 as terminals and network connections.

10930 Since fentl () works with “any file descriptor associated with that file, however it is obtained”,
10931 the file descriptor may have been inherited through a fork() or exec operation and thus may
10932 affect a file that another process also has open.

10933 The use of the open file description to identify what to lock requires extra calls and presents
10934 problems if several processes are sharing an open file description, but there are too many
10935 implementations of the existing mechanism for this volume of IEEE Std. 1003.1-200x to use
10936 different specifications.

10937 Another consequence of this model is that closing any file descriptor for a given file (whether or
10938 not it is the same open file description that created the lock) causes the locks on that file to be
10939 relinquished for that process. Equivalently, any close for any file/process pair relinquishes the
10940 locks owned on that file for that process. But note that while an open file description may be
10941 shared through fork (), locks are not inherited through fork(). Yet locks may be inherited through
10942 one of the exec functions.

10943 The identification of a machine in a network environment is outside of the scope of this volume
10944 of IEEE Std. 1003.1-200x. Thus, an |_sysid member, such as found in System V, is not included in
10945 the locking structure.

10946 Before successful return from an F_SETLK or F_SETLKW request, the previous lock type for
10947 each byte in the specified region shall be replaced by the new lock type. This can result in a
10948 previously locked region being split into smaller regions. If this would cause the number of
10949 regions being held by all processes in the system to exceed a system-imposed limit, the fcntl()
10950 function shall return -1 with errno set to [ENOLCK].

10951 Mandatory locking was a major feature of the 1984 /usr/group standard.

10952 For advisory file record locking to be effective, all processes that have access to a file must
10953 cooperate and use the advisory mechanism before doing I/0 on the file. Enforcement-mode
10954 record locking is important when it cannot be assumed that all processes are cooperating. For
10955 example, if one user uses an editor to update a file at the same time that a second user executes
10956 another process that updates the same file and if only one of the two processes is using advisory
10957 locking, the processes are not cooperating. Enforcement-mode record locking would protect
10958 against accidental collisions.

10959 Secondly, advisory record locking requires a process using locking to bracket each 1/0 operation
10960 with lock (or test) and unlock operations. With enforcement-mode file and record locking, a
10961 process can lock the file once and unlock when all I/0 operations have been completed.
10962 Enforcement-mode record locking provides a base that can be enhanced; for example, with
10963 sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so

System Interfaces, Issue 6 827

10964

10965

10966
10967

10968

10969
10970
10971

10972
10973

10974
10975
10976
10977

fentl() System Interfaces

other processes could read it, but none of them could write it.
Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most
implementations; this was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations
keep the password database in a publicly readable file. A malicious user could thus
prohibit logins. Another possibility would be to hold open a long-distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and
enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a
timeout facility in applications requiring it. This is useful in deadlock detection. Because
implementation of full deadlock detection is not always feasible, the [EDEADLK] error was
made optional.

10978 FUTURE DIRECTIONS

10979

None.

10980 SEE ALSO

10981
10982

10983
10984

10985
10986
10987

10988
10989

10990

10991
10992

10993
10994
10995

10996

10997
10998

10999
11000

11001
11002
11003

11004
11005
11006

close(), exec, open(), sigaction (), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>,
<signal.h>, <unistd.h>

CHANGE HISTORY

Issue 4

Issue 5

Issue 6

828

First released in Issue 1. Derived from Issue 1 of the SVID.

The <sys/types.h> and <unistd.h> headers are now marked as optional (OH); these headers do
not need to be included on XSI-conformant systems.

In the DESCRIPTION, sentences describing behavior when |_len is negative are marked as an
extension, and the description of locks is corrected to make it a requirement on the application.

The following change is incorporated for alignment with the ISO POSIX-1 standard:

« In the DESCRIPTION, the meaning of a successful F SETLK or F_ SETLKW request is
clarified, after a POSIX Request for Interpretation.

The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
Threads Extension.

Large File Summit extensions are added.

In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
required for conforming implementations of previous POSIX specifications, it was not
required for UNIX applications.

- In the DESCRIPTION, sentences describing behavior when | _len is negative are now
mandated, and the description of unlock (F_ UNLOCK) when |_len is non-negative is
mandated.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fentl()

11007 « In the ERRORS section, the [EINVAL] error condition has the case mandated when the cmd is
11008 invalid, and two [EOVERFLOW!] error conditions are added.

11009 The F_GETOWN and F_SETOWN values are added for sockets.

11010 The following changes were made to align with the IEEE P1003.1a draft standard:

11011 . Clarification is added that the extent of the bytes locked is determined prior to the blocking
11012 action.

11013 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
11014 fentl () results are unspecified for typed memory objects.

11015 The DESCRIPTION is updated to avoid use of the term “must” for application requirements.

System Interfaces, Issue 6 829

fevt() System Interfaces

11016 NAME

11017 fcvt — convert a floating-point number to a string (LEGACY)

11018 SYNOPSIS

11019 Xsl #include <stdlib.h>

11020 char *fcvt(double value , int ndigit , int *restrict decpt ,
11021 int *restrict sign);

11022

11023 DESCRIPTION

11024 Refer to ecvt().

830 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdatasync()

11025 NAME

11026 fdatasync — synchronize the data of a file (REALTIME)

11027 SYNOPSIS

11028 sIO #include <unistd.h>

11029 int fdatasync(int fildes);

11030

11031 DESCRIPTION

11032 The fdatasync() function shall force all currently queued 1/0 operations associated with the file
11033 indicated by file descriptor fildes to the synchronized I/0 completion state.

11034 The functionality is as described for fsync() (with the symbol _POSIX_SYNCHRONIZED_IO
11035 defined), with the exception that all 1/0 operations shall be completed as defined for
11036 synchronized 1/0 data integrity completion.

11037 RETURN VALUE

11038 If successful, the fdatasync () function shall return the value 0; otherwise, the function shall return
11039 the value -1 and set errno to indicate the error. If the fdatasync() function fails, outstanding 1/0
11040 operations are not guaranteed to have been completed.

11041 ERRORS

11042 The fdatasync () function shall fail if:

11043 [EBADF] The fildes argument is not a valid file descriptor open for writing.

11044 [EINVAL] This implementation does not support synchronized 1/0 for this file.

11045 In the event that any of the queued I/0 operations fail, fdatasync() shall return the error
11046 conditions defined for read() and write().

11047 EXAMPLES

11048 None.

11049 APPLICATION USAGE

11050 None.

11051 RATIONALE

11052 None.

11053 FUTURE DIRECTIONS

11054 None.

11055 SEE ALSO

11056 aio_fsync(), fentl(), fsync(), open(), read(), write(), the Base Definitions volume of
11057 IEEE Std. 1003.1-200x, <unistd.h>

11058 CHANGE HISTORY

11059 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

11060 Issue 6

11061 The [ENOSYS] error condition has been removed as stubs need not be provided if an
11062 implementation does not support the Synchronized Input and Output option.

11063 The fdatasync () function is marked as part of the Synchronized Input and Output option.

System Interfaces, Issue 6 831

fdetach() System Interfaces

11064 NAME
11065

fdetach — detach a name from a STREAMS-based file descriptor (STREAMS)

11066 SYNOPSIS

11067 XSR

11068
11069

#include <stropts.h>

int fdetach(const char * path);

11070 DESCRIPTION

11071
11072
11073
11074
11075
11076

11077
11078

11079
11080

The fdetach () function detaches a STREAMS-based file from the file to which it was attached by a
previous call to fattach(). The path argument points to the path name of the attached STREAMS
file. The application shall ensure that the process has appropriate privileges or be the owner of
the file. A successful call to fdetach() shall cause all path names that named the attached
STREAMS file to again name the file to which the STREAMS file was attached. All subsequent
operations on path shall operate on the underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file referenced
by path shall still refer to the STREAMS file after the fdetach () has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful
call to fdetach () shall have the same effect as performing the last close() on the attached file.

11081 RETURN VALUE

11082
11083

Upon successful completion, fdetach () shall return 0; otherwise, it shall return -1 and set errno to
indicate the error.

11084 ERRORS

11085
11086
11087

11088
11089

11090
11091
11092

11093
11094

11095
11096

11097

11098
11099

11100
11101
11102

832

The fdetach () function shall fail if:

[EACCES] Search permission is denied on a component of the path prefix.

[EINVAL] The path argument names a file that is not currently attached.

[ELOOP] A loop exists in symbolic links encountered during resolution of the path
argument.

[ENAMETOOLONG]

The size of a path name exceeds {PATH_MAX} or a path hame component is
longer than {NAME_MAX}.

[ENOENT] A component of path does not name an existing file or path is an empty string.
[ENOTDIR] A component of the path prefix is not a directory.
[EPERM] The effective user ID is not the owner of path and the process does not have

appropriate privileges.

