
|||||||||||

Chapter 1 |

Introduction |1

2 1.1 Scope
3 The scope of IEEE Std. 1003.1-200x is described in the Base Definitions volume of |
4 IEEE Std. 1003.1-200x. |

5 1.2 Conformance
6 Conformance requirements for IEEE Std. 1003.1-200x are defined in the Base Definitions volume |
7 of IEEE Std. 1003.1-200x, Chapter 2, Conformance. |

8 1.3 Normative References
9 Normative references for IEEE Std. 1003.1-200x are defined in the Base Definitions volume of |
10 IEEE Std. 1003.1-200x. |

11 1.4 Changes from Issue 4

12 Notes to Reviewers |
13 This section with side shading will not appear in the final copy. - Ed.

14 The change history is subject to revision. The intent is to document changes from Issue 4 thru
15 Issue 6, with the latest change history also documenting changes from the ISO POSIX-1: 1996
16 standard.

17 The following sections describe changes made to this volume of IEEE Std. 1003.1-200x since
18 Issue 4. The CHANGE HISTORY section for each entry details the technical changes that have
19 been made to that entry since Issue 4. Changes made between Issue 2 and Issue 4 are not
20 included.

21 1.4.1 Changes from Issue 4 to Issue 4, Version 2

22 The following list summarizes the major changes that were made in this volume of
23 IEEE Std. 1003.1-200x from Issue 4 to Issue 4, Version 2:

24 • The X/Open UNIX extension was added. This specifies the common core APIs of 4.3
25 Berkeley Software Distribution (BSD 4.3), the OSF AES, and SVID Issue 3.

26 • STREAMS were added as part of the X/Open UNIX extension.

27 • Existing Issue 4 functions were clarified as a result of industry feedback.

System Interfaces, Issue 6 491

Changes from Issue 4 Introduction

28 1.4.2 Changes from Issue 4, Version 2 to Issue 5

29 The following list summarizes the major changes that were made in this volume of
30 IEEE Std. 1003.1-200x from Issue 4, Version 2 to Issue 5:

31 • Functions previously defined in the ISO POSIX-2 standard C-language Binding, Shared
32 Memory, Enhanced Internationalization, and X/Open UNIX Extension Feature Groups were
33 moved to the BASE.

34 • Threads were added to the BASE for alignment with the POSIX Threads Extension.

35 • The Realtime Threads Feature Group was added.

36 • The Realtime Feature Group was added for alignment with the POSIX Realtime Extension.

37 • Multibyte Support Extensions (MSE) were added to the BASE for alignment with
38 ISO/IEC 9899: 1990/Amendment 1: 1995 (E).

39 • Large File Summit (LFS) Extensions were added to the BASE for support of 64-bit or larger
40 files and file systems.

41 • X/Open-specific threads extensions were added to the BASE.

42 • X/Open-specific dynamic linking functions were added to the BASE.

43 • A new category Legacy was added.

44 • The categories TO BE WITHDRAWN and WITHDRAWN were removed.

45 1.4.3 Changes from Issue 5 to Issue 6 (IEEE Std. 1003.1-200x)

46 The following list summarizes the major changes that were made in this volume of
47 IEEE Std. 1003.1-200x from Issue 5 to Issue 6:

48 • This volume of IEEE Std. 1003.1-200x is extensively revised so it can be both an IEEE POSIX
49 Standard and an Open Group Technical Standard.

50 • The POSIX System Interfaces requirements incorporate support of FIPS 151-2.

51 • The POSIX System Interfaces requirements are updated to align with some features of the
52 Single UNIX Specification.

53 • A RATIONALE section is added to each reference page. |

492 Technical Standard (2000) (Draft July 31, 2000)

Introduction New Features

54 1.5 New Features

55 1.5.1 New Features in Issue 4, Version 2

56 The functions, headers, and external variables first introduced in Issue 4, Version 2 are listed in
57 the table below.
58 ___
59 New Functions, Headers, and External Variables in Issue 4, Version 2___LL LL

60 FD_CLR()
61 FD_ISSET()
62 FD_SET()
63 FD_ZERO()
64 _longjmp ()
65 _setjmp()
66 a64l ()
67 acosh()
68 asinh()
69 atanh()
70 basename()
71 bcmp()
72 bcopy()
73 brk()
74 bsd_signal()
75 bzero()
76 cbrt()
77 closelog ()
78 dbm_clearerr()
79 dbm_close()
80 dbm_delete()
81 dbm_error()
82 dbm_fetch()
83 dbm_firstkey()
84 dbm_nextkey()
85 dbm_open()
86 dbm_store()
87 dirname()
88 ecvt()
89 endgrent()
90 endpwent()

endutxent()
expm1()
fattach ()
fchdir()
fchmod()
fchown()
fcvt()
fdetach ()
ffs()
fmtmsg()
fstatvfs ()
ftime()
ftok ()
ftruncate()
gcvt()
getcontext()
getdate()
getdtablesize ()
getgrent()
gethostid ()
getitimer()
getmsg()
getpagesize ()
getpgid()
getpmsg()
getpriority ()
getpwent()
getrlimit()
getrusage()
getsid()
getsubopt()

gettimeofday ()
getutxent()
getutxid()
getutxline()
getwd()
grantpt()
ilogb ()
index()
initstate()
insque()
ioctl ()
isastream()
killpg ()
l64a ()
lchown()
lockf ()
log1p ()
logb()
lstat()
makecontext()
mknod()
mkstemp()
mktemp()
mmap()
mprotect()
msync()
munmap()
nextafter()
nftw()
openlog ()
poll ()

ptsname()
putmsg()
putpmsg()
pututxline()
random()
re_comp()
re_exec()
readlink ()
readv()
realpath ()
regcmp()
regex()
remainder()
remque()
rindex()
rint()
sbrk()
scalb()
select()
setcontext()
setgrent()
setitimer()
setlogmask ()
setpgrp()
setpriority()
setpwent()
setregid()
setreuid()
setrlimit()
setstate()
setutxent()

sigaltstack ()
sighold ()
sigignore()
siginterrupt()
sigpause()
sigrelse()
sigset()
sigstack ()
srandom()
statvfs()
strcasecmp()
strdup()
strncasecmp()
swapcontext()
symlink()
sync()
syslog()
tcgetsid()
truncate()
ttyslot ()
ualarm()
unlockpt ()
usleep()
utimes()
valloc ()
vfork ()
wait3()
waitid ()
writev()

91 <fmtmsg.h>
92 <libgen.h>
93 <ndbm.h>
94 <poll.h>

<re_comp.h>
<strings.h>
<stropts.h>
<sys/mman.h>

<sys/resource.h>
<sys/statvfs.h>
<sys/time.h>
<sys/timeb.h>

<sys/uio.h>
<sys/un.h>
<syslog.h>
<ucontext.h>

<utmpx.h>

95 getdate_err _ _loc1___LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

System Interfaces, Issue 6 493

New Features Introduction

96 1.5.2 New Features in Issue 5

97 The functions and headers first introduced in Issue 5 are listed in the table below.
98 ___
99 New Functions and Headers in Issue 5___LL LL

100 aio_cancel ()
101 aio_error ()
102 aio_fsync ()
103 aio_read ()
104 aio_return()
105 aio_suspend()
106 aio_write ()
107 asctime_r()
108 btowc()
109 clock_getres()
110 clock_gettime ()
111 clock_settime ()
112 ctime_r()
113 dlclose()
114 dlerror()
115 dlopen()
116 dlsym()
117 fdatasync ()
118 flockfile ()
119 fseeko()
120 ftello ()
121 ftrylockfile ()
122 funlockfile ()
123 fwide()
124 fwprintf()
125 fwscanf()
126 getc_unlocked ()
127 getchar_unlocked()
128 getgrgid_r()
129 getgrnam_r()
130 getlogin_r ()
131 getpwnam_r()
132 getpwuid_r()
133 gmtime_r()
134 lio_listio ()
135 localtime_r ()
136 mbrlen()
137 mbrtowc()
138 mbsinit()
139 mbsrtowcs()
140 mlock()
141 mlockall ()
142 mq_close()
143 mq_getattr()
144 mq_notify()
145 mq_open()

pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit ()
pthread_getconcurrency()
pthread_getschedparam()
pthread_getspecific()
pthread_join ()
pthread_key_create()
pthread_key_delete()
pthread_kill ()
pthread_mutex_destroy()
pthread_mutex_getprioceiling()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_setprioceiling()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol()
pthread_mutexattr_getpshared()
pthread_mutexattr_gettype()

pthread_self ()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setconcurrency()
pthread_setschedparam()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()
putc_unlocked ()
putchar_unlocked()
pwrite()
rand_r()
readdir_r()
sched_get_priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()
sem_close()
sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_trywait()
sem_unlink()
sem_wait()
shm_open()
shm_unlink()
sigqueue()
sigtimedwait ()
sigwait ()
sigwaitinfo ()
snprintf()
strtok_r()
swprintf()
swscanf()
timer_create()
timer_delete()
timer_getoverrun()
timer_gettime()
timer_settime()
towctrans()___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

494 Technical Standard (2000) (Draft July 31, 2000)

Introduction New Features

146 ___
147 New Functions and Headers in Issue 5___LL LL

148 ttyname_r()
149 vfwprintf ()
150 vsnprintf()
151 vswprintf()
152 vwprintf()
153 wcrtomb()
154 wcsrtombs()
155 wcsstr()
156 wctob()
157 wctrans()
158 wmemchr()
159 wmemcmp()
160 wmemcpy()
161 wmemmove()
162 wmemset()
163 wprintf()
164 wscanf()

pthread_mutexattr_init()
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol()
pthread_mutexattr_setpshared()
pthread_mutexattr_settype()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()

mq_receive()
mq_send()
mq_setattr()
mq_unlink()
munlock()
munlockall ()
nanosleep()
pread()
pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getguardsize()
pthread_attr_getinheritsched()
pthread_attr_getschedparam()
pthread_attr_getschedpolicy()
pthread_attr_getscope()
pthread_attr_getstackaddr()

165 <aio.h>
166 <dlfcn.h>
167 <inttypes.h>

<iso646.h>
<mqueue.h>
<pthread.h>

<sched.h>
<semaphore.h>
<wctype.h>___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

System Interfaces, Issue 6 495

New Features Introduction

168 1.5.3 New Features in Issue 6

169 Notes to Reviewers
170 This section with side shading will not appear in the final copy. - Ed.

171 A table listing new functions, headers, etc. since the ISO POSIX-1: 1996 standard will be added
172 here in a future draft.

496 Technical Standard (2000) (Draft July 31, 2000)

Introduction Terminology

173 1.6 Terminology
174 This section appears in the Base Definitions volume of IEEE Std. 1003.1-200x, but is repeated
175 here for convenience:

176 For the purposes of IEEE Std. 1003.1-200x, the following terminology definitions apply:

177 can
178 Describes a permissible optional feature or behavior available to the user or application. The
179 feature or behavior is mandatory for an implementation that conforms to
180 IEEE Std. 1003.1-200x. An application can rely on the existence of the feature or behavior.

181 implementation-defined
182 Describes a value or behavior that is not defined by IEEE Std. 1003.1-200x but is selected by
183 an implementor. The value or behavior may vary among implementations that conform to
184 IEEE Std. 1003.1-200x. An application should not rely on the existence of the value or
185 behavior. An application that relies on such a value or behavior cannot be assured to be
186 portable across conforming implementations.

187 The implementor shall document such a value or behavior so that it can be used correctly
188 by an application.

189 legacy
190 Describes a feature or behavior that is being retained for compatibility with older
191 applications, but which has limitations which make it inappropriate for developing portable
192 applications. New applications should use alternative means of obtaining equivalent
193 functionality.

194 may
195 Describes a feature or behavior that is optional for an implementation that conforms to
196 IEEE Std. 1003.1-200x. An application should not rely on the existence of the feature or
197 behavior. An application that relies on such a feature or behavior cannot be assured to be
198 portable across conforming implementations.

199 To avoid ambiguity, the opposite of may is expressed as need not, instead of may not.

200 shall
201 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
202 behavior that is mandatory. An application can rely on the existence of the feature or
203 behavior.

204 For an application or user, describes a behavior that is mandatory.

205 should
206 For an implementation that conforms to IEEE Std. 1003.1-200x, describes a feature or
207 behavior that is recommended but not mandatory. An application should not rely on the
208 existence of the feature or behavior. An application that relies on such a feature or behavior
209 cannot be assured to be portable across conforming implementations.

210 For an application, describes a feature or behavior that is recommended programming
211 practice for optimum portability.

212 undefined
213 Describes the nature of a value or behavior not defined by IEEE Std. 1003.1-200x which
214 results from use of an invalid program construct or invalid data input.

215 The value or behavior may vary among implementations that conform to
216 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
217 value or behavior. An application that relies on any particular value or behavior cannot be

System Interfaces, Issue 6 497

Terminology Introduction

218 assured to be portable across conforming implementations.

219 unspecified
220 Describes the nature of a value or behavior not specified by IEEE Std. 1003.1-200x which
221 results from use of a valid program construct or valid data input.

222 The value or behavior may vary among implementations that conform to
223 IEEE Std. 1003.1-200x. An application should not rely on the existence or validity of the
224 value or behavior. An application that relies on any particular value or behavior cannot be
225 assured to be portable across conforming implementations.

498 Technical Standard (2000) (Draft July 31, 2000)

Introduction Definitions

226 1.7 Definitions
227 Concepts and definitions are defined in the Base Definitions volume of IEEE Std. 1003.1-200x.

System Interfaces, Issue 6 499

Relationship to Other Formal Standards Introduction

228 1.8 Relationship to Other Formal Standards
229 Great care has been taken to ensure that this volume of IEEE Std. 1003.1-200x is fully aligned
230 with the following standards:

231 ISO C (1999)
232 ISO/IEC 9899: 1999, Programming Languages — C.

233 Parts of the ISO/IEC 9899: 1999 standard (hereinafter referred to as the ISO C standard) are
234 referenced to describe requirements also mandated by this volume of IEEE Std. 1003.1-200x.
235 Some functions and headers included within this volume of IEEE Std. 1003.1-200x have a version
236 in the ISO C standard; in this case CX markings are added as appropriate to show where the
237 ISO C standard has been extended. Any conflict between this volume of IEEE Std. 1003.1-200x
238 and the ISO C standard is unintentional.

239 This volume of IEEE Std. 1003.1-200x also allows, but does not require, mathematics functions to
240 support IEEE Std. 754-1985 and IEEE Std. 854-1987.

500 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

241 1.9 Portability
242 Some of the utilities in the Shell and Utilities volume of IEEE Std. 1003.1-200x and functions in
243 the System Interfaces volume of IEEE Std. 1003.1-200x describe functionality that might not be
244 fully portable to systems meeting the requirements for POSIX conformance (see the Base
245 Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance).

246 Where optional, enhanced, or reduced functionality is specified, the text is shaded and a code in
247 the margin identifies the nature of the option, extension, or warning (see Section 1.9.1). For
248 maximum portability, an application should avoid such functionality.

249 1.9.1 Codes

250 Margin codes and their meanings are listed in the Base Definitions volume of
251 IEEE Std. 1003.1-200x, but are repeated here for convenience:

252 ADV Advisory Information
253 The functionality described is optional. The functionality described is also an extension to the
254 ISO C standard.

255 Where applicable, functions are marked with the ADV margin legend in the SYNOPSIS section.
256 Where additional semantics apply to a function, the material is identified by use of the ADV
257 margin legend.

258 AIO Asynchronous Input and Output
259 The functionality described is optional. The functionality described is also an extension to the
260 ISO C standard.

261 Where applicable, functions are marked with the AIO margin legend in the SYNOPSIS section.
262 Where additional semantics apply to a function, the material is identified by use of the AIO
263 margin legend.

264 BAR Barriers
265 The functionality described is optional. The functionality described is also an extension to the
266 ISO C standard.

267 Where applicable, functions are marked with the BAR margin legend in the SYNOPSIS section.
268 Where additional semantics apply to a function, the material is identified by use of the BAR
269 margin legend.

270 BE Batch Environment Services and Utilities
271 The functionality described is optional.

272 Where applicable, utilities are marked with the BE margin legend in the SYNOPSIS section.
273 Where additional semantics apply to a utility, the material is identified by use of the BE margin
274 legend.

275 CD C-Language Development Utilities
276 The functionality described is optional.

277 Where applicable, utilities are marked with the CD margin legend in the SYNOPSIS section.
278 Where additional semantics apply to a utility, the material is identified by use of the CD margin
279 legend.

280 CPT Process CPU-Time Clocks
281 The functionality described is optional. The functionality described is also an extension to the
282 ISO C standard.

283 Where applicable, functions are marked with the CPT margin legend in the SYNOPSIS section.
284 Where additional semantics apply to a function, the material is identified by use of the CPT

System Interfaces, Issue 6 501

Portability Introduction

285 margin legend.

286 CS Clock Selection
287 The functionality described is optional. The functionality described is also an extension to the
288 ISO C standard.

289 Where applicable, functions are marked with the CS margin legend in the SYNOPSIS section.
290 Where additional semantics apply to a function, the material is identified by use of the CS
291 margin legend.

292 CX Extension to the ISO C standard
293 The functionality described is an extension to the ISO C standard. Application writers may
294 make use of an extension as it is supported on all IEEE Std. 1003.1-200x-conforming systems.

295 FD FORTRAN Development Utilities
296 The functionality described is optional.

297 Where applicable, utilities are marked with the FD margin legend in the SYNOPSIS section.
298 Where additional semantics apply to a utility, the material is identified by use of the FD margin
299 legend.

300 FR FORTRAN Runtime Utilities
301 The functionality described is optional.

302 Where applicable, utilities are marked with the FR margin legend in the SYNOPSIS section.
303 Where additional semantics apply to a utility, the material is identified by use of the FR margin
304 legend.

305 FSC File Synchronization
306 The functionality described is optional. The functionality described is also an extension to the
307 ISO C standard.

308 Where applicable, functions are marked with the FSC margin legend in the SYNOPSIS section.
309 Where additional semantics apply to a function, the material is identified by use of the FSC
310 margin legend.

311 IP6 IPV6
312 The functionality described is optional. The functionality described is also an extension to the
313 ISO C standard.

314 Where applicable, functions are marked with the IP6 margin legend in the SYNOPSIS section.
315 Where additional semantics apply to a function, the material is identified by use of the IP6
316 margin legend.

317 MAN Mandatory in the Next Draft
318 This is an interim draft code used to aid reviewers during the development of
319 IEEE Std. 1003.1-200x. It denotes a feature that was previously an option or extension that is
320 being brought into the mandatory base functionality. This margin code will be removed from the
321 final draft.

322 MF Memory Mapped Files
323 The functionality described is optional. The functionality described is also an extension to the
324 ISO C standard.

325 Where applicable, functions are marked with the MF margin legend in the SYNOPSIS section.
326 Where additional semantics apply to a function, the material is identified by use of the MF
327 margin legend.

328 ML Process Memory Locking
329 The functionality described is optional. The functionality described is also an extension to the

502 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

330 ISO C standard.

331 Where applicable, functions are marked with the ML margin legend in the SYNOPSIS section.
332 Where additional semantics apply to a function, the material is identified by use of the ML
333 margin legend.

334 MLR Range Memory Locking
335 The functionality described is optional. The functionality described is also an extension to the
336 ISO C standard.

337 Where applicable, functions are marked with the MLR margin legend in the SYNOPSIS section.
338 Where additional semantics apply to a function, the material is identified by use of the MLR
339 margin legend.

340 MON Monotonic Clock
341 The functionality described is optional. The functionality described is also an extension to the
342 ISO C standard.

343 Where applicable, functions are marked with the MON margin legend in the SYNOPSIS section.
344 Where additional semantics apply to a function, the material is identified by use of the MON
345 margin legend.

346 MPR Memory Protection
347 The functionality described is optional. The functionality described is also an extension to the
348 ISO C standard.

349 Where applicable, functions are marked with the MPR margin legend in the SYNOPSIS section.
350 Where additional semantics apply to a function, the material is identified by use of the MPR
351 margin legend.

352 MSG Message Passing
353 The functionality described is optional. The functionality described is also an extension to the
354 ISO C standard.

355 Where applicable, functions are marked with the MSG margin legend in the SYNOPSIS section.
356 Where additional semantics apply to a function, the material is identified by use of the MSG
357 margin legend.

358 OB Obsolescent
359 The functionality described may be withdrawn in a future version of this volume of
360 IEEE Std. 1003.1-200x. Strictly Conforming POSIX Applications and Strictly Conforming XSI
361 Applications shall not use obsolescent features.

362 OF Output Format Incompletely Specified
363 The functionality described is an XSI extension. The format of the output produced by the utility
364 is not fully specified. It is therefore not possible to post-process this output in a consistent
365 fashion. Typical problems include unknown length of strings and unspecified field delimiters.

366 OH Optional Header
367 In the SYNOPSIS section of some interfaces in the System Interfaces volume of
368 IEEE Std. 1003.1-200x an included header is marked as in the following example:

369 OH #include <sys/types.h>
370 #include <grp.h>
371 struct group *getgrnam(const char *name);

372 This indicates that the marked header is not required on XSI-conformant systems.

System Interfaces, Issue 6 503

Portability Introduction

373 PIO Prioritized Input and Output
374 The functionality described is optional. The functionality described is also an extension to the
375 ISO C standard.

376 Where applicable, functions are marked with the PIO margin legend in the SYNOPSIS section.
377 Where additional semantics apply to a function, the material is identified by use of the PIO
378 margin legend.

379 PS Process Scheduling
380 The functionality described is optional. The functionality described is also an extension to the
381 ISO C standard.

382 Where applicable, functions are marked with the PS margin legend in the SYNOPSIS section.
383 Where additional semantics apply to a function, the material is identified by use of the PS
384 margin legend.

385 RTS Realtime Signals Extension
386 The functionality described is optional. The functionality described is also an extension to the
387 ISO C standard.

388 Where applicable, functions are marked with the RTS margin legend in the SYNOPSIS section.
389 Where additional semantics apply to a function, the material is identified by use of the RTS
390 margin legend.

391 SD Software Development Utilities
392 The functionality described is optional.

393 Where applicable, utilities are marked with the SD margin legend in the SYNOPSIS section.
394 Where additional semantics apply to a utility, the material is identified by use of the SD margin
395 legend.

396 SEM Semaphores
397 The functionality described is optional. The functionality described is also an extension to the
398 ISO C standard.

399 Where applicable, functions are marked with the SEM margin legend in the SYNOPSIS section.
400 Where additional semantics apply to a function, the material is identified by use of the SEM
401 margin legend.

402 SHM Shared Memory Objects
403 The functionality described is optional. The functionality described is also an extension to the
404 ISO C standard.

405 Where applicable, functions are marked with the SHM margin legend in the SYNOPSIS section.
406 Where additional semantics apply to a function, the material is identified by use of the SHM
407 margin legend.

408 SIO Synchronized Input and Output
409 The functionality described is optional. The functionality described is also an extension to the
410 ISO C standard.

411 Where applicable, functions are marked with the SIO margin legend in the SYNOPSIS section.
412 Where additional semantics apply to a function, the material is identified by use of the SIO
413 margin legend.

414 SPI Spin Locks
415 The functionality described is optional. The functionality described is also an extension to the
416 ISO C standard.

504 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

417 Where applicable, functions are marked with the SPI margin legend in the SYNOPSIS section.
418 Where additional semantics apply to a function, the material is identified by use of the SPI
419 margin legend.

420 SPN Spawn
421 The functionality described is optional. The functionality described is also an extension to the
422 ISO C standard.

423 Where applicable, functions are marked with the SPN margin legend in the SYNOPSIS section.
424 Where additional semantics apply to a function, the material is identified by use of the SPN
425 margin legend.

426 SS Process Sporadic Server
427 The functionality described is optional. The functionality described is also an extension to the
428 ISO C standard.

429 Where applicable, functions are marked with the SS margin legend in the SYNOPSIS section.
430 Where additional semantics apply to a function, the material is identified by use of the SS
431 margin legend.

432 TCT Thread CPU-Time Clocks
433 The functionality described is optional. The functionality described is also an extension to the
434 ISO C standard.

435 Where applicable, functions are marked with the TCT margin legend in the SYNOPSIS section.
436 Where additional semantics apply to a function, the material is identified by use of the TCT
437 margin legend.

438 THR Threads
439 The functionality described is optional. The functionality described is also an extension to the
440 ISO C standard.

441 Where applicable, functions are marked with the THR margin legend in the SYNOPSIS section.
442 Where additional semantics apply to a function, the material is identified by use of the THR
443 margin legend.

444 TMO Timeouts
445 The functionality described is optional. The functionality described is also an extension to the
446 ISO C standard.

447 Where applicable, functions are marked with the TMO margin legend in the SYNOPSIS section.
448 Where additional semantics apply to a function, the material is identified by use of the TMO
449 margin legend.

450 TMR Timers
451 The functionality described is optional. The functionality described is also an extension to the
452 ISO C standard.

453 Where applicable, functions are marked with the TMR margin legend in the SYNOPSIS section.
454 Where additional semantics apply to a function, the material is identified by use of the TMR
455 margin legend.

456 TPI Threads Priority Inheritance
457 The functionality described is optional. The functionality described is also an extension to the
458 ISO C standard.

459 Where applicable, functions are marked with the TPI margin legend in the SYNOPSIS section.
460 Where additional semantics apply to a function, the material is identified by use of the TPI
461 margin legend.

System Interfaces, Issue 6 505

Portability Introduction

462 TPP Thread Priority Protection
463 The functionality described is optional. The functionality described is also an extension to the
464 ISO C standard.

465 Where applicable, functions are marked with the TPP margin legend in the SYNOPSIS section.
466 Where additional semantics apply to a function, the material is identified by use of the TPP
467 margin legend.

468 TPS Thread Execution Scheduling
469 The functionality described is optional. The functionality described is also an extension to the
470 ISO C standard.

471 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
472 Where additional semantics apply to a function, the material is identified by use of the TPS
473 margin legend.

474 TRC Trace
475 The functionality described is optional. The functionality described is also an extension to the
476 ISO C standard.

477 Where applicable, functions are marked with the TRC margin legend in the SYNOPSIS section.
478 Where additional semantics apply to a function, the material is identified by use of the TRC
479 margin legend.

480 TEF Trace Event Filter
481 The functionality described is optional. The functionality described is also an extension to the
482 ISO C standard.

483 Where applicable, functions are marked with the TEF margin legend in the SYNOPSIS section.
484 Where additional semantics apply to a function, the material is identified by use of the TEF
485 margin legend.

486 TRL Trace Log
487 The functionality described is optional. The functionality described is also an extension to the
488 ISO C standard.

489 Where applicable, functions are marked with the TRL margin legend in the SYNOPSIS section.
490 Where additional semantics apply to a function, the material is identified by use of the TRL
491 margin legend.

492 TRI Trace Inherit
493 The functionality described is optional. The functionality described is also an extension to the
494 ISO C standard.

495 Where applicable, functions are marked with the TRI margin legend in the SYNOPSIS section.
496 Where additional semantics apply to a function, the material is identified by use of the TRI
497 margin legend.

498 TSA Thread Stack Address Attribute
499 The functionality described is optional. The functionality described is also an extension to the
500 ISO C standard.

501 Where applicable, functions are marked with the TPS margin legend for the SYNOPSIS section.
502 Where additional semantics apply to a function, the material is identified by use of the TSA
503 margin legend.

504 TSF Thread-Safe Functions
505 The functionality described is optional. The functionality described is also an extension to the
506 ISO C standard.

506 Technical Standard (2000) (Draft July 31, 2000)

Introduction Portability

507 Where applicable, functions are marked with the TSF margin legend in the SYNOPSIS section.
508 Where additional semantics apply to a function, the material is identified by use of the TSF
509 margin legend.

510 TSH Thread Process-Shared Synchronization
511 The functionality described is optional. The functionality described is also an extension to the
512 ISO C standard.

513 Where applicable, functions are marked with the TSH margin legend in the SYNOPSIS section.
514 Where additional semantics apply to a function, the material is identified by use of the TSH
515 margin legend.

516 TSP Thread Sporadic Server
517 The functionality described is optional. The functionality described is also an extension to the
518 ISO C standard.

519 Where applicable, functions are marked with the TSP margin legend in the SYNOPSIS section.
520 Where additional semantics apply to a function, the material is identified by use of the TSP
521 margin legend.

522 TSS Thread Stack Address Size
523 The functionality described is optional. The functionality described is also an extension to the
524 ISO C standard.

525 Where applicable, functions are marked with the TSS margin legend in the SYNOPSIS section.
526 Where additional semantics apply to a function, the material is identified by use of the TSS
527 margin legend.

528 TYM Typed Memory Objects
529 The functionality described is optional. The functionality described is also an extension to the
530 ISO C standard.

531 Where applicable, functions are marked with the TYM margin legend in the SYNOPSIS section.
532 Where additional semantics apply to a function, the material is identified by use of the TYM
533 margin legend.

534 UN Possibly Unsupportable Feature
535 The functionality described is an XSI extension. It need not be possible to implement the
536 required functionality (as defined) on all conformant systems and the functionality need not be
537 present. This may, for example, be the case where the conformant system is hosted and the
538 underlying system provides the service in an alternative way.

539 UP User Portability Utilities
540 The functionality described is optional.

541 Where applicable, utilities are marked with the UP margin legend in the SYNOPSIS section.
542 Where additional semantics apply to a utility, the material is identified by use of the UP margin
543 legend.

544 XSI Extension
545 The functionality described is an XSI extension. Functionality marked XSI is also an extension to
546 the ISO C standard. Application writers may confidently make use of an extension on all
547 systems supporting the X/Open System Interfaces Extension.

548 If an entire SYNOPSIS section is shaded and marked with one XSI, all the functionality described
549 in that reference page is an extension. See the Base Definitions volume of IEEE Std. 1003.1-200x,
550 Section 3.441, XSI.

System Interfaces, Issue 6 507

Portability Introduction

551 XSR XSI STREAMS
552 The functionality described is optional. The functionality described is also an extension to the
553 ISO C standard.

554 Where applicable, functions are marked with the XSR margin legend in the SYNOPSIS section.
555 Where additional semantics apply to a function, the material is identified by use of the XSR
556 margin legend.

508 Technical Standard (2000) (Draft July 31, 2000)

Introduction Format of Entries

557 1.10 Format of Entries
558 The entries in Chapter 3 are based on a common format as follows. The only sections relating to
559 conformance are the SYNOPSIS, DESCRIPTION, RETURN VALUE, and ERRORS sections.

560 NAME
561 This section gives the name or names of the entry and briefly states its purpose.

562 SYNOPSIS
563 This section summarizes the use of the entry being described. If it is necessary to
564 include a header to use this function, the names of such headers are shown, for
565 example:

566 #include <stdio.h>

567 DESCRIPTION
568 This section describes the functionality of the function or header.

569 RETURN VALUE
570 This section indicates the possible return values, if any.

571 If the implementation can detect errors, ‘‘successful completion’’ means that no error
572 has been detected during execution of the function. If the implementation does detect
573 an error, the error is indicated.

574 For functions where no errors are defined, ‘‘successful completion’’ means that if the
575 implementation checks for errors, no error has been detected. If the implementation can
576 detect errors, and an error is detected, the indicated return value is returned and errno
577 may be set.

578 ERRORS
579 This section gives the symbolic names of the values returned in errno if an error occurs.

580 ‘‘No errors are defined’’ means that values and usage of errno, if any, depend on the
581 implementation.

582 EXAMPLES
583 This section is non-normative.

584 This section gives examples of usage, where appropriate. In the event of conflict
585 between an example and a normative part of this volume of IEEE Std. 1003.1-200x, the
586 normative material is to be taken as correct.

587 APPLICATION USAGE
588 This section is non-normative.

589 This section gives warnings and advice to application writers about the entry. In the
590 event of conflict between warnings and advice and a normative part of this volume of
591 IEEE Std. 1003.1-200x, the normative material is to be taken as correct.

592 RATIONALE
593 This section is non-normative.

594 This section contains historical information concerning the contents of this volume of
595 IEEE Std. 1003.1-200x and why features were included or discarded by the standard
596 developers.

597 FUTURE DIRECTIONS
598 This section is non-normative.

System Interfaces, Issue 6 509

Format of Entries Introduction

599 This section provides comments which should be used as a guide to current thinking;
600 there is not necessarily a commitment to adopt these future directions.

601 SEE ALSO
602 This section is non-normative.

603 This section gives references to related information.

604 CHANGE HISTORY
605 This section is non-normative.

606 This section shows the derivation of the entry and any significant changes that have
607 been made to it.

510 Technical Standard (2000) (Draft July 31, 2000)

608

Chapter 2

General Information

609 This chapter covers information that is relevant to all the functions specified in Chapter 3 and
610 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers.

611 2.1 Use and Implementation of Functions
612 Each of the following statements shall apply unless explicitly stated otherwise in the detailed
613 descriptions that follow:

614 1. If an argument to a function has an invalid value (such as a value outside the domain of
615 the function, or a pointer outside the address space of the program, or a null pointer), the
616 behavior is undefined.

617 2. Any function declared in a header may also be implemented as a macro defined in the
618 header, so a library function should not be declared explicitly if its header is included. Any
619 macro definition of a function can be suppressed locally by enclosing the name of the
620 function in parentheses, because the name is then not followed by the left parenthesis that
621 indicates expansion of a macro function name. For the same syntactic reason, it is
622 permitted to take the address of a library function even if it is also defined as a macro. The
623 use of the C-language #undef construct to remove any such macro definition shall also
624 ensure that an actual function is referred to.

625 3. Any invocation of a library function that is implemented as a macro shall expand to code
626 that evaluates each of its arguments exactly once, fully protected by parentheses where
627 necessary, so it is generally safe to use arbitrary expressions as arguments. Likewise, those
628 function-like macros described in the following sections may be invoked in an expression
629 anywhere a function with a compatible return type could be called.

630 4. Provided that a library function can be declared without reference to any type defined in a
631 header, it is also permissible to declare the function, either explicitly or implicitly, and use
632 it without including its associated header.

633 5. If a function that accepts a variable number of arguments is not declared (explicitly or by
634 including its associated header), the behavior is undefined.