The fdetach () function may fail if:

[ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.
[ENAMETOOLONG]

Path name resolution of a symbolic link produced an intermediate result
whose length exceeds {PATH_MAX}.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdetach()

11103 EXAMPLES

11104 Detaching a File

11105 The following example detaches the STREAMS-based file /tmp/named-STREAM from the file to
11106 which it was attached by a previous, successful call to fattach (). Subsequent calls to open this
11107 file refer to the underlying file, not to the STREAMS file.

11108 #include <stropts.h>

11109

11110 char *filename = "/tmp/named-STREAM";

11111 int ret;

11112 ret = fdetach(filename);

11113 APPLICATION USAGE

11114 None.

11115 RATIONALE

11116 None.

11117 FUTURE DIRECTIONS

11118 None.

11119 SEE ALSO

11120 fattach (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stropts.h>

11121 CHANGE HISTORY

11122 First released in Issue 4, Version 2.

11123 Issue 5

11124 Moved from X/OPEN UNIX extension to BASE.

11125 Issue 6

11126 The DESCRIPTION is updated to avoid use of the term “must” for application requirements.
11127 The wording of the mandatory [ELOOP] error condition is updated, and a second optional
11128 [ELOOP] error condition is added.

System Interfaces, Issue 6 833

fdim() System Interfaces

11129 NAME

11130 fdim, fdimf, fdiml — compute positive difference between two floating-point numbers

11131 SYNOPSIS

11132 #include <math.h>

11133 double fdim(double X, double y);

11134 float fdimf(float X, float)i

11135 long double fdimi(long double X, long double)i

11136 DESCRIPTION

11137 cX The functionality described on this reference page is aligned with the ISO C standard. Any
11138 conflict between the requirements described here and the ISO C standard is unintentional. This
11139 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11140 These functions shall determine the positive difference between their arguments. If x is greater
11141 thany, x-y is returned. If x is less than or equal to y, +0 is returned.

11142 An application wishing to check for error situations should set errno to 0 before calling these
11143 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

11144 RETURN VALUE

11145 Upon successful completion, these functions shall return the positive difference value.

11146 If x or y is NaN, NaN shall be returned and errno may be set to [EDOM].

11147 If the magnitude of the result is too large or too small, the numeric result is unspecified and errno
11148 may be set to [ERANGE].

11149 ERRORS

11150 These functions may fail if:

11151 [EDOM] The value of x or y is NaN.

11152 [ERANGE] The magnitude of the result is too large or too small.

11153 EXAMPLES

11154 None.

11155 APPLICATION USAGE

11156 None.

11157 RATIONALE

11158 None.

11159 FUTURE DIRECTIONS

11160 None.

11161 SEE ALSO

11162 fmax (), fmin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

11163 CHANGE HISTORY

11164 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

834 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdopen()

11165 NAME

11166 fdopen — associate a stream with a file descriptor

11167 SYNOPSIS

11168 #include <stdio.h>

11169 FILE *fdopen(int fildes , const char * mode);

11170 DESCRIPTION

11171 The fdopen () function shall associate a stream with a file descriptor.

11172 The mode argument is a character string having one of the following values:

11173 rorrb Open a file for reading.

11174 w or wb Open a file for writing.

11175 aorab Open a file for writing at end of file.

11176 r+ orrb+ orr+b Open a file for update (reading and writing).

11177 w+ or wh+ or w+b Open a file for update (reading and writing).

11178 a+ orab+ora+b Open a file for update (reading and writing) at end of file.

11179 The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w
11180 do not cause truncation of the file.

11181 Additional values for the mode argument may be supported by an implementation.

11182 The application shall ensure that the mode of the stream as expressed by the type argument is
11183 allowed by the file access mode of the open file description to which fildes refers. The file
11184 position indicator associated with the new stream is set to the position indicated by the file
11185 offset associated with the file descriptor.

11186 The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may
11187 cause the st_atime field of the underlying file to be marked for update.

11188 SHM If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

11189 TYM If fildes refers to a typed memory object, the result of the fdopen () function is unspecified.

11190 The fdopen() function shall preserve the offset maximum previously set for the open file
11191 description corresponding to fildes.

11192 RETURN VALUE

11193 Upon successful completion, fdopen () shall return a pointer to a stream; otherwise, a null pointer
11194 shall be returned and errno set to indicate the error.

11195 ERRORS

11196 The fdopen () function may fail if:

11197 [EBADF] The fildes argument is not a valid file descriptor.

11198 [EINVAL] The mode argument is not a valid mode.

11199 [EMFILE] {FOPEN_MAX]} streams are currently open in the calling process.

11200 [EMFILE] {STREAM_MAX]} streams are currently open in the calling process.

11201 [ENOMEM] Insufficient space to allocate a buffer.

System Interfaces, Issue 6 835

fdopen() System Interfaces

11202 EXAMPLES

11203

None.

11204 APPLICATION USAGE

11205
11206

File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but
do not return streams.

11207 RATIONALE

11208
11209
11210

11211
11212
11213
11214
11215

The file descriptor may have been obtained from open(), creat(), pipe(), dup(), or fentl();
inherited through fork () or exec; or perhaps obtained by implementation-defined means, such as
the 4.3 BSD socket () call.

The meanings of the type arguments of fdopen () and fopen () differ. With fdopen(), open for write
(w or w+) does not truncate, and append (a or a+) cannot create for writing. There is no need for b
in the format due to the equivalence of binary and text files in this volume of
IEEE Std. 1003.1-200x. Although not explicitly required by this volume of IEEE Std. 1003.1-200x,
a good implementation of append (a) mode would cause the O_APPEND flag to be set.

11216 FUTURE DIRECTIONS

11217

None.

11218 SEE ALSO

11219
11220

fclose (), fopen(), open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, Section
2.5.1 (on page 535)

11221 CHANGE HISTORY

11222

11223 Issue 4
11224
11225

11226
11227

11228
11229
11230

11231 Issue 5
11232

11233

11234 Issue 6
11235
11236

11237
11238

11239
11240

11241

11242
11243

836

First released in Issue 1. Derived from Issue 1 of the SVID.

In the DESCRIPTION, the use and settings of the mode argument are changed to include binary
streams and are marked as extensions.

All errors identified in the ERRORS section are marked as extensions, and the [EMFILE] error is
added.

The APPLICATION USAGE section is added.
The following change is incorporated for alignment with the ISO POSIX-1 standard:

« The type of argument mode is changed from char* to const char*.

The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

Large File Summit extensions are added.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

« In the DESCRIPTION, the use and setting of the mode argument are changed to include
binary streams.

« In the DESCRIPTION, text is added for large file support to indicate setting of the offset
maximum in the open file description.

- All errors identified in the ERRORS section are added.

« In the DESCRIPTION, text is added that the fdopen() function may cause st _atime to be
updated.

Technical Standard (2000) (Draft July 31, 2000)

11244

11245
11246

11247
11248

System Interfaces

The following changes were made to align with the IEEE P1003.1a draft standard:

- Clarification is added that it is the responsibility of the application to ensure that the mode is

compatible with the open file descriptor.

fdopen()

The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that

fdopen () results are unspecified for typed memory objects.

System Interfaces, Issue 6

837

feclearexcept() System Interfaces

11249 NAME

11250 feclearexcept — clear floating-point exception

11251 SYNOPSIS

11252 #include <fenv.h>

11253 void feclearexcept(int excepts);

11254 DESCRIPTION

11255 cX The functionality described on this reference page is aligned with the ISO C standard. Any
11256 conflict between the requirements described here and the ISO C standard is unintentional. This
11257 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11258 The feclearexcept() function shall clear the supported floating-point exceptions represented by
11259 excepts.

11260 RETURN VALUE

11261 None.

11262 ERRORS

11263 No errors are defined.

11264 EXAMPLES

11265 None.

11266 APPLICATION USAGE

11267 None.

11268 RATIONALE

11269 None.

11270 FUTURE DIRECTIONS

11271 None.

11272 SEE ALSO

11273 fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of
11274 IEEE Std. 1003.1-200x, <fenv.h>

11275 CHANGE HISTORY

11276 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

838 Technical Standard (2000) (Draft July 31, 2000)

11277
11278

11279
11280

11281
11282

11283
11284
11285
11286

11287
11288

11289
11290
11291
11292
11293

11294
11295

11296
11297

11298
11299

11300
11301

11302
11303

11304
11305

11306
11307

11308
11309

System Interfaces fegetenv()

NAME
fegetenv, fesetenv — get and set current floating-point environment

SYNOPSIS
#include <fenv.h>
void fegetenv(fenv_t * envp);
void fesetenv(const fenv_t * envp);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The fegetenv() function shall store the current floating-point environment in the object pointed to
by envp.
The fesetenv() function shall establish the floating-point environment represented by the object
pointed to by envp. The argument envp shall point to an object set by a call to fegetenv() or
feholdexcept(), or equal a floating-point environment macro. The fesetenv() function does not
raise floating-point exceptions, but only installs the state of the floating-point status flags
represented through its argument.

RETURN VALUE
None.

ERRORS
No errors are defined.

EXAMPLES
None.

APPLICATION USAGE
None.

RATIONALE
None.

FUTURE DIRECTIONS
None.

SEE ALSO
feholdexcept (), feupdateenv (), the Base Definitions volume of IEEE Std. 1003.1-200x%, <fenv.h>

CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 839

fegetexceptflag() System Interfaces

11310 NAME

11311 fegetexceptflag, fesetexceptflag — get and set floating-point status flags

11312 SYNOPSIS

11313 #include <fenv.h>

11314 void fegetexceptflag(fexcept t * flagp , int excepts);

11315 void fesetexceptflag(const fexcept t * flagp , int excepts);

11316 DESCRIPTION

11317 cX The functionality described on this reference page is aligned with the ISO C standard. Any
11318 conflict between the requirements described here and the ISO C standard is unintentional. This
11319 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11320 The fegetexceptflag() function shall store an implementation-defined representation of the states
11321 of the floating-point status flags indicated by the argument excepts in the object pointed to by the
11322 argument flagp.

11323 The fesetexceptflag() function shall set the floating-point status flags indicated by the argument
11324 excepts to the states stored in the object pointed to by flagp. The value pointed to by flagp shall
11325 have been set by a previous call to fegetexceptflag() whose second argument represented at least
11326 those floating-point exceptions represented by the argument excepts. This function does not
11327 raise floating-point exceptions, but only sets the state of the flags.

11328 RETURN VALUE

11329 None.

11330 ERRORS

11331 No errors are defined.

11332 EXAMPLES

11333 None.

11334 APPLICATION USAGE

11335

None.

11336 RATIONALE

11337

None.

11338 FUTURE DIRECTIONS

11339

None.

11340 SEE ALSO

11341
11342

feclearexcept (), feraiseexcept(), fetestexcept(), the Base Definitions volume of IEEE Std. 1003.1-200x,
<fenv.h>

11343 CHANGE HISTORY

11344

840

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fegetround()

11345 NAME

11346 fegetround, fesetround — get and set current rounding direction

11347 SYNOPSIS

11348 #include <fenv.h>

11349 int fegetround(void); |
11350 int fesetround(int round);

11351 DESCRIPTION

11352 cX The functionality described on this reference page is aligned with the ISO C standard. Any
11353 conflict between the requirements described here and the ISO C standard is unintentional. This
11354 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11355 The fegetround () function shall get the current rounding direction.

11356 The fesetround() function shall establish the rounding direction represented by its argument
11357 round. If the argument is not equal to the value of a rounding direction macro, the rounding
11358 direction is not changed.

11359 RETURN VALUE

11360 The fegetround () function shall return the value of the rounding direction macro representing the
11361 current rounding direction or a negative value if there is no such rounding direction macro or
11362 the current rounding direction is not determinable.

11363 The fesetround() function shall return a zero value if and only if the argument is equal to a
11364 rounding direction macro (that is, if and only if the requested rounding direction was
11365 established).

11366 ERRORS

11367 No errors are defined.

11368 EXAMPLES

11369 The following example saves, sets, and restores the rounding direction, reporting an error and
11370 aborting if setting the rounding direction fails:

11371 #include <fenv.h>

11372 #include <assert.h>

11373 void f(int round_dir)

11374 {

11375 #pragma STDC FENV_ACCESS ON

11376 int save_round;

11377 int setround_ok;

11378 save_round = fegetround();

11379 setround_ok = fesetround(round_dir);

11380 assert(setround_ok == 0);

11381 r* o

11382 fesetround(save_round);

11383 r* o

11384 }

11385 APPLICATION USAGE

11386

None.

11387 RATIONALE

11388

None.

System Interfaces, Issue 6 841

fegetround() System Interfaces

11389 FUTURE DIRECTIONS

11390

None.

11391 SEE ALSO

11392

The Base Definitions volume of IEEE Std. 1003.1-200x, <fenv.h>

11393 CHANGE HISTORY

11394

842

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces feholdexcept()

11395 NAME

11396 feholdexcept — save current floating-point environment

11397 SYNOPSIS

11398 #include <fenv.h>

11399 int feholdexcept(fenv_t * envp);

11400 DESCRIPTION

11401 cx The functionality described on this reference page is aligned with the ISO C standard. Any
11402 conflict between the requirements described here and the ISO C standard is unintentional. This
11403 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11404 The feholdexcept() function shall save the current floating-point environment in the object
11405 pointed to by envp, clear the floating-point status flags, and then install a non-stop (continue on
11406 floating-point exceptions) mode, if available, for all floating-point exceptions.

11407 RETURN VALUE

11408 The feholdexcept() function shall return zero if and only if non-stop floating-point exception
11409 handling was successfully installed.

11410 ERRORS

11411 No errors are defined.

11412 EXAMPLES

11413 None.

11414 APPLICATION USAGE

11415 None.

11416 RATIONALE

11417 The feholdexcept() function should be effective on typical IEC 60559:1989 standard
11418 implementations which have the default non-stop mode and at least one other mode for trap
11419 handling or aborting. If the implementation provides only the non-stop mode, then installing the
11420 non-stop mode is trivial.

11421 FUTURE DIRECTIONS

11422 None.

11423 SEE ALSO

11424 fegetenv(), fesetenv(), feupdateenv(), the Base Definitions volume of IEEE Std. 1003.1-200x,
11425 <fenv.h>

11426 CHANGE HISTORY

11427 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 843

feof() System Interfaces

11428 NAME

11429 feof — test end-of-file indicator on a stream

11430 SYNOPSIS

11431 #include <stdio.h>

11432 int feof(FILE * stream);

11433 DESCRIPTION

11434 cx The functionality described on this reference page is aligned with the ISO C standard. Any
11435 conflict between the requirements described here and the ISO C standard is unintentional. This
11436 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11437 The feof () function shall test the end-of-file indicator for the stream pointed to by stream.

11438 RETURN VALUE

11439 The feof () function shall return non-zero if and only if the end-of-file indicator is set for stream.
11440 ERRORS

11441 No errors are defined.

11442 EXAMPLES

11443 None.

11444 APPLICATION USAGE

11445 None.

11446 RATIONALE

11447 None.

11448 FUTURE DIRECTIONS

11449 None.

11450 SEE ALSO

11451 clearerr(), ferror(), fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

11452 CHANGE HISTORY

11453 First released in Issue 1. Derived from Issue 1 of the SVID.

11454 Issue 4

11455 The ERRORS section is rewritten, such that no error return values are now defined for this
11456 function.

844 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces feraiseexcept()

11457 NAME

11458 feraiseexcept — raise floating-point exception

11459 SYNOPSIS

11460 #include <fenv.h>

11461 void feraiseexcept(int excepts);

11462 DESCRIPTION

11463 cX The functionality described on this reference page is aligned with the ISO C standard. Any
11464 conflict between the requirements described here and the ISO C standard is unintentional. This
11465 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11466 The feraiseexcept() function shall raise the supported floating-point exceptions represented by
11467 the argument excepts. The order in which these floating-point exceptions are raised is
11468 unspecified. Whether the feraiseexcept() function additionally raises the inexact floating-point
11469 exception whenever it raises the overflow or underflow floating-point exception is
11470 implementation-defined.

11471 RETURN VALUE

11472 None.

11473 ERRORS

11474 No errors are defined.

11475 EXAMPLES

11476

11477
11478
11479

None.

APPLICATION USAGE

The effect is intended to be similar to that of floating-point exceptions raised by arithmetic
operations. Hence, enabled traps for floating-point exceptions raised by this function are taken.

11480 RATIONALE

11481
11482
11483
11484

Raising overflow or underflow is allowed to also raise inexact because on some architectures the
only practical way to raise an exception is to execute an instruction that has the exception as a
side effect. The function is not restricted to accept only valid coincident expressions for atomic
operations, so the function can be used to raise exceptions accrued over several operations.

11485 FUTURE DIRECTIONS

11486

11487
11488
11489

None.

SEE ALSO

feclearexcept(), fegetexceptflag(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of
IEEE Std. 1003.1-200x, <fenv.h>

11490 CHANGE HISTORY

11491

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 845

ferror() System Interfaces

11492 NAME

11493

ferror — test error indicator on a stream

11494 SYNOPSIS

11495

11496

#include <stdio.h>

int ferror(FILE * stream);

11497 DESCRIPTION

11498 cX
11499
11500

11501

The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

The ferror () function shall test the error indicator for the stream pointed to by stream.

11502 RETURN VALUE

11503

The ferror () function shall return non-zero if and only if the error indicator is set for stream.

11504 ERRORS

11505

No errors are defined.

11506 EXAMPLES

11507

None.