System Interfaces, Issue 6 511

The Compilation Environment General Information

635 2.2 The Compilation Environment

636 2.2.1 POSIX.1 Symbols

637 Certain symbols in this volume of IEEE Std. 1003.1-200x are defined in headers (see the Base
638 Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, Headers). Some of those headers could
639 also define other symbols than those defined by this volume of IEEE Std. 1003.1-200x, potentially
640 conflicting with symbols used by the application. Also, this volume of IEEE Std. 1003.1-200x
641 defines symbols that are not permitted by other standards to appear in those headers without
642 some control on the visibility of those symbols.

643 Symbols called feature test macros are used to control the visibility of symbols that might be
644 included in a header. Implementations, future versions of this volume of IEEE Std. 1003.1-200x,
645 and other standards may define additional feature test macros.

646 In the compilation of an application that #defines a feature test macro specified by
647 IEEE Std. 1003.1-200x, no header defined by IEEE Std. 1003.1-200x shall be included prior to the
648 definition of the feature test macro. This restriction also applies to any implementation-
649 provided header in which these feature test macros are used. If the definition of the macro does
650 not precede the #include, the result is undefined.

651 Feature test macros shall begin with the underscore character (’_’).

652 2.2.1.1 The _POSIX_C_SOURCE Feature Test Macro

653 A POSIX-conforming application should ensure that the feature test macro _POSIX_C_SOURCE
654 is defined before inclusion of any header.

655 When an application includes a header described by this volume of IEEE Std. 1003.1-200x, and
656 when this feature test macro is defined to have at least the value 200xMML:

657 1. All symbols required by this volume of IEEE Std. 1003.1-200x to appear when the header is
658 included shall be made visible.

659 2. Symbols that are explicitly permitted, but not required, by this volume of
660 IEEE Std. 1003.1-200x to appear in that header (including those in reserved name spaces)
661 may be made visible.

662 3. Additional symbols not required or explicitly permitted by this volume of
663 IEEE Std. 1003.1-200x to be in that header shall not be made visible, except when enabled
664 by another feature test macro or by having defined _POSIX_C_SOURCE with a value
665 larger than 200xxxL.

666 Identifiers in this volume of IEEE Std. 1003.1-200x may only be undefined using the #undef
667 directive as described in Section 2.1 (on page 511) or Section 2.2.2 (on page 513). These #undef
668 directives shall follow all #include directives of any header in this volume of
669 IEEE Std. 1003.1-200x.

670 2.2.1.2 The _XOPEN_SOURCE Feature Test Macro

671 XSI An XSI-conforming application should ensure that the feature test macro _XOPEN_SOURCE is
672 defined with the value 600 before inclusion of any header. This is needed to enable the
673 functionality described in Section 2.2.1.1 and in addition to enable the X/Open System Interfaces
674 Extension.

675 Since this volume of IEEE Std. 1003.1-200x is aligned with the ISO C standard, and since all
676 functionality enabled by _POSIX_C_SOURCE set greater than zero and less than or equal to
677 200xxxL should be enabled by _XOPEN_SOURCE set equal to 600, there should be no need to

512 Technical Standard (2000) (Draft July 31, 2000)

General Information The Compilation Environment

678 define either _POSIX_SOURCE or _POSIX_C_SOURCE if _XOPEN_SOURCE is so defined.
679 Therefore, if _XOPEN_SOURCE is set equal to 600 and _POSIX_SOURCE is defined, or
680 _POSIX_C_SOURCE is set greater than zero and less than or equal to 200xxxL, the behavior is
681 the same as if only _XOPEN_SOURCE is defined and set equal to 600. However, should
682 _POSIX_C_SOURCE be set to a value greater than 200xxxL, the behavior is undefined.

683 2.2.2 The Name Space

684 All identifiers in this volume of IEEE Std. 1003.1-200x, except environ , are defined in at least one
685 of the headers, as shown in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13,
686 XSI Headers. When _XOPEN_SOURCE or _POSIX_C_SOURCE is defined, each header defines or
687 declares some identifiers, potentially conflicting with identifiers used by the application. The set
688 of identifiers visible to the application consists of precisely those identifiers from the header
689 pages of the included headers, as well as additional identifiers reserved for the implementation.
690 In addition, some headers may make visible identifiers from other headers as indicated on the
691 relevant header pages.

692 Implementations may also add members to a structure or union without controlling the
693 visibility of those members with a feature test macro, as long as a user-defined macro with the
694 same name cannot interfere with the correct interpretation of the program. The identifiers
695 reserved for use by the implementation are described below:

696 1. Each identifier with external linkage described in the header section is reserved for use as
697 an identifier with external linkage if the header is included.

698 2. Each macro name described in the header section is reserved for any use if the header is
699 included.

700 3. Each identifier with file scope described in the header section is reserved for use as an
701 identifier with file scope in the same name space if the header is included.

702 The prefixes posix_, POSIX_, and _POSIX_ are reserved for use by IEEE Std. 1003.1-200x and
703 other POSIX standards. Implementations may add symbols to the headers shown in the
704 following table, provided the identifiers for those symbols begin with the corresponding
705 reserved prefixes in the following table, and do not use the reserved prefixes posix_, POSIX_, or
706 _POSIX_.

System Interfaces, Issue 6 513

The Compilation Environment General Information

707 __
708 Complete
709 Header Prefix Suffix Name__
710 AIO <aio.h> aio_, lio_, AIO_, LIO_
711 <arpa/inet.h> in_, inet_
712 <ctype.h> to[a-z], is[a-z]
713 <dirent.h> d_
714 <errno.h> E[0-9], E[A-Z]
715 <fcntl.h> l_
716 <glob.h> gl_
717 <grp.h> gr_
718 <inttypes.h> int[0-9a-z_]_t, uint[0-9a-z_]_t
719 <limits.h> _MAX, _MIN
720 <locale.h> LC_[A-Z]
721 MSG <mqueue.h> mq_, MQ_
722 XSI <ndbm.h> dbm_
723 <netdb.h> h_, n_, p_, s_
724 <net/if.h> if_
725 <netinet/in.h> in_, ip_, s_, sin_
726 XSI <poll.h> pd_, ph_, ps_
727 <pthread.h> pthread_, PTHREAD_
728 <pwd.h> pw_
729 <regex.h> re_, rm_
730 PS <sched.h> sched_, SCHED_
731 SEM <semaphore.h> sem_, SEM_
732 <signal.h> sa_, uc_, SIG[A-Z], SIG_[A-Z]
733 XSI ss_, sv_
734 RTS si_, SI_, sigev_, SIGEV_, sival_
735 XSI <stropts.h> bi_, ic_, l_, sl_, str_
736 <stdint.h> int[0-9a-z_]_t, uint[0-9a-z_]_t
737 <stdlib.h> str[a-z]
738 <string.h> str[a-z], mem[a-z], wcs[a-z]
739 XSI <sys/ipc.h> ipc_ key, pad, seq
740 MF <sys/mman.h> shm_, MAP_, MCL_, MS_, PROT_
741 XSI <sys/msg.h> msg msg
742 XSI <sys/resource.h> rlim_, ru_
743 XSI <sys/sem.h> sem sem
744 XSI <sys/shm.h> shm
745 <sys/socket.h> _ss, sa_, if_, ifc_, ifru_, infu_, ifra_,
746 msg_, cmsg_, l_
747 <sys/stat.h> st_
748 XSI <sys/statvfs.h> f_
749 <sys/time.h> fds_, it_, tv_, FD_
750 <sys/times.h> tms_
751 XSI <sys/uio.h> iov_
752 <sys/un.h> sun_
753 <sys/utsname.h> uts_
754 XSI <sys/wait.h> si_, W[A-Z], P_
755 <termios.h> c___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

514 Technical Standard (2000) (Draft July 31, 2000)

General Information The Compilation Environment

756 __
757 Complete
758 Header Prefix Suffix Name__
759 <time.h> tm_
760 TMR clock_, timer_, it_, tv_,
761 TMR CLOCK_, TIMER_
762 XSI <ucontext.h> uc_, ss_
763 XSI <ulimit.h> UL_
764 <utime.h> utim_
765 XSI <utmpx.h> ut_ _LVL, _TIME,
766 _PROCESS
767 <wchar.h> wcs[a-z]
768 <wctype.h> is[a-z], to[a-z]
769 <wordexp.h> we_
770 ANY header POSIX_, _POSIX_, posix_ _t__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

771 Note: The notation [A−Z] indicates any uppercase letter in the portable character set. The
772 notation [a−z] indicates any lowercase letter in the portable character set. Commas
773 and spaces in the lists of prefixes and complete names in the above table are not part
774 of any prefix or complete name.

775 If any header in the following table is included, macros with the prefixes shown may be defined. |
776 After the last inclusion of a given header, an application may use identifiers with the
777 corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
778 corresponding macro.

System Interfaces, Issue 6 515

The Compilation Environment General Information

779 ___
780 Header Prefix___
781 XSI <dflcn.h> RTLD_
782 <fcntl.h> F_, O_, S_
783 XSI <fmtmsg.h> MM_
784 <fnmatch.h> FNM_
785 XSI <ftw.h> FTW
786 <glob.h> GLOB_
787 <inttypes.h> PRI[a-z], SCN[a-z]
788 XSI <ndbm.h> DBM_
789 <net/if.h> IF_
790 <netinet/in.h> IMPLINK_, IN_, INADDR_, IP_, IPPORT_, IPPROTO_, SOCK_
791 <netinet/tcp.h> TCP_
792 XSI <nl_types.h> NL_
793 XSI <poll.h> POLL
794 <regex.h> REG_
795 <signal.h> SA_, SIG_[0-9a-z_],
796 XSI BUS_, CLD_, FPE_, ILL_, POLL_, SEGV_, SI_, SS_, SV_, TRAP_
797 stdint.h INT[0-9A-Z_]_MIN, INT[0-9A-Z_]_MAX, INT[0-9A-Z_]_C
798 UINT[0-9A-Z_]_MIN, UINT[0-9A-Z_]_MAX, UINT[0-9A-Z_]_C
799 XSI <stropts.h> FLUSH[A-Z], I_, M_, MUXID_R[A-Z], S_, SND[A-Z], STR
800 XSI <syslog.h> LOG_
801 XSI <sys/ipc.h> IPC_
802 XSI <sys/mman.h> PROT_, MAP_, MS_
803 XSI <sys/msg.h> MSG[A-Z]
804 XSI <sys/resource.h> PRIO_, RLIM_, RLIMIT_, RUSAGE_
805 XSI <sys/sem.h> SEM_
806 XSI <sys/shm.h> SHM[A-Z], SHM_[A-Z]
807 XSI <sys/socket.h> AF_, CMSG_, MSG_, PF_, SCM_, SHUT_, SO
808 <sys/stat.h> S_
809 XSI <sys/statvfs.h> ST_
810 XSI <sys/time.h> FD_, ITIMER_
811 XSI <sys/uio.h> IOV_
812 XSI <sys/wait.h> BUS_, CLD_, FPE_, ILL_, POLL_, SEGV_, SI_, TRAP_
813 <termios.h> V, I, O, TC, B[0-9] (See below.)
814 <wordexp.h> WRDE__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

815 Note: The notation [0−9] indicates any digit. The notation [A−Z] indicates any uppercase
816 letter in the portable character set. The notation [0−9a−z_] indicates any digit, any
817 lowercase letter in the portable character set, or underscore.

818 The following reserved names are used as exact matches for <termios.h>: |

819 XSI CBAUD EXTB VDSUSP |
820 DEFECHO FLUSHO VLNEXT |
821 ECHOCTL LOBLK VREPRINT |
822 ECHOKE PENDIN VSTATUS |
823 ECHOPRT SWTCH VWERASE |
824 EXTA VDISCARD |

516 Technical Standard (2000) (Draft July 31, 2000)

General Information The Compilation Environment

825 The following identifiers are reserved regardless of the inclusion of headers: |

826 1. All identifiers that begin with an underscore and either an uppercase letter or another
827 underscore are always reserved for any use by the implementation.

828 2. All identifiers that begin with an underscore are always reserved for use as identifiers with
829 file scope in both the ordinary identifier and tag name spaces.

830 3. All identifiers in the table below are reserved for use as identifiers with external linkage.
831 Some of these identifiers do not appear in this volume of IEEE Std. 1003.1-200x, but are
832 reserved for future use by the ISO C standard. |

833 _Exit | |
834 abort | |
835 abs | |
836 acos | |
837 acosf | |
838 acosh | |
839 acoshf | |
840 acoshl | |
841 acosl | |
842 acosl | |
843 asctime | |
844 asin | |
845 asinf | |
846 asinh | |
847 asinhf | |
848 asinhl | |
849 asinl | |
850 asinl | |
851 atan | |
852 atan2 | |
853 atan2f | |
854 atan2l | |
855 atanf | |
856 atanf | |
857 atanh | |
858 atanh | |
859 atanhf | |
860 atanhl | |
861 atanl | |
862 atanl | |
863 atexit | |
864 atof | |
865 atoi | |
866 atol | |
867 atoll | |
868 bsearch | |
869 cabs | |
870 cabsf | |
871 cabsl | |
872 cacos | |

cbrtf | |
cbrtl | |
ccos | |
ccosf | |
ccosh | |
ccoshf | |
ccoshl | |
ccosl | |
ceil | |
ceilf | |
ceilf | |
ceill | |
ceill | |
cexp | |
cexpf | |
cexpl | |
cimag | |
cimagf | |
cimagl | |
clearerr | |
clock | |
clog | |
clogf | |
clogl | |
conj | |
conjf | |
conjl | |
copysign | |
copysignf | |
copysignl | |
cos | |
cosf | |
cosh | |
coshf | |
coshl | |
cosl | |
cpow | |
cpowf | |
cpowl | |
cproj | |

exit | |
exp | |
exp2 | |
exp2f | |
exp2l | |
expf | |
expl | |
expm1 | |
expm1f | |
expm1l | |
fabs | |
fabsf | |
fabsl | |
fclose | |
fdim | |
fdimf | |
fdiml | |
feclearexcept | |
fegetenv | |
fegetexceptflag | |
fegetround | |
feholdexcept | |
feof | |
feraiseexcept | |
ferror | |
fesetenv | |
fesetexceptflag | |
fesetround | |
fetestexcept | |
feupdateenv | |
fflush | |
fgetc | |
fgetpos | |
fgets | |
fgetwc | |
fgetws | |
floor | |
floorf | |
floorl | |
fma | |

fsetpos | |
ftell | |
fwide | |
fwprintf | |
fwrite | |
fwscanf | |
getc | |
getchar | |
getenv | |
gets | |
getwc | |
getwchar | |
gmtime | |
hypotf | |
hypotl | |
ilogb | |
ilogbf | |
ilogbl | |
imaxabs | |
imaxdiv | |
is[a-z]* | |
isblank | |
iswblank | |
labs | |
ldexp | |
ldexpf | |
ldexpl | |
ldiv | |
ldiv | |
lgammaf | |
lgammal | |
llabs | |
llrint | |
llrintf | |
llrintl | |
llround | |
llroundf | |
llroundl | |
localeconv | |
localtime | |

mbrtowc | |
mbsinit | |
mbsrtowcs | |
mbstowcs | |
mbtowc | |
mem[a-z]* | |
mktime | |
modf | |
modff | |
modfl | |
nan | |
nanf | |
nanl | |
nearbyint | |
nearbyintf | |
nearbyintl | |
nextafterf | |
nextafterl | |
nexttoward | |
nexttowardf | |
nexttowardl | |
perror | |
pow | |
powf | |
powl | |
printf | |
putc | |
putchar | |
puts | |
putwc | |
putwchar | |
qsort | |
raise | |
rand | |
realloc | |
remainderf | |
remainderl | |
remove | |
remquo | |
remquof | |

sinhl ||
sinl ||
sprintf ||
sqrt ||
sqrtf ||
sqrtl ||
srand ||
sscanf ||
str[a-z]* ||
strtof ||
strtoimax ||
strtold ||
strtoll ||
strtoull ||
strtoumax ||
swprintf ||
swscanf ||
system ||
tan ||
tanf ||
tanh ||
tanhf ||
tanhl ||
tanl ||
tgamma ||
tgammaf ||
tgammal ||
time ||
tmpfile ||
tmpnam ||
to[a-z]* ||
trunc ||
truncf ||
truncl ||
ungetc ||
ungetwc ||
va_end ||
vfprintf ||
vfscanf ||
vfwprintf ||

|

System Interfaces, Issue 6 517

The Compilation Environment General Information

873 vfwscanf |||
874 vprintf |||
875 vscanf |||
876 vsprintf |||
877 vsscanf |||
878 vswprintf |||
879 vswscanf |||
880 vwprintf |||
881 vwscanf |||
882 wcrtomb |||
883 wcs[a-z]* |||
884 wcstof |||
885 wcstoimax |||
886 wcstold |||
887 wcstoll |||
888 wcstoull |||
889 wcstoumax |||
890 wctob |||
891 wctomb |||
892 wctrans |||
893 wctype |||
894 wcwidth |||
895 wmem[a-z]* |||
896 wprintf |||
897 wscanf |||

remquol | |||
rename | |||
rewind | |||
rint | |||
rintf | |||
rintl | |||
round | |||
roundf | |||
roundl | |||
scalbln | |||
scalblnf | |||
scalblnl | |||
scalbn | |||
scalbnf | |||
scalbnl | |||
scanf | |||
setbuf | |||
setjmp | |||
setlocale | |||
setvbuf | |||
signal | |||
sin | |||
sinf | |||
sinh | |||
sinhf | |||

log | ||||
log10 | ||||
log10f | ||||
log10l | ||||
log1p | ||||
log1pf | ||||
log1pl | ||||
log2 | ||||
log2f | ||||
log2l | ||||
logb | ||||
logbf | ||||
logbl | ||||
logf | ||||
logl | ||||
longjmp | ||||
lrint | ||||
lrintf | ||||
lrintl | ||||
lround | ||||
lroundf | ||||
lroundl | ||||
malloc | ||||
mblen | ||||
mbrlen | ||||

fmaf | |||||
fmal | |||||
fmax | |||||
fmaxf | |||||
fmaxl | |||||
fmin | |||||
fminf | |||||
fminl | |||||
fmod | |||||
fmodf | |||||
fmodl | |||||
fopen | |||||
fprintf | |||||
fputc | |||||
fputs | |||||
fputwc | |||||
fputws | |||||
fread | |||||
free | |||||
freopen | |||||
frexp | |||||
frexpf | |||||
frexpl | |||||
fscanf | |||||
fseek | |||||

cprojf | ||||||
cprojl | ||||||
creal | ||||||
crealf | ||||||
creall | ||||||
csin | ||||||
csinf | ||||||
csinh | ||||||
csinhf | ||||||
csinhl | ||||||
csinl | ||||||
csqrt | ||||||
csqrtf | ||||||
csqrtl | ||||||
ctan | ||||||
ctanf | ||||||
ctanl | ||||||
ctime | ||||||
difftime | ||||||
div | ||||||
erfcf | ||||||
erfcl | ||||||
erff | ||||||
erfl | ||||||
errno | ||||||

cacosf | |||||||
cacosh | |||||||
cacoshf | |||||||
cacoshl | |||||||
cacosl | |||||||
calloc | |||||||
carg | |||||||
cargf | |||||||
cargl | |||||||
casin | |||||||
casinf | |||||||
casinh | |||||||
casinhf | |||||||
casinhl | |||||||
casinl | |||||||
catan | |||||||
catanf | |||||||
catanh | |||||||
catanh | |||||||
catanhf | |||||||
catanhf | |||||||
catanhl | |||||||
catanhl | |||||||
catanl | |||||||
cbrt | |||||||

898 Note: The notation [a−z] indicates any lowercase letter in the portable character set. |
899 The notation ’*’ indicates any combination of digits, letters in the portable |
900 character set, and underscore. |

518 Technical Standard (2000) (Draft July 31, 2000)

General Information The Compilation Environment

901 Notes to Reviewers |
902 This section with side shading will not appear in the final copy. - Ed. |

903 The following table should be made complete by including everything not in the previous |
904 table. |

905 4. The following identifiers are also reserved for use as identifiers with external linkage: |

906 Table 2-1 XSI Identifiers |

907 XSI |a64l | |
908 basename | |
909 bcmp | |
910 bcopy | |
911 brk | |
912 bsd_signal | |
913 bzero | |
914 cbrt | |
915 closelog | |
916 dbm_clearerr | |
917 dbm_close | |
918 dbm_delete | |
919 dbm_error | |
920 dbm_fetch | |
921 dbm_firstkey | |
922 dbm_nextkey | |
923 dbm_open | |
924 dbm_store | |
925 dirname | |
926 ecvt | |
927 endgrent | |
928 endpwent | |
929 endservent | |
930 endutxent | |

fattach | |
fchdir | |
fchmod | |
fchown | |
fcvt | |
fdetach | |
ffs | |
fmtmsg | |
fstatvfs | |
ftime | |
ftok | |
ftruncate | |
gcvt | |
getcontext | |
getdate | |
getdtablesize | |
getgrent | |
getgrgid | |
gethostid | |
getitimer | |
getmsg | |
getpagesize | |
getpgid | |
getpmsg | |

getpriority | |
getpwent | |
getrlimit | |
getrusage | |
getsid | |
getsubopt | |
gettimeofday | |
getutxent | |
getutxid | |
getutxline | |
getwd | |
grantpt | |
index | |
initstate | |
insque | |
ioctl | |
isastream | |
killpg | |
l64a | |
lchown | |
lockf | |
_longjmp | |
lstat | |
makecontext | |

mknod | |
mkstemp | |
mktemp | |
mmap | |
mprotect | |
mrand48 | |
msync | |
munmap | |
nextafter | |
nftw | |
nice | |
openlog | |
poll | |
ptsname | |
putmsg | |
putpmsg | |
pututxline | |
random | |
readlink | |
readv | |
realpath | |
re_comp | |
re_exec | |
regcmp | |

regex | |
remainder | |
remque | |
rindex | |
sbrk | |
scalb | |
select | |
setcontext | |
setgrent | |
setitimer | |
_setjmp | |
setlogmask | |
setpgrp | |
setpriority | |
setpwent | |
setreuid | |
setrlimit | |
setstate | |
setutxent | |
sigaltstack | |
sighold | |
sigignore | |
siginterrupt | |
sigpause | |

sigrelse ||
sigset ||
sigstack ||
srandom ||
statvfs ||
strcasecmp ||
strdup ||
strncasecmp ||
swapcontext ||
symlink ||
sync ||
syslog ||
tcgetsid ||
truncate ||
ttyslot ||
ualarm ||
unlockpt ||
usleep ||
utimes ||
valloc ||
vfork ||
wait3 ||
waitid ||
writev ||

|

931 Table 2-2 Sockets Identifiers |

932 accept | |
933 bind | |
934 connect | |
935 getpeername | |
936 getsockname | |
937 getsockopt | |

if_freenameindex | |
if_indextoname | |
if_nameindex | |
if_nametoindex | |
listen | |
recv | |

recvfrom | |
recvmsg | |
send | |
sendmsg | |
sendto | |
setsockopt | |

shutdown | |
socket | |
socketpair | |

|

System Interfaces, Issue 6 519

The Compilation Environment General Information

938 Table 2-3 IP Address Resolution Identifiers |

939 endhostent | |
940 endnetent | |
941 endprotoent | |
942 endservent | |
943 getaddrinfo | |
944 gethostbyaddr | |
945 gethostbyname | |
946 gethostent | |
947 gethostname | |

getipnodebyaddr | |
getipnodebyname | |
getnameinfo | |
getnetbyaddr | |
getnetbyname | |
getnetent | |
getprotobyname | |
getprotobynumber | |
getprotoent | |

getservbyname | |
getservbyport | |
getservent | |
h_errno | |
htonl | |
htons | |
inet_addr | |
inet_lnaof | |
inet_makeaddr | |

inet_netof | |
inet_network | |
inet_ntoa | |
ntohl | |
ntohs | |
sethostent | |
setnetent | |
setprotoent | |
setservent | |

|

948 All the identifiers defined in this volume of IEEE Std. 1003.1-200x that have external linkage are |
949 always reserved for use as identifiers with external linkage. |

950 No other identifiers are reserved. |

951 Applications shall not declare or define identifiers with the same name as an identifier reserved |
952 in the same context. Since macro names are replaced whenever found, independent of scope and |
953 name space, macro names matching any of the reserved identifier names shall not be defined by |
954 an application if any associated header is included. |

955 Except that the effect of each inclusion of <assert.h> depends on the definition of NDEBUG, |
956 headers may be included in any order, and each may be included more than once in a given
957 scope, with no difference in effect from that of being included only once. |

958 If used, the application shall ensure that a header is included outside of any external declaration
959 or definition, and it shall be first included before the first reference to any type or macro it
960 defines, or to any function or object it declares. However, if an identifier is declared or defined in
961 more than one header, the second and subsequent associated headers may be included after the
962 initial reference to the identifier. Prior to the inclusion of a header, the application shall not
963 define any macros with names lexically identical to symbols defined by that header.

520 Technical Standard (2000) (Draft July 31, 2000)

General Information Error Numbers

964 2.3 Error Numbers
965 Most functions can provide an error number. The means by which each function provides its
966 error numbers is specified in its description.

967 Some functions provide the error number in a variable accessed through the symbol errno. The
968 symbol errno, defined by including the <errno.h> header, is a macro that expands to a |
969 modifiable lvalue of type int. |

970 The value of errno should only be examined when it is indicated to be valid by a function’s return
971 value. No function in this volume of IEEE Std. 1003.1-200x shall set errno to zero. For each thread |
972 of a process, the value of errno shall not be affected by function calls or assignments to errno by |
973 other threads.

974 Some functions return an error number directly as the function value. These functions return a
975 value of zero to indicate success.

976 If more than one error occurs in processing a function call, any one of the possible errors may be
977 returned, as the order of detection is undefined.

978 Implementations may support additional errors not included in this list, may generate errors
979 included in this list under circumstances other than those described here, or may contain
980 extensions or limitations that shall prevent some errors from occurring. The ERRORS section on
981 each page specifies whether an error shall be returned, or whether it may be returned.
982 Implementations shall not generate a different error number from the ones described here for
983 error conditions described in this volume of IEEE Std. 1003.1-200x, but may generate additional
984 errors unless explicitly disallowed for a particular function.

985 Each implementation shall document, in the conformance document, situations in which each of
986 the optional conditions defined in IEEE Std. 1003.1-200x are detected. The conformance
987 document may also contain statements that one or more of the optional error conditions are not
988 detected. |

989 For functions under the Threads option for which [EINTR] is not listed as a possible error |
990 condition in this volume of IEEE Std. 1003.1-200x, an implementation shall not return an error
991 code of [EINTR].

992 The following symbolic names identify the possible error numbers, in the context of the
993 functions specifically defined in this volume of IEEE Std. 1003.1-200x; these general descriptions
994 are more precisely defined in the ERRORS sections of the functions that return them. Only these
995 symbolic names should be used in programs, since the actual value of the error number is |
996 unspecified. All values listed in this section shall be unique integer constant expressions with |
997 type int suitable for use in #if preprocessing directives, except as noted below. The values for all |
998 these names shall be found in the <errno.h> header defined in the Base Definitions volume of |
999 IEEE Std. 1003.1-200x. The actual values are unspecified by this volume of IEEE Std. 1003.1-200x. |

1000 [E2BIG]
1001 Argument list too long. The sum of the number of bytes used by the new process image’s
1002 argument list and environment list is greater than the system-imposed limit of {ARG_MAX}
1003 bytes.

1004 or:

1005 Lack of space in an output buffer.

1006 or:

1007 Argument is greater than the system-imposed maximum.

System Interfaces, Issue 6 521

Error Numbers General Information

1008 [EACCES]
1009 Permission denied. An attempt was made to access a file in a way forbidden by its file
1010 access permissions. |

1011 [EADDRINUSE] |
1012 Address in use. The specified address is in use. |

1013 [EADDRNOTAVAIL] |
1014 Address not available. The specified address is not available from the local system. |

1015 [EAFNOSUPPORT] |
1016 Address family not supported. The implementation does not support the specified address
1017 family, or the specified address is not a valid address for the address family of the specified
1018 socket. |

1019 [EAGAIN]
1020 Resource temporarily unavailable. This is a temporary condition and later calls to the same
1021 routine may complete normally. |

1022 [EALREADY] |
1023 Connection already in progress. A connection request is already in progress for the specified
1024 socket. |

1025 [EBADF]
1026 Bad file descriptor. A file descriptor argument is out of range, refers to no open file, or a
1027 read (write) request is made to a file that is only open for writing (reading).

1028 [EBADMSG]
1029 XSR Bad message. During a read(), getmsg(), or ioctl () I_RECVFD request to a STREAMS device, |
1030 a message arrived at the head of the STREAM that is inappropriate for the function
1031 receiving the message.

1032 read() Message waiting to be read on a STREAM is not a data message.

1033 getmsg() A file descriptor was received instead of a control message.

1034 ioctl () Control or data information was received instead of a file descriptor when
1035 I_RECVFD was specified.

1036 or:

1037 Bad Message. The implementation has detected a corrupted message.

1038 [EBUSY]
1039 Resource busy. An attempt was made to make use of a system resource that is not currently
1040 available, as it is being used by another process in a manner that would have conflicted with
1041 the request being made by this process.

1042 [ECANCELED]
1043 Operation canceled. The associated asynchronous operation was canceled before
1044 completion.

1045 [ECHILD]
1046 No child process. A wait() or waitpid () function was executed by a process that had no
1047 existing or unwaited-for child process. |

1048 [ECONNABORTED] |
1049 Connection aborted. The connection has been aborted. |

1050 [ECONNREFUSED] |
1051 Connection refused. An attempt to connect to a socket was refused because there was no

522 Technical Standard (2000) (Draft July 31, 2000)

General Information Error Numbers

1052 process listening or because the queue of connection requests was full and the underlying
1053 protocol does not support retransmissions. |

1054 [ECONNRESET] |
1055 Connection reset. The connection was forcibly closed by the peer. |

1056 [EDEADLK]
1057 Resource deadlock would occur. An attempt was made to lock a system resource that
1058 would have resulted in a deadlock situation. |

1059 [EDESTADDRREQ] |
1060 Destination address required. No bind address was established. |

1061 [EDOM]
1062 Domain error. An input argument is outside the defined domain of the mathematical
1063 function (defined in the ISO C standard). |

1064 [EDQUOT] |
1065 Reserved. |

1066 [EEXIST]
1067 File exists. An existing file was mentioned in an inappropriate context; for example, as a
1068 new link name in the link () function.

1069 [EFAULT]
1070 Bad address. The system detected an invalid address in attempting to use an argument of a
1071 call. The reliable detection of this error cannot be guaranteed, and when not detected may
1072 result in the generation of a signal, indicating an address violation, which is sent to the
1073 process. |

1074 [EFBIG] |
1075 File too large. The size of a file would exceed the maximum file size of an implementation or
1076 offset maximum established in the corresponding file description. |

1077 [EHOSTUNREACH] |
1078 Host is unreachable. The destination host cannot be reached (probably because the host is
1079 down or a remote router cannot reach it). |

1080 [EIDRM] |
1081 Identifier removed. Returned during XSI interprocess communication if an identifier has
1082 been removed from the system. |

1083 [EILSEQ] |
1084 Illegal byte sequence. A wide-character code has been detected that does not correspond to |
1085 a valid character, or a byte sequence does not form a valid wide-character code (defined in |
1086 the ISO C standard). |

1087 [EINPROGRESS] |
1088 Operation in progress. This code is used to indicate that an asynchronous operation has not
1089 yet completed.

1090 or:

1091 O_NONBLOCK is set for the socket file descriptor and the connection cannot be
1092 immediately established. |

1093 [EINTR] |
1094 Interrupted function call. An asynchronous signal was caught by the process during the
1095 execution of an interruptible function. If the signal handler performs a normal return, the
1096 interrupted function call may return this condition (see the Base Definitions volume of |

System Interfaces, Issue 6 523

Error Numbers General Information

1097 IEEE Std. 1003.1-200x, <signal.h>). |

1098 [EINVAL] |
1099 Invalid argument. Some invalid argument was supplied; for example, specifying an
1100 undefined signal in a signal() function or a kill () function. |

1101 [EIO]
1102 Input/output error. Some physical input or output error has occurred. This error may be
1103 reported on a subsequent operation on the same file descriptor. Any other error-causing
1104 operation on the same file descriptor may cause the [EIO] error indication to be lost. |

1105 [EISCONN] |
1106 Socket is connected. The specified socket is already connected. |

1107 [EISDIR]
1108 Is a directory. An attempt was made to open a directory with write mode specified. |

1109 [ELOOP] |
1110 Symbolic link loop. A loop exists in symbolic links encountered during path name
1111 resolution. This error may also be returned if more than {SYMLOOP_MAX} symbolic links
1112 are encountered during path name resolution. |

1113 [EMFILE]
1114 Too many open files. An attempt was made to open more than the maximum number of
1115 {OPEN_MAX} file descriptors allowed in this process.

1116 [EMLINK]
1117 Too many links. An attempt was made to have the link count of a single file exceed
1118 {LINK_MAX}. |

1119 [EMSGSIZE] |
1120 Message too large. A message sent on a transport provider was larger than an internal
1121 message buffer or some other network limit. |

1122 or: |

1123 Inappropriate message buffer length. |

1124 [EMULTIHOP] |
1125 Reserved. |

1126 [ENAMETOOLONG]
1127 File name too long. The length of a path name exceeds {PATH_MAX}, or a path name
1128 component is longer than {NAME_MAX}. This error may also occur when path name |
1129 substitution, as a result of encountering a symbolic link during path name resolution,
1130 results in a path name string the size of which exceeds {PATH_MAX}. |

1131 [ENETDOWN] |
1132 Network is down. The local network interface used to reach the destination is down. |

1133 [ENETRESET]
1134 The connection was aborted by the network. |

1135 [ENETUNREACH] |
1136 Network unreachable. No route to the network is present. |

1137 [ENFILE]
1138 Too many files open in system. Too many files are currently open in the system. The system
1139 has reached its predefined limit for simultaneously open files and temporarily cannot accept
1140 requests to open another one. |

524 Technical Standard (2000) (Draft July 31, 2000)

General Information Error Numbers

1141 [ENOBUFS] |
1142 No buffer space available. Insufficient buffer resources were available in the system to
1143 perform the socket operation. |

1144 XSR [ENODATA] |
1145 No message available. No message is available on the STREAM head read queue.

1146 [ENODEV]
1147 No such device. An attempt was made to apply an inappropriate function to a device; for
1148 example, trying to read a write-only device such as a printer.

1149 [ENOENT]
1150 No such file or directory. A component of a specified path name does not exist, or the path
1151 name is an empty string.

1152 [ENOEXEC]
1153 Executable file format error. A request is made to execute a file that, although it has the
1154 appropriate permissions, is not in the format required by the implementation for executable
1155 files.

1156 [ENOLCK]
1157 No locks available. A system-imposed limit on the number of simultaneous file and record
1158 locks has been reached and no more are currently available. |

1159 [ENOLINK] |
1160 Reserved. |

1161 [ENOMEM]
1162 Not enough space. The new process image requires more memory than is allowed by the
1163 hardware or system-imposed memory management constraints. |

1164 [ENOMSG] |
1165 No message of the desired type. The message queue does not contain a message of the
1166 required type during XSI interprocess communication. |

1167 [ENOPROTOOPT] |
1168 Protocol not available. The protocol option specified to setsockopt () is not supported by the
1169 implementation. |

1170 [ENOSPC]
1171 No space left on a device. During the write() function on a regular file or when extending a
1172 directory, there is no free space left on the device.

1173 XSR [ENOSR] |
1174 No STREAM resources. Insufficient STREAMS memory resources are available to perform a
1175 STREAMS-related function. This is a temporary condition; it may be recovered from if other
1176 processes release resources.

1177 XSR [ENOSTR] |
1178 Not a STREAM. A STREAM function was attempted on a file descriptor that was not
1179 associated with a STREAMS device.

1180 [ENOSYS]
1181 Function not implemented. An attempt was made to use a function that is not available in
1182 this implementation. |

1183 [ENOTCONN] |
1184 Socket not connected. The socket is not connected. |

System Interfaces, Issue 6 525

Error Numbers General Information

1185 [ENOTDIR]
1186 Not a directory. A component of the specified path name exists, but it is not a directory,
1187 when a directory was expected.

1188 [ENOTEMPTY]
1189 Directory not empty. A directory other than an empty directory was supplied when an
1190 empty directory was expected. |

1191 [ENOTSOCK] |
1192 Not a socket. The file descriptor does not refer to a socket. |

1193 [ENOTSUP]
1194 Not supported. The implementation does not support this feature of the Realtime Option
1195 Group.

1196 [ENOTTY]
1197 Inappropriate I/O control operation. A control function has been attempted for a file or
1198 special file for which the operation is inappropriate.

1199 [ENXIO]
1200 No such device or address. Input or output on a special file refers to a device that does not
1201 exist, or makes a request beyond the capabilities of the device. It may also occur when, for
1202 example, a tape drive is not on-line. |

1203 [EOPNOTSUPP] |
1204 Operation not supported on socket. The type of socket (address family or protocol) does not
1205 support the requested operation. |

1206 [EOVERFLOW] |
1207 Value too large to be stored in data type. The user ID or group ID of an IPC or file system
1208 object was too large to be stored into the appropriate member of the caller-provided
1209 structure. This error shall only occur on implementations that support a larger range of user
1210 ID or group ID values than the declared structure member can support. This usually occurs
1211 because the IPC or file system object resides on a remote machine with a larger value of the
1212 type uid_t, off_t, or gid_t than the local system. |

1213 [EPERM]
1214 Operation not permitted. An attempt was made to perform an operation limited to
1215 processes with appropriate privileges or to the owner of a file or other resource.

1216 [EPIPE]
1217 Broken pipe. A write was attempted on a socket, pipe, or FIFO for which there is no process |
1218 to read the data. |

1219 [EPROTO] |
1220 Protocol error. Some protocol error occurred. This error is device-specific, but is generally
1221 not related to a hardware failure. |

1222 [EPROTONOSUPPORT] |
1223 Protocol not supported. The protocol is not supported by the address family, or the protocol
1224 is not supported by the implementation. |

1225 [EPROTOTYPE] |
1226 Socket type not supported. The socket type is not supported by the protocol. |

1227 [ERANGE]
1228 Result too large or too small. The result of the function is too large (overflow) or too small
1229 (underflow) to be represented in the available space (defined in the ISO C standard).

526 Technical Standard (2000) (Draft July 31, 2000)

General Information Error Numbers

1230 [EROFS]
1231 Read-only file system. An attempt was made to modify a file or directory on a file system
1232 that is read-only.

1233 [ESPIPE]
1234 Invalid seek. An attempt was made to access the file offset associated with a pipe or FIFO.

1235 [ESRCH]
1236 No such process. No process can be found corresponding to that specified by the given
1237 process ID. |

1238 [ESTALE] |
1239 Reserved. |

1240 XSR [ETIME] |
1241 STREAM ioctl () timeout. The timer set for a STREAMS ioctl () call has expired. The cause of
1242 this error is device-specific and could indicate either a hardware or software failure, or a
1243 timeout value that is too short for the specific operation. The status of the ioctl () operation
1244 is indeterminate. |

1245 [ETIMEDOUT] |
1246 Connection timed out. The connection to a remote machine has timed out. If the connection
1247 timed out during execution of the function that reported this error (as opposed to timing
1248 out prior to the function being called), it is unspecified whether the function has completed
1249 some or all of the documented behavior associated with a successful completion of the
1250 function.

1251 or:

1252 Operation timed out. The time limit associated with the operation was exceeded before the |
1253 operation completed. |

1254 [ETXTBSY] |
1255 Text file busy. An attempt was made to execute a pure-procedure program that is currently
1256 open for writing, or an attempt has been made to open for writing a pure-procedure
1257 program that is being executed. |

1258 [EWOULDBLOCK] |
1259 Operation would block. An operation on a socket marked as non-blocking has encountered
1260 a situation such as no data available that otherwise would have caused the function to
1261 suspend execution.

1262 A conforming implementation may assign the same values for [EWOULDBLOCK] and
1263 [EAGAIN]. |

1264 [EXDEV]
1265 Improper link. A link to a file on another file system was attempted.

1266 2.3.1 Additional Error Numbers

1267 Additional implementation-defined error numbers may be defined in <errno.h>. |

System Interfaces, Issue 6 527

Signal Concepts General Information

1268 2.4 Signal Concepts

1269 2.4.1 Signal Generation and Delivery

1270 A signal is said to be generated for (or sent to) a process or thread when the event that causes the
1271 signal first occurs. Examples of such events include detection of hardware faults, timer
1272 RTS expiration, signals generated via the sigevent structure and terminal activity, as well as
1273 RTS invocations of kill () and sigqueue() functions. In some circumstances, the same event generates
1274 signals for multiple processes.

1275 At the time of generation, a determination is made whether the signal has been generated for the
1276 process or for a specific thread within the process. Signals which are generated by some action
1277 attributable to a particular thread, such as a hardware fault, are generated for the thread that
1278 caused the signal to be generated. Signals that are generated in association with a process ID or
1279 process group ID or an asynchronous event such as terminal activity are generated for the
1280 process.

1281 Each process has an action to be taken in response to each signal defined by the system (see
1282 Section 2.4.3 (on page 530)). A signal is said to be delivered to a process when the appropriate
1283 action for the process and signal is taken. A signal is said to be accepted by a process when the
1284 signal is selected and returned by one of the sigwait () functions.

1285 During the time between the generation of a signal and its delivery or acceptance, the signal is
1286 said to be pending . Ordinarily, this interval cannot be detected by an application. However, a
1287 signal can be blocked from delivery to a thread. If the action associated with a blocked signal is
1288 anything other than to ignore the signal, and if that signal is generated for the thread, the signal
1289 shall remain pending until it is unblocked, it is accepted when it is selected and returned by a
1290 call to the sigwait () function, or the action associated with it is set to ignore the signal. Signals
1291 generated for the process shall be delivered to exactly one of those threads within the process
1292 which is in a call to a sigwait () function selecting that signal or has not blocked delivery of the
1293 signal. If there are no threads in a call to a sigwait () function selecting that signal, and if all
1294 threads within the process block delivery of the signal, the signal shall remain pending on the
1295 process until a thread calls a sigwait () function selecting that signal, a thread unblocks delivery
1296 of the signal, or the action associated with the signal is set to ignore the signal. If the action
1297 associated with a blocked signal is to ignore the signal and if that signal is generated for the
1298 process, it is unspecified whether the signal is discarded immediately upon generation or
1299 remains pending.

1300 Each thread has a signal mask that defines the set of signals currently blocked from delivery to it.
1301 The signal mask for a thread is initialized from that of its parent or creating thread, or from the
1302 corresponding thread in the parent process if the thread was created as the result of a call to
1303 fork (). The sigaction (), sigprocmask (), and sigsuspend() functions control the manipulation of the
1304 signal mask.

1305 The determination of which action is taken in response to a signal is made at the time the signal
1306 is delivered, allowing for any changes since the time of generation. This determination is
1307 independent of the means by which the signal was originally generated. If a subsequent
1308 occurrence of a pending signal is generated, it is implementation-defined as to whether the |
1309 RTS signal is delivered or accepted more than once in circumstances other than those in which |
1310 queuing is required under the Realtime Signals Extension option. The order in which multiple, |
1311 simultaneously pending signals outside the range SIGRTMIN to SIGRTMAX are delivered to or |
1312 accepted by a process is unspecified. |

1313 When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a process, any
1314 pending SIGCONT signals for that process shall be discarded. Conversely, when SIGCONT is
1315 generated for a process, all pending stop signals for that process shall be discarded. When

528 Technical Standard (2000) (Draft July 31, 2000)

General Information Signal Concepts

1316 SIGCONT is generated for a process that is stopped, the process shall be continued, even if the
1317 SIGCONT signal is blocked or ignored. If SIGCONT is blocked and not ignored, it shall remain
1318 pending until it is either unblocked or a stop signal is generated for the process.

1319 An implementation shall document any condition not specified by this volume of
1320 IEEE Std. 1003.1-200x under which the implementation generates signals. |

1321 2.4.2 Realtime Signal Generation and Delivery |

1322 RTS This section describes extensions to support realtime signal generation and delivery. This |
1323 functionality is dependent on support of the Realtime Signals Extension option (and the rest of |
1324 this section is not further shaded for this option). |

1325 Some signal-generating functions, such as high-resolution timer expiration, asynchronous I/O |
1326 completion, interprocess message arrival, and the sigqueue() function, support the specification
1327 of an application-defined value, either explicitly as a parameter to the function or in a sigevent
1328 structure parameter. The sigevent structure is defined in <signal.h> and shall contain at least |
1329 the following members: |
1330 ___
1331 Member Type Member Name Description___
1332 int sigev_notify Notification type.
1333 int sigev_signo Signal number.
1334 union sigval sigev_value Signal value.
1335 void(*)(unsigned sigval) sigev_notify_function Notification function.
1336 (pthread_attr_t*) sigev_notify_attributes Notification attributes.___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

1337 The sigev_notify member specifies the notification mechanism to use when an asynchronous
1338 event occurs. This volume of IEEE Std. 1003.1-200x defines the following values for the
1339 sigev_notify member:

1340 SIGEV_NONE No asynchronous notification shall be delivered when the event of
1341 interest occurs.

1342 SIGEV_SIGNAL The signal specified in sigev_signo shall be generated for the process when
1343 the event of interest occurs. If the implementation supports the Realtime
1344 Signals Extension option and if the SA_SIGINFO flag is set for that signal
1345 number, then the signal shall be queued to the process and the value
1346 specified in sigev_value shall be the si_value component of the generated
1347 signal. If SA_SIGINFO is not set for that signal number, it is unspecified
1348 whether the signal is queued and what value, if any, is sent.

1349 SIGEV_THREAD A notification function shall be called to perform notification.

1350 An implementation may define additional notification mechanisms.

1351 The sigev_signo member specifies the signal to be generated. The sigev_value member is the
1352 application-defined value to be passed to the signal-catching function at the time of the signal
1353 delivery or to be returned at signal acceptance as the si_value member of the siginfo_t structure.

1354 The sigval union is defined in <signal.h> and contains at least the following members:

System Interfaces, Issue 6 529

Signal Concepts General Information

1355 ___
1356 Member Type Member Name Description___
1357 int sival_int Integer signal value.
1358 void* sival_ptr Pointer signal value.___L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

1359 The sival_int member is used when the application-defined value is of type int; the sival_ptr
1360 member is used when the application-defined value is a pointer.

1361 When a signal is generated by the sigqueue() function or any signal-generating function that
1362 supports the specification of an application-defined value, the signal shall be marked pending
1363 and, if the SA_SIGINFO flag is set for that signal, the signal shall be queued to the process along
1364 with the application-specified signal value. Multiple occurrences of signals so generated are
1365 queued in FIFO order. It is unspecified whether signals so generated are queued when the
1366 SA_SIGINFO flag is not set for that signal.

1367 Signals generated by the kill () function or other events that cause signals to occur, such as
1368 detection of hardware faults, alarm() timer expiration, or terminal activity, and for which the
1369 implementation does not support queuing, have no effect on signals already queued for the
1370 same signal number.

1371 When multiple unblocked signals, all in the range SIGRTMIN to SIGRTMAX, are pending, the
1372 behavior shall be as if the implementation delivers the pending unblocked signal with the lowest
1373 signal number within that range. No other ordering of signal delivery is specified.

1374 If, when a pending signal is delivered, there are additional signals queued to that signal number,
1375 the signal remains pending. Otherwise, the pending indication is reset.

1376 Multi-threaded programs can use an alternate event notification mechanism. When a
1377 notification is processed, and the sigev_notify member of the sigevent structure has the value
1378 SIGEV_THREAD, the function sigev_notify_function is called with parameter sigev_value .

1379 The function shall be executed in an environment as if it were the start_routine for a newly
1380 created thread with thread attributes specified by sigev_notify_attributes. If sigev_notify_attributes
1381 is NULL, the behavior shall be as if the thread were created with the detachstate attribute set to
1382 PTHREAD_CREATE_DETACHED. Supplying an attributes structure with a detachstate attribute
1383 of PTHREAD_CREATE_JOINABLE results in undefined behavior. The signal mask of this
1384 thread is implementation-defined. |

1385 2.4.3 Signal Actions

1386 There are three types of action that can be associated with a signal: SIG_DFL, SIG_IGN, or a
1387 pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior to entry of
1388 the main() routine (see the exec functions). The actions prescribed by these values are as follows:

1389 SIG_DFL Signal-specific default action.

1390 The default actions for the signals defined in this volume of IEEE Std. 1003.1-200x
1391 RTS are specified under <signal.h>. If the Realtime Signals Extension option is
1392 supported, the default actions for the realtime signals in the range SIGRTMIN to
1393 SIGRTMAX are to terminate the process abnormally.

1394 If the default action is to stop the process, the execution of that process is
1395 temporarily suspended. When a process stops, a SIGCHLD signal shall be
1396 generated for its parent process, unless the parent process has set the
1397 SA_NOCLDSTOP flag. While a process is stopped, any additional signals that are
1398 sent to the process shall not be delivered until the process is continued, except
1399 SIGKILL which always terminates the receiving process. A process that is a
1400 member of an orphaned process group shall not be allowed to stop in response to

530 Technical Standard (2000) (Draft July 31, 2000)

General Information Signal Concepts

1401 the SIGTSTP, SIGTTIN, or SIGTTOU signals. In cases where delivery of one of
1402 these signals would stop such a process, the signal shall be discarded.

1403 Setting a signal action to SIG_DFL for a signal that is pending, and whose default
1404 action is to ignore the signal (for example, SIGCHLD), shall cause the pending
1405 signal to be discarded, whether or not it is blocked.

1406 The default action for SIGCONT is to resume execution at the point where the
1407 RTS process was stopped, after first handling any pending unblocked signals. If the |
1408 Realtime Signals Extension option is supported, any queued values pending shall
1409 be discarded and the resources used to queue them shall be released and returned |
1410 to the system for other use. |

1411 SIG_IGN Ignore signal.

1412 Delivery of the signal shall have no effect on the process. The behavior of a process
1413 RTS is undefined after it ignores a SIGFPE, SIGILL, SIGSEGV, or SIGBUS signal that
1414 RTS was not generated by kill (),sigqueue(),or raise().

1415 The system shall not allow the action for the signals SIGKILL or SIGSTOP to be set
1416 to SIG_IGN.

1417 Setting a signal action to SIG_IGN for a signal that is pending shall cause the
1418 pending signal to be discarded, whether or not it is blocked.

1419 If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is
1420 XSI unspecified, except as specified below.

1421 If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the
1422 calling processes shall not be transformed into zombie processes when they
1423 terminate. If the calling process subsequently waits for its children, and the process
1424 has no unwaited-for children that were transformed into zombie processes, it shall
1425 block until all of its children terminate, and wait(), waitid (), and waitpid () shall fail |
1426 and set errno to [ECHILD].

1427 RTS If the Realtime Signals Extension option is supported, any queued values pending
1428 shall be discarded and the resources used to queue them shall be released and
1429 made available to queue other signals.

1430 pointer to a function
1431 Catch signal.

1432 On delivery of the signal, the receiving process is to execute the signal-catching
1433 function at the specified address. After returning from the signal-catching function,
1434 the receiving process shall resume execution at the point at which it was
1435 interrupted.

1436 If the SA_SIGINFO flag for the signal is cleared, the signal-catching function shall
1437 be entered as a C-language function call as follows:

1438 void func (int signo);

1439 XSI|RTS If the SA_SIGINFO flag for the signal is set, the signal-catching function shall be
1440 entered as a C-language function call as follows:

1441 void func (int signo , siginfo_t * info , void * context);

1442 where func is the specified signal-catching function, signo is the signal number of
1443 the signal being delivered, and info is a pointer to a siginfo_t structure defined in
1444 <signal.h> containing at least the following members:

System Interfaces, Issue 6 531

Signal Concepts General Information

1445 ___
1446 Member Type Member Name Description___
1447 int si_signo Signal number
1448 int si_code Cause of the signal
1449 union sigval si_value Signal value___LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

1450 The si_signo member contains the signal number. This is the same as the signo
1451 parameter. The si_code member contains a code identifying the cause of the signal.
1452 The following values are defined for si_code :

1453 Notes to Reviewers
1454 This section with side shading will not appear in the final copy. - Ed.

1455 The shading in this area needs some work.

1456 XSI|RTS SI_USER The signal was sent by the kill () function. The implementation
1457 may set si_code to SI_USER if the signal was sent by the raise() or
1458 abort() functions or any similar functions provided as
1459 implementation extensions.

1460 RTS SI_QUEUE The signal was sent by the sigqueue() function.

1461 RTS SI_TIMER The signal was generated by the expiration of a timer set by
1462 timer_settime().

1463 RTS SI_ASYNCIO The signal was generated by the completion of an asynchronous
1464 I/O request.

1465 RTS SI_MESGQ The signal was generated by the arrival of a message on an
1466 empty message queue.

1467 If the signal was not generated by one of the functions or events listed above, the
1468 si_code shall be set to an implementation-defined value that is not equal to any of |
1469 the values defined above.

1470 RTS If the Realtime Signals Extension is supported, and si_code is one of SI_QUEUE,
1471 SI_TIMER, SI_ASYNCIO, or SI_MESGQ, then si_value contains the application-
1472 specified signal value. Otherwise, the contents of si_value are undefined.

1473 The behavior of a process is undefined after it returns normally from a signal-
1474 XSI catching function for a SIGBUS, SIGFPE, SIGILL, or SIGSEGV signal that was not
1475 RTS generated by kill (),sigqueue(),or raise().

1476 The system shall not allow a process to catch the signals SIGKILL and SIGSTOP.

1477 If a process establishes a signal-catching function for the SIGCHLD signal while it
1478 has a terminated child process for which it has not waited, it is unspecified
1479 whether a SIGCHLD signal is generated to indicate that child process.

1480 When signal-catching functions are invoked asynchronously with process
1481 execution, the behavior of some of the functions defined by this volume of
1482 IEEE Std. 1003.1-200x is unspecified if they are called from a signal-catching
1483 function.

1484 The following table defines a set of functions that are either reentrant or not
1485 interruptible by signals and are async-signal-safe. Therefore applications may
1486 invoke them, without restriction, from signal-catching functions:

532 Technical Standard (2000) (Draft July 31, 2000)

General Information Signal Concepts

1487 Notes to Reviewers
1488 This section with side shading will not appear in the final copy. - Ed.

1489 The contents of the following tables need to be reviewed.

1490 Base functions:

1491 _Exit()
1492 _exit()
1493 access()
1494 alarm()
1495 cfgetispeed()
1496 cfgetospeed()
1497 cfsetispeed()
1498 cfsetospeed()
1499 chdir()
1500 chmod()
1501 chown()
1502 close()
1503 creat()
1504 dup()
1505 dup2()
1506 execle()
1507 execve()
1508 fchmod()
1509 fchown()
1510 fcntl()
1511 fork ()

fpathconf ()
fstat()
fsync()
ftruncate()
getegid()
geteuid()
getgid()
getgroups()
getpgrp()
getpid()
getppid()
getuid()
kill ()
link ()
lseek()
lstat()
mkdir()
mkfifo ()
open()
pathconf ()
pause()

pipe()
raise()
read()
readlink ()
rename()
rmdir()
setgid()
setpgid()
setsid()
setuid()
sigaction ()
sigaddset()
sigdelset()
sigemptyset()
sigfillset ()
sigismember()
signal()
sigpending()
sigprocmask ()
sigsuspend()
sleep()

stat()
symlink()
sysconf()
tcdrain()
tcflow ()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
times()
umask()
uname()
unlink()
utime()
wait()
waitpid ()
write()

1512 Realtime functions:

1513 aio_error ()
1514 aio_return()
1515 aio_suspend()

clock_gettime ()
fdatasync ()
sem_post()

sigpause()
sigqueue()
sigset()

timer_getoverrun()
timer_gettime()
timer_settime()

1516 Tracing functions: |

1517 posix_trace_event()| ||

1518 All functions not in the above table are considered to be unsafe with respect to |
1519 signals. In the presence of signals, all functions defined by this volume of
1520 IEEE Std. 1003.1-200x shall behave as defined when called from or interrupted by a
1521 signal-catching function, with a single exception: when a signal interrupts an
1522 unsafe function and the signal-catching function calls an unsafe function, the
1523 behavior is undefined.

1524 When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or
1525 continue, the entire process shall be terminated, stopped, or continued, respectively.

System Interfaces, Issue 6 533

Signal Concepts General Information

1526 2.4.4 Signal Effects on Other Functions

1527 Signals affect the behavior of certain functions defined by this volume of IEEE Std. 1003.1-200x if
1528 delivered to a process while it is executing such a function. If the action of the signal is to
1529 terminate the process, the process shall be terminated and the function shall not return. If the
1530 action of the signal is to stop the process, the process shall stop until continued or terminated.
1531 Generation of a SIGCONT signal for the process shall cause the process to be continued, and the
1532 original function shall continue at the point the process was stopped. If the action of the signal is
1533 to invoke a signal-catching function, the signal-catching function shall be invoked; in this case
1534 the original function is said to be interrupted by the signal. |

1535 Notes to Reviewers |
1536 This section with side shading will not appear in the final copy. - Ed. |

1537 D3, XSH, ERN 20 points out a discrepancy between the following sentence and the paragraph |
1538 above beginning "All functions not in the above ...". An interpretation will be filed. |
1539 If the signal-catching function executes a return statement, the behavior of the interrupted |
1540 function shall be as described individually for that function. Signals that are ignored shall not
1541 affect the behavior of any function; signals that are blocked shall not affect the behavior of any
1542 function until they are unblocked and then delivered, except as specified for the sigpending() and
1543 sigwait () functions.

534 Technical Standard (2000) (Draft July 31, 2000)

General Information Standard I/O Streams

1544 2.5 Standard I/O Streams
1545 A stream is associated with an external file (which may be a physical device) by opening a file,
1546 which may involve creating a new file. Creating an existing file causes its former contents to be
1547 discarded if necessary. If a file can support positioning requests, (such as a disk file, as opposed
1548 to a terminal), then a file position indicator associated with the stream is positioned at the start
1549 (byte number 0) of the file, unless the file is opened with append mode, in which case it is |
1550 implementation-defined whether the file position indicator is initially positioned at the |
1551 beginning or end of the file. The file position indicator is maintained by subsequent reads,
1552 writes, and positioning requests, to facilitate an orderly progression through the file. All input
1553 takes place as if bytes were read by successive calls to fgetc(); all output takes place as if bytes
1554 were written by successive calls to fputc().

1555 When a stream is unbuffered, bytes are intended to appear from the source or at the destination
1556 as soon as possible; otherwise, bytes may be accumulated and transmitted as a block. When a
1557 stream is fully buffered, bytes are intended to be transmitted as a block when a buffer is filled.
1558 When a stream is line buffered, bytes are intended to be transmitted as a block when a newline
1559 byte is encountered. Furthermore, bytes are intended to be transmitted as a block when a buffer
1560 is filled, when input is requested on an unbuffered stream, or when input is requested on a line-
1561 buffered stream that requires the transmission of bytes. Support for these characteristics is |
1562 implementation-defined, and may be affected via setbuf() and setvbuf(). |

1563 A file may be disassociated from a controlling stream by closing the file. Output streams are
1564 flushed (any unwritten buffer contents are transmitted) before the stream is disassociated from
1565 the file. The value of a pointer to a FILE object is indeterminate after the associated file is closed
1566 (including the standard streams).

1567 A file may be subsequently reopened, by the same or another program execution, and its
1568 contents reclaimed or modified (if it can be repositioned at its start). If the main() function
1569 returns to its original caller, or if the exit() function is called, all open files are closed (hence all
1570 output streams are flushed) before program termination. Other paths to program termination,
1571 such as calling abort(), need not close all files properly.

1572 The address of the FILE object used to control a stream may be significant; a copy of a FILE
1573 object need not necessarily serve in place of the original.

1574 At program start-up, three streams are predefined and need not be opened explicitly: standard |
1575 input (for reading conventional input), standard output (for writing conventional output), and
1576 standard error (for writing diagnostic output). When opened, the standard error stream is not
1577 fully buffered; the standard input and standard output streams are fully buffered if and only if
1578 the stream can be determined not to refer to an interactive device.

1579 2.5.1 Interaction of File Descriptors and Standard I/O Streams

1580 CX This section describes the interaction of file descriptors and standard I/O streams. This |
1581 functionality is an extension to the ISO C standard (and the rest of this section is not further CX |
1582 shaded). |

1583 An open file description may be accessed through a file descriptor, which is created using |
1584 functions such as open() or pipe(), or through a stream, which is created using functions such as
1585 fopen() or popen(). Either a file descriptor or a stream is called a handle on the open file |
1586 description to which it refers; an open file description may have several handles.

1587 Handles can be created or destroyed by explicit user action, without affecting the underlying
1588 open file description. Some of the ways to create them include fcntl(), dup(), fdopen(), fileno (),
1589 and fork (). They can be destroyed by at least fclose(), close(), and the exec functions.

System Interfaces, Issue 6 535

Standard I/O Streams General Information

1590 A file descriptor that is never used in an operation that could affect the file offset (for example,
1591 read(), write(), or lseek()) is not considered a handle for this discussion, but could give rise to one
1592 (for example, as a consequence of fdopen(), dup(), or fork ()). This exception does not include the |
1593 file descriptor underlying a stream, whether created with fopen() or fdopen(), so long as it is not
1594 used directly by the application to affect the file offset. The read() and write() functions
1595 implicitly affect the file offset; lseek() explicitly affects it.

1596 The result of function calls involving any one handle (the active handle) is defined elsewhere in
1597 this volume of IEEE Std. 1003.1-200x, but if two or more handles are used, and any one of them is
1598 a stream, the application shall ensure that their actions are coordinated as described below. If
1599 this is not done, the result is undefined.

1600 A handle which is a stream is considered to be closed when either an fclose() or freopen() is
1601 executed on it (the result of freopen() is a new stream, which cannot be a handle on the same
1602 open file description as its previous value), or when the process owning that stream terminates
1603 with exit() or abort(). A file descriptor is closed by close(), _exit(), or the exec functions when
1604 FD_CLOEXEC is set on that file descriptor.

1605 For a handle to become the active handle, the application shall ensure that the actions below are
1606 performed between the last use of the handle (the current active handle) and the first use of the
1607 second handle (the future active handle). The second handle then becomes the active handle. All
1608 activity by the application affecting the file offset on the first handle shall be suspended until it
1609 again becomes the active file handle. (If a stream function has as an underlying function one that
1610 affects the file offset, the stream function shall be considered to affect the file offset.)

1611 The handles need not be in the same process for these rules to apply.

1612 Note that after a fork (), two handles exist where one existed before. The application shall ensure
1613 that, if both handles can ever be accessed, they are both in a state where the other could become
1614 the active handle first. The application shall prepare for a fork () exactly as if it were a change of
1615 active handle. (If the only action performed by one of the processes is one of the exec functions or
1616 _exit() (not exit()), the handle is never accessed in that process.)

1617 For the first handle, the first applicable condition below applies. After the actions required
1618 below are taken, if the handle is still open, the application can close it.

1619 • If it is a file descriptor, no action is required.

1620 • If the only further action to be performed on any handle to this open file descriptor is to close
1621 it, no action need be taken.

1622 • If it is a stream which is unbuffered, no action need be taken.

1623 • If it is a stream which is line buffered, and the last byte written to the stream was a newline
1624 (that is, as if a:

1625 putc(’\n’)

1626 was the most recent operation on that stream), no action need be taken.

1627 • If it is a stream which is open for writing or appending (but not also open for reading), the
1628 application shall either perform an fflush(), or the stream shall be closed.

1629 • If the stream is open for reading and it is at the end of the file (feof() is true), no action need
1630 be taken.

1631 • If the stream is open with a mode that allows reading and the underlying open file
1632 description refers to a device that is capable of seeking, the application shall either perform
1633 an fflush(), or the stream shall be closed.

536 Technical Standard (2000) (Draft July 31, 2000)

General Information Standard I/O Streams

1634 Otherwise, the result is undefined.

1635 For the second handle:

1636 • If any previous active handle has been used by a function that explicitly changed the file
1637 offset, except as required above for the first handle, the application shall perform an lseek() or
1638 fseek() (as appropriate to the type of handle) to an appropriate location.

1639 If the active handle ceases to be accessible before the requirements on the first handle, above,
1640 have been met, the state of the open file description becomes undefined. This might occur during
1641 functions such as a fork () or _exit().

1642 The exec functions make inaccessible all streams that are open at the time they are called,
1643 independent of which streams or file descriptors may be available to the new process image.

1644 When these rules are followed, regardless of the sequence of handles used, implementations
1645 shall ensure that an application, even one consisting of several processes, shall yield correct
1646 results: no data shall be lost or duplicated when writing, and all data shall be written in order, |
1647 except as requested by seeks. It is implementation-defined whether, and under what conditions, |
1648 all input is seen exactly once.

1649 If the rules above are not followed, the result is unspecified.

1650 Each function that operates on a stream is said to have zero or more underlying functions. This
1651 means that the stream function shares certain traits with the underlying functions, but does not
1652 require that there be any relation between the implementations of the stream function and its
1653 underlying functions.

1654 2.5.2 Stream Orientation and Encoding Rules

1655 For conformance to the ISO/IEC 9899: 1999 standard, the definition of a stream includes an |
1656 orientation . After a stream is associated with an external file, but before any operations are
1657 performed on it, the stream is without orientation. Once a wide-character input/output function
1658 has been applied to a stream without orientation, the stream shall become wide-oriented .
1659 Similarly, once a byte input/output function has been applied to a stream without orientation,
1660 the stream shall become byte-oriented . Only a call to the freopen() function or the fwide() function
1661 can otherwise alter the orientation of a stream.

1662 A successful call to freopen() shall remove any orientation. The three predefined streams standard
1663 input , standard output , and standard error shall be unoriented at program start-up.

1664 Byte input/output functions cannot be applied to a wide-oriented stream, and wide-character
1665 input/output functions cannot be applied to a byte-oriented stream. The remaining stream
1666 operations shall not affect and shall not be affected by a stream’s orientation, except for the
1667 following additional restrictions:

1668 • Binary wide-oriented streams have the file positioning restrictions ascribed to both text and
1669 binary streams.

1670 • For wide-oriented streams, after a successful call to a file-positioning function that leaves the
1671 file position indicator prior to the end-of-file, a wide-character output function can overwrite
1672 a partial character; any file contents beyond the byte(s) written are henceforth undefined.

1673 Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
1674 of the stream. A successful call to fgetpos() shall store a representation of the value of this
1675 mbstate_t object as part of the value of the fpos_t object. A later successful call to fsetpos() using
1676 the same stored fpos_t value shall restore the value of the associated mbstate_t object as well as
1677 the position within the controlled stream.

System Interfaces, Issue 6 537

Standard I/O Streams General Information

1678 Implementations that support multiple encoding rules associate an encoding rule with the
1679 stream. The encoding rule shall be determined by the setting of the LC_CTYPE category in the
1680 current locale at the time when the stream becomes wide-oriented. If a wide-character
1681 input/output function is applied to a byte-oriented stream, the encoding rule used is undefined.
1682 As with the stream’s orientation, the encoding rule associated with a stream cannot be changed
1683 once it has been set, except by a successful call to freopen() which clears the encoding rule and
1684 resets the orientation to unoriented.

1685 Although both text and binary wide-oriented streams are conceptually sequences of wide
1686 characters, the external file associated with a wide-oriented stream is a sequence of (possibly
1687 multibyte) characters generalized as follows:

1688 • Multibyte encodings within files may contain embedded null bytes (unlike multibyte
1689 encodings valid for use internal to the program).

1690 • A file need not begin nor end in the initial shift state.

1691 Moreover, the encodings used for characters may differ among files. Both the nature and choice
1692 of such encodings are implementation-defined. |

1693 The wide-character input functions read characters from the stream and convert them to wide
1694 characters as if they were read by successive calls to the fgetwc() function. Each conversion shall
1695 occur as if by a call to the mbrtowc() function, with the conversion state described by the stream’s
1696 CX own mbstate_t object, except the encoding rule associated with the stream is used instead of the
1697 encoding rule implied by the LC_CTYPE category of the current locale.

1698 The wide-character output functions convert wide characters to (possibly multibyte) characters
1699 and write them to the stream as if they were written by successive calls to the fputwc() function.
1700 Each conversion shall occur as if by a call to the wcrtomb() function, with the conversion state
1701 CX described by the stream’s own mbstate_t object, except the encoding rule associated with the
1702 stream is used instead of the encoding rule implied by the LC_CTYPE category of the current
1703 locale.