11508 APPLICATION USAGE

11509

None.

11510 RATIONALE

11511

None.

11512 FUTURE DIRECTIONS

11513

None.

11514 SEE ALSO

11515

clearerr(), feof (), fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

11516 CHANGE HISTORY

11517

11518 Issue 4

11519
11520

846

First released in Issue 1. Derived from Issue 1 of the SVID.

The ERRORS section is rewritten, such that no error return values are now defined for this
function.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces

11521 NAME

11522 fesetenv — set current floating-point environment
11523 SYNOPSIS

11524 #include <fenv.h>

11525 void fesetenv(const fenv_t * envp);
11526 DESCRIPTION

11527 Refer to fegetenv().

System Interfaces, Issue 6

fesetenv()

847

fesetexceptflag() System Interfaces

11528 NAME

11529 fesetexceptflag — set floating-point status flags

11530 SYNOPSIS

11531 #include <fenv.h>

11532 void fesetexceptflag(const fexcept t * flagp , int excepts);
11533 DESCRIPTION

11534 Refer to fegetexceptflag().

848 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces

11535 NAME

11536 fesetround — set current rounding direction
11537 SYNOPSIS

11538 #include <fenv.h>

11539 int fesetround(int round);

11540 DESCRIPTION

11541 Refer to fegetround().

System Interfaces, Issue 6

fesetround()

849

fetestexcept()

11542 NAME
11543

11544 SYNOPSIS

11545 #include <fenv.h>
11546 int fetestexcept(int

11547 DESCRIPTION

fetestexcept — test floating-point exception flags

excepts);

System Interfaces

The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This

The fetestexcept() function shall determine which of a specified subset of the floating-point
exception flags are currently set. The excepts argument specifies the floating-point status flags to
The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point

exception macros corresponding to the currently set floating-point exceptions included in

The following example calls function f() if an invalid exception is set, and then function g() if an

the Base Definitions volume of

11548 CX
11549
11550 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
11551
11552
11553 be queried.
11554 RETURN VALUE
11555
11556
11557 excepts.
11558 ERRORS
11559 No errors are defined.
11560 EXAMPLES
11561
11562 overflow exception is set:
11563 #include <fenv.h>
11564 * ...
11565 {
11566 #pragma STDC FENV_ACCESS ON
11567 int set_excepts;
11568 feclearexcept(FE_INVALID | FE_OVERFLOW);
11569 /I maybe raise exceptions
11570 set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
11571 if (set_excepts & FE_INVALID) f();
11572 if (set_excepts & FE_OVERFLOW) g();
11573 * ...
11574 }
11575 APPLICATION USAGE
11576 None.
11577 RATIONALE
11578 None.
11579 FUTURE DIRECTIONS
11580 None.
11581 SEE ALSO
11582 feclearexcept(), fegetexceptflag(), feraiseexcept(),
11583 IEEE Std. 1003.1-200x, <fenv.h>
850

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fetestexcept()

11584 CHANGE HISTORY
11585 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 851

11586 NAME

11587

feupdateenv() System Interfaces

feupdateenv — update floating-point environment

11588 SYNOPSIS

11589

11590

11591
11592
11593
11594

11595
11596
11597
11598

11599
11600

11601
11602

11603
11604
11605

11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618

11619
11620

11621
11622

11623
11624

#include <fenv.h>
void feupdateenv(const fenv_t * envp);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The feupdateenv() function shall save the currently raised floating-point exceptions in its
automatic storage, install the floating-point environment represented by the object pointed to by
envp, and then raise the saved floating-point exceptions. The argument envp shall point to an
object set by a call to feholdexcept () or fegetenv (), or equal a floating-point environment macro.
RETURN VALUE
None.
ERRORS
No errors are defined.
EXAMPLES
The following example shows sample code to hide spurious underflow floating-point
exceptions:
#include <fenv.h>
double f(double x)
{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
/l compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;
}
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS

None.

11625 SEE ALSO

11626

fegetenv/(), feholdexcept (), the Base Definitions volume of IEEE Std. 1003.1-200x%, <fenv.h>

11627 CHANGE HISTORY

11628

852

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

11629
11630

11631
11632

11633

11634
11635
11636
11637

11638
11639
11640

11641
11642

11643
11644
11645

11646
11647

11648
11649

11650

11651

11652

11653
11654

11655

11656
11657
11658
11659

11660

11661
11662

11663

11664
11665

System Interfaces fflush()

NAME
fflush — flush a stream
SYNOPSIS
#include <stdio.h>
int fflush(FILE * stream);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
If stream points to an output stream or an update stream in which the most recent operation was
cX not input, fflush() causes any unwritten data for that stream to be written to the file, and the
st_ctime and st_mtime fields of the underlying file are marked for update.
If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the
behavior is defined above.
RETURN VALUE
Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for
cX the stream, return EOF, and set errno to indicate the error.
ERRORS
The fflush () function shall fail if:
cX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the write operation.
cX [EBADF] The file descriptor underlying stream is not valid.
cX [EFBIG] An attempt was made to write a file that exceeds the maximum file size.
Xsl [EFBIG] An attempt was made to write a file that exceeds the process’ file size limit.
cX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the
offset maximum associated with the corresponding stream.
cX [EINTR] The fflush () function was interrupted by a signal.
cX [EIO] The process is a member of a background process group attempting to write
to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is orphaned. This
error may also be returned under implementation-defined conditions.
cX [ENOSPC] There was no free space remaining on the device containing the file.
cX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by
any process. A SIGPIPE signal shall also be sent to the thread.
The fflush () function may fail if:
cX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

System Interfaces, Issue 6 853

fflush() System Interfaces

11666 EXAMPLES

11667

11668
11669
11670
11671
11672

11673
11674
11675
11676
11677
11678
11679
11680
11681

11682
11683
11684

11685
11686
11687
11688

Sending Prompts to Standard Output

The following example uses printf() calls to print a series of prompts for information the user
must enter from standard input. The fflush() calls force the output to standard output. The
fflush () function is used because standard output is usually buffered and the prompt may not
immediately be printed on the output or terminal. The gets() calls read strings from standard
input and place the results in variables, for use later in the program

#include <stdio.h>

char user[100];
char oldpasswd[100];
char newpasswd[100];

printf("User name: ");
fflush(stdout);
gets(user);

printf("Old password: ");
fflush(stdout);
gets(oldpasswd);

printf("New password: ");
fflush(stdout);
gets(newpasswd);

11689 APPLICATION USAGE

11690

None.

11691 RATIONALE

11692
11693
11694

Data buffered by the system may make determining the validity of the position of the current
file descriptor impractical. Thus, enforcing the repositioning of the file descriptor after fflush()
on streams open for read() is not mandated by IEEE Std. 1003.1-200x.

11695 FUTURE DIRECTIONS

11696

None.

11697 SEE ALSO

11698

getrlimit(), ulimit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

11699 CHANGE HISTORY

11700

11701 Issue 4
11702

11703
11704

11705
11706
11707

854

First released in Issue 1. Derived from Issue 1 of the SVID.

The following change is incorporated for alignment with the ISO C standard:
- The DESCRIPTION is changed to describe the behavior of fflush () if stream is a null pointer.
The following changes are incorporated for alignment with the ISO POSIX-1 standard:

« The following two paragraphs are withdrawn from the DESCRIPTION (by POSIX as well as
X/0pen) because of the possibility of causing applications to malfunction, and the
impossibility of implementing these mechanisms for pipes:

Technical Standard (2000) (Draft July 31, 2000)

11708

11709
11710
11711
11712

11713

11714
11715

11716
11717

11718
11719

11720

11721

11722
11723

System Interfaces fflush()

If the stream is open for reading, any unread data buffered in the stream is discarded.

For a stream open for reading, if the file is not already at EOF, and the file is one capable
of seeking, the file offset of the underlying open file description is adjusted so that the
next operation on the open file description deals with the byte after the last one read
from, or written to, the stream being flushed.

- The [EFBIG] error is marked to indicate the extensions.

Issue 5
Large File Summit extensions are added.

Issue 6
Extensions beyond the ISO C standard are now marked.

The following new requirements on POSIX implementations derive from alignment with the
Single UNIX Specification:

- The [EFBIG] error is added as part of the large file support extensions.
« The [ENXIO] optional error condition is added.

The RETURN VALUE section is updated to note that the error indicator shall be set for the
stream. This is for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 855

11724 NAME

11725

ffs()

System Interfaces

ffs — find first set bit

11726 Notes to Reviewers

11727

11728
11729

11730
11731

11732
11733

11734
11735
11736

This section with side shading will not appear in the final copy. - Ed.

This function or these functions are recommended to become mandatory parts of POSIX.1 in the
next draft.