1704 An encoding error shall occur if the character sequence presented to the underlying mbrtowc()
1705 function does not form a valid (generalized) character, or if the code value passed to the
1706 underlying wcrtomb() function does not correspond to a valid (generalized) character. The
1707 wide-character input/output functions and the byte input/output functions store the value of
1708 the macro EILSEQ in errno if and only if an encoding error occurs.

538 Technical Standard (2000) (Draft July 31, 2000)

General Information STREAMS

1709 2.6 STREAMS
1710 XSR STREAMS functionality is provided on implementations supporting the XSI STREAMS Option |
1711 Group. This functionality is dependent on support of the XSI STREAMS option (and the rest of |
1712 this section is not further shaded for this option). |

1713 STREAMS provides a uniform mechanism for implementing networking services and other |
1714 character-based I/O. The STREAMS function provides direct access to protocol modules. A
1715 STREAM is typically a full-duplex connection between a process and an open device or pseudo-
1716 device. However, since pipes may be STREAMS-based, a STREAM can be a full-duplex
1717 connection between two processes. The STREAM itself exists entirely within the implementation
1718 and provides a general character I/O function for processes. It optionally includes one or more
1719 intermediate processing modules that are interposed between the process end of the STREAM
1720 (STREAM head) and a device driver at the end of the STREAM (STREAM end).

1721 STREAMS I/O is based on messages. Messages flow in both directions in a STREAM. A given
1722 module need not understand and process every message in the STREAM, but every module in
1723 the STREAM handles every message. Each module accepts messages from one of its neighbor
1724 modules in the STREAM, and passes them to the other neighbor. For example, a line discipline
1725 module may transform the data. Data flow through the intermediate modules is bidirectional,
1726 with all modules handling, and optionally processing, all messages. There are three types of
1727 messages:

1728 • Data messages containing actual data for input or output

1729 • Control data containing instructions for the STREAMS modules and underlying
1730 implementation

1731 • Other messages, which include file descriptors

1732 The function between the STREAM and the rest of the implementation is provided by a set of
1733 functions at the STREAM head. When a process calls write(), putmsg(), putpmsg(), or ioctl (),
1734 messages are sent down the STREAM, and read(), getmsg(), or getpmsg() accepts data from the
1735 STREAM and passes it to a process. Data intended for the device at the downstream end of the
1736 STREAM is packaged into messages and sent downstream, while data and signals from the
1737 device are composed into messages by the device driver and sent upstream to the STREAM
1738 head.

1739 When a STREAMS-based device is opened, a STREAM is created that contains two modules: the
1740 STREAM head module and the STREAM end (driver) module. If pipes are STREAMS-based in
1741 an implementation, when a pipe is created, two STREAMS are created, each containing a
1742 STREAM head module. Other modules are added to the STREAM using ioctl (). New modules
1743 are ‘‘pushed’’ onto the STREAM one at a time in last-in, first-out (LIFO) style, as though the
1744 STREAM was a push-down stack. |

1745 Priority

1746 Message types are classified according to their queuing priority and may be normal (non- |
1747 priority), priority , or high-priority messages. A message belongs to a particular priority band that
1748 determines its ordering when placed on a queue. Normal messages have a priority band of 0 and
1749 are always placed at the end of the queue following all other messages in the queue. High-
1750 priority messages are always placed at the head of a queue, but are discarded if there is already a
1751 high-priority message in the queue. Their priority band is ignored; they are high-priority by
1752 virtue of their type. Priority messages have a priority band greater than 0. Priority messages are
1753 always placed after any messages of the same or higher priority. High-priority and priority
1754 messages are used to send control and data information outside the normal flow of control. By
1755 convention, high-priority messages are not affected by flow control. Normal and priority

System Interfaces, Issue 6 539

STREAMS General Information

1756 messages have separate flow controls. |

1757 Message Parts

1758 A process may access STREAMS messages that contain a data part, control part, or both. The |
1759 data part is that information which is transmitted over the communication medium and the
1760 control information is used by the local STREAMS modules. The other types of messages are
1761 used between modules and are not accessible to processes. Messages containing only a data part
1762 are accessible via putmsg(), putpmsg(), getmsg(), getpmsg(), read(), or write(). Messages
1763 containing a control part with or without a data part are accessible via calls to putmsg(),
1764 putpmsg(), getmsg(), or getpmsg(). |

1765 2.6.1 Accessing STREAMS

1766 A process accesses STREAMS-based files using the standard functions close(), ioctl (), getmsg(), |
1767 getpmsg(), open(), pipe(), poll (), putmsg(), putpmsg(), read(), or write(). Refer to the applicable
1768 function definitions for general properties and errors.

1769 Calls to ioctl () are used to perform control functions with the STREAMS-based device associated
1770 with the file descriptor fildes . The arguments command and arg are passed to the STREAMS file
1771 designated by fildes and are interpreted by the STREAM head. Certain combinations of these
1772 arguments may be passed to a module or driver in the STREAM.

1773 Since these STREAMS requests are a subset of ioctl (), they are subject to the errors described
1774 there.

1775 STREAMS modules and drivers can detect errors, sending an error message to the STREAM
1776 head, thus causing subsequent functions to fail and set errno to the value specified in the
1777 message. In addition, STREAMS modules and drivers can elect to fail a particular ioctl () request
1778 alone by sending a negative acknowledgement message to the STREAM head. This causes just
1779 the pending ioctl () request to fail and set errno to the value specified in the message. |

540 Technical Standard (2000) (Draft July 31, 2000)

General Information XSI Interprocess Communication

1780 2.7 XSI Interprocess Communication
1781 XSI This section describes extensions to support interprocess communication. This functionality is |
1782 dependent on support of the XSI Extension (and the rest of this section is not further shaded for |
1783 this option). |

1784 The following message passing, semaphore, and shared memory services form an XSI |
1785 interprocess communication facility. Certain aspects of their operation are common, and are
1786 described below.
1787 ________________________________
1788 IPC Functions________________________________
1789 msgctl()
1790 msgget()
1791 msgrcv()
1792 msgsnd()

semctl()
semget()
semop()
shmat()

shmctl()
shmdt()
shmget()

________________________________LL
L
L
L
L
L

LL
L
L
L
L
L

1793 Another interprocess communication facility is provided by functions in the Realtime Option
1794 Group; see Section 2.8 (on page 543). |

1795 2.7.1 IPC General Description

1796 Each individual shared memory segment, message queue, and semaphore set is identified by a |
1797 unique positive integer, called respectively a shared memory identifier, shmid, a semaphore
1798 identifier, semid, and a message queue identifier, msqid. The identifiers are returned by calls to
1799 shmget(), semget(), and msgget(), respectively.

1800 Associated with each identifier is a data structure which contains data related to the operations
1801 which may be or may have been performed; see the Base Definitions volume of |
1802 IEEE Std. 1003.1-200x, <sys/shm.h>, <sys/sem.h>, and <sys/msg.h> for their descriptions. |

1803 Each of the data structures contains both ownership information and an ipc_perm structure (see |
1804 the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/ipc.h>) which are used in conjunction |
1805 to determine whether or not read/write (read/alter for semaphores) permissions should be
1806 granted to processes using the IPC facilities. The mode member of the ipc_perm structure acts as
1807 a bit field which determines the permissions.

1808 The values of the bits are given below in octal notation.
1809 _______________________
1810 Bit Meaning_______________________
1811 0400 Read by user.
1812 0200 Write by user.
1813 0040 Read by group.
1814 0020 Write by group.
1815 0004 Read by others.
1816 0002 Write by others._______________________L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

1817 The name of the ipc_perm structure is shm_perm, sem_perm, or msg_perm, depending on which
1818 service is being used. In each case, read and write/alter permissions are granted to a process if
1819 one or more of the following are true ("xxx" is replaced by shm, sem, or msg, as appropriate):

1820 • The process has appropriate privileges.

1821 • The effective user ID of the process matches xxx_perm.cuid or xxx_perm.uid in the data
1822 structure associated with the IPC identifier, and the appropriate bit of the user field in
1823 xxx_perm.mode is set.

System Interfaces, Issue 6 541

XSI Interprocess Communication General Information

1824 • The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid but the
1825 effective group ID of the process matches xxx_perm.cgid or xxx_perm.gid in the data structure
1826 associated with the IPC identifier, and the appropriate bit of the group field in xxx_perm.mode
1827 is set.

1828 • The effective user ID of the process does not match xxx_perm.cuid or xxx_perm.uid and the
1829 effective group ID of the process does not match xxx_perm.cgid or xxx_perm.gid in the data
1830 structure associated with the IPC identifier, but the appropriate bit of the other field in
1831 xxx_perm.mode is set.

1832 Otherwise, the permission is denied. |

542 Technical Standard (2000) (Draft July 31, 2000)

General Information Realtime

1833 2.8 Realtime
1834 This section defines functions to support the source portability of applications with realtime |
1835 requirements. The presence of many of these functions is dependent on support for
1836 implementation options described in the text.

1837 The specific functional areas included in this section and their scope include the following. Full
1838 definitions of these terms can be found in the Base Definitions volume of IEEE Std. 1003.1-200x, |
1839 Chapter 3, Definitions. |

1840 • Semaphores

1841 • Process Memory Locking

1842 • Memory Mapped Files and Shared Memory Objects

1843 • Priority Scheduling

1844 • Realtime Signal Extension

1845 • Timers

1846 • Interprocess Communication

1847 • Synchronized Input and Output

1848 • Asynchronous Input and Output

1849 All the realtime functions defined in this volume of IEEE Std. 1003.1-200x are portable, although
1850 some of the numeric parameters used by an implementation may have hardware dependencies. |

1851 2.8.1 Realtime Signals |

1852 RTS Realtime signal generation and delivery is dependent on support for the Realtime Signals |
1853 Extension option.

1854 See Section 2.4.2 (on page 529). |

1855 2.8.2 Asynchronous I/O

1856 AIO The functionality described in this section is dependent on support of the Asynchronous Input |
1857 and Output option (and the rest of this section is not further shaded for this option). |

1858 An asynchronous I/O control block structure aiocb is used in many asynchronous I/O |
1859 functions. It is defined in the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> and has |
1860 at least the following members:

1861 Member Type Member Name Description___
1862 int aio_fildes File descriptor.
1863 off_t aio_offset File offset.
1864 volatile void* aio_buf Location of buffer.
1865 size_t aio_nbytes Length of transfer.
1866 int aio_reqprio Request priority offset.
1867 struct sigevent aio_sigevent Signal number and value.
1868 int aio_lio_opcode Operation to be performed.___L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L

1869 The aio_fildes element is the file descriptor on which the asynchronous operation is performed.

1870 If O_APPEND is not set for the file descriptor aio_fildes and if aio_fildes is associated with a |
1871 device that is capable of seeking, then the requested operation takes place at the absolute
1872 position in the file as given by aio_offset , as if lseek() were called immediately prior to the

System Interfaces, Issue 6 543

Realtime General Information

1873 operation with an offset argument equal to aio_offset and a whence argument equal to SEEK_SET.
1874 If O_APPEND is set for the file descriptor, or if aio_fildes is associated with a device that is
1875 incapable of seeking, write operations append to the file in the same order as the calls were
1876 made, with the following exception: under implementation-defined circumstances, such as |
1877 operation on a multiprocessor or when requests of differing priorities are submitted at the same
1878 time, the ordering restriction may be relaxed. After a successful call to enqueue an asynchronous
1879 I/O operation, the value of the file offset for the file is unspecified. The aio_nbytes and aio_buf
1880 elements are the same as the nbyte and buf arguments defined by read() and write(), respectively.

1881 If _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined, then
1882 asynchronous I/O is queued in priority order, with the priority of each asynchronous operation
1883 based on the current scheduling priority of the calling process. The aio_reqprio member can be
1884 used to lower (but not raise) the asynchronous I/O operation priority and is within the range
1885 zero through {AIO_PRIO_DELTA_MAX}, inclusive. Unless both _POSIX_PRIORITIZED_IO and
1886 _POSIX_PRIORITY_SCHEDULING are defined, the order of processing asynchronous I/O
1887 requests is unspecified. When both _POSIX_PRIORITIZED_IO and
1888 _POSIX_PRIORITY_SCHEDULING are defined, the order of processing of requests submitted
1889 by processes whose schedulers are not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is
1890 unspecified. The priority of an asynchronous request is computed as (process scheduling
1891 priority) minus aio_reqprio . The priority assigned to each asynchronous I/O request is an
1892 indication of the desired order of execution of the request relative to other asynchronous I/O
1893 requests for this file. If _POSIX_PRIORITIZED_IO is defined, requests issued with the same
1894 priority to a character special file are processed by the underlying device in FIFO order; the order
1895 of processing of requests of the same priority issued to files that are not character special files is
1896 unspecified. Numerically higher priority values indicate requests of higher priority. The value of
1897 aio_reqprio has no effect on process scheduling priority. When prioritized asynchronous I/O
1898 requests to the same file are blocked waiting for a resource required for that I/O operation, the
1899 higher-priority I/O requests shall be granted the resource before lower-priority I/O requests are
1900 granted the resource. The relative priority of asynchronous I/O and synchronous I/O is |
1901 implementation-defined. If _POSIX_PRIORITIZED_IO is defined, the implementation shall |
1902 define for which files I/O prioritization is supported.

1903 The aio_sigevent determines how the calling process shall be notified upon I/O completion, as
1904 specified in Section 2.4.1 (on page 528). If aio_sigevent.sigev_notify is SIGEV_NONE, then no
1905 signal shall be posted upon I/O completion, but the error status for the operation and the return
1906 status for the operation shall be set appropriately.

1907 The aio_lio_opcode field is used only by the lio_listio () call. The lio_listio () call allows multiple
1908 asynchronous I/O operations to be submitted at a single time. The function takes as an
1909 argument an array of pointers to aiocb structures. Each aiocb structure indicates the operation to
1910 be performed (read or write) via the aio_lio_opcode field.

1911 The address of the aiocb structure is used as a handle for retrieving the error status and return
1912 status of the asynchronous operation while it is in progress.

1913 The aiocb structure and the data buffers associated with the asynchronous I/O operation are
1914 being used by the system for asynchronous I/O while, and only while, the error status of the
1915 asynchronous operation is equal to EINPROGRESS. Applications shall not modify the aiocb
1916 structure while the structure is being used by the system for asynchronous I/O.

1917 The return status of the asynchronous operation is the number of bytes transferred by the I/O
1918 operation. If the error status is set to indicate an error completion, then the return status is set to
1919 the return value that the corresponding read(), write(), or fsync() call would have returned.
1920 When the error status is not equal to EINPROGRESS, the return status shall reflect the return
1921 status of the corresponding synchronous operation.

544 Technical Standard (2000) (Draft July 31, 2000)

General Information Realtime

1922 2.8.3 Memory Management

1923 2.8.3.1 Memory Locking |

1924 ML The functionality described in this section is dependent on support of the Process Memory |
1925 Locking option (and the rest of this section is not further shaded for this option). |

1926 Range memory locking operations are defined in terms of pages. Implementations may restrict |
1927 the size and alignment of range lockings to be on page-size boundaries. The page size, in bytes, |
1928 is the value of the configurable system variable {PAGESIZE}. If an implementation has no |
1929 restrictions on size or alignment, it may specify a 1-byte page size.

1930 Memory locking guarantees the residence of portions of the address space. It is |
1931 implementation-defined whether locking memory guarantees fixed translation between virtual |
1932 addresses (as seen by the process) and physical addresses. Per-process memory locks are not
1933 inherited across a fork (), and all memory locks owned by a process are unlocked upon exec or
1934 process termination. Unmapping of an address range removes any memory locks established on
1935 that address range by this process. |

1936 2.8.3.2 Memory Mapped Files |

1937 MF The functionality described in this section is dependent on support of the Memory Mapped Files |
1938 option (and the rest of this section is not further shaded for this option). |

1939 Range memory mapping operations are defined in terms of pages. Implementations may |
1940 restrict the size and alignment of range mappings to be on page-size boundaries. The page size, |
1941 in bytes, is the value of the configurable system variable {PAGESIZE}. If an implementation has |
1942 no restrictions on size or alignment, it may specify a 1-byte page size. |

1943 Memory mapped files provide a mechanism that allows a process to access files by directly |
1944 incorporating file data into its address space. Once a file is mapped into a process address space,
1945 the data can be manipulated as memory. If more than one process maps a file, its contents are
1946 shared among them. If the mappings allow shared write access, then data written into the
1947 memory object through the address space of one process appears in the address spaces of all
1948 processes that similarly map the same portion of the memory object.

1949 SHM Shared memory objects are named regions of storage that may be independent of the file system
1950 and can be mapped into the address space of one or more processes to allow them to share the
1951 associated memory.

1952 SHM An unlink() of a file or shm_unlink() of a shared memory object,while causing the removal of the
1953 name, does not unmap any mappings established for the object. Once the name has been
1954 removed, the contents of the memory object are preserved as long as it is referenced. The
1955 memory object remains referenced as long as a process has the memory object open or has some
1956 area of the memory object mapped. |

1957 2.8.3.3 Memory Protection |

1958 MPR MF The functionality described in this section is dependent on support of the Memory Protection |
1959 and Memory Mapped Files option (and the rest of this section is not further shaded for these |
1960 options). |

1961 When an object is mapped, various application accesses to the mapped region may result in |
1962 signals. In this context, SIGBUS is used to indicate an error using the mapped object, and |
1963 SIGSEGV is used to indicate a protection violation or misuse of an address: |

1964 • A mapping may be restricted to disallow some types of access. |

System Interfaces, Issue 6 545

Realtime General Information

1965 • Write attempts to memory that was mapped without write access, or any access to memory |
1966 mapped PROT_NONE, shall result in a SIGSEGV signal. |

1967 • References to unmapped addresses shall result in a SIGSEGV signal. |

1968 • Reference to whole pages within the mapping, but beyond the current length of the object, |
1969 shall result in a SIGBUS signal. |

1970 • The size of the object is unaffected by access beyond the end of the object (even if a SIGBUS is |
1971 not generated). |

1972 2.8.3.4 Typed Memory Objects |

1973 TYM The functionality described in this section is dependent on support of the Typed Memory |
1974 Objects option (and the rest of this section is not further shaded for this option). |

1975 Implementations may support the Typed Memory Objects option without supporting the |
1976 Memory Mapped Files option or the Shared Memory Objects option. Typed memory objects are
1977 implementation-configurable named storage pools accessible from one or more processors in a
1978 system, each via one or more ports, such as backplane buses, LANs, I/O channels, and so on.
1979 Each valid combination of a storage pool and a port is identified through a name that is defined
1980 at system configuration time, in an implementation-defined manner; the name may be |
1981 independent of the file system. Using this name, a typed memory object can be opened and |
1982 mapped into process address space. For a given storage pool and port, it is necessary to support
1983 both dynamic allocation from the pool as well as mapping at an application-supplied offset
1984 within the pool; when dynamic allocation has been performed, subsequent deallocation must be
1985 supported. Lastly, accessing typed memory objects from different ports requires a method for
1986 obtaining the offset and length of contiguous storage of a region of typed memory (dynamically
1987 allocated or not); this allows typed memory to be shared among processes and/or processors
1988 while being accessed from the desired port. |

1989 2.8.4 Process Scheduling

1990 Scheduling Policies

1991 PS The functionality described in this section is dependent on support of the Process Scheduling |
1992 option (and the rest of this section is not further shaded for this option). |

1993 The scheduling semantics described in this volume of IEEE Std. 1003.1-200x are defined in terms
1994 of a conceptual model that contains a set of thread lists. No implementation structures are
1995 necessarily implied by the use of this conceptual model. It is assumed that no time elapses
1996 during operations described using this model, and therefore no simultaneous operations are
1997 possible. This model discusses only processor scheduling for runnable threads, but it should be
1998 noted that greatly enhanced predictability of realtime applications result if the sequencing of
1999 other resources takes processor scheduling policy into account.

2000 There is, conceptually, one thread list for each priority. Any runnable thread may be on any
2001 thread list. Multiple scheduling policies shall be provided. Each non-empty thread list is
2002 ordered, contains a head as one end of its order, and a tail as the other. The purpose of a
2003 scheduling policy is to define the allowable operations on this set of lists (for example, moving
2004 threads between and within lists).

2005 Each process shall be controlled by an associated scheduling policy and priority. These
2006 parameters may be specified by explicit application execution of the sched_setscheduler() or
2007 sched_setparam() functions.

546 Technical Standard (2000) (Draft July 31, 2000)

General Information Realtime

2008 Each thread shall be controlled by an associated scheduling policy and priority. These
2009 parameters may be specified by explicit application execution of the pthread_setschedparam()
2010 function.

2011 Associated with each policy is a priority range. Each policy definition shall specify the minimum
2012 priority range for that policy. The priority ranges for each policy may but need not overlap the
2013 priority ranges of other policies.

2014 A conforming implementation shall select the thread that is defined as being at the head of the
2015 highest priority non-empty thread list to become a running thread, regardless of its associated
2016 policy. This thread is then removed from its thread list.

2017 Four scheduling policies are specifically required. Other implementation-defined scheduling |
2018 policies may be defined. The following symbols are defined in the Base Definitions volume of |
2019 IEEE Std. 1003.1-200x, <sched.h>: |

2020 SCHED_FIFO First in, first out (FIFO) scheduling policy.

2021 SCHED_RR Round robin scheduling policy.

2022 SS SCHED_SPORADIC Sporadic server scheduling policy.

2023 SCHED_OTHER Another scheduling policy.

2024 The values of these symbols shall be distinct.

2025 SCHED_FIFO

2026 Conforming implementations shall include a scheduling policy called the FIFO scheduling
2027 policy.

2028 Threads scheduled under this policy are chosen from a thread list that is ordered by the time its
2029 threads have been on the list without being executed; generally, the head of the list is the thread
2030 that has been on the list the longest time, and the tail is the thread that has been on the list the
2031 shortest time.

2032 Under the SCHED_FIFO policy, the modification of the definitional thread lists is as follows:

2033 1. When a running thread becomes a preempted thread, it becomes the head of the thread list
2034 for its priority.

2035 2. When a blocked thread becomes a runnable thread, it becomes the tail of the thread list for
2036 its priority.

2037 3. When a running thread calls the sched_setscheduler() function, the process specified in the
2038 function call is modified to the specified policy and the priority specified by the param
2039 argument.

2040 4. When a running thread calls the sched_setparam() function, the priority of the process
2041 specified in the function call is modified to the priority specified by the param argument.

2042 5. When a running thread calls the pthread_setschedparam() function, the thread specified in
2043 the function call is modified to the specified policy and the priority specified by the param
2044 argument.

2045 6. If a thread whose policy or priority has been modified is a running thread or is runnable, it
2046 then becomes the tail of the thread list for its new priority.

2047 7. When a running thread issues the sched_yield() function, the thread becomes the tail of the
2048 thread list for its priority.

System Interfaces, Issue 6 547

Realtime General Information

2049 8. At no other time is the position of a thread with this scheduling policy within the thread
2050 lists affected.

2051 For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
2052 and sched_get_priority_min() functions when SCHED_FIFO is provided as the parameter.
2053 Conforming implementations shall provide a priority range of at least 32 priorities for this
2054 policy.

2055 SCHED_RR

2056 Conforming implementations shall include a scheduling policy called the round robin scheduling
2057 policy. This policy is identical to the SCHED_FIFO policy with the additional condition that
2058 when the implementation detects that a running thread has been executing as a running thread
2059 for a time period of the length returned by the sched_rr_get_interval() function or longer, the
2060 thread shall become the tail of its thread list and the head of that thread list shall be removed
2061 and made a running thread.

2062 The effect of this policy is to ensure that if there are multiple SCHED_RR threads at the same
2063 priority, one of them does not monopolize the processor. An application should not rely only on
2064 the use of SCHED_RR to ensure application progress among multiple threads if the application
2065 includes threads using the SCHED_FIFO policy at the same or higher priority levels or
2066 SCHED_RR threads at a higher priority level.

2067 A thread under this policy that is preempted and subsequently resumes execution as a running
2068 thread completes the unexpired portion of its round robin interval time period.

2069 For this policy, valid priorities shall be within the range returned by the sched_get_priority_max()
2070 and sched_get_priority_min() functions when SCHED_RR is provided as the parameter.
2071 Conforming implementations shall provide a priority range of at least 32 priorities for this
2072 policy.

2073 SCHED_SPORADIC

2074 SS|TSP The functionality described in this section is dependent on support of the Process Sporadic |
2075 Server or Thread Sporadic Server options (and the rest of this section is not further shaded for |
2076 these options). |

2077 If _POSIX_SPORADIC_SERVER or _POSIX_THREAD_SPORADIC_SERVER is defined, the |
2078 implementation shall include a scheduling policy identified by the value SCHED_SPORADIC.

2079 The sporadic server policy is based primarily on two parameters: the replenishment period and the
2080 available execution capacity. The replenishment period is given by the sched_ss_repl_period
2081 member of the sched_param structure. The available execution capacity is initialized to the
2082 value given by the sched_ss_init_budget member of the same parameter. The sporadic server
2083 policy is identical to the SCHED_FIFO policy with some additional conditions that cause the
2084 thread’s assigned priority to be switched between the values specified by the sched_priority and
2085 sched_ss_low_priority members of the sched_param structure.

2086 The priority assigned to a thread using the sporadic server scheduling policy is determined in
2087 the following manner: if the available execution capacity is greater than zero and the number of
2088 pending replenishment operations is strictly less than sched_ss_max_repl , the thread is assigned
2089 the priority specified by sched_priority; otherwise, the assigned priority shall be
2090 sched_ss_low_priority . If the value of sched_priority is less than or equal to the value of
2091 sched_ss_low_priority , the results are undefined. When active, the thread shall belong to the
2092 thread list corresponding to its assigned priority level, according to the mentioned priority
2093 assignment. The modification of the available execution capacity and, consequently of the
2094 assigned priority, is done as follows:

548 Technical Standard (2000) (Draft July 31, 2000)

General Information Realtime

2095 1. When the thread at the head of the sched_priority list becomes a running thread, its
2096 execution time shall be limited to at most its available execution capacity, plus the
2097 resolution of the execution time clock used for this scheduling policy. This resolution shall |
2098 be implementation-defined. |

2099 2. Each time the thread is inserted at the tail of the list associated with sched_priority—
2100 because as a blocked thread it became runnable with priority sched_priority or because a
2101 replenishment operation was performed—the time at which this operation is done is
2102 posted as the activation_time.

2103 3. When the running thread with assigned priority equal to sched_priority becomes a
2104 preempted thread, it becomes the head of the thread list for its priority, and the execution
2105 time consumed is subtracted from the available execution capacity. If the available
2106 execution capacity would become negative by this operation, it shall be set to zero.

2107 4. When the running thread with assigned priority equal to sched_priority becomes a blocked
2108 thread, the execution time consumed is subtracted from the available execution capacity,
2109 and a replenishment operation is scheduled, as described in 6 and 7. If the available |
2110 execution capacity would become negative by this operation, it shall be set to zero. |

2111 5. When the running thread with assigned priority equal to sched_priority reaches the limit
2112 imposed on its execution time, it becomes the tail of the thread list for
2113 sched_ss_low_priority , the execution time consumed is subtracted from the available
2114 execution capacity (which becomes zero), and a replenishment operation is scheduled, as |
2115 described in 6 and 7. |

2116 6. Each time a replenishment operation is scheduled, the amount of execution capacity to be
2117 replenished, replenish_amount, is set equal to the execution time consumed by the thread
2118 since the activation_time. The replenishment is scheduled to occur at activation_time plus
2119 sched_ss_repl_period . If the scheduled time obtained is before the current time, the |
2120 replenishment operation is carried out immediately. Several replenishment operations may |
2121 be pending at the same time, each of which will be serviced at its respective scheduled |
2122 time. With the above rules, the number of replenishment operations simultaneously |
2123 pending for a given thread that is scheduled under the sporadic server policy shall not be |
2124 greater than sched_ss_max_repl . |

2125 7. A replenishment operation consists of adding the corresponding replenish_amount to the |
2126 available execution capacity at the scheduled time. If, as a consequence of this operation, |
2127 the execution capacity would become larger than sched_ss_initial_budget , it shall be |
2128 rounded down to a value equal to sched_ss_initial_budget . Additionally, if the thread was |
2129 runnable or running, and had assigned priority equal to sched_ss_low_priority, then it |
2130 becomes the tail of the thread list for sched_priority.

2131 Execution time is defined in Section 2.2.2 (on page 513).

2132 For this policy, changing the value of a CPU-time clock via clock_settime() shall have no effect on
2133 its behavior.

2134 For this policy, valid priorities shall be within the range returned by the sched_get_priority_min()
2135 and sched_get_priority_max() functions when SCHED_SPORADIC is provided as the parameter.
2136 Conforming implementations shall provide a priority range of at least 32 distinct priorities for
2137 this policy. |

System Interfaces, Issue 6 549

Realtime General Information

2138 SCHED_OTHER

2139 Conforming implementations shall include one scheduling policy identified as SCHED_OTHER
2140 (which may execute identically with either the FIFO or round robin scheduling policy). The
2141 effect of scheduling threads with the SCHED_OTHER policy in a system in which other threads
2142 SS are executing under SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC is implementation- |
2143 defined. |

2144 This policy is defined to allow conforming applications to be able to indicate that they no longer
2145 need a realtime scheduling policy in a portable manner.

2146 For threads executing under this policy, the implementation shall use only priorities within the
2147 range returned by the sched_get_priority_max() and sched_get_priority_min() functions when
2148 SCHED_OTHER is provided as the parameter.

2149 2.8.5 Clocks and Timers

2150 TMR The functionality described in this section is dependent on support of the Timers option (and the |
2151 rest of this section is not further shaded for this option). |

2152 The <time.h> header defines the types and manifest constants used by the timing facility.

2153 Time Value Specification Structures

2154 Many of the timing facility functions accept or return time value specifications. A time value
2155 structure timespec specifies a single time value and includes at least the following members:
2156 ___
2157 Member Type Member Name Description___
2158 time_t tv_sec Seconds.
2159 long tv_nsec Nanoseconds.___L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

2160 The tv_nsec member is only valid if greater than or equal to zero, and less than the number of
2161 nanoseconds in a second (1,000 million). The time interval described by this structure is (tv_sec *
2162 109 + tv_nsec) nanoseconds.

2163 A time value structure itimerspec specifies an initial timer value and a repetition interval for use
2164 by the per-process timer functions. This structure includes at least the following members:
2165 ___
2166 Member Type Member Name Description___
2167 struct timespec it_interval Timer period.
2168 struct timespec it_value Timer expiration.___L

L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

2169 If the value described by it_value is non-zero, it indicates the time to or time of the next timer
2170 expiration (for relative and absolute timer values, respectively). If the value described by it_value
2171 is zero, the timer shall be disarmed.

2172 If the value described by it_interval is non-zero, it specifies an interval to be used in reloading the
2173 timer when it expires; that is, a periodic timer is specified. If the value described by it_interval is
2174 zero, the timer is disarmed after its next expiration; that is, a one-shot timer is specified.

550 Technical Standard (2000) (Draft July 31, 2000)

General Information Realtime

2175 Timer Event Notification Control Block

2176 RTS Per-process timers may be created that notify the process of timer expirations by queuing a
2177 realtime extended signal. The sigevent structure, defined in the Base Definitions volume of |
2178 IEEE Std. 1003.1-200x, <signal.h>, is used in creating such a timer. The sigevent structure |
2179 contains the signal number and an application-specific data value to be used when notifying the
2180 calling process of timer expiration events.

2181 Manifest Constants

2182 The following constants are defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
2183 <time.h>:

2184 CLOCK_REALTIME The identifier for the system-wide realtime clock.

2185 TIMER_ABSTIME Flag indicating time is absolute with respect to the clock associated
2186 with a timer.

2187 MON CLOCK_MONOTONIC The identifier for the system-wide monotonic clock, which is defined
2188 as a clock whose value cannot be set via clock_settime() and which
2189 cannot have backward clock jumps. The maximum possible clock |
2190 jump is implementation-defined. |

2191 MON The maximum allowable resolution for the CLOCK_REALTIME and the
2192 CLOCK_MONOTONIC clocks and all time services based on these clocks is represented by
2193 {_POSIX_CLOCKRES_MIN} and is defined as 20ms (1/50 of a second). Implementations may
2194 support smaller values of resolution for these clocks to provide finer granularity time bases. The
2195 actual resolution supported by an implementation for a specific clock is obtained using the
2196 clock_getres() function. If the actual resolution supported for a time service based on one of these
2197 clocks differs from the resolution supported for that clock, the implementation shall document
2198 this difference.

2199 MON The minimum allowable maximum value for the CLOCK_REALTIME and the
2200 CLOCK_MONOTONIC clocks and all absolute time services based on them is the same as that
2201 defined by the ISO C standard for the time_t type. If the maximum value supported by a time
2202 service based on one of these clocks differs from the maximum value supported by that clock,
2203 the implementation shall document this difference.

2204 Execution Time Monitoring

2205 CPT If _POSIX_CPUTIME is defined, process CPU-time clocks shall be supported in addition to the
2206 clocks described in Manifest Constants.

2207 TCT If _POSIX_THREAD_CPUTIME is defined, thread CPU-time clocks shall be supported.

2208 CPT|TCT CPU-time clocks measure execution or CPU time, which is defined in the Base Definitions |
2209 volume of IEEE Std. 1003.1-200x, Section 3.120, CPU Time (Execution Time). The mechanism |
2210 used to measure execution time is described in the Base Definitions volume of |
2211 IEEE Std. 1003.1-200x, Section 4.7, Measurement of Execution Time. |

2212 CPT If _POSIX_CPUTIME is defined, the following constant of the type clockid_t shall be defined in
2213 <time.h>:

2214 CLOCK_PROCESS_CPUTIME_ID
2215 When this value of the type clockid_t is used in a clock () or timer*() function call, it is
2216 interpreted as the identifier of the CPU-time clock associated with the process making the
2217 function call.
2218

System Interfaces, Issue 6 551

Realtime General Information

2219 TCT If _POSIX_THREAD_CPUTIME is defined, the following constant of the type clockid_t shall be
2220 defined in <time.h>:

2221 CLOCK_THREAD_CPUTIME_ID
2222 When this value of the type clockid_t is used in a clock () or timer*() function call, it is
2223 interpreted as the identifier of the CPU-time clock associated with the thread making the
2224 function call.
2225

552 Technical Standard (2000) (Draft July 31, 2000)

General Information Threads

2226 2.9 Threads
2227 THR The functionality described in this section is dependent on support of the Threads option (and |
2228 the rest of this section is not further shaded for this option). |

2229 This section defines functionality to support multiple flows of control, called threads , within a |
2230 process. For the definition of threads, see the Base Definitions volume of IEEE Std. 1003.1-200x, |
2231 Section 3.395, Thread. |

2232 The specific functional areas covered by threads and their scope includes: |

2233 • Thread management: the creation, control, and termination of multiple flows of control in the
2234 same process under the assumption of a common shared address space

2235 • Synchronization primitives optimized for tightly coupled operation of multiple control flows
2236 in a common, shared address space |

2237 2.9.1 Thread-Safety

2238 All functions defined by this volume of IEEE Std. 1003.1-200x shall be thread-safe, except that
2239 the following functions need not be thread-safe.

2240 asctime()
2241 ctime()
2242 getc_unlocked ()
2243 getchar_unlocked()
2244 getenv()
2245 getgrgid()
2246 getgrnam()
2247 gethostbyaddr ()

gethostbyname()
gethostent()
getlogin ()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()

getprotobynumber()
getprotoent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
gmtime()

inet_ntoa ()
localtime ()
putc_unlocked ()
putchar_unlocked()
rand()
readdir()
setenv()
strtok()

ttyname()
unsetenv()
wcstombs()
wctomb()

2248 XSI basename()
2249 catgets()
2250 crypt()
2251 dbm_clearerr()
2252 dbm_close()
2253 dbm_delete()
2254 dbm_error()
2255 dbm_fetch()
2256 dbm_firstkey()
2257 dbm_nextkey()

dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
ecvt()
encrypt()
endgrent()
endpwent()
endutxent()

fcvt()
gcvt()
getdate()
getenv()
getgrent()
getpwent()
getutxent()
getutxid()
getutxline()
hcreate()

hdestroy()
hsearch()
l64a ()
lgamma()
lrand48()
mrand48()
nl_langinfo ()
ptsname()
putenv()
pututxline()

setgrent()
setkey()
setpwent()
setutxent()
strerror()

2258

2259 The read() function need not be thread-safe when reading from a pipe, FIFO, socket, or terminal |
2260 device. |

2261 Note: While a read from a pipe of {PIPE_MAX}*2 bytes may not generate a single atomic |
2262 and thread-safe stream of bytes, it should generate ‘‘several’’ (individually atomic) |
2263 thread-safe streams of bytes. Similiarly, while reading from a terminal device may |
2264 not generate a single atomic and thread-safe stream of bytes, it should generate some |
2265 finite number of (individually atomic) and thread-safe streams of bytes. That is, |
2266 concurrent calls to read for a pipe, FIFO, or terminal device are not allowed to result |
2267 in corrupting the stream of bytes or other internal data. However, read(), in these |
2268 cases, is not required to return a single contiguous and atomic stream of bytes. |

System Interfaces, Issue 6 553

Threads General Information

2269 The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL argument. The |
2270 wcrtomb() and wcsrtombs() functions need not be thread-safe if passed a NULL ps argument.

2271 Implementations shall provide internal synchronization as necessary in order to satisfy this
2272 requirement.

2273 2.9.2 Thread IDs

2274 Although implementations may have thread IDs that are unique in a system, applications
2275 should only assume that thread IDs are usable and unique within a single process. The effect of
2276 calling any of the functions defined in this volume of IEEE Std. 1003.1-200x and passing as an
2277 argument the thread ID of a thread from another process is unspecified. A conforming
2278 implementation is free to reuse a thread ID after the thread terminates if it was created with the
2279 detachstate attribute set to PTHREAD_CREATE_DETACHED or if pthread_detach() or
2280 pthread_join () has been called for that thread. If a thread is detached, its thread ID is invalid for
2281 use as an argument in a call to pthread_detach() or pthread_join (). |

2282 2.9.3 Thread Mutexes

2283 A thread that has blocked shall not prevent any unblocked thread that is eligible to use the same
2284 processing resources from eventually making forward progress in its execution. Eligibility for
2285 processing resources is determined by the scheduling policy.

2286 A thread becomes the owner of a mutex, m, when one of the following occurs:

2287 • It returns successfully from pthread_mutex_lock() with m as the mutex argument.

2288 • It returns successfully from pthread_mutex_trylock() with m as the mutex argument.

2289 TMO • It returns successfully from pthread_mutex_timedwait() with m as the mutex argument. |

2290 • It returns (successfully or not) from pthread_cond_wait() with m as the mutex argument |
2291 (except as explicitly indicated otherwise for certain errors).

2292 • It returns (successfully or not) from pthread_cond_timedwait() with m as the mutex argument
2293 (except as explicitly indicated otherwise for certain errors).

2294 The thread remains the owner of m until one of the following occurs:

2295 • It executes pthread_mutex_unlock() with m as the mutex argument

2296 • It blocks in a call to pthread_cond_wait() with m as the mutex argument.

2297 • It blocks in a call to pthread_cond_timedwait() with m as the mutex argument.

2298 The implementation behaves as if at all times there is at most one owner of any mutex.

2299 A thread that becomes the owner of a mutex is said to have acquired the mutex and the mutex is
2300 said to have become locked ; when a thread gives up ownership of a mutex it is said to have
2301 released the mutex and the mutex is said to have become unlocked . |

554 Technical Standard (2000) (Draft July 31, 2000)

General Information Threads

2302 2.9.4 Thread Scheduling

2303 Thread Scheduling Attributes

2304 Thread scheduling attributes are dependent on support of the Thread Execution Scheduling
2305 option.

2306 In support of the scheduling function, threads have attributes which are accessed through the
2307 pthread_attr_t thread creation attributes object.

2308 The contentionscope attribute defines the scheduling contention scope of the thread to be either
2309 PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM.

2310 The inheritsched attribute specifies whether a newly created thread is to inherit the scheduling
2311 attributes of the creating thread or to have its scheduling values set according to the other
2312 scheduling attributes in the pthread_attr_t object.

2313 The schedpolicy attribute defines the scheduling policy for the thread. The schedparam attribute
2314 defines the scheduling parameters for the thread. The interaction of threads having different
2315 policies within a process is described as part of the definition of those policies.

2316 If the Thread Execution Scheduling option is defined, and the schedpolicy attribute specifies one |
2317 of the priority-based policies defined under this option, the schedparam attribute contains the
2318 scheduling priority of the thread. A conforming implementation ensures that the priority value
2319 in schedparam is in the range associated with the scheduling policy when the thread attributes
2320 object is used to create a thread, or when the scheduling attributes of a thread are dynamically
2321 modified. The meaning of the priority value in schedparam is the same as that of priority .

2322 TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the schedparam attribute supports four
2323 new members that are used for the sporadic server scheduling policy. These members are
2324 sched_ss_low_priority , sched_ss_repl_period , sched_ss_init_budget, and sched_ss_max_repl . The
2325 meaning of these attributes is the same as in the definitions that appear under Section 2.8.4 (on
2326 page 546).

2327 When a process is created, its single thread has a scheduling policy and associated attributes
2328 equal to the process’ policy and attributes. The default scheduling contention scope value is |
2329 implementation-defined. The default values of other scheduling attributes are implementation- |
2330 defined. |

2331 Thread Scheduling Contention Scope

2332 The scheduling contention scope of a thread defines the set of threads with which the thread
2333 competes for use of the processing resources. The scheduling operation selects at most one
2334 thread to execute on each processor at any point in time and the thread’s scheduling attributes
2335 (for example, priority), whether under process scheduling contention scope or system scheduling
2336 contention scope, are the parameters used to determine the scheduling decision.

2337 The scheduling contention scope, in the context of scheduling a mixed scope environment,
2338 effects threads as follows:

2339 • A thread created with PTHREAD_SCOPE_SYSTEM scheduling contention scope contends
2340 for resources with all other threads in the same scheduling allocation domain relative to their
2341 system scheduling attributes. The system scheduling attributes of a thread created with
2342 PTHREAD_SCOPE_SYSTEM scheduling contention scope are the scheduling attributes with
2343 which the thread was created. The system scheduling attributes of a thread created with
2344 PTHREAD_SCOPE_PROCESS scheduling contention scope are the implementation-defined |
2345 mapping into system attribute space of the scheduling attributes with which the thread was |

System Interfaces, Issue 6 555

Threads General Information

2346 created.

2347 • Threads created with PTHREAD_SCOPE_PROCESS scheduling contention scope contend
2348 directly with other threads within their process that were created with
2349 PTHREAD_SCOPE_PROCESS scheduling contention scope. The contention is resolved
2350 based on the threads’ scheduling attributes and policies. It is unspecified how such threads
2351 are scheduled relative to threads in other processes or threads with
2352 PTHREAD_SCOPE_SYSTEM scheduling contention scope.

2353 • Conforming implementations shall support the PTHREAD_SCOPE_PROCESS scheduling
2354 contention scope, the PTHREAD_SCOPE_SYSTEM scheduling contention scope, or both.

2355 Scheduling Allocation Domain

2356 Implementations shall support scheduling allocation domains containing one or more
2357 processors. It should be noted that the presence of multiple processors does not automatically
2358 indicate a scheduling allocation domain size greater than one. Conforming implementations on
2359 multiprocessors may map all or any subset of the CPUs to one or multiple scheduling allocation
2360 domains, and could define these scheduling allocation domains on a per-thread, per-process, or
2361 per-system basis, depending on the types of applications intended to be supported by the
2362 implementation. The scheduling allocation domain is independent of scheduling contention
2363 scope, as the scheduling contention scope merely defines the set of threads with which a thread
2364 contends for processor resources, while scheduling allocation domain defines the set of
2365 processors for which it contends. The semantics of how this contention is resolved among
2366 threads for processors is determined by the scheduling policies of the threads.

2367 The choice of scheduling allocation domain size and the level of application control over
2368 scheduling allocation domains is implementation-defined. Conforming implementations may |
2369 change the size of scheduling allocation domains and the binding of threads to scheduling |
2370 allocation domains at any time.

2371 For application threads with scheduling allocation domains of size equal to one, the scheduling
2372 rules defined for SCHED_FIFO and SCHED_RR shall be used; see Scheduling Policies (on page
2373 546). All threads with system scheduling contention scope, regardless of the processes in which
2374 they reside, compete for the processor according to their priorities. Threads with process
2375 scheduling contention scope compete only with other threads with process scheduling
2376 contention scope within their process.

2377 For application threads with scheduling allocation domains of size greater than one, the rules
2378 TSP defined for SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC shall be used in an |
2379 implementation-defined manner. Each thread with system scheduling contention scope |
2380 competes for the processors in its scheduling allocation domain in an implementation-defined |
2381 manner according to its priority. Threads with process scheduling contention scope are |
2382 scheduled relative to other threads within the same scheduling contention scope in the process.

2383 TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, the rules defined for SCHED_SPORADIC
2384 in Scheduling Policies (on page 546) shall be used in an implementation-defined manner for |
2385 application threads whose scheduling allocation domain size is greater than one. |

556 Technical Standard (2000) (Draft July 31, 2000)

General Information Threads

2386 Scheduling Documentation

2387 If _POSIX_PRIORITY_SCHEDULING is defined, then any scheduling policies beyond
2388 TSP SCHED_OTHER, SCHED_FIFO, SCHED_RR, and SCHED_SPORADIC, as well as the effects of
2389 the scheduling policies indicated by these other values, and the attributes required in order to
2390 support such a policy, are implementation-defined. Furthermore, the implementation shall |
2391 document the effect of all processor scheduling allocation domain values supported for these
2392 policies.

2393 2.9.5 Thread Cancelation

2394 The thread cancelation mechanism allows a thread to terminate the execution of any other
2395 thread in the process in a controlled manner. The target thread (that is, the one that is being
2396 canceled) is allowed to hold cancelation requests pending in a number of ways and to perform
2397 application-specific cleanup processing when the notice of cancelation is acted upon.

2398 Cancelation is controlled by the cancelation control functions. Each thread maintains its own
2399 cancelability state. Cancelation may only occur at cancelation points or when the thread is
2400 asynchronously cancelable.

2401 The thread cancelation mechanism described in this section depends upon programs having set
2402 deferred cancelability state, which is specified as the default. Applications shall also carefully
2403 follow static lexical scoping rules in their execution behavior. For example, use of setjmp(),
2404 return, goto, and so on, to leave user-defined cancelation scopes without doing the necessary
2405 scope pop operation results in undefined behavior.

2406 Use of asynchronous cancelability while holding resources which potentially need to be released
2407 may result in resource loss. Similarly, cancelation scopes may only be safely manipulated
2408 (pushed and popped) when the thread is in the deferred or disabled cancelability states.

2409 2.9.5.1 Cancelability States

2410 The cancelability state of a thread determines the action taken upon receipt of a cancelation
2411 request. The thread may control cancelation in a number of ways.

2412 Each thread maintains its own cancelability state, which may be encoded in two bits:

2413 1. Cancelability-Enable: When cancelability is PTHREAD_CANCEL_DISABLE (as defined in |
2414 the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h>), cancelation requests |
2415 against the target thread are held pending. By default, cancelability is set to
2416 PTHREAD_CANCEL_ENABLE (as defined in <pthread.h>).

2417 2. Cancelability Type: When cancelability is enabled and the cancelability type is
2418 PTHREAD_CANCEL_ASYNCHRONOUS (as defined in <pthread.h>), new or pending
2419 cancelation requests may be acted upon at any time. When cancelability is enabled and the
2420 cancelability type is PTHREAD_CANCEL_DEFERRED (as defined in <pthread.h>),
2421 cancelation requests are held pending until a cancelation point (see below) is reached. If
2422 cancelability is disabled, the setting of the cancelability type has no immediate effect as all
2423 cancelation requests are held pending; however, once cancelability is enabled again the
2424 new type is in effect. The cancelability type is PTHREAD_CANCEL_DEFERRED in all
2425 newly created threads including the thread in which main() was first invoked.

System Interfaces, Issue 6 557

Threads General Information

2426 2.9.5.2 Cancelation Points

2427 Cancelation points occur when a thread is executing the following functions:

2428 accept()
2429 aio_suspend()
2430 clock_nanosleep()
2431 close()
2432 connect()
2433 creat()
2434 fcntl()1

2435 fsync()
2436 getmsg()
2437 getpmsg()
2438 lockf ()
2439 mq_receive()
2440 mq_send()
2441 mq_timedreceive()

mq_timedsend()
msgrcv()
msgsnd()
msync()
nanosleep()
open()
pause()
poll ()
pread()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join ()
pthread_testcancel()
putmsg()

putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigpause()

sigsuspend()
sigtimedwait ()
sigwait ()
sigwaitinfo ()
sleep()
system()
tcdrain()
usleep()
wait()
waitid ()
waitpid ()
write()
writev()

2442 __________________

1.2443 When the cmd argument is F_SETLKW.

558 Technical Standard (2000) (Draft July 31, 2000)

General Information Threads

2444 A cancelation point may also occur when a thread is executing the following functions:

2445 catclose ()
2446 catgets()
2447 catopen()
2448 closedir()
2449 closelog ()
2450 ctermid()
2451 dbm_close()
2452 dbm_delete()
2453 dbm_fetch()
2454 dbm_nextkey()
2455 dbm_open()
2456 dbm_store()
2457 dlclose()
2458 dlopen()
2459 endgrent()
2460 endhostent()
2461 endnetent()
2462 endprotoent()
2463 endpwent()
2464 endservent()
2465 endutxent()
2466 fclose()
2467 fcntl()2

2468 fflush()
2469 fgetc()
2470 fgetpos()
2471 fgets()
2472 fgetwc()
2473 fgetws()
2474 fopen()
2475 fprintf ()
2476 fputc()
2477 fputs()
2478 fputwc()
2479 fputws()
2480 fread()
2481 freopen()
2482 fscanf()
2483 fseek()
2484 fseeko()
2485 fsetpos()

ftell ()
ftello ()
ftw()
fwprintf()
fwrite()
fwscanf()
getc()
getc_unlocked ()
getchar()
getchar_unlocked()
getcwd()
getdate()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostbyaddr ()
gethostbyname()
gethostent()
gethostname()
getlogin ()
getlogin_r ()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()

getwc()
getwchar()
getwd()
glob()
iconv_close ()
iconv_open ()
ioctl ()
lseek()
mkstemp()
nftw()
opendir()
openlog ()
pclose()
perror()
popen()
posix_fadvise ()
posix_fallocate()
posix_madvise ()
posix_spawn ()
posix_spawnp ()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()

pthread_rwlock_wrlock()
putc()
putc_unlocked ()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()
remove()
rename()
rewind()
rewinddir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
strerror()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
ungetc()
ungetwc()
unlink()
vfprintf ()
vfwprintf ()
vprintf()
vwprintf()
wprintf()
wscanf()

2486 An implementation shall not introduce cancelation points into any other functions specified in
2487 this volume of IEEE Std. 1003.1-200x.

2488 __________________

2.2489 For any value of the cmd argument.

System Interfaces, Issue 6 559

Threads General Information

2490 The side effects of acting upon a cancelation request while suspended during a call of a function
2491 are the same as the side effects that may be seen in a single-threaded program when a call to a
2492 function is interrupted by a signal and the given function returns [EINTR]. Any such side effects
2493 occur before any cancelation cleanup handlers are called.

2494 Whenever a thread has cancelability enabled and a cancelation request has been made with that
2495 thread as the target and the thread calls pthread_testcancel(), then the cancelation request is acted
2496 upon before pthread_testcancel() returns. If a thread has cancelability enabled and the thread has
2497 a cancelation request pending and the thread is suspended at a cancelation point waiting for an
2498 event to occur, then the cancelation request shall be acted upon. However, if the thread is
2499 suspended at a cancelation point and the event that it is waiting for occurs before the cancelation
2500 request is acted upon, it is unspecified whether the cancelation request is acted upon or whether
2501 the request remains pending and the thread resumes normal execution.

2502 2.9.5.3 Thread Cancelation Cleanup Handlers

2503 Each thread maintains a list of cancelation cleanup handlers. The programmer uses the
2504 pthread_cleanup_push() and pthread_cleanup_pop() functions to place routines on and remove
2505 routines from this list.

2506 When a cancelation request is acted upon, the routines in the list are invoked one by one in LIFO
2507 sequence; that is, the last routine pushed onto the list (Last In) is the first to be invoked (First
2508 Out). The thread invokes the cancelation cleanup handler with cancelation disabled until the last
2509 cancelation cleanup handler returns. When the cancelation cleanup handler for a scope is
2510 invoked, the storage for that scope remains valid. If the last cancelation cleanup handler returns,
2511 thread execution is terminated and a status of PTHREAD_CANCELED is made available to any
2512 threads joining with the target. The symbolic constant PTHREAD_CANCELED expands to a
2513 constant expression of type (void*) whose value matches no pointer to an object in memory nor
2514 the value NULL.

2515 The cancelation cleanup handlers are also invoked when the thread calls pthread_exit ().

2516 A side effect of acting upon a cancelation request while in a condition variable wait is that the
2517 mutex is re-acquired before calling the first cancelation cleanup handler. In addition, the thread
2518 is no longer considered to be waiting for the condition and the thread shall not have consumed
2519 any pending condition signals on the condition.

2520 A cancelation cleanup handler cannot exit via longjmp() or siglongjmp ().

2521 2.9.5.4 Async-Cancel Safety

2522 The pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype() functions are defined to
2523 be async-cancel safe.

2524 No other functions in this volume of IEEE Std. 1003.1-200x are required to be async-cancel-safe.

2525 2.9.6 Thread Read-Write Locks

2526 Multiple readers, single writer (read-write) locks allow many threads to have simultaneous |
2527 read-only access to data while allowing only one thread to have exclusive write access at any
2528 given time. They are typically used to protect data that is read-only more frequently than it is
2529 changed.

2530 One or more readers acquire read access to the resource by performing a read lock operation on
2531 the associated read-write lock. A writer acquires exclusive write access by performing a write
2532 lock operation. Basically, all readers exclude any writers and a writer excludes all readers and
2533 any other writers.

560 Technical Standard (2000) (Draft July 31, 2000)

General Information Threads

2534 A thread that has blocked on a read-write lock (for example, has not yet returned from a
2535 pthread_rwlock_rdlock() or pthread_rwlock_wrlock() call) shall not prevent any unblocked thread
2536 that is eligible to use the same processing resources from eventually making forward progress in
2537 its execution. Eligibility for processing resources shall be determined by the scheduling policy.

2538 Read-write locks can be used to synchronize threads in the current process and other processes if
2539 they are allocated in memory that is writable and shared among the cooperating processes and
2540 have been initialized for this behavior. |

2541 2.9.7 Thread Interactions with Regular File Operations

2542 All of the functions chmod(), close(), fchmod(), fcntl(), fstat(), ftruncate(), lseek(), open(), read(),
2543 readlink (), stat(), symlink(), and write() shall be atomic with respect to each other in the effects
2544 specified in IEEE Std. 1003.1-200x when they operate on regular files. If two threads each call one
2545 of these functions, each call shall either see all of the specified effects of the other call, or none of
2546 them.

System Interfaces, Issue 6 561

Sockets General Information

2547 2.10 Sockets
2548 A socket is an endpoint for communication using the facilities described in this section. A socket
2549 is created with a specific socket type, described in Section 2.10.6 (on page 563), and is associated
2550 with a specific protocol, detailed in Section 2.10.2. A socket is accessed via a file descriptor
2551 obtained when the socket is created.

2552 2.10.1 Protocol Families

2553 All network protocols are associated with a specific protocol family. A protocol family provides
2554 basic services to the protocol implementation to allow it to function within a specific network
2555 environment. These services may include packet fragmentation and reassembly, routing,
2556 addressing, and basic transport. A protocol family may support multiple methods of addressing.
2557 Each method represents an address family. A protocol family is normally comprised of a
2558 number of protocols, one per socket type. Each protocol is characterized by an abstract socket
2559 type. It is not required that a protocol family support all socket types. A protocol family may
2560 contain multiple protocols supporting the same socket abstraction.

2561 Section 2.10.17 (on page 569), Section 2.10.18 (on page 569), and Section 2.10.19 (on page 570),
2562 respectively, describe the use of sockets for local UNIX connections, for Internet protocols based
2563 on IPv4, and for Internet protocols based on IPv6.

2564 2.10.2 Protocols

2565 A protocol supports one of the socket abstractions detailed in Section 2.10.6 (on page 563). |
2566 Selecting a protocol involves specifying the protocol family, socket type, and protocol number to |
2567 the socket() function. Protocols normally accept only one type of address format, usually |
2568 determined by the addressing structure inherent in the design of the protocol family/network |
2569 architecture. Certain semantics of the basic socket abstractions are protocol-specific. All |
2570 protocols are expected to support the basic model for their particular socket type, but may, in |
2571 addition, provide non-standard facilities or extensions to a mechanism. |

2572 2.10.3 Addressing

2573 Associated with each protocol family is at least one address family. An address family defines
2574 the format of a socket address. All network addresses are described using a general structure,
2575 called a sockaddr, as defined in the Base Definitions volume of IEEE Std. 1003.1-200x, |
2576 <sys/socket.h>. However, each address family imposes finer and more specific structure,
2577 generally defining a structure with fields specific to the address family. The field sa_family in the
2578 sockaddr structure contains the address family identifier, specifying the format of the sa_data
2579 area. The size of the sa_data area is unspecified.

2580 2.10.4 Routing

2581 Sockets provides packet routing facilities. A routing information database is maintained, which
2582 is used in selecting the appropriate network interface when transmitting packets.

562 Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2583 2.10.5 Interfaces

2584 Each network interface in a system corresponds to a path through which messages can be sent
2585 and received. A network interface usually has a hardware device associated with it, though
2586 certain interfaces such as the loopback interface, do not.

2587 2.10.6 Socket Types

2588 A socket is created with a specific type, which defines the communication semantics and which
2589 allows the selection of an appropriate communication protocol. Three types are defined:
2590 SOCK_STREAM, SOCK_SEQPACKET, and SOCK_DGRAM. Implementations may specify
2591 additional socket types.

2592 The SOCK_STREAM socket type provides reliable, sequenced, full-duplex octet streams
2593 between the socket and a peer to which the socket is connected. A socket of type
2594 SOCK_STREAM must be in a connected state before any data may be sent or received. Record
2595 boundaries are not maintained; data sent on a stream socket using output operations of one size
2596 may be received using input operations of smaller or larger sizes without loss of data. Data may
2597 be buffered; successful return from an output function does not imply that the data has been
2598 delivered to the peer or even transmitted from the local system. If data cannot be successfully
2599 transmitted within a given time then the connection is considered broken, and subsequent
2600 operations shall fail. A SIGPIPE signal is raised if a thread sends on a broken stream (one that is |
2601 no longer connected). Support for an out-of-band data transmission facility is protocol-specific. |

2602 The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also
2603 connection-oriented. The only difference between these types is that record boundaries are
2604 maintained using the SOCK_SEQPACKET type. A record can be sent using one or more output
2605 operations and received using one or more input operations, but a single operation never
2606 transfers parts of more than one record. Record boundaries are visible to the receiver via the
2607 MSG_EOR flag in the received message flags returned by the recvmsg() function. It is protocol-
2608 specific whether a maximum record size is imposed.

2609 The SOCK_DGRAM socket type supports connectionless data transfer which is not necessarily
2610 acknowledged or reliable. Datagrams may be sent to a peer named in each output operation, and
2611 incoming datagrams may be received from multiple sources. The source address of each
2612 datagram is available when receiving the datagram. An application may also pre-specify a peer
2613 address, in which case calls to output functions shall send to the pre-specified peer. If a peer has
2614 been specified, only datagrams from that peer shall be received. A datagram must be sent in a
2615 single output operation, and must be received in a single input operation. The maximum size of
2616 a datagram is protocol-specific; with some protocols, the limit is implementation-defined. |
2617 Output datagrams may be buffered within the system; thus, a successful return from an output |
2618 function does not guarantee that a datagram is actually sent or received. However,
2619 implementations should attempt to detect any errors possible before the return of an output
2620 function, reporting any error by an unsuccessful return value.

2621 2.10.7 Socket I/O Mode

2622 The I/O mode of a socket is described by the O_NONBLOCK file status flag which pertains to |
2623 the open file description for the socket. This flag is initially off when a socket is created, but may |
2624 be set and cleared by the use of the F_SETFL command of the fcntl() function. |

2625 When the O_NONBLOCK flag is set, functions that would normally block until they are
2626 complete either return immediately with an error, or they complete asynchronously to the
2627 execution of the calling process. Data transfer operations (the read(), write(), send(), and recv() |
2628 functions) complete immediately, transfer only as much as is available, and then return without |
2629 blocking, or return an error indicating that no transfer could be made without blocking. The |

System Interfaces, Issue 6 563

Sockets General Information

2630 connect() function initiates a connection and returns without blocking when O_NONBLOCK is
2631 set; it returns the error [EINPROGRESS] to indicate that the connection was initiated
2632 successfully, but that it has not yet completed. |

2633 2.10.8 Socket Owner

2634 The owner of a socket is unset when a socket is created. The owner may be set to a process ID or
2635 process group ID using the F_SETOWN command of the fcntl() function.

2636 2.10.9 Socket Queue Limits

2637 The transmit and receive queue sizes for a socket are set when the socket is created. The default
2638 sizes used are both protocol-specific and implementation-defined. The sizes may be changed |
2639 using the setsockopt () function. |

2640 2.10.10 Pending Error

2641 Errors may occur asynchronously, and be reported to the socket in response to input from the
2642 network protocol. The socket stores the pending error to be reported to a user of the socket at the
2643 next opportunity. The error is returned in response to a subsequent send(), recv(), or getsockopt ()
2644 operation on the socket, and the pending error is then cleared.

2645 2.10.11 Socket Receive Queue

2646 A socket has a receive queue that buffers data when they are received by the system until they
2647 are removed by a receive call. Depending on the type of the socket and the communication
2648 provider, the receive queue may also contain ancillary data such as the addressing and other
2649 protocol data associated with the normal data in the queue, and may contain out-of-band or
2650 expedited data. The limit on the queue size includes any normal, out-of-band data, datagram
2651 source addresses, and ancillary data in the queue. The description in this section applies to all
2652 sockets, even though some elements cannot be present in some instances.

2653 The contents of a receive buffer are logically structured as a series of data segments with
2654 associated ancillary data and other information. A data segment may contain normal data or
2655 out-of-band data, but never both. A data segment may complete a record if the protocol
2656 supports records (always true for types SOCK_SEQPACKET and SOCK_DGRAM). A record
2657 may be stored as more than one segment; the complete record might never be present in the
2658 receive buffer at one time, as a portion might already have been returned to the application, and
2659 another portion might not yet have been received from the communications provider. A data
2660 segment may contain ancillary protocol data, which is logically associated with the segment.
2661 Ancillary data is received as if it were queued along with the first normal data octet in the
2662 segment (if any). A segment may contain ancillary data only, with no normal or out-of-band
2663 data. For the purposes of this section, a datagram is considered to be a data segment that
2664 terminates a record, and that includes a source address as a special type of ancillary data. Data
2665 segments are placed into the queue as data is delivered to the socket by the protocol. Normal
2666 data segments are placed at the end of the queue as they are delivered. If a new segment
2667 contains the same type of data as the preceding segment and includes no ancillary data, and if
2668 the preceding segment does not terminate a record, the segments are logically merged into a
2669 single segment.

2670 The receive queue is logically terminated if an end-of-file indication has been received or a
2671 connection has been terminated. A segment shall be considered to be terminated if another
2672 segment follows it in the queue, if the segment completes a record, or if an end-of-file or other
2673 connection termination has been reported. The last segment in the receive queue shall also be
2674 considered to be terminated while the socket has a pending error to be reported.

564 Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2675 A receive operation shall never return data or ancillary data from more than one segment.

2676 2.10.12 Socket Out-of-Band Data State

2677 The handling of received out-of-band data is protocol-specific. Out-of-band data may be placed
2678 in the socket receive queue, either at the end of the queue or before all normal data in the queue.
2679 In this case, out-of-band data is returned to an application program by a normal receive call.
2680 Out-of-band data may also be queued separately rather than being placed in the socket receive
2681 queue, in which case it shall be returned only in response to a receive call that requests out-of-
2682 band data. It is protocol-specific whether an out-of-band data mark is placed in the receive
2683 queue to demarcate data preceding the out-of-band data and following the out-of-band data. An
2684 out-of-band data mark is logically an empty data segment that cannot be merged with other
2685 segments in the queue. An out-of-band data mark is never returned in response to an input
2686 operation. The sockatmark () function can be used to test whether an out-of-band data mark is the
2687 first element in the queue. If an out-of-band data mark is the first element in the queue when an
2688 input function is called without the MSG_PEEK option, the mark is removed from the queue and
2689 the following data (if any) are processed as if the mark had not been present.

2690 2.10.13 Connection Indication Queue

2691 Sockets that are used to accept incoming connections maintain a queue of outstanding
2692 connection indications. This queue is a list of connections that are awaiting acceptance by the
2693 application. See listen().

2694 2.10.14 Signals

2695 One category of event at the socket interface is the generation of signals. These signals report
2696 protocol events or process errors relating to the state of the socket. The generation or delivery of
2697 a signal does not change the state of the socket, although the generation of the signal may have
2698 been caused by a state change.

2699 The SIGPIPE signal shall be sent to a thread that attempts to send data on a socket that is no |
2700 longer able to send. In addition, the send operation fails with the error [EPIPE].

2701 If a socket has an owner, the SIGURG signal is sent to the owner of the socket when it is notified
2702 of expedited or out-of-band data. The socket state at this time is protocol-dependent, and the
2703 status of the socket is specified in Section 2.10.17 (on page 569), Section 2.10.18 (on page 569), |
2704 and Section 2.10.19 (on page 570). Depending on the protocol, the expedited data may or may |
2705 not have arrived at the time of signal generation. |

2706 2.10.15 Asynchronous Errors

2707 If any of the following conditions occur asynchronously for a socket, the corresponding value
2708 listed below shall become the pending error for the socket:

2709 [ECONNABORTED]
2710 The connection was aborted locally.

2711 [ECONNREFUSED]
2712 For a connection-mode socket attempting a non-blocking connection, the attempt to connect
2713 was forcefully rejected. For a connectionless-mode socket, an attempt to deliver a datagram
2714 was forcefully rejected.

2715 [ECONNRESET]
2716 The peer has aborted the connection.

System Interfaces, Issue 6 565

Sockets General Information

2717 [EHOSTDOWN]
2718 The destination host has been determined to be down or disconnected.

2719 [EHOSTUNREACH]
2720 The destination host is not reachable.

2721 [EMSGSIZE]
2722 For a connectionless-mode socket, the size of a previously sent datagram prevented
2723 delivery.

2724 [ENETDOWN]
2725 The local network connection is not operational.

2726 [ENETRESET]
2727 The connection was aborted by the network.

2728 [ENETUNREACH]
2729 The destination network is not reachable.

2730 2.10.16 Use of Options

2731 There are a number of socket options which either specialize the behavior of a socket or provide
2732 useful information. These options may be set at different protocol levels and are always present
2733 at the uppermost ‘‘socket’’ level.

2734 Socket options are manipulated by two functions, getsockopt () and setsockopt (). These functions
2735 allow an application program to customize the behavior and characteristics of a socket to
2736 provide the desired effect.

2737 All of the options have default values. The type and meaning of these values is defined by the
2738 protocol level to which they apply. Instead of using the default values, an application program
2739 may choose to customize one or more of the options. However, in the bulk of cases, the default
2740 values are sufficient for the application.

2741 Some of the options are used to enable or disable certain behavior within the protocol modules
2742 (for example, turn on debugging) while others may be used to set protocol-specific information
2743 (for example, IP time-to-live on all the application’s outgoing packets). As each of the options is
2744 introduced, its effect on the underlying protocol modules is described.

2745 Table 2-4 shows the value for the socket level.

2746 Table 2-4 Value of Level for Socket Options

2747 Name Description___
2748 SOL_SOCKET Options are intended for the sockets level.___L

L
L

L
L
L

L
L
L

2749 Table 2-5 (on page 567) lists those options present at the socket level; that is, when the level
2750 parameter of the getsockopt () or setsockopt () function is SOL_SOCKET, the types of the option
2751 value parameters associated with each option, and a brief synopsis of the meaning of the option
2752 value parameter. Unless otherwise noted, each may be examined with getsockopt () and set with
2753 setsockopt () on all types of socket.