SYNOPSIS

XSl

#include <strings.h>

int ffs(int i);

DESCRIPTION

The ffs() function shall find the first bit set (beginning with the least significant bit) in i, and
return the index of that bit. Bits are numbered starting at one (the least significant bit).

11737 RETURN VALUE

11738

The ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

11739 ERRORS

11740

No errors are defined.

11741 EXAMPLES

11742

None.

11743 APPLICATION USAGE

11744

None.

11745 RATIONALE

11746

None.

11747 FUTURE DIRECTIONS

11748

None.

11749 SEE ALSO

11750

The Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h>

11751 CHANGE HISTORY

11752

11753 Issue 5

11754

856

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetc()

11755 NAME

11756 fgetc — get a byte from a stream

11757 SYNOPSIS

11758 #include <stdio.h>

11759 int fgetc(FILE * stream);

11760 DESCRIPTION

11761 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11762 conflict between the requirements described here and the ISO C standard is unintentional. This
11763 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11764 If the end-of-file indicator for the input stream pointed to by stream is not set and a next
11765 character is present, the fgetc() function obtains the next byte (if present) as an unsigned char
11766 converted to an int, from the input stream pointed to by stream, and advances the associated file
11767 position indicator for the stream (if defined).

11768 CX The fgetc() function may mark the st_atime field of the file associated with stream for update. The
11769 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
11770 fgetwce(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
11771 data not supplied by a prior call to ungetc() or ungetwec().

11772 RETURN VALUE

11773 Upon successful completion, fgetc() shall return the next byte from the input stream pointed to
11774 by stream. If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the
11775 end-of-file indicator for the stream shall be set and fgetc() shall return EOF. If a read error occurs,
11776 CX the error indicator for the stream shall be set, fgetc() shall return EOF, and shall set errno to
11777 indicate the error.

11778 ERRORS

11779 The fgetc() function shall fail if data needs to be read and:

11780 cX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
11781 process would be delayed in the fgetc() operation.

11782 cX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
11783 reading.

11784 cX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
11785 was transferred.

11786 CX [EIO] A physical 1/0 error has occurred, or the process is in a background process
11787 group attempting to read from its controlling terminal, and either the process
11788 is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
11789 This error may also be generated for implementation-defined reasons.

11790 cX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
11791 offset maximum associated with the corresponding stream.

11792 The fgetc() function may fail if:

11793 cX [ENOMEM] Insufficient storage space is available.

11794 cX [ENXIO] A request was made of a nonexistent device, or the request was outside the
11795 capabilities of the device.

System Interfaces, Issue 6 857

fgetc() System Interfaces

11796 EXAMPLES

11797 None.

11798 APPLICATION USAGE

11799 If the integer value returned by fgetc() is stored into a variable of type char and then compared
11800 against the integer constant EOF, the comparison may never succeed, because sign-extension of
11801 a variable of type char on widening to integer is implementation-defined.

11802 The ferror() or feof() functions must be used to distinguish between an error condition and an
11803 end-of-file condition.

11804 RATIONALE

11805 None.

11806 FUTURE DIRECTIONS

11807 None.

11808 SEE ALSO

11809 feof (), ferror(), fopen(), getchar(), getc(), the Base Definitions volume of IEEE Std. 1003.1-200x,
11810 <stdio.h>

11811 CHANGE HISTORY

11812 First released in Issue 1. Derived from Issue 1 of the SVID.

11813 Issue 4

11814 In the DESCRIPTION:

11815 - The text is changed to make it clear that the function returns a byte value.

11816 - The list of functions that may cause the st_atime field to be updated is revised.

11817 In the ERRORS section, text is added to indicate that error returns are only generated when data
11818 needs to be read into the stream buffer.

11819 Also in the ERRORS section, in previous issues generation of the [EIO] error depended on
11820 whether or not an implementation supported Job Control. This functionality is now defined as
11821 mandatory.

11822 The [ENXIO] and [ENOMEM] errors are marked as extensions.

11823 In the APPLICATION USAGE section, text is added to indicate how an application can
11824 distinguish between an error condition and an end-of-file condition.

11825 The description of [EINTR] is amended.

11826 Issue 4, Version 2

11827 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
11828 170 error occurs.

11829 Issue 5

11830 Large File Summit extensions are added.

11831 Issue 6

11832 Extensions beyond the ISO C standard are now marked.

11833 The following new requirements on POSIX implementations derive from alignment with the
11834 Single UNIX Specification:

11835 - The [EIO] and [EOVERFLOW] mandatory error conditions are added.

11836 « The [ENOMEM] and [ENXIO] optional error conditions are added.

858 Technical Standard (2000) (Draft July 31, 2000)

11837

11838
11839

11840
11841

System Interfaces

The following changes are made for alignment with the ISO/IEC 9899: 1999 standard:

fgetc()

« The DESCRIPTION is updated to clarify the behavior when the end-of-file indicator for the

input stream is not set.

« The RETURN VALUE section is updated to note that the error indicator shall be set for the

stream.

System Interfaces, Issue 6

859

11842 NAME

11843

fgetpos()

fgetpos — get current file position information

11844 SYNOPSIS

11845

11846

11847
11848
11849
11850

11851
11852
11853
11854

11855
11856
11857

11858
11859

11860
11861

11862

11863

11864
11865

11866
11867

#include <stdio.h>
int fgetpos(FILE *restrict stream , fpos_t *restrict pos);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The fgetpos() function shall store the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified
information usable by fsetpos() for repositioning the stream to its position at the time of the call
to fgetpos ().

RETURN VALUE
Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value
and set errno to indicate the error.

ERRORS
The fgetpos () function shall fail if:

cX [EOVERFLOW] The current value of the file position cannot be represented correctly in an

object of type fpos _t.

The fgetpos () function may fail if:

cX [EBADF] The file descriptor underlying stream is not valid.

cX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket.

EXAMPLES
None.

11868 APPLICATION USAGE

11869

None.

11870 RATIONALE

11871

None.

11872 FUTURE DIRECTIONS

11873

None.

11874 SEE ALSO
fopen(), ftell(), rewind(), ungetc(), the Base Definitions volume of IEEE Std.1003.1-200x,

11875
11876

<stdio.h>

11877 CHANGE HISTORY
First released in Issue 4. Derived from the ISO C standard.

11878

11879 Issue 5

11880

11881 Issue 6

11882

11883
11884

860

Large File Summit extensions are added.

System Interfaces

Extensions beyond the ISO C standard are now marked.

The following new requirements on POSIX implementations derive from alignment with the

Single UNIX Specification:

Technical Standard (2000) (Draft July 31, 2000)

11885

11886

11887

11888

System Interfaces fgetpos()

« The [EIO] mandatory error condition is added.
- The [EBADF] and [ESPIPE] optional error conditions are added.
An additional [ESPIPE] error condition is added for sockets.
The prototype for fgetpos() is changed for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

861

fgets() System Interfaces

11889 NAME

11890 fgets — get a string from a stream

11891 SYNOPSIS

11892 #include <stdio.h>

11893 char *fgets(char *restrict s, int n, FILE *restrict stream);

11894 DESCRIPTION

11895 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11896 conflict between the requirements described here and the ISO C standard is unintentional. This
11897 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11898 The fgets() function shall read bytes from stream into the array pointed to by s, until n-1 bytes
11899 are read, or a <newline> character is read and transferred to s, or an end-of-file condition is
11900 encountered. The string is then terminated with a null byte.

11901 cX The fgets() function may mark the st_atime field of the file associated with stream for update. The
11902 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
11903 fgetwe(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
11904 data not supplied by a prior call to ungetc() or ungetwc().

11905 RETURN VALUE

11906 Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file
11907 indicator for the stream shall be set and fgets() shall return a null pointer. If a read error occurs,
11908 CX the error indicator for the stream shall be set, fgets() shall return a null pointer, and shall set
11909 errno to indicate the error.

11910 ERRORS

11911 Refer to fgetc().

11912 EXAMPLES

11913 Reading Input

11914 The following example uses fgets() to read each line of input. {LINE_MAX}, which defines the
11915 maximum size of the input line, is defined in the <limits.h> header.
11916 #include <stdio.h>

11917

11918 char line[LINE_MAX];

11919

11920 while (fgets(line, LINE_MAX, fp) '= NULL) {

11921

11922 }

11923

11924 APPLICATION USAGE

11925 None.

11926 RATIONALE

11927 None.

11928 FUTURE DIRECTIONS

11929 None.

862 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgets()

11930 SEE ALSO

11931

11932
11933

11934
11935
11936
11937

11938
11939

11940

fopen(), fread (), gets(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4

In the DESCRIPTION, the text is changed to make it clear that the function reads bytes rather
than (possibly multi-byte) characters, and the list of functions that may cause the st_atime field to

be updated is revised.

Issue 6
Extensions beyond the ISO C standard are now marked.