566 Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2754 Table 2-5 Socket-Level Options
__

2755 Option Parameter Type Parameter Meaning__
2756 Non-zero requests permission to transmit
2757 broadcast datagrams (SOCK_DGRAM sockets
2758 only).

SO_BROADCAST (void *) int

2759 Non-zero requests debugging in underlying
2760 protocol modules.

SO_DEBUG int

2761 Non-zero requests bypass of normal routing;
2762 route based on destination address only.

SO_DONTROUTE int

2763 Requests and clears pending error information
2764 on the socket (getsockopt () only).

SO_ERROR int

2765 Non-zero requests periodic transmission of
2766 keepalive messages (protocol-specific).

SO_KEEPALIVE int

2767 Specify actions to be taken for queued, unsent
2768 data on close(): linger on/off and linger time in
2769 seconds.

SO_LINGER struct linger

2770 Non-zero requests that out-of-band data be
2771 placed into normal data input queue as received.

SO_OOBINLINE int

2772 Size of receive buffer (in bytes).SO_RCVBUF int
2773 Minimum amount of data to return to
2774 application for input operations (in bytes).

SO_RCVLOWAT int

2775 Timeout value for a socket receive operation.SO_RCVTIMEO struct timeval
2776 Non-zero requests reuse of local addresses in
2777 bind() (protocol-specific).

SO_REUSEADDR int

2778 Size of send buffer (in bytes).SO_SNDBUF int
2779 Minimum amount of data to send for output
2780 operations (in bytes).

SO_SNDLOWAT int

2781 Timeout value for a socket send operation.SO_SNDTIMEO struct timeval
2782 Identify socket type (getsockopt () only).SO_TYPE int__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

2783 The SO_BROADCAST option requests permission to send broadcast datagrams on the socket.
2784 Support for SO_BROADCAST is protocol-specific. The default for SO_BROADCAST is that the
2785 ability to send broadcast datagrams on a socket is disabled.

2786 SO_DEBUG enables debugging in the underlying protocol modules. This can be useful for
2787 tracing the behavior of the underlying protocol modules during normal system operation. The
2788 semantics of the debug reports are implementation-defined. The default value for SO_DEBUG is |
2789 for debugging to be turned off. |

2790 SO_DONTROUTE requests that outgoing messages bypass the standard routing facilities. The
2791 destination must be on a directly-connected network, and messages are directed to the
2792 appropriate network interface according to the destination address. It is protocol-specific
2793 whether this option has any effect and how the outgoing network interface is chosen. Support
2794 for this option with each protocol is implementation-defined. |

2795 SO_ERROR is used only on getsockopt (). When this option is specified, getsockopt () returns any
2796 pending error on the socket and clears the error status. It returns a value of 0 if there is no
2797 pending error. SO_ERROR may be used to check for asynchronous errors on connected
2798 connectionless-mode sockets or for other types of asynchronous errors. SO_ERROR has no
2799 default value.

System Interfaces, Issue 6 567

Sockets General Information

2800 SO_KEEPALIVE enables the periodic transmission of messages on a connected socket. The
2801 behavior of this option is protocol-specific. The default value for SO_KEEPALIVE is zero,
2802 specifying that this capability is turned off.

2803 The SO_LINGER option controls the action of the interface when unsent messages are queued
2804 on a socket and a close() is performed. The details of this option are protocol-specific. The
2805 default value for SO_LINGER is zero, or off, for the l_onoff element of the option value and zero
2806 seconds for the linger time specified by the l_linger element.

2807 SO_OOBINLINE is valid only on protocols that support out-of-band data. The SO_OOBINLINE
2808 option requests that out-of-band data be placed in the normal data input queue as received; it is
2809 then accessible using the read() or recv() functions without the MSG_OOB flag set. The default
2810 for SO_OOBINLINE is off; that is, for out-of-band data not to be placed in the normal data input
2811 queue.

2812 SO_RCVBUF requests that the buffer space allocated for receive operations on this socket be set
2813 to the value, in bytes, of the option value. Applications may wish to increase buffer size for high
2814 volume connections, or may decrease buffer size to limit the possible backlog of incoming data.
2815 The default value for the SO_RCVBUF option value is implementation-defined, and may vary by |
2816 protocol. |

2817 The maximum value for the option for a socket may be obtained by the use of the fpathconf ()
2818 function, using the value _PC_SOCK_MAXBUF.

2819 SO_RCVLOWAT sets the minimum number of bytes to process for socket input operations. In
2820 general, receive calls block until any (non-zero) amount of data is received, then return the
2821 smaller of the amount available or the amount requested. The default value for SO_RCVLOWAT
2822 is 1, and does not affect the general case. If SO_RCVLOWAT is set to a larger value, blocking
2823 receive calls normally wait until they have received the smaller of the low water mark value or
2824 the requested amount. Receive calls may still return less than the low water mark if an error
2825 occurs, a signal is caught, or the type of data next in the receive queue is different than that
2826 returned (for example, out-of-band data). As mentioned previously, the default value for
2827 SO_RCVLOWAT is 1 byte. It is implementation-defined whether the SO_RCVLOWAT option |
2828 can be set.

2829 SO_RCVTIMEO is an option to set a timeout value for input operations. It accepts a timeval
2830 structure with the number of seconds and microseconds specifying the limit on how long to wait
2831 for an input operation to complete. If a receive operation has blocked for this much time without
2832 receiving additional data, it returns with a partial count or errno set to [EWOULDBLOCK] if no
2833 data were received. The default for this option is the value zero, which indicates that a receive
2834 operation will not timeout. It is implementation-defined whether the SO_RCVTIMEO option can |
2835 be set. |

2836 SO_REUSEADDR indicates that the rules used in validating addresses supplied in a bind()
2837 should allow reuse of local addresses. Operation of this option is protocol-specific. The default
2838 value for SO_REUSEADDR is off; that is, reuse of local addresses is not permitted.

2839 SO_SNDBUF requests that the buffer space allocated for send operations on this socket be set to
2840 the value, in bytes, of the option value. The default value for the SO_SNDBUF option value is |
2841 implementation-defined, and may vary by protocol. The maximum value for the option for a |
2842 socket may be obtained by the use of the fpathconf () function, using the value
2843 _PC_SOCK_MAXBUF.

2844 SO_SNDLOWAT sets the minimum number of bytes to process for socket output operations.
2845 Most output operations process all of the data supplied by the call, delivering data to the
2846 protocol for transmission and blocking as necessary for flow control. Non-blocking output
2847 operations process as much data as permitted subject to flow control without blocking, but

568 Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2848 process no data if flow control does not allow the smaller of the send low water mark value or
2849 the entire request to be processed. A select() operation testing the ability to write to a socket
2850 returns true only if the send low water mark could be processed. The default value for |
2851 SO_SNDLOWAT is implementation-defined and protocol-specific. It is implementation-defined |
2852 whether the SO_SNDLOWAT option can be set. |

2853 SO_SNDTIMEO is an option to set a timeout value for the amount of time that an output
2854 function shall block because flow control prevents data from being sent. As noted in Table 2-5
2855 (on page 567), the option value is a timeval structure with the number of seconds and
2856 microseconds specifying the limit on how long to wait for an output operation to complete. If a
2857 send operation has blocked for this much time, it returns with a partial count or errno set to
2858 [EWOULDBLOCK] if no data were sent. The default for this option is the value zero, which
2859 indicates that a send operation will not timeout. It is implementation-defined whether the |
2860 SO_SNDTIMEO option can be set. |

2861 SO_TYPE is used only on getsockopt (). When this option is specified, getsockopt () returns the
2862 type of the socket (for example, SOCK_STREAM). This option is useful to servers that inherit
2863 sockets on start-up. SO_TYPE has no default value.

2864 2.10.17 Use of Sockets for Local UNIX Connections

2865 Support for UNIX domain sockets is mandatory.

2866 UNIX domain sockets provide process-to-process communication in a single system.

2867 2.10.17.1 Headers

2868 Symbolic constant AF_UNIX is defined in the <sys/socket.h> header to identify the UNIX
2869 domain address family. The <sys/un.h> header contains other definitions used in connection
2870 with UNIX domain sockets. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
2871 13, Headers. |

2872 The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
2873 sockaddr_un structure (see the <sys/un.h> header defined in the Base Definitions volume of |
2874 IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that |
2875 pointers to it can be cast as pointers to sockaddr_un structures and used to access the fields of
2876 those structures without alignment problems. When a sockaddr_storage structure is cast as a
2877 sockaddr_un structure, the ss_family field maps onto the sun_family field.

2878 2.10.18 Use of Sockets over Internet Protocols Based on IPv4

2879 Support for sockets over Internet protocols based on IPv4 is mandatory.

2880 2.10.18.1 Headers

2881 Symbolic constant AF_INET is defined in the <sys/socket.h> header to identify the IPv4 Internet
2882 address family. The <netinet/in.h> header contains other definitions used in connection with
2883 IPv4 Internet sockets. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, |
2884 Headers. |

2885 The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
2886 sockaddr_in structure (see the <netinet/in.h> header defined in the Base Definitions volume of |
2887 IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that |
2888 pointers to it can be cast as pointers to sockaddr_in structures and used to access the fields of
2889 those structures without alignment problems. When a sockaddr_storage structure is cast as a
2890 sockaddr_in structure, the ss_family field maps onto the sin_family field.

System Interfaces, Issue 6 569

Sockets General Information

2891 2.10.19 Use of Sockets over Internet Protocols Based on IPv6

2892 IP6 This section describes extensions to support sockets over Internet protocols based on IPv6. This |
2893 functionality is dependent on support of the IPV6 option (and the rest of this section is not |
2894 further shaded for this option). |

2895 To enable smooth transition from IPv4 to IPv6, the features defined in this section may, in certain
2896 circumstances, also be used in connection with IPv4; see Section 2.10.19.2 (on page 571).

2897 2.10.19.1 Addressing

2898 IPv6 overcomes the addressing limitations of previous versions by using 128-bit addresses
2899 instead of 32-bit addresses. The IPv6 address architecture is described in RFC 2373.

2900 There are three kinds of IPv6 address:

2901 Unicast
2902 Identifies a single interface.

2903 A unicast address can be global, link-local (designed for use on a single link), or site-local
2904 (designed for systems not connected to the Internet). Link-local and site-local addresses
2905 need not be globally unique.

2906 Anycast
2907 Identifies a set of interfaces such that a packet sent to the address can be delivered to any
2908 member of the set.

2909 An anycast address is similar to a unicast address; the nodes to which an anycast address is
2910 assigned must be explicitly configured to know that it is an anycast address.

2911 Multicast
2912 Identifies a set of interfaces such that a packet sent to the address should be delivered to
2913 every member of the set.

2914 An application can send multicast datagrams by simply specifying an IPv6 multicast
2915 address in the address argument of sendto(). To receive multicast datagrams, an application
2916 must join the multicast group (using setsockopt () with IPV6_JOIN_GROUP) and must bind
2917 to the socket the UDP port on which datagrams will be received. Some applications should
2918 also bind the multicast group address to the socket, to prevent other datagrams destined to
2919 that port from being delivered to the socket.

2920 A multicast address can be global, node-local, link-local, site-local, or organization-local.

2921 The following special IPv6 addresses are defined:

2922 Unspecified
2923 An address that is not assigned to any interface and is used to indicate the absence of an
2924 address.

2925 Loopback
2926 A unicast address that is not assigned to any interface and can be used by a node to send
2927 packets to itself.

2928 Two sets of IPv6 addresses are defined to correspond to IPv4 addresses:

2929 IPv4-compatible addresses
2930 These are assigned to nodes that support IPv6 and can be used when traffic is ‘‘tunneled’’
2931 through IPv4.

2932 IPv4-mapped addresses
2933 These are used to represent IPv4 addresses in IPv6 address format; see Section 2.10.19.2 (on

570 Technical Standard (2000) (Draft July 31, 2000)

General Information Sockets

2934 page 571).

2935 Note that the unspecified address and the loopback address must not be treated as IPv4-
2936 compatible addresses.

2937 2.10.19.2 Compatibility with IPv4

2938 The API provides the ability for IPv6 applications to interoperate with applications using IPv4,
2939 by using IPv4-mapped IPv6 addresses. These addresses can be generated automatically by the
2940 getipnodebyname() function when the specified host has only IPv4 addresses (as described in
2941 endhostent()).

2942 Applications may use AF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP
2943 packets to IPv4 nodes, by simply encoding the destination’s IPv4 address as an IPv4-mapped
2944 IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect(),
2945 sendto() or sendmsg() function. When applications use AF_INET6 sockets to accept TCP
2946 connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system returns the
2947 peer’s address to the application in the accept(), recvfrom(), recvmsg(), or getpeername() function
2948 using a sockaddr_in6 structure encoded this way. If a node has an IPv4 address, then the
2949 implementation may allow applications to communicate using that address via an AF_INET6
2950 socket. In such a case, the address will be represented at the API by the corresponding IPv4-
2951 mapped IPv6 address. Also, the implementation may allow an AF_INET6 socket bound to
2952 in6addr_any to receive inbound connections and packets destined to one of the node’s IPv4
2953 addresses.

2954 An application may use AF_INET6 sockets to bind to a node’s IPv4 address by specifying the
2955 address as an IPv4-mapped IPv6 address in a sockaddr_in6 structure in the bind() function. For
2956 an AF_INET6 socket bound to a node’s IPv4 address, the system returns the address in the
2957 getsockname() function as an IPv4-mapped IPv6 address in a sockaddr_in6 structure.

2958 2.10.19.3 Interface Identification

2959 Each local interface is assigned a unique positive integer as a numeric index. Indexes start at 1;
2960 zero is not used. There may be gaps so that there is no current interface for a particular positive
2961 index. Each interface also has a unique implementation-defined name. |

2962 2.10.19.4 Options

2963 The following options apply at the IPPROTO_IPV6 level:

2964 IPV6_JOIN_GROUP
2965 When set via setsockopt (), it joins the application to a multicast group on an interface
2966 (identified by its index) and addressed by a given multicast address, enabling packets sent
2967 to that address to be read via the socket. If the interface index is specified as zero, the
2968 system selects the interface (for example, by looking up the address in a routing table and
2969 using the resulting interface).

2970 An attempt to read this option using getsockopt () results in an [EOPNOTSUPP] error.

2971 The value of this option is an ipv6_mreq structure.

2972 IPV6_LEAVE_GROUP
2973 When set via setsockopt (), it removes the application from the multicast group on an
2974 interface (identified by its index) and addressed by a given multicast address.

2975 An attempt to read this option using getsockopt () results in an [EOPNOTSUPP] error.

System Interfaces, Issue 6 571

Sockets General Information

2976 The value of this option is an ipv6_mreq structure.

2977 IPV6_MULTICAST_HOPS
2978 The value of this option is the hop limit for outgoing multicast IPv6 packets sent via the
2979 socket. Its possible values are the same as those of IPV6_UNICAST_HOPS. If the
2980 IPV6_MULTICAST_HOPS option is not set, a value of 1 is assumed. This option can be set
2981 via setsockopt () and read via getsockopt ().

2982 IPV6_MULTICAST_IF
2983 The index of the interface to be used for outgoing multicast packets. It can be set via
2984 setsockopt () and read via getsockopt ().

2985 IPV6_MULTICAST_LOOP
2986 This option controls whether outgoing multicast packets should be delivered back to the
2987 local application when the sending interface is itself a member of the destination multicast
2988 group. If it is set to 1 they are delivered. If it is set to 0 they are not. Other values result in an
2989 [EINVAL] error. This option can be set via setsockopt () and read via getsockopt ().

2990 IPV6_UNICAST_HOPS
2991 The value of this option is the hop limit for outgoing unicast IPv6 packets sent via the
2992 socket. If the option is not set, or is set to −1, the system selects a default value. Attempts to
2993 set a value less than −1 or greater than 255 result in an [EINVAL] error. This option can be
2994 set via setsockopt () and read via getsockopt ().

2995 An [EOPNOTSUPP] error results if IPV6_JOIN_GROUP or IPV6_LEAVE_GROUP is used with
2996 getsockopt ().

2997 2.10.19.5 Headers

2998 Symbolic constant AF_INET6 is defined in the <sys/socket.h> header to identify the IPv6 |
2999 Internet address family. See the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 13, |
3000 Headers. |

3001 The sockaddr_storage structure defined in <sys/socket.h> is large enough to accommodate a
3002 sockaddr_in6 structure (see the <netinet/in.h> header defined in the Base Definitions volume of |
3003 IEEE Std. 1003.1-200x, Chapter 13, Headers) and is aligned at an appropriate boundary so that |
3004 pointers to it can be cast as pointers to sockaddr_in6 structures and used to access the fields of
3005 those structures without alignment problems. When a sockaddr_storage structure is cast as a
3006 sockaddr_in6 structure, the ss_family field maps onto the sin6_family field.

3007 The <netinet/in.h>, <arpa/inet.h>, and <netdb.h> headers contain other definitions used in
3008 connection with IPv6 Internet sockets; see the Base Definitions volume of IEEE Std. 1003.1-200x, |
3009 Chapter 13, Headers. |

572 Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3010 2.11 Tracing |

3011 TRC This section describes extensions to support tracing of user applications. This functionality is |
3012 dependent on support of the Trace option (and the rest of this section is not further shaded for |
3013 this option). |

3014 The tracing facilities defined in IEEE Std. 1003.1-200x allow a process to select a set of trace event |
3015 types, to activate a trace stream of the selected trace events as they occur in the flow of |
3016 execution, and to retrieve the recorded trace events. |

3017 The tracing operation relies on three logically different components: the traced process, the |
3018 controller process, and the analyzer process. During the execution of the traced process, when a |
3019 trace point is reached, a trace event is recorded into the trace streams created for that process in |
3020 which the associated trace event type identifier is not being filtered out. The controller process |
3021 controls the operation of recording the trace events into the trace stream. It shall be able to: |

3022 • Initialize the attributes of a trace stream |

3023 • Create the trace stream (for a specified traced process) using those attributes |

3024 • Start and stop tracing for the trace stream |

3025 • Filter the type of trace events to be recorded, if the Trace Event Filter option is supported |

3026 • Shut a trace stream down |

3027 These operations can be done for an active trace stream. The analyzer process retrieves the |
3028 traced events either at runtime, when the trace stream has not yet been shut down, but is still |
3029 recording trace events; or after opening a trace log that had been previously recorded and shut |
3030 down. These three logically different operations can be performed by the same process, or can be |
3031 distributed into different processes. |

3032 A trace stream identifier can be created by a call to posix_trace_create(), |
3033 posix_trace_create_withlog(), or posix_trace_open(). The posix_trace_create() and |
3034 posix_trace_create_withlog() functions should be used by a controller process. The |
3035 posix_trace_open() should be used by an analyzer process. |

3036 The tracing functions can serve different purposes. One purpose is debugging the possibly pre- |
3037 instrumented code, while another is post-mortem fault analysis. These two potential uses differ |
3038 in that the first requires pre-filtering capabilities to avoid overwhelming the trace stream and |
3039 permits focusing on expected information; while the second needs comprehensive trace |
3040 capabilities in order to be able to record all types of information. |

3041 The events to be traced belong to two classes: |

3042 1. User trace events (generated by the application instrumentation) |

3043 2. System trace events (generated by the operating system) |

3044 The trace interface defines several system trace event types associated with control of and |
3045 operation of the trace stream. This small set of system trace events includes the minimum |
3046 required to interpret correctly the trace event information present in the stream. Other desirable |
3047 system trace events for some particular application profile may be implemented and are |
3048 encouraged; for example, process and thread scheduling, signal occurrence, and so on. |

3049 Each traced process shall have a mapping of the trace event names to trace event type identifiers |
3050 that have been defined for that process. Each active trace stream shall have a mapping that |
3051 incorporates all the trace event type identifiers predefined by the trace system plus all the |
3052 mappings of trace event names to trace event type identifiers of the processes that are being |
3053 traced into that trace stream. These mappings are defined from the instrumented application by |

System Interfaces, Issue 6 573

Tracing General Information

3054 calling the posix_trace_eventid_open() function and from the controller process by calling the |
3055 posix_trace_trid_eventid_open() function. For a pre-recorded trace stream, the list of trace event |
3056 types is obtained from the pre-recorded trace log. |

3057 The st_ctime and st_mtime fields of a file associated with an active trace stream shall be marked |
3058 for update every time any of the tracing operations modifies that file. |

3059 The st_atime field of a file associated with a trace stream shall be marked for update every time |
3060 any of the tracing operations causes data to be read from that file. |

3061 Results are undefined if the application performs any operation on a file descriptor associated |
3062 with an active or pre-recorded trace stream until posix_trace_shutdown() or posix_trace_close() is |
3063 called for that trace stream. |

3064 The main purpose of this option is to define a complete set of functions and concepts that allow |
3065 a portable application to be traced from birth to death, whatever its realtime constraints and |
3066 properties. |

3067 2.11.1 Tracing Data Definitions |

3068 2.11.1.1 Structures |

3069 The <trace.h> header shall define the posix_trace_status_info and posix_trace_event_info structures |
3070 described below. Implementations may add extensions to these structures. |

3071 posix_trace_status_info Structure |

3072 To facilitate control of a trace stream, information about the current state of an active trace |
3073 stream can be obtained dynamically. This structure is returned by a call to the |
3074 posix_trace_get_status() function. |

3075 The posix_trace_status_info structure defined in <trace.h> shall contain at least the following |
3076 members: |
3077 __ |
3078 Member Type Member Name Description |__ |
3079 int posix_stream_status The operating mode of the trace stream. |
3080 int posix_stream_full_status The full status of the trace stream. |
3081 Indicates whether trace events were | |
3082 lost in the trace stream. | |

int posix_stream_overrun_status |

__ |LL
L
L
L
L
L

|LL
L
L
L
L
L

|LL
L
L
L
L
L

|LL
L
L
L
L
L

|

3083 If the Trace Log option is supported in addition to the Trace option, the posix_trace_status_info |
3084 structure defined in <trace.h> shall contain at least the following additional members: |
3085 ___ |
3086 Member Type Member Name Description |___ |
3087 int posix_stream_flush_status Indicates whether a flush is in progress. |
3088 Indicates whether any error occurred | |
3089 during the last flush operation. | |

int posix_stream_flush_error |

3090 Indicates whether trace events were | |
3091 lost in the trace log. | |

int posix_log_overrun_status |

3092 int posix_log_full_status The full status of the trace log. |___ |LL
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L

|

3093 The posix_stream_status member indicates the operating mode of the trace stream and shall have |
3094 one of the following values defined by manifest constants in the <trace.h> header: |

574 Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3095 POSIX_TRACE_RUNNING |
3096 Tracing is in progress; that is, the trace stream is accepting trace events. |

3097 POSIX_TRACE_SUSPENDED |
3098 The trace stream is not accepting trace events. The tracing operation has not yet started or |
3099 has stopped, either following a posix_trace_stop() function call or because the trace resources |
3100 are exhausted. |

3101 The posix_stream_full_status member indicates the full status of the trace stream, and it shall have |
3102 one of the following values defined by manifest constants in the <trace.h> header: |

3103 POSIX_TRACE_FULL |
3104 The space in the trace stream for trace events is exhausted. |

3105 POSIX_TRACE_NOT_FULL |
3106 There is still space available in the trace stream. |

3107 The combination of the posix_stream_status and posix_stream_full_status members also indicates |
3108 the actual status of the stream. The status shall be interpreted as follows: |

3109 POSIX_TRACE_RUNNING and POSIX_TRACE_NOT_FULL |
3110 This status combination indicates that tracing is in progress, and there is space available for |
3111 recording more trace events. |

3112 POSIX_TRACE_RUNNING and POSIX_TRACE_FULL |
3113 This status combination indicates that tracing is in progress and that the trace stream is full |
3114 of trace events. This status combination cannot occur unless the stream-full-policy is set to |
3115 POSIX_TRACE_LOOP. The trace stream contains trace events recorded during a moving |
3116 time window of prior trace events, and some older trace events may have been overwritten |
3117 and thus lost. |

3118 POSIX_TRACE_SUSPENDED and POSIX_TRACE_NOT_FULL |
3119 This status combination indicates that tracing has not yet been started, has been stopped by |
3120 the posix_trace_stop() function, or has been cleared by the posix_trace_clear() function. |

3121 POSIX_TRACE_SUSPENDED and POSIX_TRACE_FULL |
3122 This status combination indicates that tracing has been stopped by the implementation |
3123 because the stream-full-policy attribute was POSIX_TRACE_UNTIL_FULL and trace |
3124 resources were exhausted, or that the trace stream was stopped by the function |
3125 posix_trace_stop() at a time when trace resources were exhausted. |

3126 The posix_stream_overrun_status member indicates whether trace events were lost in the trace |
3127 stream, and shall have one of the following values defined by manifest constants in the |
3128 <trace.h> header: |

3129 POSIX_TRACE_OVERRUN |
3130 At least one trace event was lost and thus was not recorded in the trace stream. |

3131 POSIX_TRACE_NO_OVERRUN |
3132 No trace events were lost. |

3133 When the corresponding trace stream is created, the posix_stream_overrun_status member shall be |
3134 set to POSIX_TRACE_NO_OVERRUN. |

3135 Whenever an overrun occurs, posix_stream_overrun_status member shall be set to |
3136 POSIX_TRACE_OVERRUN. |

3137 An overrun occurs when: |

System Interfaces, Issue 6 575

Tracing General Information

3138 • The policy is POSIX_TRACE_LOOP and a recorded trace event is overwritten. |

3139 • The policy is POSIX_TRACE_UNTIL_FULL and the trace stream is full when a trace event is |
3140 generated. |

3141 • If the Trace Log option is supported, the policy is POSIX_TRACE_FLUSH and at least one |
3142 trace event is lost while flushing the trace stream to the trace log. |

3143 The posix_stream_overrun_status member is reset to zero after its value is read. |

3144 If the Trace Log option is supported in addition to the Trace option, the posix_stream_flush_status, |
3145 posix_stream_flush_error, posix_log_overrun_status, and posix_log_full_status members are defined |
3146 as follows; otherwise, they are undefined. |

3147 The posix_stream_flush_status member indicates whether a flush operation is being performed |
3148 and shall have one of the following values defined by manifest constants in the header |
3149 <trace.h>: |

3150 POSIX_TRACE_FLUSHING |
3151 The trace stream is currently being flushed to the trace log. |

3152 POSIX_TRACE_NOT_FLUSHING |
3153 No flush operation is in progress. |

3154 The posix_stream_flush_status member shall be set to POSIX_TRACE_FLUSHING if a flush |
3155 operation is in progress either due to a call to the posix_trace_flush() function (explicit or caused |
3156 by a trace stream shutdown operation) or because the trace stream has become full with the |
3157 stream-full-policy attribute set to POSIX_TRACE_FLUSH. The posix_stream_flush_status member |
3158 shall be set to POSIX_TRACE_NOT_FLUSHING if no flush operation is in progress. |

3159 The posix_stream_flush_error member shall be set to zero if no error occurred during flushing. If |
3160 an error occurred during a previous flushing operation, the posix_stream_flush_error member |
3161 shall be set to the value of the first error that occurred. If more than one error occurs while |
3162 flushing, error values after the first shall be discarded. The posix_stream_flush_error member is |
3163 reset to zero after its value is read. |

3164 The posix_log_overrun_status member indicates whether trace events were lost in the trace log, |
3165 and shall have one of the following values defined by manifest constants in the <trace.h> |
3166 header: |

3167 POSIX_TRACE_OVERRUN |
3168 At least one trace event was lost. |

3169 POSIX_TRACE_NO_OVERRUN |
3170 No trace events were lost. |

3171 When the corresponding trace stream is created, the posix_log_overrun_status member shall be set |
3172 to POSIX_TRACE_NO_OVERRUN. Whenever an overrun occurs, this status shall be set to |
3173 POSIX_TRACE_OVERRUN. The posix_log_overrun_status member is reset to zero after its value |
3174 is read. |

3175 The posix_log_full_status member indicates the full status of the trace log, and it shall have one of |
3176 the following values defined by manifest constants in the <trace.h> header: |

3177 POSIX_TRACE_FULL |
3178 The space in the trace log is exhausted. |

3179 POSIX_TRACE_NOT_FULL |
3180 There is still space available in the trace log. |

576 Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3181 The posix_log_full_status member is only meaningful if the log-full-policy attribute is either |
3182 POSIX_TRACE_UNTIL_FULL or POSIX_TRACE_LOOP. |

3183 For an active trace stream without log, that is created by the posix_trace_create() function, the |
3184 posix_log_overrun_status member shall be set to POSIX_TRACE_NO_OVERRUN and the |
3185 posix_log_full_status member shall be set to POSIX_TRACE_NOT_FULL. |

3186 posix_trace_event_info Structure |

3187 The trace event structure posix_trace_event_info contains the information for one recorded |
3188 trace event. This structure is returned by the set of functions posix_trace_getnext_event(), |
3189 posix_trace_timedgetnext_event(), and posix_trace_trygetnext_event(). |

3190 The posix_trace_event_info structure defined in <trace.h> shall contain at least the following |
3191 members: |
3192 __ |
3193 Member Type Member Name Description |__ |
3194 trace_event_id_t posix_event_id Trace event type identification. |
3195 Process ID of the process that generated the | |
3196 trace event. | |

pid_t posix_pid |

3197 void * posix_prog_address Address at which the trace point was invoked. |
3198 Status about the truncation of the data | |
3199 associated with this trace event. | |

int posix_truncation_status |

3200 struct timespec posix_timestamp Time at which the trace event was generated. |__ |LL
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L

|

3201 In addition, if the Trace option and the Threads option are both supported, the |
3202 posix_trace_event_info structure defined in <trace.h> shall contain the following additional |
3203 member: |
3204 ___ |
3205 Member Type Member Name Description |___ |
3206 Thread ID of the thread | |
3207 that generated the trace | |
3208 event. | |

pthread_t posix_thread_id |

___ |LL
L
L
L
L

|LL
L
L
L
L

|LL
L
L
L
L

|LL
L
L
L
L

|

3209 The posix_event_id member represents the identification of the trace event type and its value is |
3210 not directly defined by the user. This identification is returned by a call to one of the following |
3211 functions: posix_trace_trid_eventid_open(), posix_trace_eventtypelist_getnext_id(), or |
3212 posix_trace_eventid_open(). The name of the trace event type can be obtained by calling |
3213 posix_trace_eventid_get_name(). |

3214 The posix_pid is the process identifier of the traced process which generated the trace event. If |
3215 the posix_event_id member is one of the implementation-defined system trace events and that |
3216 trace event is not associated with any process, the posix_pid member shall be set to zero. |

3217 For a user trace event, the posix_prog_address member is the process mapped address of the point |
3218 at which the associated call to the posix_trace_event() function was made. For a system trace |
3219 event, if the trace event is caused by a system service explicitly called by the application, the |
3220 posix_prog_address member shall be the address of the process at the point where the call to that |
3221 system service was made. |

3222 The posix_truncation_status member defines whether the data associated with a trace event has |
3223 been truncated at the time the trace event was generated, or at the time the trace event was read |
3224 from the trace stream, or (if the Trace Log option is supported) from the trace log (see the event |
3225 argument from the posix_trace_getnext_event() function). The posix_truncation_status member |

System Interfaces, Issue 6 577

Tracing General Information

3226 shall have one of the following values defined by manifest constants in the <trace.h> header: |

3227 POSIX_TRACE_NOT_TRUNCATED |
3228 All the traced data is available. |

3229 POSIX_TRACE_TRUNCATED_RECORD |
3230 Data was truncated at the time the trace event was generated. |

3231 POSIX_TRACE_TRUNCATED_READ |
3232 Data was truncated at the time the trace event was read from a trace stream or a trace log |
3233 because the reader’s buffer was too small. This truncation status overrides the |
3234 POSIX_TRACE_TRUNCATED_RECORD status. |

3235 The posix_timestamp member shall be the time at which the trace event was generated. The clock |
3236 used is implementation-defined, but the resolution of this clock can be retrieved by a call to the |
3237 posix_trace_attr_getclockres() function. |

3238 If the Threads option is supported in addition to the Trace option: |

3239 • The posix_thread_id member is the identifier of the thread that generated the trace event. If |
3240 the posix_event_id member is one of the implementation-defined system trace events and that |
3241 trace event is not associated with any thread, the posix_thread_id member shall be set to zero. |

3242 Otherwise, this member is undefined. |

3243 2.11.1.2 Trace Stream Attributes |

3244 Trace streams have attributes that compose the posix_trace_attr_t trace stream attributes object. |
3245 This object shall contain at least the following attributes: |

3246 • The generation-version attribute identifies the origin and version of the trace system. |

3247 • The trace-name attribute is a character string defined by the trace controller, and that |
3248 identifies the trace stream. |

3249 • The creation-time attribute represents the time of the creation of the trace stream. |

3250 • The clock-resolution attribute defines the clock resolution of the clock used to generate |
3251 timestamps. |

3252 • The stream-min-size attribute defines the minimum size in bytes of the trace stream strictly |
3253 reserved for the trace events. |

3254 • The stream-full-policy attribute defines the policy followed when the trace stream is full; its |
3255 value is POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or POSIX_TRACE_FLUSH. |

3256 • The max-data-size attribute defines the maximum record size in bytes of a trace event. |

3257 In addition, if the Trace option and the Trace Inherit option are both supported, the |
3258 posix_trace_attr_t trace stream creation attributes object shall contain at least the following |
3259 attributes: |

3260 • The inheritance attribute specifies whether a newly created trace stream will inherit tracing in |
3261 its parent’s process trace stream. It is either POSIX_TRACE_INHERITED or |
3262 POSIX_TRACE_CLOSE_FOR_CHILD. |

3263 In addition, if the Trace option and the Trace Log option are both supported, the |
3264 posix_trace_attr_t trace stream creation attributes object shall contain at least the following |
3265 attribute: |

3266 • If the file type corresponding to the trace log supports the POSIX_TRACE_LOOP or the |
3267 POSIX_TRACE_UNTIL_FULL policies, the log-max-size attribute defines the maximum size |

578 Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3268 in bytes of the trace log associated with an active trace stream. Other stream data—for |
3269 example, trace attribute values—shall not be included in this size. |

3270 • The log-full-policy attribute defines the policy of a trace log associated with an active trace |
3271 stream to be POSIX_TRACE_LOOP, POSIX_TRACE_UNTIL_FULL, or |
3272 POSIX_TRACE_APPEND. |

3273 2.11.2 Trace Event Type Definitions |

3274 2.11.2.1 System Trace Event Type Definitions |

3275 The following system trace event types, defined in the <trace.h> header, track the invocation of |
3276 the trace operations: |

3277 • POSIX_TRACE_START shall be associated with a trace start operation. |

3278 • POSIX_TRACE_STOP shall be associated with a trace stop operation. |

3279 • if the Trace Event Filter option is supported, POSIX_TRACE_FILTER shall be associated with |
3280 a trace event type filter change operation. |

3281 The following system trace event types, defined in the <trace.h> header, report operational trace |
3282 events: |

3283 • POSIX_TRACE_OVERFLOW shall mark the beginning of a trace overflow condition. |

3284 • POSIX_TRACE_RESUME shall mark the end of a trace overflow condition. |

3285 • If the Trace Log option is supported, POSIX_TRACE_FLUSH_START shall mark the |
3286 beginning of a flush operation. |

3287 • If the Trace Log option is supported, POSIX_TRACE_FLUSH_STOP shall mark the end of a |
3288 flush operation. |

3289 • If an implementation-defined trace error condition is reported, it shall be marked |
3290 POSIX_TRACE_ERROR. |

3291 The interpretation of a trace stream or a trace log by a trace analyzer process relies on the |
3292 information recorded for each trace event, and also on system trace events that indicate the |
3293 invocation of trace control operations and trace system operational trace events. |

3294 The POSIX_TRACE_START and POSIX_TRACE_STOP trace events specify the time windows |
3295 during which the trace stream is running. |

3296 The POSIX_TRACE_STOP trace event with an associated data that is equal to zero indicates |
3297 a call of the function posix_trace_stop(). |

3298 The POSIX_TRACE_STOP trace event with an associated data that is different from zero |
3299 indicates an automatic stop of the trace stream (see posix_trace_attr_getstreamfullpolicy() |
3300 defined in the System Interfaces volume of IEEE Std. 1003.1-200x). |

3301 The POSIX_TRACE_FILTER trace event indicates that a trace event type filter value changed |
3302 while the trace stream was running. |

3303 The POSIX_TRACE_ERROR serves to inform the analyzer process that an implementation- |
3304 defined internal error of the trace system occurred. |

3305 The POSIX_TRACE_OVERFLOW trace event shall be reported with a timestamp equal to the |
3306 timestamp of the first trace event overwritten. This is an indication that some generated trace |
3307 events have been lost. |

System Interfaces, Issue 6 579

Tracing General Information

3308 The POSIX_TRACE_RESUME trace event shall be reported with a timestamp equal to the |
3309 timestamp of the first valid trace event reported after the overflow condition ends and shall be |
3310 reported before this first valid trace event. This is an indication that the trace system is reliably |
3311 recording trace events after an overflow condition. |

3312 Each of these trace event types is defined by a constant trace event name and a trace_event_id_t |
3313 constant; trace event data is associated with some of these trace events. |

3314 If the Trace option is supported and the Trace Event Filter option and the Trace Log option are |
3315 not supported, the following predefined system trace events in Table 2-6 shall be defined: |

3316 Table 2-6 Trace Option: System Trace Events |
___ |

3317 Event Name Constant Associated Data |__________________ |
3318 Data Type |___ |
3319 "posix_trace_error" POSIX_TRACE_ERROR error |__________________ |
3320 int |___ |
3321 "posix_trace_start" POSIX_TRACE_START None. |___ |
3322 "posix_trace_stop" POSIX_TRACE_STOP auto |__________________ |
3323 int |___ |
3324 "posix_trace_overflow" POSIX_TRACE_OVERFLOW None. |___ |
3325 "posix_trace_resume" POSIX_TRACE_RESUME None. |___ |L

L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L

|

3326 If the Trace option and the Trace Event Filter option are both supported, and if the Trace Log |
3327 option is not supported, the following predefined system trace events in Table 2-7 shall be |
3328 defined: |

3329 Table 2-7 Trace and Trace Event Filter Options: System Trace Events |
__ |

3330 Event Name Constant Associated Data |__________________ |
3331 Data Type |__ |
3332 "posix_trace_error" POSIX_TRACE_ERROR error |__________________ |
3333 int |__ |
3334 "posix_trace_start" POSIX_TRACE_START event_filter |__________________ |
3335 trace_event_set_t |__ |
3336 "posix_trace_stop" POSIX_TRACE_STOP auto |__________________ |
3337 int |__ |
3338 "posix_trace_filter" POSIX_TRACE_FILTER old_event_filter |
3339 new_event_filter |__________________ |
3340 trace_event_set_t |__ |
3341 "posix_trace_overflow" POSIX_TRACE_OVERFLOW None. |__ |
3342 "posix_trace_resume" POSIX_TRACE_RESUME None. |__ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

3343 If the Trace option and the Trace Log option are both supported, and if the Trace Event Filter |
3344 option is not supported, the following predefined system trace events in Table 2-8 (on page 581) |
3345 shall be defined: |

580 Technical Standard (2000) (Draft July 31, 2000)

General Information Tracing

3346 Table 2-8 Trace and Trace Log Options: System Trace Events |
___ |

3347 Event Name Constant Associated Data |__________________ |
3348 Data Type |___ |
3349 "posix_trace_error" POSIX_TRACE_ERROR error |
3350 - |
3351 int |___ |
3352 "posix_trace_start" POSIX_TRACE_START None. |___ |
3353 "posix_trace_stop" POSIX_TRACE_STOP auto |__________________ |
3354 int |___ |
3355 "posix_trace_overflow" POSIX_TRACE_OVERFLOW None. |___ |
3356 "posix_trace_resume" POSIX_TRACE_RESUME None. |___ |
3357 "posix_trace_flush_start" POSIX_TRACE_FLUSH_START None. |___ |
3358 "posix_trace_flush_stop" POSIX_TRACE_FLUSH_STOP None. |___ |LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

3359 If the Trace option, the Trace Event Filter option, and the Trace Log option are all supported, the |
3360 following predefined system trace events in Table 2-9 shall be defined: |

3361 Table 2-9 Trace, Trace Log, and Trace Event Filter Options: System Trace Events |
__ |

3362 Event Name Constant Associated Data |__________________ |
3363 Data Type |__ |
3364 "posix_trace_error" POSIX_TRACE_ERROR error |__________________ |
3365 int |__ |
3366 "posix_trace_start" POSIX_TRACE_START event_filter |__________________ |
3367 trace_event_set_t |__ |
3368 "posix_trace_stop" POSIX_TRACE_STOP auto |__________________ |
3369 int |__ |
3370 "posix_trace_filter" POSIX_TRACE_FILTER old_event_filter |
3371 new_event_filter |__________________ |
3372 trace_event_set_t |__ |
3373 "posix_trace_overflow" POSIX_TRACE_OVERFLOW None. |__ |
3374 "posix_trace_resume" POSIX_TRACE_RESUME None. |__ |
3375 "posix_trace_flush_start" POSIX_TRACE_FLUSH_START None. |__ |
3376 "posix_trace_flush_stop" POSIX_TRACE_FLUSH_STOP None. |__ |L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

3377 2.11.2.2 User Trace Event Type Definitions |

3378 The user trace event POSIX_TRACE_UNNAMED_USEREVENT shall be defined in the |
3379 <trace.h> header. If the limit of per-process user trace event names represented by |
3380 {TRACE_USER_EVENT_MAX} has already been reached, this predefined user event shall be |
3381 returned when the application tries to register more events than allowed. The data associated |
3382 with this trace event is application-defined. |

3383 The following predefined user trace event in Table 2-10 (on page 582) shall be defined: |

System Interfaces, Issue 6 581

Tracing General Information

3384 Table 2-10 Trace Option: User Trace Event |
__ |

3385 Event Name Constant |__ |
3386 "posix_trace_unnamed_userevent" POSIX_TRACE_UNNAMED_USEREVENT |__ |L

L
L

|L
L
L

|L
L
L

|

3387 2.11.3 Trace Functions |

3388 The trace interface is built and structured to improve portability through use of trace data of |
3389 opaque type. The object-oriented approach for the manipulation of trace attributes and trace |
3390 event type identifiers requires definition of many constructor and selector functions which |
3391 operate on these opaque types. Also, the trace interface must support several different tracing |
3392 roles. To facilitate reading the trace interface, the trace functions are grouped into small |
3393 functional sets supporting the three different roles: |

3394 • A trace controller process requires functions to set up and customize all the resources needed |
3395 to run a trace stream, including: |

3396 — Attribute initialization and destruction (posix_trace_attr_init()) |

3397 — Identification information manipulation (posix_trace_attr_getgenversion()) |

3398 — Trace system behavior modification (posix_trace_attr_getinherited()) |

3399 — Trace stream and trace log size set (posix_trace_attr_getmaxusereventsize()) |

3400 — Trace stream creation, flush, and shutdown (posix_trace_create()) |

3401 — Trace stream and trace log clear (posix_trace_clear()) |

3402 — Trace event type identifier manipulation (posix_trace_trid_eventid_open()) |

3403 — Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id()) |

3404 — Trace event type set manipulation (posix_trace_eventset_empty()) |

3405 — Trace event type filter set (posix_trace_set_filter()) |

3406 — Trace stream start and stop (posix_trace_start()) |

3407 — Trace stream information and status read (posix_trace_get_attr()) |

3408 • A traced process requires functions to instrument trace points: |

3409 — Trace event type identifiers definition and trace points insertion (posix_trace_event()) |

3410 • A trace analyzer process requires functions to retrieve information from a trace stream and |
3411 trace log: |

3412 — Identification information read (posix_trace_attr_getgenversion()) |

3413 — Trace system behavior information read (posix_trace_attr_getinherited()) |

3414 — Trace stream and trace log size get (posix_trace_attr_getmaxusereventsize()) |

3415 — Trace event type identifier manipulation (posix_trace_trid_eventid_open()) |

3416 — Trace event type identifier list exploration (posix_trace_eventtypelist_getnext_id()) |

3417 — Trace log open, rewind, and close (posix_trace_open()) |

3418 — Trace stream information and status read (posix_trace_get_attr()) |

3419 — trace event read (posix_trace_getnext_event()) |

582 Technical Standard (2000) (Draft July 31, 2000)

General Information Data Types

3420 2.12 Data Types
3421 All of the data types used by various functions are defined by the implementation. The
3422 following table describes some of these types. Other types referenced in the description of a
3423 function, not mentioned here, can be found in the appropriate header for that function.
3424 ___
3425 Defined Type Description___LL LL LL

3426 cc_t Type used for terminal special characters.
3427 Arithmetic type used for processor times, as defined in the ISO C
3428 standard.

clock_t

3429 clockid_t Used for clock ID type in some timer functions.
3430 dev_t Arithmetic type used for device numbers.
3431 DIR Type representing a directory stream.
3432 div_t Structure type returned by the div() function.
3433 FILE Structure containing information about a file.
3434 glob_t Structure type used in path name pattern matching.
3435 fpos_t Type containing all information needed to specify uniquely every
3436 position within a file.
3437 gid_t Arithmetic type used for group IDs.
3438 iconv_t Type used for conversion descriptors.
3439 id_t Arithmetic type used as a general identifier; can be used to contain
3440 at least the largest of a pid_t, uid_t, or gid_t.
3441 ino_t Arithmetic type used for file serial numbers.
3442 key_t Arithmetic type used for XSI interprocess communication.
3443 ldiv_t Structure type returned by the ldiv () function.
3444 mode_t Arithmetic type used for file attributes.
3445 mqd_t Used for message queue descriptors.
3446 nfds_t Integer type used for the number of file descriptors.
3447 nlink_t Arithmetic type used for link counts.
3448 off_t Signed arithmetic type used for file sizes.
3449 pid_t Signed arithmetic type used for process and process group IDs.
3450 pthread_attr_t Used to identify a thread attribute object.
3451 pthread_cond_t Used for condition variables.
3452 pthread_condattr_t Used to identify a condition attribute object.
3453 pthread_key_t Used for thread-specific data keys.
3454 pthread_mutex_t Used for mutexes.
3455 pthread_mutexattr_t Used to identify a mutex attribute object.
3456 pthread_once_t Used for dynamic package initialization.
3457 pthread_rwlock_t Used for read-write locks.
3458 pthread_rwlockattr_t Used for read-write lock attributes.
3459 pthread_t Used to identify a thread.
3460 ptrdiff_t Signed integer type of the result of subtracting two pointers.
3461 regex_t Structure type used in regular expression matching.
3462 regmatch_t Structure type used in regular expression matching.
3463 rlim_t Unsigned arithmetic type used for limit values, to which objects of
3464 type int and off_t can be cast without loss of value.
3465 sem_t Type used in performing semaphore operations.
3466 sig_atomic_t Integer type of an object that can be accessed as an atomic___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

System Interfaces, Issue 6 583

Data Types General Information

3467 ___
3468 Defined Type Description___LL LL LL

3469 entity, even in the presence of asynchronous interrupts.
3470 sigset_t Integer or structure type of an object used to represent sets
3471 of signals.
3472 size_t Unsigned integer type used for size of objects.
3473 speed_t Type used for terminal baud rates.
3474 ssize_t Arithmetic type used for a count of bytes or an error indication.
3475 suseconds_t Signed arithmetic type used for time in microseconds.
3476 tcflag_t Type used for terminal modes.
3477 Arithmetic type used for time in seconds, as defined in the ISO C
3478 standard.

time_t

3479 timer_t Used for timer ID returned by the timer_create() function.
3480 uid_t Arithmetic type used for user IDs.
3481 useconds_t Integer type used for time in microseconds.
3482 va_list Type used for traversing variable argument lists.
3483 wchar_t Integer type whose range of values can represent distinct codes for
3484 all members of the largest extended character set specified by the
3485 supported locales.
3486 wctype_t Scalar type which represents a character class descriptor.
3487 wint_t Integer type capable of storing any valid value of wchar_t or
3488 WEOF.
3489 wordexp_t Structure type used in word expansion.___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

3490 |

584 Technical Standard (2000) (Draft July 31, 2000)

3491

Chapter 3

System Interfaces

3492 This chapter describes the functions, macros, and external variables to support applications
3493 portability at the C-language source level.

System Interfaces, Issue 6 585

FD_CLR() System Interfaces

3494 NAME
3495 FD_CLR — macros for synchronous I/O multiplexing

3496 SYNOPSIS
3497 #include <sys/time.h>

3498 FD_CLR(int fd , fd_set * fdset);
3499 FD_ISSET(int fd , fd_set * fdset);
3500 FD_SET(int fd , fd_set * fdset);
3501 FD_ZERO(fd_set * fdset);

3502 DESCRIPTION
3503 Refer to select().

|

586 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces _Exit()

3504 NAME |
3505 _Exit, _exit — terminate a process |

3506 SYNOPSIS
3507 #include <unistd.h>

3508 void _Exit(int status); |
3509 void _exit(int status); |

3510 DESCRIPTION
3511 Refer to exit().

System Interfaces, Issue 6 587

_longjmp() System Interfaces

3512 NAME
3513 _longjmp, _setjmp — non-local goto

3514 SYNOPSIS
3515 XSI #include <setjmp.h>

3516 void _longjmp(jmp_buf env , int val);
3517 int _setjmp(jmp_buf env);
3518

3519 DESCRIPTION
3520 The _longjmp () and _setjmp() functions are identical to longjmp() and setjmp(), respectively, with
3521 the additional restriction that _longjmp () and _setjmp() do not manipulate the signal mask.

3522 If _longjmp () is called even though env was never initialized by a call to _setjmp(), or when the
3523 last such call was in a function that has since returned, the results are undefined.

3524 RETURN VALUE
3525 Refer to longjmp() and setjmp().

3526 ERRORS
3527 No errors are defined.

3528 EXAMPLES
3529 None.

3530 APPLICATION USAGE
3531 If _longjmp () is executed and the environment in which _setjmp() was executed no longer exists,
3532 errors can occur. The conditions under which the environment of the _setjmp() no longer exists
3533 include exiting the function that contains the _setjmp() call, and exiting an inner block with
3534 temporary storage. This condition might not be detectable, in which case the _longjmp () occurs
3535 and, if the environment no longer exists, the contents of the temporary storage of an inner block
3536 are unpredictable. This condition might also cause unexpected process termination. If the
3537 function has returned, the results are undefined.

3538 Passing longjmp() a pointer to a buffer not created by setjmp(), passing _longjmp () a pointer to a
3539 buffer not created by _setjmp(), passing siglongjmp () a pointer to a buffer not created by
3540 sigsetjmp(), or passing any of these three functions a buffer that has been modified by the user
3541 can cause all the problems listed above, and more.

3542 The _longjmp () and _setjmp() functions are included to support programs written to historical
3543 system interfaces. New applications should use siglongjmp () and sigsetjmp() respectively.

3544 RATIONALE
3545 None.

3546 FUTURE DIRECTIONS
3547 The _longjmp () and _setjmp() functions may be marked LEGACY in a future version. |

3548 SEE ALSO
3549 longjmp(), setjmp(), siglongjmp (), sigsetjmp(), the Base Definitions volume of |
3550 IEEE Std. 1003.1-200x, <setjmp.h> |

3551 CHANGE HISTORY
3552 First released in Issue 4, Version 2.

588 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces _longjmp()

3553 Issue 5
3554 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 589

_setjmp() System Interfaces

3555 NAME
3556 _setjmp — set jump point for a non-local goto

3557 SYNOPSIS
3558 XSI #include <setjmp.h>

3559 int _setjmp(jmp_buf env);
3560

3561 DESCRIPTION
3562 Refer to _longjmp ().

590 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces _tolower()

3563 NAME
3564 _tolower — transliterate uppercase characters to lowercase

3565 SYNOPSIS
3566 XSI #include <ctype.h>

3567 int _tolower(int c);
3568

3569 DESCRIPTION
3570 The _tolower () macro shall be equivalent to tolower(c) except that the application shall ensure
3571 that the argument c is an uppercase letter.

3572 RETURN VALUE
3573 Upon successful completion, _tolower () shall return the lowercase letter corresponding to the
3574 argument passed.

3575 ERRORS
3576 No errors are defined.

3577 EXAMPLES
3578 None.

3579 APPLICATION USAGE
3580 None.

3581 RATIONALE
3582 None.

3583 FUTURE DIRECTIONS
3584 None.

3585 SEE ALSO
3586 tolower(), isupper(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
3587 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

3588 CHANGE HISTORY
3589 First released in Issue 1. Derived from Issue 1 of the SVID. |

3590 Issue 4
3591 The RETURN VALUE section is expanded.

3592 Issue 6
3593 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 591

_toupper() System Interfaces

3594 NAME
3595 _toupper — transliterate lowercase characters to uppercase

3596 SYNOPSIS
3597 XSI #include <ctype.h>

3598 int _toupper(int c);
3599

3600 DESCRIPTION
3601 The _toupper() macro shall be equivalent to toupper() except that the application shall ensure
3602 that the argument c is a lowercase letter.

3603 RETURN VALUE
3604 Upon successful completion, _toupper() shall return the uppercase letter corresponding to the
3605 argument passed.

3606 ERRORS
3607 No errors are defined.

3608 EXAMPLES
3609 None.

3610 APPLICATION USAGE
3611 None.

3612 RATIONALE
3613 None.

3614 FUTURE DIRECTIONS
3615 None.

3616 SEE ALSO
3617 islower(), toupper(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
3618 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

3619 CHANGE HISTORY
3620 First released in Issue 1. Derived from Issue 1 of the SVID. |

3621 Issue 4
3622 The RETURN VALUE section is expanded.

3623 Issue 6
3624 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

592 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces a64l()

3625 NAME
3626 a64l, l64a — convert between a 32-bit integer and a radix-64 ASCII string

3627 SYNOPSIS
3628 XSI #include <stdlib.h>

3629 long a64l(const char * s);
3630 char *l64a(long value);
3631

3632 DESCRIPTION
3633 These functions are used to maintain numbers stored in radix-64 ASCII characters. This is a
3634 notation by which 32-bit integers can be represented by up to six characters; each character
3635 represents a digit in radix-64 notation. If the type long contains more than 32 bits, only the low-
3636 order 32 bits shall be used for these operations.

3637 The characters used to represent digits are ’.’ (dot) for 0, ’/’ for 1, ’0’ through ’9’ for 2-11, |
3638 ’A’ through ’Z’ for 12-37, and ’a’ through ’z’ for 38-63.

3639 The a64l () function shall take a pointer to a radix-64 representation, in which the first digit is the
3640 least significant, and return a corresponding long value. If the string pointed to by s contains
3641 more than six characters, a64l () shall use the first six. If the first six characters of the string
3642 contain a null terminator, a64l () shall use only characters preceding the null terminator. The
3643 a64l () function scans the character string from left to right with the least significant digit on the
3644 left, decoding each character as a 6-bit radix-64 number. If the type long contains more than 32
3645 bits, the resulting value is sign-extended. The behavior of a64l () is unspecified if s is a null
3646 pointer or the string pointed to by s was not generated by a previous call to l64a ().

3647 The l64a () function shall take a long argument and return a pointer to the corresponding radix-
3648 64 representation. The behavior of l64a () is unspecified if value is negative.

3649 The value returned by l64a () may be a pointer into a static buffer. Subsequent calls to l64a () may
3650 overwrite the buffer.

3651 The l64a () function need not be reentrant. A function that is not required to be reentrant is not
3652 required to be thread-safe.

3653 RETURN VALUE
3654 Upon successful completion, a64l () shall return the long value resulting from conversion of the
3655 input string. If a string pointed to by s is an empty string, a64l () shall return 0L.

3656 The l64a () function shall return a pointer to the radix-64 representation. If value is 0L, l64a () shall
3657 return a pointer to an empty string.

3658 ERRORS
3659 No errors are defined.

3660 EXAMPLES
3661 None.

3662 APPLICATION USAGE
3663 If the type long contains more than 32 bits, the result of a64l(l64a(x)) is x in the low-order 32 bits.

3664 RATIONALE
3665 This is not the same encoding as used by either encoding variant of the uuencode utility. |

System Interfaces, Issue 6 593

a64l() System Interfaces

3666 FUTURE DIRECTIONS
3667 None.

3668 SEE ALSO
3669 strtoul(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, the Shell and Utilities |
3670 volume of IEEE Std. 1003.1-200x, uuencode |

3671 CHANGE HISTORY
3672 First released in Issue 4, Version 2.

3673 Issue 5
3674 Moved from X/OPEN UNIX extension to BASE.

3675 Normative text previously in the APPLICATION USAGE section moved to the DESCRIPTION.

3676 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

594 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces abort()

3677 NAME
3678 abort — generate an abnormal process abort

3679 SYNOPSIS
3680 #include <stdlib.h>

3681 void abort(void);

3682 DESCRIPTION
3683 CX The functionality described on this reference page is aligned with the ISO C standard. Any
3684 conflict between the requirements described here and the ISO C standard is unintentional. This
3685 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

3686 The abort() function shall cause abnormal process termination to occur, unless the signal
3687 SIGABRT is being caught and the signal handler does not return.

3688 CX The abnormal termination processing shall include at least the effect of fclose() on all open
3689 streams and the default actions defined for SIGABRT.

3690 XSI On XSI-conformant systems, in addition the abnormal termination processing shall include the |
3691 effect of fclose() on message catalog descriptors. |

3692 The SIGABRT signal shall be sent to the calling process as if by means of raise() with the
3693 argument SIGABRT.

3694 CX The status made available to wait() or waitpid () by abort() shall be that of a process terminated
3695 by the SIGABRT signal. The abort() function shall override blocking or ignoring the SIGABRT
3696 signal.

3697 RETURN VALUE
3698 The abort() function shall not return.

3699 ERRORS
3700 No errors are defined.

3701 EXAMPLES
3702 None.

3703 APPLICATION USAGE
3704 Catching the signal is intended to provide the application writer with a portable means to abort
3705 processing, free from possible interference from any implementation-defined library functions. If |
3706 SIGABRT is neither caught nor ignored, then the actions associated with SIGABRT defined in |
3707 Section 2.4.1 (on page 528) will be taken. |

3708 RATIONALE
3709 None.

3710 FUTURE DIRECTIONS
3711 None.

3712 SEE ALSO
3713 exit(), kill (), raise(), signal(), wait(), waitpid (), the Base Definitions volume of |
3714 IEEE Std. 1003.1-200x, <stdlib.h> |

3715 CHANGE HISTORY
3716 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 595

abort() System Interfaces

3717 Issue 4
3718 The following changes are incorporated in this issue for alignment with the ISO C standard and
3719 the ISO POSIX-1 standard:

3720 • The argument list is explicitly defined as void.

3721 • The DESCRIPTION is revised to identify the correct order in which operations occur. It also
3722 identifies:

3723 — How the calling process is signaled

3724 — How status information is made available to the host environment

3725 — That abort() overrides blocking or ignoring of the SIGABRT signal

3726 • The APPLICATION USAGE section is replaced.

3727 Issue 6
3728 Extensions beyond the ISO C standard are now marked.

596 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces abs()

3729 NAME
3730 abs — return an integer absolute value

3731 SYNOPSIS
3732 #include <stdlib.h>

3733 int abs(int i);

3734 DESCRIPTION
3735 CX The functionality described on this reference page is aligned with the ISO C standard. Any
3736 conflict between the requirements described here and the ISO C standard is unintentional. This
3737 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

3738 The abs() function shall compute the absolute value of its integer operand, i . If the result cannot
3739 be represented, the behavior is undefined.

3740 RETURN VALUE
3741 The abs() function shall return the absolute value of its integer operand.

3742 ERRORS
3743 No errors are defined.

3744 EXAMPLES
3745 None.

3746 APPLICATION USAGE
3747 In two’s-complement representation, the absolute value of the negative integer with largest
3748 magnitude {INT_MIN} might not be representable.

3749 RATIONALE
3750 None.

3751 FUTURE DIRECTIONS
3752 None.

3753 SEE ALSO
3754 fabs(), labs(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

3755 CHANGE HISTORY
3756 First released in Issue 1. Derived from Issue 1 of the SVID. |

3757 Issue 4
3758 In the APPLICATION USAGE section, the phrase ‘‘{INT_MIN} is undefined’’ is replaced with
3759 ‘‘{INT_MIN} might not be representable’’.

3760 Issue 6
3761 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 597

accept() System Interfaces

3762 NAME
3763 accept — accept a new connection on a socket

3764 SYNOPSIS
3765 #include <sys/socket.h>

3766 int accept(int socket , struct sockaddr *restrict address , |
3767 socklen_t *restrict address_len); |

3768 DESCRIPTION |
3769 The accept() function shall extract the first connection on the queue of pending connections,
3770 create a new socket with the same socket type protocol and address family as the specified
3771 socket, and allocate a new file descriptor for that socket.

3772 The accept() function takes the following arguments:

3773 socket Specifies a socket that was created with socket(), has been bound to an address
3774 with bind(), and has issued a successful call to listen().

3775 address Either a null pointer, or a pointer to a sockaddr structure where the address of
3776 the connecting socket shall be returned.

3777 address_len Points to a socklen_t structure which on input specifies the length of the
3778 supplied sockaddr structure, and on output specifies the length of the stored
3779 address.

3780 If address is not a null pointer, the address of the peer for the accepted connection shall be stored
3781 in the sockaddr structure pointed to by address, and the length of this address shall be stored in
3782 the object pointed to by address_len.

3783 If the actual length of the address is greater than the length of the supplied sockaddr structure,
3784 the stored address shall be truncated.

3785 If the protocol permits connections by unbound clients, and the peer is not bound, then the value
3786 stored in the object pointed to by address is unspecified.

3787 If the listen queue is empty of connection requests and O_NONBLOCK is not set on the file
3788 descriptor for the socket, accept() shall block until a connection is present. If the listen() queue is
3789 empty of connection requests and O_NONBLOCK is set on the file descriptor for the socket,
3790 accept() shall fail and set errno to [EAGAIN] or [EWOULDBLOCK].

3791 The accepted socket cannot itself accept more connections. The original socket remains open and
3792 can accept more connections.

3793 RETURN VALUE
3794 Upon successful completion, accept() shall return the non-negative file descriptor of the accepted
3795 socket. Otherwise, −1 shall be returned and errno set to indicate the error.

3796 ERRORS
3797 The accept() function shall fail if:

3798 [EAGAIN] or [EWOULDBLOCK]
3799 O_NONBLOCK is set for the socket file descriptor and no connections are
3800 present to be accepted.

3801 [EBADF] The socket argument is not a valid file descriptor.

3802 [ECONNABORTED]
3803 A connection has been aborted. |

598 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces accept()

3804 [EINTR] The accept() function was interrupted by a signal that was caught before a
3805 valid connection arrived.

3806 [EINVAL] The socket is not accepting connections.

3807 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

3808 [ENFILE] The maximum number of file descriptors in the system are already open.

3809 [ENOTSOCK] The socket argument does not refer to a socket.

3810 [EOPNOTSUPP] The socket type of the specified socket does not support accepting
3811 connections.

3812 The accept() function may fail if:

3813 [ENOBUFS] No buffer space is available.

3814 [ENOMEM] There was insufficient memory available to complete the operation. |

3815 XSR [EPROTO] A protocol error has occurred; for example, the STREAMS protocol stack has
3816 not been initialized.

3817 EXAMPLES
3818 None.

3819 APPLICATION USAGE
3820 When a connection is available, select() indicates that the file descriptor for the socket is ready
3821 for reading.

3822 RATIONALE
3823 None.

3824 FUTURE DIRECTIONS
3825 None.

3826 SEE ALSO
3827 bind(), connect(), listen(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
3828 <sys/socket.h>

CHANGE3829 HISTORY
3830 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

3831 The restrict keyword is added to the accept() prototype for alignment with the |
3832 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 599

access() System Interfaces

3833 NAME
3834 access — determine accessibility of a file

3835 SYNOPSIS
3836 #include <unistd.h>

3837 int access(const char * path , int amode);

3838 DESCRIPTION
3839 The access() function shall check the file named by the path name pointed to by the path
3840 argument for accessibility according to the bit pattern contained in amode , using the real user ID
3841 in place of the effective user ID and the real group ID in place of the effective group ID.

3842 The value of amode is either the bitwise-inclusive OR of the access permissions to be checked
3843 (R_OK, W_OK, X_OK) or the existence test (F_OK).

3844 If any access permissions are checked, each shall be checked individually, as described in the |
3845 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 3, Definitions. If the process has |
3846 appropriate privileges, an implementation may indicate success for X_OK even if none of the
3847 execute file permission bits are set.

3848 RETURN VALUE
3849 If the requested access is permitted, access() succeeds and shall return 0; otherwise, −1 shall be
3850 returned and errno shall be set to indicate the error.

3851 ERRORS
3852 The access() function shall fail if:

3853 [EACCES] Permission bits of the file mode do not permit the requested access, or search |
3854 permission is denied on a component of the path prefix. |

3855 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
3856 argument. |

3857 [ENAMETOOLONG] |
3858 The length of the path argument exceeds {PATH_MAX} or a path name |
3859 component is longer than {NAME_MAX}. |

3860 [ENOENT] A component of path does not name an existing file or path is an empty string. |

3861 [ENOTDIR] A component of the path prefix is not a directory. |

3862 [EROFS] Write access is requested for a file on a read-only file system. |

3863 The access() function may fail if:

3864 [EINVAL] The value of the amode argument is invalid. |

3865 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
3866 resolution of the path argument. |

3867 [ENAMETOOLONG] |
3868 As a result of encountering a symbolic link in resolution of the path argument,
3869 the length of the substituted path name string exceeded {PATH_MAX}. |

3870 [ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being |
3871 executed. |

600 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces access()

3872 EXAMPLES

3873 Testing for the Existence of a File

3874 The following example tests whether a file named myfile exists in the /tmp directory.

3875 #include <unistd.h>
3876 ...
3877 int result;
3878 const char *filename = "/tmp/myfile";

3879 result = access (filename, F_OK);

3880 APPLICATION USAGE
3881 Additional values of amode other than the set defined in the description may be valid; for
3882 example, if a system has extended access controls.

3883 RATIONALE
3884 In early proposals, some inadequacies in the access() function led to the creation of an eaccess()
3885 function because:

3886 1. Historical implementations of access() do not test file access correctly when the process’
3887 real user ID is superuser. In particular, they always return zero when testing execute
3888 permissions without regard to whether the file is executable.

3889 2. The superuser has complete access to all files on a system. As a consequence, programs
3890 started by the superuser and switched to the effective user ID with lesser privileges cannot
3891 use access() to test their file access permissions.

3892 However, the historical model of eaccess() does not resolve problem (1), so this volume of
3893 IEEE Std. 1003.1-200x now allows access() to behave in the desired way because several
3894 implementations have corrected the problem. It was also argued that problem (2) is more easily
3895 solved by using open(), chdir(), or one of the exec functions as appropriate and responding to the
3896 error, rather than creating a new function that would not be as reliable. Therefore, eaccess() is not |
3897 included in this volume of IEEE Std. 1003.1-200x. |

3898 The sentence concerning appropriate privileges and execute permission bits reflects the two
3899 possibilities implemented by historical implementations when checking superuser access for
3900 X_OK.

3901 FUTURE DIRECTIONS
3902 None.

3903 SEE ALSO
3904 chmod(), stat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

3905 CHANGE HISTORY
3906 First released in Issue 1. Derived from Issue 1 of the SVID. |

3907 Issue 4
3908 The following change is incorporated for alignment with the ISO POSIX-1 standard:

3909 • The type of argument path is changed from char* to const char*.

3910 The following change is incorporated for alignment with the FIPS requirements:

3911 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
3912 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
3913 an extension.

System Interfaces, Issue 6 601

access() System Interfaces

3914 Issue 4, Version 2
3915 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

3916 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
3917 name resolution.

3918 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
3919 intermediate result of path name resolution of a symbolic link.

3920 Issue 6
3921 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

3922 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
3923 This is since behavior may vary from one file system to another.

3924 The following new requirements on POSIX implementations derive from alignment with the
3925 Single UNIX Specification:

3926 • The [ELOOP] mandatory error condition is added.

3927 • A second [ENAMETOOLONG] is added as an optional error condition.

3928 • The [ETXTBSY] optional error condition is added.

3929 The following changes were made to align with the IEEE P1003.1a draft standard:

3930 • The [ELOOP] optional error condition is added.