The prototype for fgets() is changed for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

863

11941 NAME

11942

fgetwec() System Interfaces

fgetwc — get a wide-character code from a stream

11943 SYNOPSIS

11944
11945

11946

11947
11948
11949
11950

11951
11952
11953

11954
11955

11956
11957
11958
11959

11960
11961
11962
11963
11964
11965

11966
11967

11968
11969

11970
11971

11972
11973

11974
11975
11976
11977

11978
11979

11980

11981

11982
11983

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE * stream);
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The fgetwce () function shall obtain the next character (if present) from the input stream pointed to
by stream, convert that to the corresponding wide-character code, and advance the associated
file position indicator for the stream (if defined).
If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.
cX The fgetwce() function may mark the st_atime field of the file associated with stream for update.
The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc (), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwc().
RETURN VALUE
Upon successful completion, the fgetwc() function shall return the wide-character code of the
character read from the input stream pointed to by stream converted to a type wint_t. If the
stream is at end-of-file, the end-of-file indicator for the stream shall be set and fgetwc() shall
return WEOF. If a read error occurs, the error indicator for the stream shall be set, fgetwc() shall
cX return WEOF, and shall set errno to indicate the error.
ERRORS
The fgetwc () function shall fail if data needs to be read and:
cX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the
process would be delayed in the fgetwc() operation.
cX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for
reading.
cX [EINTR] The read operation was terminated due to the receipt of a signal, and no data
was transferred.
cX [EIO] A physical 1/0 error has occurred, or the process is in a background process
group attempting to read from its controlling terminal, and either the process
is ignoring or blocking the SIGTTIN signal or the process group is orphaned.
This error may also be generated for implementation-defined reasons.
cX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the
offset maximum associated with the corresponding stream.
The fgetwce () function may fail if:
cX [ENOMEM] Insufficient storage space is available.
cX [ENXIO] A request was made of a nonexistent device, or the request was outside the
capabilities of the device.
864 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetwec()

11984 cx [EILSEQ] The data obtained from the input stream does not form a valid character.

11985 EXAMPLES

11986 None.

11987 APPLICATION USAGE

11988 The ferror() or feof() functions must be used to distinguish between an error condition and an
11989 end-of-file condition.

11990 RATIONALE

11991 None.

11992 FUTURE DIRECTIONS

11993 None.

11994 SEE ALSO

11995 feof(), ferror(), fopen(), the Base Definitions volume of IEEE Std.1003.1-200x, <stdio.h>,
11996 <wchar.h>

11997 CHANGE HISTORY

11998 First released in Issue 4. Derived from the MSE working draft.

11999 Issue 4, Version 2

12000 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
12001 170 error occurs.

12002 Issue 5

12003 The Optional Header (OH) marking is removed from <stdio.h>.

12004 Large File Summit extensions are added.

12005 Issue 6

12006 Extensions beyond the ISO C standard are now marked.

12007 The following new requirements on POSIX implementations derive from alignment with the
12008 Single UNIX Specification:

12009 - The [EIO] and [EOVERFLOW] mandatory error conditions are added.

12010 « The [ENOMEM], [ENXIO], and [EILSEQ] optional error conditions are added.

System Interfaces, Issue 6 865

12011 NAME

12012

fgetws() System Interfaces

fgetws — get a wide-character string from a stream

12013 SYNOPSIS

12014
12015

12016
12017

12018
12019
12020
12021

12022
12023
12024
12025
12026

12027
12028

12029
12030
12031
12032

12033
12034
12035
12036
12037

12038
12039

12040
12041

12042
12043

#include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t *restrict ws, int n,
FILE *restrict stream);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
The fgetws() function shall read characters from the stream, convert these to the corresponding
wide-character codes, place them in the wchar_t array pointed to by ws, until n—1 characters are
read, or a <newline> character is read, converted, and transferred to ws, or an end-of-file
condition is encountered. The wide-character string, ws, is then terminated with a null wide-
character code.
If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

cX The fgetws() function may mark the st_atime field of the file associated with stream for update.
The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
fgetwc (), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
data not supplied by a prior call to ungetc() or ungetwec().

RETURN VALUE
Upon successful completion, fgetws() shall return ws. If the stream is at end-of-file, the end-of-
file indicator for the stream shall be set and fgetws() shall return a null pointer. If a read error

cX occurs, the error indicator for the stream shall be set, fgetws() shall return a null pointer, and
shall set errno to indicate the error.

ERRORS
Refer to fgetwc().

EXAMPLES
None.

APPLICATION USAGE

None.

12044 RATIONALE

12045

None.

12046 FUTURE DIRECTIONS

12047

None.

12048 SEE ALSO

12049

fopen(), fread (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h>

12050 CHANGE HISTORY

12051

866

First released in Issue 4. Derived from the MSE working draft.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetws()

12052 Issue 5

12053 The Optional Header (OH) marking is removed from <stdio.h>.

12054 Issue 6

12055 Extensions beyond the ISO C standard are now marked.

12056 The prototype for fgetws() is changed for alignment with the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 867

fileno() System Interfaces

12057 NAME

12058 fileno — map a stream pointer to a file descriptor

12059 SYNOPSIS

12060 #include <stdio.h>

12061 int fileno(FILE * stream);

12062 DESCRIPTION

12063 The fileno () function shall return the integer file descriptor associated with the stream pointed to
12064 by stream.

12065 RETURN VALUE

12066 Upon successful completion, fileno() shall return the integer value of the file descriptor
12067 associated with stream. Otherwise, the value —1 shall be returned and errno set to indicate the
12068 error.

12069 ERRORS

12070 The fileno() function may fail if:

12071 [EBADF] The stream argument is not a valid stream.

12072 EXAMPLES

12073 None.

12074 APPLICATION USAGE

12075 None.

12076 RATIONALE

12077 Without some specification of which file descriptors are associated with these streams, it is
12078 impossible for an application to set up the streams for another application it starts with fork()
12079 and exec. In particular, it would not be possible to write a portable version of the sh command
12080 interpreter (although there may be other constraints that would prevent that portability).

12081 FUTURE DIRECTIONS

12082 None.

12083 SEE ALSO

12084 fdopen (), fopen(), stdin, the Base Definitions volume of IEEE Std. 1003.1-200x%, <stdio.h>, Section
12085 2.5.1 (on page 535)

12086 CHANGE HISTORY

12087 First released in Issue 1. Derived from Issue 1 of the SVID.

12088 Issue 4

12089 The [EBADF] error is marked as an extension.

12090 Issue 6

12091 The following new requirements on POSIX implementations derive from alignment with the
12092 Single UNIX Specification:

12093 - The [EBADF] optional error condition is added.

868 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces flockfile()

12094 NAME

12095 flockfile, ftrylockfile, funlockfile — stdio locking functions

12096 SYNOPSIS

12097 TSF #include <stdio.h>

12098 void flockfile(FILE * file);

12099 int ftrylockfile(FILE * file);

12100 void funlockfile(FILE * file);

12101

12102 DESCRIPTION

12103 The flockfile (), ftrylockfile(), and funlockfile() functions provide for explicit application-level
12104 locking of stdio (FILE*) objects. These functions can be used by a thread to delineate a sequence
12105 of 1/0 statements that are executed as a unit.

12106 The flockfile () function is used by a thread to acquire ownership of a (FILE*) object.

12107 The ftrylockfile () function is used by a thread to acquire ownership of a (FILE*) object if the
12108 object is available; ftrylockfile () is a non-blocking version of flockfile ().

12109 The funlockfile() function is used to relinquish the ownership granted to the thread. The
12110 behavior is undefined if a thread other than the current owner calls the funlockfile () function.
12111 Logically, there is a lock count associated with each (FILE*) object. This count is implicitly
12112 initialized to zero when the (FILE*) object is created. The (FILE*) object is unlocked when the
12113 count is zero. When the count is positive, a single thread owns the (FILE*) object. When the
12114 flockfile () function is called, if the count is zero or if the count is positive and the caller owns the
12115 (FILE*) object, the count is incremented. Otherwise, the calling thread is suspended, waiting for
12116 the count to return to zero. Each call to funlockfile () decrements the count. This allows matching
12117 calls to flockfile () (or successful calls to ftrylockfile ()) and funlockfile () to be nested.

12118 All functions that reference (FILE*) objects shall behave as if they use flockfile () and funlockfile ()
12119 internally to obtain ownership of these (FILE*) objects.

12120 RETURN VALUE

12121 None for flockfile () and funlockfile (). The ftrylockfile () function shall return zero for success and
12122 non-zero to indicate that the lock cannot be acquired.

12123 ERRORS

12124 No errors are defined.

12125 EXAMPLES

12126 None.

12127 APPLICATION USAGE

12128 Applications using these functions may be subject to priority inversion, as discussed in the Base
12129 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion.

12130 RATIONALE

12131 The flockfile () and funlockfile () functions provide an orthogonal mutual exclusion lock for each
12132 FILE. The ftrylockfile() function provides a non-blocking attempt to acquire a file lock,
12133 analogous to pthread_mutex_trylock().

12134 These locks behave as if they are the same as those used internally by stdio for thread-safety.
12135 This both provides thread-safety of these functions without requiring a second level of internal
12136 locking and allows functions in stdio to be implemented in terms of other stdio functions.

12137 Application writers and implementors should be aware that there are potential deadlock
12138 problems on FILE objects. For example, the line-buffered flushing semantics of stdio (requested

System Interfaces, Issue 6 869

flockfile() System Interfaces

12139 via { IOLBF}) require that certain input operations sometimes cause the buffered contents of |
12140 implementation-defined line-buffered output streams to be flushed. If two threads each hold the |
12141 lock on the other’s FILE, deadlock ensues. This type of deadlock can be avoided by acquiring
12142 FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can
12143 typically be avoided by acquiring locks on input streams before locks on output streams if a
12144 thread would be acquiring both.

12145 In summary, threads sharing stdio streams with other threads can use flockfile () and funlockfile ()
12146 to cause sequences of 1/0 performed by a single thread to be kept bundled. The only case where
12147 the use of flockfile () and funlockfile () is required is to provide a scope protecting uses of the
12148 * unlocked () functions/macros. This moves the cost/performance tradeoff to the optimal point.

12149 FUTURE DIRECTIONS

12150 None.

12151 SEE ALSO

12152 getc_unlocked (), putc_unlocked(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |
12153 CHANGE HISTORY

12154 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

12155 Issue 6
12156 These functions are marked as part of the Thread-Safe Functions option. |

870 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces floor()

12157 NAME

12158 floor, floorf, floorl — floor function

12159 SYNOPSIS

12160 #include <math.h>

12161 double floor(double X);

12162 float floorf(float X);

12163 long double floorl(long double X);

12164 DESCRIPTION

12165 Cx The functionality described on this reference page is aligned with the ISO C standard. Any
12166 conflict between the requirements described here and the ISO C standard is unintentional. This
12167 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12168 These functions shall compute the largest integral value not greater than x.

12169 An application wishing to check for error situations should set errno to 0 before calling floor (). If
12170 errno is non-zero on return, or the return value is NaN, an error has occurred.

12171 RETURN VALUE

12172 Upon successful completion, these functions shall return the largest integral value not greater
12173 than x, expressed as a double.

12174 Xl If x is NaN, NaN shall be returned and errno may be set to [EDOM].

12175 If the correct value would cause overflow, —-HUGE_VAL shall be returned and errno set to
12176 [ERANGE].

12177 Xsl If x is zInf or £0, the value of x shall be returned.

12178 ERRORS

12179 These functions shall fail if:

12180 [ERANGE] The result would cause an overflow.

12181 These functions may fail if:

12182 Xl [EDOM] The value of x is NaN.

12183 Xsl No other errors shall occur.

12184 EXAMPLES

12185 None.

12186 APPLICATION USAGE

12187 The integral value returned by floor () as a double might not be expressible as an int or long. The
12188 return value should be tested before assigning it to an integer type to avoid the undefined results
12189 of an integer overflow.

12190 The floor() function can only overflow when the floating point representation has
12191 DBL_MANT _DIG > DBL_MAX_EXP.

12192 RATIONALE

12193 None.

12194 FUTURE DIRECTIONS

12195 None.

System Interfaces, Issue 6 871

floor() System Interfaces

12196 SEE ALSO

12197

ceil (), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200%, <math.h>

12198 CHANGE HISTORY

12199

12200
12201

12202
12203

12204

12205

12206
12207
12208

12209
12210

Issue 4

Issue 5

Issue 6

872

First released in Issue 1. Derived from Issue 1 of the SVID.

References to matherr() are removed.

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
ISO C standard and to rationalize handling in the mathematics functions.

The word long has been replaced with the words long in the APPLICATION USAGE section.

The return value specified for [EDOM] is marked as an extension.

The DESCRIPTION is updated to indicate how an application should check for an error. This
text was previously published in the APPLICATION USAGE section.

The floorf() and floorl () functions are added for alignment with the ISO/IEC 9899: 1999 standard.

Technical Standard (2000) (Draft July 31, 2000)

12211 NAME

12212

System Interfaces fma()

fma, fmaf, fmal — floating-point multiply-add

12213 SYNOPSIS

12214

12215
12216
12217

12218
12219
12220
12221

12222
12223
12224

12225
12226

12227
12228
12229

12230

12231
12232

12233

12235

12237

12238
12239
12240
12241
12242
12243

#include <math.h>
double fma(double X, double y, double 2);
float fmaf(float X, float y, float 2);
long double fmal(long double X, long double y, long double 2);

DESCRIPTION

cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the 1SO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall compute (x *y) + z, rounded as one ternary operation: they shall compute
the value (as if) to infinite precision and round once to the result format, according to the
rounding mode characterized by the value of FLT_ROUNDS.
An application wishing to check for error situations should set errno to 0 before calling these
functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return (x *y) + z, rounded as one ternary
operation.
If x,y, or zis NaN, NaN shall be returned and errno may be set to [EDOM].

ERRORS
These functions may fail if:
[EDOM] The value of x, y, or z is NaN.

12234 EXAMPLES
None.
12236 APPLICATION USAGE

None.

RATIONALE
In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its
unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT
macro can be used to disallow use of floating multiply-add; and the fma() function guarantees
its use where desired. Many current machines provide hardware floating multiply-add
instructions; software implementation can be used for others.

FUTURE DIRECTIONS

12244
12245

None.

12246 SEE ALSO

12247

The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

12248 CHANGE HISTORY

12249

First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6 873

12250 NAME

12251

12252
12253

12254
12255
12256

12257
12258
12259
12260

12261
12262
12263

12264
12265

12266
12267
12268

12269

12270
12271

12272

12273
12274

fmax()

System Interfaces

fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers

SYNOPSIS
#include <math.h>

double fmax(double X, double y);

float fmaxf(float

long double fmaxl(long double

DESCRIPTION
The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

CX

X, float)i

X, long double)i

These functions shall determine the maximum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then the fmax(), fmaxf(), and fmaxI() functions shall choose the numeric value.

An application wishing to check for error situations should set errno to 0 before calling these
functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.

RETURN VALUE
Upon successful completion, these functions shall return the maximum numeric value of their

arguments.

If xand y are NaN, NaN shall be returned and errno may be set to [EDOM].

ERRORS
These functions may fail if:

[EDOM]

EXAMPLES

None.

12275 APPLICATION USAGE

12276

None.

12277 RATIONALE

12278

None.

12279 FUTURE DIRECTIONS

12280

None.

12281 SEE ALSO
fdim(), fmin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

12283 CHANGE HISTORY
First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

12282

12284

874

The value of x and y is NaN.

Technical Standard (2000) (Draft July 31, 2000)

12285
12286

12287
12288

12289
12290
12291

12292
12293
12294
12295

12296
12297
12298

12299
12300

12301
12302
12303

12304

12305
12306

12307

12308
12309

12310
12311

12312
12313

12314
12315

12316
12317

12318
12319

System Interfaces

fmin()

NAME
fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers
SYNOPSIS
#include <math.h>
double fmin(double X, double y);
float fminf(float X, float)i
long double fminl(long double X, long double)i
DESCRIPTION
cX The functionality described on this reference page is aligned with the ISO C standard. Any
conflict between the requirements described here and the ISO C standard is unintentional. This
volume of IEEE Std. 1003.1-200x defers to the ISO C standard.
These functions shall determine the minimum numeric value of their arguments. NaN
arguments shall be treated as missing data: if one argument is a NaN and the other numeric,
then these functions shall choose the numeric value.
An application wishing to check for error situations should set errno to 0 before calling these
functions. If errno is non-zero on return, or the return value is NaN, an error has occurred.
RETURN VALUE
Upon successful completion, these functions shall return the minimum numeric value of their
arguments.
If xand y are NaN, NaN shall be returned and errno may be set to [EDOM].
ERRORS
These functions may fail if:
[EDOM] The value of x and y is NaN.
EXAMPLES
None.
APPLICATION USAGE
None.
RATIONALE
None.
FUTURE DIRECTIONS
None.
SEE ALSO
fdim (), fmax(), the Base Definitions volume of IEEE Std. 1003.1-200%, <math.h>
CHANGE HISTORY

First released in Issue 6. Derived from ISO/IEC 9899: 1999 standard.

System Interfaces, Issue 6

875

fmod() System Interfaces

12320 NAME

12321 fmod, fmodf, fmodl — floating-point remainder value function |
12322 SYNOPSIS

12323 #include <math.h>

12324 double fmod(double X, double y);

12325 float fmodf(float X, float)i |
12326 long double fmodi(long double X, long double)i |
12327 DESCRIPTION [
12328 cX The functionality described on this reference page is aligned with the ISO C standard. Any
12329 conflict between the requirements described here and the ISO C standard is unintentional. This
12330 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12331 These functions shall return the floating-point remainder of the division of x by y. |
12332 An application wishing to check for error situations should set errno to 0 before calling fmod(). If
12333 errno is non-zero on return, or the return value is NaN, an error has occurred.

12334 RETURN VALUE

12335 These functions shall return the value x-i*y, for some integer i such that, if y is non-zero, the |
12336 result has the same sign as x and magnitude less than the magnitude of y.

12337 Xl If x or y is NaN, NaN shall be returned and errno may be set to [EDOM]. |
12338 XSl If y is 0, NaN shall be returnedand errno set to [EDOM], or 0 shall be returned and errno may be
12339 set to [EDOM].

12340 Xl If x is £Inf, either 0 shall be returned and errno set to [EDOM], or NaN shall be returned and errno
12341 may be set to [EDOM].

12342 If y is non-zero, fmod(0,y) shall return the value of x. If x is not +Inf, fmod (x,xInf) shall return
12343 the value of x.

12344 If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |
12345 ERRORS

12346 These functions may fail if: |
12347 Xsl [EDOM] One or both of the arguments is NaN, or y is 0, or X is zInf. |
12348 [ERANGE] The result underflows |
12349 Xsl No other errors shall occur.

12350 EXAMPLES

12351 None.

12352 APPLICATION USAGE

12353 Portable applications should not call fmod() with y equal to 0, because the result is |
12354 implementation-defined. The application should verify y is non-zero before calling fmod (). |
12355 RATIONALE

12356 None.

12357 FUTURE DIRECTIONS

12358 None.

876 Technical Standard (2000) (Draft July 31, 2000)

12359
12360

12361
12362

12363
12364

12365
12366

12367

12368
12369
12370

12371
12372
12373

System Interfaces

SEE ALSO
isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>

CHANGE HISTORY
First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 4
References to matherr() are removed.

fmod()

The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the

ISO C standard and to rationalize error handling in the mathematics functions.
The return value specified for [EDOM] is marked as an extension.

Issue 5

The DESCRIPTION is updated to indicate how an application should check for an error. This

text was previously published in the APPLICATION USAGE section.

Issue 6

The fmodf() and fmodl() functions are added for alignment with the ISO/IEC 9899:1999

standard.

System Interfaces, Issue 6

877

12374 NAME

12375

12377

12378
12379
12380

12381
12382
12383

12384
12385

12386
12387
12388

12389
12390
12391
12392
12393
12394
12395

12396
12397
12398

12399
12400
12401
12402

12403
12404
12405
12406
12407

12408
12409
12410
12411

12412
12413

12414
12415

12416
12417

fmtmsg()

System Interfaces

fmtmsg — display a message in the specified format on standard error and/or a system console
12376 SYNOPSIS

classification , const char * Jabel , int severity |

const char * text , const char * action , const char * tag);

The fmtmsg() function can be used to display messages in a specified format instead of the

Based on a message’s classification component, fmtmsg() writes a formatted message either to
standard error, to the console, or to both.

A formatted message consists of up to five components as defined below. The component
classification is not part of a message displayed to the user, but defines the source of the message
and directs the display of the formatted message.

Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in
combination with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together, with the
exception of identifiers from the display subclass. (Both display subclass
identifiers may be used so that messages can be displayed to both standard
error and the system console).

Major Classifications
Identifies the source of the condition. ldentifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

Message Source Subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

Display Subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

Status Subclassifications
Indicates whether the application can recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

An additional identifier, MM_NULLMC, indicates that no classification
component is supplied for the message.

Identifies the source of the message. The format is two fields separated by a
colon. The first field is up to 10 bytes, the second is up to 14 bytes.

Indicates the seriousness of the condition. Identifiers for the levels of severity

Xsl #include <fmtmsg.h>

int fmtmsg(long
DESCRIPTION

traditional printf() function.

classification

label

severity

are:

878

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fmtmsg()

12418 MM_HALT Indicates that the application has encountered a severe fault
12419 and is halting. Produces the string "HALT" .

12420 MM_ERROR Indicates that the application has detected a fault. Produces
12421 the string "ERROR".

12422 MM_WARNING Indicates a condition that is out of the ordinary, that might
12423 be a problem, and should be watched. Produces the string
12424 "WARNING"

12425 MM_INFO Provides information about a condition that is not in error.
12426 Produces the string "INFO" .

12427 MM_NOSEV Indicates that no severity level is supplied for the message.
12428 text Describes the error condition that produced the message. The character string
12429 is not limited to a specific size. If the character string is empty, then the text
12430 produced is unspecified.

12431 action Describes the first step to be taken in the error-recovery process. The fmtmsg()
12432 function precedes the action string with the prefix;: "TO FIX:" . The action
12433 string is not limited to a specific size.

12434 tag An identifier that references on-line documentation for the message.
12435 Suggested usage is that tag includes the label and a unique identifying number.
12436 A sample tag is "XSl:cat:146"

12437 The MSGVERB environment variable (for message verbosity) tells fmtmsg() which message
12438 components it is to select when writing messages to standard error. The value of MSGVERB is a
12439 colon-separated list of optional keywords. Valid keywords are: label, severity, text, action, and tag. If
12440 MSGVERB contains a keyword for a component and the component’s value is not the
12441 component’s null value, fmtmsg() includes that component in the message when writing the
12442 message to standard error. If MSGVERB does not include a keyword for a message component,
12443 that component is not included in the display of the message. The keywords may appear in any
12444 order. If MSGVERSB is not defined, if its value is the null string, if its value is not of the correct
12445 format, or if it contains keywords other than the valid ones listed above, fmtmsg() selects all
12446 components.

12447 MSGVERB affects only which components are selected for display to standard error. All
12448 message components are included in console messages.

12449 RETURN VALUE

12450 The fmtmsg() function shall return one of the following values:

12451 MM_OK The function succeeded.

12452 MM_NOTOK The function failed completely.

12453 MM_NOMSG The function was unable to generate a message on standard error, but
12454 otherwise succeeded.

12455 MM_NOCON The function was unable to generate a console message, but otherwise
12456 succeeded.

12457 ERRORS

12458 None.

System Interfaces, Issue 6 879

fmtmsg() System Interfaces

12459 EXAMPLES

12460

12461
12462

12463

12464
12465

12466

12467

12468

12469
12470

12471
12472
12473

1. The following example of fmtmsg():

fmtmsg(MM_PRINT, "XSl:cat", MM_ERROR, "illegal option",
"refer to cat in user’s reference manual", "XSl:cat:001")

produces a complete message in the specified message format:

XSl:cat: ERROR: illegal option
TO FIX: refer to cat in user's reference manual XSl:cat:001

2. When the environment variable MSGVERB is set as follows:
MSGVERB=severity:text:action
and Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user's reference manual

APPLICATION USAGE

One or more message components may be systematically omitted from messages generated by
an application by using the null value of the argument for that component.

12474 RATIONALE

12475

None.

12476 FUTURE DIRECTIONS

12477

None.

12478 SEE ALSO

12479

printf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fmtmsg.h>

12480 CHANGE HISTORY

12481

12482 Issue 5

12483

880

First released in Issue 4, Version 2.

Moved from X/OPEN UNIX extension to BASE.

Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fnmatch()

12484 NAME

12485 fnmatch — match a file name or a path name

12486 SYNOPSIS

12487 #include <fnmatch.h>

12488 int fnmatch(const char * pattern , const char * string , int flags);

12489 DESCRIPTION

12490 The fnmatch() function shall match patterns as described in the Shell and Utilities volume of
12491 IEEE Std. 1003.1-200x, Section 2.14.1, Patterns Matching a Single Character, and Section 2.14.2,
12492 Patterns Matching Multiple Characters. It checks the string specified by the string argument to
12493 see if it matches the pattern specified by the pattern argument.

12494 The flags argument modifies the interpretation of pattern and string. It is the bitwise-inclusive OR
12495 of zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag is set in flags,
12496 then a slash character (/') in string shall be explicitly matched by a slash in pattern; it shall not
12497 be matched by either the asterisk or question-mark special characters, nor by a bracket
12498 expression. If the FNM_PATHNANME flag is not set, the slash character is treated as an ordinary
12499 character.

12500 If FNM_NOESCAPE is not set in flags, a backslash character ("') in pattern followed by any
12501 other character shall match that second character in string. In particular, "\" shall match a
12502 backslash in string. If FNM_NOESCAPE is set, a backslash character shall be treated as an
12503 ordinary character.

12504 If FNM_PERIOD is set in flags, then a leading period (") in string shall match a period in
12505 pattern; as described by rule 2 in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section
12506 2.14.3, Patterns Used for File Name Expansion where the location of ““leading’ is indicated by
125