602 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces acos()

3931 NAME
3932 acos, acosf, acosl — arc cosine function |

3933 SYNOPSIS
3934 #include <math.h>

3935 double acos(double x);
3936 float acosf(float x); |
3937 long double acosl(long double x); |

3938 DESCRIPTION |
3939 CX The functionality described on this reference page is aligned with the ISO C standard. Any
3940 conflict between the requirements described here and the ISO C standard is unintentional. This
3941 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

3942 The acos family of functions shall compute the principal value of the arc cosine of x . The value |
3943 of x should be in the range [−1,1].

3944 An application wishing to check for error situations should set errno to 0 before calling acos(). If
3945 errno is non-zero on return, or the value NaN is returned, an error has occurred.

3946 RETURN VALUE
3947 Upon successful completion, the acos family of functions shall return the arc cosine of x, in the |
3948 XSI range [0,π] radians. If the value of x is not in the range [−1,1], and is not ±Inf or NaN, either 0.0 or
3949 NaN shall be returnedand errno shall be set to [EDOM]. |

3950 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. If x is ±Inf, either 0.0 shall be
3951 returned and errno shall be set to [EDOM], or NaN shall be returned and errno may be set to
3952 [EDOM].

3953 ERRORS
3954 The acos family of functions shall fail if: |

3955 XSI [EDOM] The value x is not ±Inf or NaN andis not in the range [−1,1]. |

3956 The acos family of functions may fail if: |

3957 XSI [EDOM] The value x is ±Inf or NaN.

3958 XSI No other errors shall occur.

3959 EXAMPLES
3960 None.

3961 APPLICATION USAGE
3962 None.

3963 RATIONALE
3964 None.

3965 FUTURE DIRECTIONS
3966 None.

3967 SEE ALSO
3968 cos(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

3969 CHANGE HISTORY
3970 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 603

acos() System Interfaces

3971 Issue 4
3972 Removed references to matherr().

3973 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
3974 ISO C standard and to rationalize error handling in the mathematics functions.

3975 The return value specified for [EDOM] is marked as an extension.

3976 Issue 5
3977 The DESCRIPTION is updated to indicate how an application should check for an error. This
3978 text was previously published in the APPLICATION USAGE section. |

3979 Issue 6 |
3980 The acosf () and acosl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

604 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces acosh()

3981 NAME
3982 acosh, acoshf, acoshl, asinh, asinfh, asinfl, atanh, atanhf, atanhl — inverse hyperbolic functions |

3983 SYNOPSIS
3984 #include <math.h> |

3985 double acosh(double x);
3986 float acoshf(float x); |
3987 long double acoshl(long double x); |
3988 double asinh(double x); |
3989 float asinhf(float x); |
3990 long double asinhl(long double x); |
3991 double atanh(double x); |
3992 float atanhf(float x); |
3993 long double atanhl(long double x); |

3994 DESCRIPTION |
3995 The acosh(), asinh(), and atanh() functions shall compute the inverse hyperbolic cosine, sine, and
3996 tangent of their argument, respectively.

3997 RETURN VALUE
3998 The acosh(), asinh(), and atanh() functions shall return the inverse hyperbolic cosine, sine, and
3999 tangent of their argument, respectively.

4000 The acosh(), acoshf (), and acoshl () functions shall return an implementation-defined value (NaN |
4001 or equivalent if available) and set errno to [EDOM] when its argument is less than 1.0. |

4002 The atanh(), atanhf (), and atanhl () functions shall return an implementation-defined value (NaN |
4003 or equivalent if available) and set errno to [EDOM] when its argument has absolute value greater |
4004 than 1.0.

4005 If x is NaN, the asinh(), acosh(), and atanh() functions shall return NaN and may set errno to
4006 [EDOM].

4007 ERRORS
4008 The acosh(), acoshf (), and acoshl () functions shall fail if: |

4009 [EDOM] The x argument is less than 1.0.

4010 The atanh(), atanhf (), and atanhl () functions shall fail if: |

4011 [EDOM] The x argument has an absolute value greater than 1.0.

4012 The atanh(), atanhf (), and atanhl () functions shall fail if: |

4013 [ERANGE] The x argument has an absolute value equal to 1.0 |

4014 The asinh(), acosh(), and atanh() functions may fail if:

4015 [EDOM] The value of x is NaN.

System Interfaces, Issue 6 605

acosh() System Interfaces

4016 EXAMPLES
4017 None.

4018 APPLICATION USAGE
4019 None.

4020 RATIONALE
4021 None.

4022 FUTURE DIRECTIONS
4023 None.

4024 SEE ALSO
4025 cosh(), sinh(), tanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

4026 CHANGE HISTORY
4027 First released in Issue 4, Version 2.

4028 Issue 5
4029 Moved from X/OPEN UNIX extension to BASE. |

4030 Issue 6 |
4031 The acoshf (), acoshl (), asinhf(), asinhl(), atanhf (), and atanhl () functions are added for alignment |
4032 with the ISO/IEC 9899: 1999 standard. |

606 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_cancel()

4033 NAME
4034 aio_cancel — cancel an asynchronous I/O request (REALTIME)

4035 SYNOPSIS
4036 AIO #include <aio.h>

4037 int aio_cancel(int fildes , struct aiocb * aiocbp);
4038

4039 DESCRIPTION
4040 The aio_cancel () function shall attempt to cancel one or more asynchronous I/O requests
4041 currently outstanding against file descriptor fildes . The aiocbp argument points to the
4042 asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
4043 all outstanding cancelable asynchronous I/O requests against fildes shall be canceled.

4044 Normal asynchronous notification shall occur for asynchronous I/O operations that are
4045 successfully canceled. If there are requests that cannot be canceled, then the normal
4046 asynchronous completion process shall take place for those requests when they are completed.

4047 For requested operations that are successfully canceled, the associated error status shall be set to
4048 [ECANCELED] and the return status shall be −1. For requested operations that are not |
4049 successfully canceled, the aiocbp shall not be modified by aio_cancel ().

4050 If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with which
4051 the asynchronous operation was initiated, unspecified results occur.

4052 Which operations are cancelable is implementation-defined. |

4053 RETURN VALUE
4054 The aio_cancel () function shall return the value AIO_CANCELED to the calling process if the
4055 requested operation(s) were canceled. The value AIO_NOTCANCELED shall be returned if at
4056 least one of the requested operation(s) cannot be canceled because it is in progress. In this case,
4057 the state of the other operations, if any, referenced in the call to aio_cancel () is not indicated by
4058 the return value of aio_cancel (). The application may determine the state of affairs for these
4059 operations by using aio_error (). The value AIO_ALLDONE is returned if all of the operations
4060 have already completed. Otherwise, the function shall return −1 and set errno to indicate the
4061 error.

4062 ERRORS
4063 The aio_cancel () function shall fail if:

4064 [EBADF] The fildes argument is not a valid file descriptor. |

4065 EXAMPLES
4066 None.

4067 APPLICATION USAGE
4068 The aio_cancel () function is part of the Asynchronous Input and Output option and need not be |
4069 available on all implementations.

4070 RATIONALE
4071 None.

4072 FUTURE DIRECTIONS
4073 None.

System Interfaces, Issue 6 607

aio_cancel() System Interfaces

4074 SEE ALSO
4075 aio_read (), aio_write (), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4076 CHANGE HISTORY
4077 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4078 Issue 6
4079 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4080 implementation does not support the Asynchronous Input and Output option. |

4081 The APPLICATION USAGE section is added.

608 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_error()

4082 NAME
4083 aio_error — retrieve errors status for an asynchronous I/O operation (REALTIME)

4084 SYNOPSIS
4085 AIO #include <aio.h>

4086 int aio_error(const struct aiocb * aiocbp);
4087

4088 DESCRIPTION
4089 The aio_error () function shall return the error status associated with the aiocb structure
4090 referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the
4091 SIO errno value that would be set by the corresponding read(), write(), fdatasync (), or fsync()
4092 operation. If the operation has not yet completed, then the error status shall be equal to
4093 [EINPROGRESS]. |

4094 RETURN VALUE
4095 If the asynchronous I/O operation has completed successfully, then 0 shall be returned. If the
4096 asynchronous operation has completed unsuccessfully, then the error status, as described for
4097 SIO read(), write(), fdatasync (), and fsync(), shall be returned. If the asynchronous I/O operation has
4098 not yet completed, then [EINPROGRESS] shall be returned.

4099 ERRORS
4100 The aio_error () function may fail if:

4101 [EINVAL] The aiocbp argument does not refer to an asynchronous operation whose |
4102 return status has not yet been retrieved.

4103 EXAMPLES
4104 None.

4105 APPLICATION USAGE
4106 The aio_error () function is part of the Asynchronous Input and Output option and need not be |
4107 available on all implementations.

4108 RATIONALE
4109 None.

4110 FUTURE DIRECTIONS
4111 None.

4112 SEE ALSO
4113 aio_cancel (), aio_fsync (), aio_read (), aio_return(), aio_write (), close(), exec, exit(), fork (), lio_listio (), |
4114 lseek(), read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4115 CHANGE HISTORY
4116 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4117 Issue 6
4118 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4119 implementation does not support the Asynchronous Input and Output option. |

4120 The APPLICATION USAGE section is added.

System Interfaces, Issue 6 609

aio_fsync() System Interfaces

4121 NAME
4122 aio_fsync — asynchronous file synchronization (REALTIME)

4123 SYNOPSIS
4124 AIO #include <aio.h>

4125 int aio_fsync(int op, struct aiocb * aiocbp);
4126

4127 DESCRIPTION
4128 The aio_fsync () function asynchronously forces all I/O operations associated with the file
4129 indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the aiocbp
4130 argument and queued at the time of the call to aio_fsync () to the synchronized I/O completion
4131 state. The function call shall return when the synchronization request has been initiated or
4132 queued to the file or device (even when the data cannot be synchronized immediately).

4133 If op is O_DSYNC, all currently queued I/O operations shall be completed as if by a call to
4134 fdatasync (); that is, as defined for synchronized I/O data integrity completion. If op is O_SYNC,
4135 all currently queued I/O operations shall be completed as if by a call to fsync(); that is, as
4136 defined for synchronized I/O file integrity completion. If the aio_fsync () function fails, or if the
4137 operation queued by aio_fsync () fails, then, as for fsync() and fdatasync (), outstanding I/O
4138 operations are not guaranteed to have been completed.

4139 If aio_fsync () succeeds, then it is only the I/O that was queued at the time of the call to
4140 aio_fsync () that is guaranteed to be forced to the relevant completion state. The completion of
4141 subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
4142 fashion.

4143 The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be used
4144 as an argument to aio_error () and aio_return() in order to determine the error status and return
4145 status, respectively, of the asynchronous operation while it is proceeding. When the request is
4146 queued, the error status for the operation is [EINPROGRESS]. When all data has been |
4147 successfully transferred, the error status shall be reset to reflect the success or failure of the
4148 operation. If the operation does not complete successfully, the error status for the operation shall
4149 be set to indicate the error. The aio_sigevent member determines the asynchronous notification to
4150 occur as specified in Section 2.4.1 (on page 528) when all operations have achieved synchronized
4151 I/O completion. All other members of the structure referenced by aiocbp are ignored. If the
4152 control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O
4153 completion, then the behavior is undefined.

4154 If the aio_fsync () function fails or the aiocbp indicates an error condition, data is not guaranteed
4155 to have been successfully transferred.

4156 RETURN VALUE
4157 The aio_fsync () function shall return the value 0 to the calling process if the I/O operation is
4158 successfully queued; otherwise, the function shall return the value −1 and set errno to indicate
4159 the error.

4160 ERRORS
4161 The aio_fsync () function shall fail if:

4162 [EAGAIN] The requested asynchronous operation was not queued due to temporary |
4163 resource limitations.

4164 [EBADF] The aio_fildes member of the aiocb structure referenced by the aiocbp argument |
4165 is not a valid file descriptor open for writing.

610 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_fsync()

4166 [EINVAL] This implementation does not support synchronized I/O for this file. |

4167 [EINVAL] A value of op other than O_DSYNC or O_SYNC was specified.

4168 In the event that any of the queued I/O operations fail, aio_fsync () shall return the error
4169 condition defined for read() and write(). The error is returned in the error status for the
4170 asynchronous fsync() operation, which can be retrieved using aio_error ().

4171 EXAMPLES
4172 None.

4173 APPLICATION USAGE
4174 The aio_fsync () function is part of the Asynchronous Input and Output option and need not be |
4175 available on all implementations.

4176 RATIONALE
4177 None.

4178 FUTURE DIRECTIONS
4179 None.

4180 SEE ALSO
4181 fcntl(), fdatasync (), fsync(), open(), read(), write(), the Base Definitions volume of |
4182 IEEE Std. 1003.1-200x, <aio.h> |

4183 CHANGE HISTORY
4184 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4185 Issue 6
4186 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4187 implementation does not support the Asynchronous Input and Output option. |

4188 The APPLICATION USAGE section is added.

System Interfaces, Issue 6 611

aio_read() System Interfaces

4189 NAME
4190 aio_read — asynchronous read from a file (REALTIME)

4191 SYNOPSIS
4192 AIO #include <aio.h>

4193 int aio_read(struct aiocb * aiocbp);
4194

4195 DESCRIPTION
4196 The aio_read () function allows the calling process to read aiocbp->aio_nbytes from the file |
4197 associated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf. The function call |
4198 shall return when the read request has been initiated or queued to the file or device (even when |
4199 the data cannot be delivered immediately).

4200 PIO If prioritized I/O is supported for this file, then the asynchronous operation is submitted at a
4201 priority equal to the scheduling priority of the process minus aiocbp->aio_reqprio. |

4202 The aiocbp value may be used as an argument to aio_error () and aio_return() in order to
4203 determine the error status and return status, respectively, of the asynchronous operation while it
4204 is proceeding. If an error condition is encountered during queuing, the function call shall return
4205 without having initiated or queued the request. The requested operation takes place at the
4206 absolute position in the file as given by aio_offset , as if lseek() were called immediately prior to
4207 the operation with an offset equal to aio_offset and a whence equal to {SEEK_SET}. After a
4208 successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
4209 is unspecified.

4210 The aiocbp->aio_lio_opcode field shall be ignored by aio_read (). |

4211 The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or |
4212 the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
4213 completion, then the behavior is undefined.

4214 Simultaneous asynchronous operations using the same aiocbp produce undefined results.

4215 SIO If synchronized I/O is enabled on the file associated with aiocbp->aio_fildes, the behavior of this |
4216 function shall be according to the definitions of synchronized I/O data integrity completion and |
4217 synchronized I/O file integrity completion.

4218 For any system action that changes the process memory space while an asynchronous I/O is
4219 outstanding to the address range being changed, the result of that action is undefined.

4220 For regular files, no data transfer shall occur past the offset maximum established in the open |
4221 file description associated with aiocbp->aio_fildes. |

4222 RETURN VALUE
4223 The aio_read () function shall return the value zero to the calling process if the I/O operation is
4224 successfully queued; otherwise, the function shall return the value −1 and set errno to indicate
4225 the error.

4226 ERRORS
4227 The aio_read () function shall fail if:

4228 [EAGAIN] The requested asynchronous I/O operation was not queued due to system |
4229 resource limitations.

4230 Each of the following conditions may be detected synchronously at the time of the call to
4231 aio_read (), or asynchronously. If any of the conditions below are detected synchronously, the
4232 aio_read () function shall return −1 and set errno to the corresponding value. If any of the
4233 conditions below are detected asynchronously, the return status of the asynchronous operation

612 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_read()

4234 is set to −1, and the error status of the asynchronous operation is set to the corresponding value.

4235 [EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading. |

4236 [EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp- |
4237 >aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value. |

4238 In the case that the aio_read () successfully queues the I/O operation but the operation is
4239 subsequently canceled or encounters an error, the return status of the asynchronous operation is
4240 one of the values normally returned by the read() function call. In addition, the error status of
4241 the asynchronous operation is set to one of the error statuses normally set by the read() function
4242 call, or one of the following values:

4243 [EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for reading. |

4244 [ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit |
4245 aio_cancel () request.

4246 [EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid. |

4247 The following condition may be detected synchronously or asynchronously:

4248 [EOVERFLOW] The file is a regular file, aiobcp->aio_nbytes is greater than 0, and the starting |
4249 offset in aiobcp->aio_offset is before the end-of-file and is at or beyond the offset |
4250 maximum in the open file description associated with aiocbp->aio_fildes. |

4251 EXAMPLES
4252 None.

4253 APPLICATION USAGE
4254 The aio_read () function is part of the Asynchronous Input and Output option and need not be |
4255 available on all implementations.

4256 RATIONALE
4257 None.

4258 FUTURE DIRECTIONS
4259 None.

4260 SEE ALSO
4261 aio_cancel (), aio_error (), lio_listio (), aio_return(), aio_write (), close(), exec, exit(), fork (), lseek(), |
4262 read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4263 CHANGE HISTORY
4264 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4265 Large File Summit extensions are added.

4266 Issue 6
4267 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4268 implementation does not support the Asynchronous Input and Output option. |

4269 The APPLICATION USAGE section is added.

4270 The following new requirements on POSIX implementations derive from alignment with the
4271 Single UNIX Specification:

4272 • In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
4273 description. This change is to support large files.

4274 • In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
4275 large files.

System Interfaces, Issue 6 613

aio_read() System Interfaces

614 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_return()

4276 NAME
4277 aio_return — retrieve return status of an asynchronous I/O operation (REALTIME)

4278 SYNOPSIS
4279 AIO #include <aio.h>

4280 ssize_t aio_return(struct aiocb * aiocbp);
4281

4282 DESCRIPTION
4283 The aio_return() function shall return the return status associated with the aiocb structure
4284 referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
4285 value that would be returned by the corresponding read(), write(), or fsync() function call. If the
4286 error status for the operation is equal to [EINPROGRESS], then the return status for the |
4287 operation is undefined. The aio_return() function may be called exactly once to retrieve the
4288 return status of a given asynchronous operation; thereafter, if the same aiocb structure is used in
4289 a call to aio_return() or aio_error (), an error may be returned. When the aiocb structure referred
4290 to by aiocbp is used to submit another asynchronous operation, then aio_return() may be
4291 successfully used to retrieve the return status of that operation.

4292 RETURN VALUE
4293 If the asynchronous I/O operation has completed, then the return status, as described for read(),
4294 write(), and fsync(), shall be returned. If the asynchronous I/O operation has not yet completed,
4295 the results of aio_return() are undefined.

4296 ERRORS
4297 The aio_return() function may fail if:

4298 [EINVAL] The aiocbp argument does not refer to an asynchronous operation whose |
4299 return status has not yet been retrieved.

4300 EXAMPLES
4301 None.

4302 APPLICATION USAGE
4303 The aio_return() function is part of the Asynchronous Input and Output option and need not be |
4304 available on all implementations.

4305 RATIONALE
4306 None.

4307 FUTURE DIRECTIONS
4308 None.

4309 SEE ALSO
4310 aio_cancel (), aio_error (), aio_fsync (), aio_read (), aio_write (), close(), exec, exit(), fork (), lio_listio (), |
4311 lseek(), read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4312 CHANGE HISTORY
4313 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4314 Issue 6
4315 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4316 implementation does not support the Asynchronous Input and Output option. |

4317 The APPLICATION USAGE section is added.

4318 The [EINVAL] error condition is updated as a ‘‘may fail’’. This is for consistency with the
4319 DESCRIPTION.

System Interfaces, Issue 6 615

aio_suspend() System Interfaces

4320 NAME
4321 aio_suspend — wait for an asynchronous I/O request (REALTIME)

4322 SYNOPSIS
4323 AIO #include <aio.h>

4324 int aio_suspend(const struct aiocb * const list [], int nent ,
4325 const struct timespec * timeout);
4326

4327 DESCRIPTION
4328 The aio_suspend() function shall suspend the calling thread until at least one of the asynchronous
4329 I/O operations referenced by the list argument has completed, until a signal interrupts the
4330 function, or, if timeout is not NULL, until the time interval specified by timeout has passed. If any
4331 of the aiocb structures in the list correspond to completed asynchronous I/O operations (that is,
4332 the error status for the operation is not equal to [EINPROGRESS]) at the time of the call, the |
4333 function shall return without suspending the calling thread. The list argument is an array of
4334 pointers to asynchronous I/O control blocks. The nent argument indicates the number of
4335 elements in the array. Each aiocb structure pointed to has been used in initiating an
4336 asynchronous I/O request via aio_read (), aio_write (), or lio_listio (). This array may contain
4337 NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures
4338 that have not been used in submitting asynchronous I/O, the effect is undefined.

4339 If the time interval indicated in the timespec structure pointed to by timeout passes before any of
4340 the I/O operations referenced by list are completed, then aio_suspend() shall return with an
4341 MON error. If the Monotonic Clock option is supported, the clock that shall be used to measure this
4342 time interval shall be the CLOCK_MONOTONIC clock.

4343 RETURN VALUE
4344 If the aio_suspend() function returns after one or more asynchronous I/O operations have
4345 completed, the function shall return zero. Otherwise, the function shall return a value of −1 and
4346 set errno to indicate the error.

4347 The application may determine which asynchronous I/O completed by scanning the associated
4348 error and return status using aio_error () and aio_return(), respectively.

4349 ERRORS
4350 The aio_suspend() function shall fail if:

4351 [EAGAIN] No asynchronous I/O indicated in the list referenced by list completed in the |
4352 time interval indicated by timeout .

4353 [EINTR] A signal interrupted the aio_suspend() function. Note that, since each |
4354 asynchronous I/O operation may possibly provoke a signal when it
4355 completes, this error return may be caused by the completion of one (or more)
4356 of the very I/O operations being awaited.

4357 EXAMPLES
4358 None.

4359 APPLICATION USAGE
4360 The aio_suspend() function is part of the Asynchronous Input and Output option and need not |
4361 be available on all implementations.

4362 RATIONALE
4363 None.

616 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_suspend()

4364 FUTURE DIRECTIONS
4365 None.

4366 SEE ALSO
4367 aio_read (), aio_write (), lio_listio (), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4368 CHANGE HISTORY
4369 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4370 Issue 6
4371 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4372 implementation does not support the Asynchronous Input and Output option. |

4373 The APPLICATION USAGE section is added.

4374 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that the
4375 CLOCK_MONOTONIC clock, if supported, is used.

System Interfaces, Issue 6 617

aio_write() System Interfaces

4376 NAME
4377 aio_write — asynchronous write to a file (REALTIME)

4378 SYNOPSIS
4379 AIO #include <aio.h>

4380 int aio_write(struct aiocb * aiocbp);
4381

4382 DESCRIPTION
4383 The aio_write () function allows the calling process to write aiocbp->aio_nbytes to the file |
4384 associated with aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf. The function call |
4385 shall return when the write request has been initiated or, at a minimum, queued to the file or |
4386 device.

4387 PIO If prioritized I/O is supported for this file, then the asynchronous operation shall be submitted
4388 at a priority equal to the scheduling priority of the process minus aiocbp->aio_reqprio. |

4389 The aiocbp may be used as an argument to aio_error () and aio_return() in order to determine the
4390 error status and return status, respectively, of the asynchronous operation while it is proceeding.

4391 The aiocbp argument points to an aiocb structure. If the buffer pointed to by aiocbp->aio_buf or |
4392 the control block pointed to by aiocbp becomes an illegal address prior to asynchronous I/O
4393 completion, then the behavior is undefined.

4394 If O_APPEND is not set for the file descriptor aio_fildes , then the requested operation takes place
4395 at the absolute position in the file as given by aio_offset , as if lseek() were called immediately
4396 prior to the operation with an offset equal to aio_offset and a whence equal to {SEEK_SET}. If
4397 O_APPEND is set for the file descriptor, write operations append to the file in the same order as
4398 the calls were made. After a successful call to enqueue an asynchronous I/O operation, the value
4399 of the file offset for the file is unspecified.

4400 The aiocbp->aio_lio_opcode field shall be ignored by aio_write (). |

4401 Simultaneous asynchronous operations using the same aiocbp produce undefined results.

4402 SIO If synchronized I/O is enabled on the file associated with aiocbp->aio_fildes, the behavior of this |
4403 function shall be according to the definitions of synchronized I/O data integrity completion, and |
4404 synchronized I/O file integrity completion.

4405 For any system action that changes the process memory space while an asynchronous I/O is
4406 outstanding to the address range being changed, the result of that action is undefined.

4407 For regular files, no data transfer shall occur past the offset maximum established in the open |
4408 file description associated with aiocbp->aio_fildes. |

4409 RETURN VALUE
4410 The aio_write () function shall return the value zero to the calling process if the I/O operation is
4411 successfully queued; otherwise, the function shall return the value −1 and set errno to indicate
4412 the error.

4413 ERRORS
4414 The aio_write () function shall fail if:

4415 [EAGAIN] The requested asynchronous I/O operation was not queued due to system |
4416 resource limitations.

4417 Each of the following conditions may be detected synchronously at the time of the call to
4418 aio_write (), or asynchronously. If any of the conditions below are detected synchronously, the
4419 aio_write () function shall return −1 and set errno to the corresponding value. If any of the

618 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces aio_write()

4420 conditions below are detected asynchronously, the return status of the asynchronous operation
4421 shall be set to −1, and the error status of the asynchronous operation is set to the corresponding
4422 value.

4423 [EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing. |

4424 [EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid, aiocbp- |
4425 >aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an invalid value. |

4426 In the case that the aio_write () successfully queues the I/O operation, the return status of the
4427 asynchronous operation shall be one of the values normally returned by the write() function call.
4428 If the operation is successfully queued but is subsequently canceled or encounters an error, the
4429 error status for the asynchronous operation contains one of the values normally set by the
4430 write() function call, or one of the following:

4431 [EBADF] The aiocbp->aio_fildes argument is not a valid file descriptor open for writing. |

4432 [EINVAL] The file offset value implied by aiocbp->aio_offset would be invalid. |

4433 [ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit |
4434 aio_cancel () request.

4435 The following condition may be detected synchronously or asynchronously: |

4436 [EFBIG] The file is a regular file, aiobcp->aio_nbytes is greater than 0, and the starting |
4437 offset in aiobcp->aio_offset is at or beyond the offset maximum in the open file |
4438 description associated with aiocbp->aio_fildes. |

4439 EXAMPLES
4440 None.

4441 APPLICATION USAGE
4442 The aio_write () function is part of the Asynchronous Input and Output option and need not be |
4443 available on all implementations.

4444 RATIONALE
4445 None.

4446 FUTURE DIRECTIONS
4447 None.

4448 SEE ALSO
4449 aio_cancel (), aio_error (), aio_read (), aio_return(), close(), exec, exit(), fork (), lio_listio (), lseek(), |
4450 write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

4451 CHANGE HISTORY
4452 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

4453 Large File Summit extensions are added.

4454 Issue 6
4455 The [ENOSYS] error condition has been removed as stubs need not be provided if an
4456 implementation does not support the Asynchronous Input and Output option. |

4457 The APPLICATION USAGE section is added.

4458 The following new requirements on POSIX implementations derive from alignment with the
4459 Single UNIX Specification:

4460 • In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
4461 past the offset maximum established in the open file description associated with aiocbp- |
4462 >aio_fildes. |

System Interfaces, Issue 6 619

aio_write() System Interfaces

4463 • The [EFBIG] error is added as part of the large file support extensions.

620 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces alarm()

4464 NAME
4465 alarm — schedule an alarm signal

4466 SYNOPSIS
4467 #include <unistd.h>

4468 unsigned alarm(unsigned seconds); |

4469 DESCRIPTION |
4470 The alarm() function shall cause the system to generate a SIGALRM signal for the process after
4471 the number of realtime seconds specified by seconds have elapsed. Processor scheduling delays
4472 may prevent the process from handling the signal as soon as it is generated.

4473 If seconds is 0, a pending alarm request, if any, is canceled.

4474 Alarm requests are not stacked; only one SIGALRM generation can be scheduled in this manner.
4475 If the SIGALRM signal has not yet been generated, the call shall result in rescheduling the time
4476 at which the SIGALRM signal is generated.

4477 Interactions between alarm() and any of setitimer(), ualarm(), or usleep() are unspecified. |

4478 RETURN VALUE
4479 If there is a previous alarm() request with time remaining, alarm() shall return a non-zero value
4480 that is the number of seconds until the previous request would have generated a SIGALRM
4481 signal. Otherwise, alarm() shall return 0.

4482 ERRORS
4483 The alarm() function is always successful, and no return value is reserved to indicate an error.

4484 EXAMPLES
4485 None.

4486 APPLICATION USAGE
4487 The fork () function clears pending alarms in the child process. A new process image created by
4488 one of the exec functions inherits the time left to an alarm signal in the old process’ image.

4489 Application writers should note that the type of the argument seconds and the return value of
4490 alarm() is unsigned. That means that a Strictly Conforming POSIX System Interfaces |
4491 Application cannot pass a value greater than the minimum guaranteed value for {UINT_MAX},
4492 which the ISO C standard sets as 65 535, and any application passing a larger value is restricting
4493 its portability. A different type was considered, but historical implementations, including those
4494 with a 16-bit int type, consistently use either unsigned or int. |

4495 Application writers should be aware of possible interactions when the same process uses both
4496 the alarm() and sleep() functions.

4497 RATIONALE
4498 Many historical implementations (including Version 7 and System V) allow an alarm to occur up
4499 to a second early. Other implementations allow alarms up to half a second or one clock tick
4500 early or do not allow them to occur early at all. The latter is considered most appropriate, since it
4501 gives the most predictable behavior, especially since the signal can always be delayed for an
4502 indefinite amount of time due to scheduling. Applications can thus choose the seconds argument
4503 as the minimum amount of time they wish to have elapse before the signal.

4504 The term realtime here and elsewhere (sleep(), times()) is intended to mean ‘‘wall clock’’ time as
4505 common English usage, and has nothing to do with ‘‘realtime operating systems’’. It is in
4506 contrast to virtual time, which could be misinterpreted if just time were used.

4507 In some implementations, including 4.3 BSD, very large values of the seconds argument are |
4508 silently rounded down to an implementation-defined maximum value. This maximum is large |

System Interfaces, Issue 6 621

alarm() System Interfaces

4509 enough (on the order of several months) that the effect is not noticeable.

4510 There were two possible choices for alarm generation in multi-threaded applications: generation
4511 for the calling thread or generation for the process. The first option would not have been
4512 particularly useful since the alarm state is maintained on a per-process basis and the alarm that
4513 is established by the last invocation of alarm() is the only one that would be active.

4514 Furthermore, allowing generation of an asynchronous signal for a thread would have introduced
4515 an exception to the overall signal model. This requires a compelling reason in order to be
4516 justified.

4517 FUTURE DIRECTIONS
4518 None.

4519 SEE ALSO
4520 alarm(), exec, fork (), getitimer(), pause(), sigaction (), sleep(), ualarm(), usleep(), the Base |
4521 Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, <unistd.h> |

4522 CHANGE HISTORY
4523 First released in Issue 1. Derived from Issue 1 of the SVID. |

4524 Issue 4
4525 The <unistd.h> header is included in the SYNOPSIS section.

4526 Issue 4, Version 2
4527 The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(), and
4528 usleep() functions are unspecified.

4529 Issue 6
4530 The following new requirements on POSIX implementations derive from alignment with the
4531 Single UNIX Specification:

4532 • The DESCRIPTION is updated to indicate that interactions with the setitimer(), ualarm(), and
4533 usleep() functions are unspecified.

622 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces asctime()

4534 NAME
4535 asctime, asctime_r — convert date and time to a string

4536 SYNOPSIS
4537 #include <time.h>

4538 char *asctime(const struct tm * timeptr);
4539 TSF char *asctime_r(const struct tm *restrict tm, char *restrict buf); |
4540 |

4541 DESCRIPTION
4542 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4543 conflict between the requirements described here and the ISO C standard is unintentional. This
4544 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4545 The asctime() function shall convert the broken-down time in the structure pointed to by timeptr
4546 into a string in the form:

4547 Sun Sep 16 01:03:52 1973\n\0

4548 using the equivalent of the following algorithm:

4549 char *asctime(const struct tm *timeptr)
4550 {
4551 static char wday_name[7][3] = {
4552 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
4553 };
4554 static char mon_name[12][3] = {
4555 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
4556 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
4557 };
4558 static char result[26];

4559 sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
4560 wday_name[timeptr->tm_wday],
4561 mon_name[timeptr->tm_mon],
4562 timeptr->tm_mday, timeptr->tm_hour,
4563 timeptr->tm_min, timeptr->tm_sec,
4564 1900 + timeptr->tm_year);
4565 return result;
4566 }

4567 The tm structure is defined in the <time.h> header.

4568 CX The asctime(), ctime(), gmtime(), and localtime () functions shall return values in one of two static
4569 objects: a broken-down time structure and an array of type char. Execution of any of the
4570 functions may overwrite the information returned in either of these objects by any of the other
4571 functions.

4572 The asctime() function need not be reentrant. A function that is not required to be reentrant is not
4573 required to be thread-safe.

4574 TSF The asctime_r() function shall convert the broken-down time in the structure pointed to by tm
4575 into a string (of the same form as that returned by asctime()) that is placed in the user-supplied
4576 buffer pointed to by buf (which contains at least 26 bytes) and then return buf.

System Interfaces, Issue 6 623

asctime() System Interfaces

4577 RETURN VALUE
4578 Upon successful completion, asctime() shall return a pointer to the string.

4579 TSF Upon successful completion, asctime_r() shall return a pointer to a character string containing
4580 the date and time. This string is pointed to by the argument buf. If the function is unsuccessful,
4581 it shall return NULL.

4582 ERRORS
4583 No errors are defined.

4584 EXAMPLES
4585 None.

4586 APPLICATION USAGE
4587 Values for the broken-down time structure can be obtained by calling gmtime() or localtime ().
4588 This function is included for compatibility with older implementations, and does not support
4589 localized date and time formats. Applications should use strftime() to achieve maximum
4590 portability.

4591 The asctime_r() function is thread-safe and shall return values in a user-supplied buffer instead
4592 of possibly using a static data area that may be overwritten by each call.

4593 RATIONALE
4594 None.

4595 FUTURE DIRECTIONS
4596 None.

4597 SEE ALSO
4598 clock (), ctime(), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(), |
4599 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

4600 CHANGE HISTORY
4601 First released in Issue 1. Derived from Issue 1 of the SVID. |

4602 Issue 4
4603 The location of the tm structure is now defined.

4604 The APPLICATION USAGE section is expanded to describe the time-handling functions
4605 generally and to refer users to strftime(), which is a locale-dependent time-handling function.

4606 The following change is incorporated for alignment with the ISO C standard:

4607 • The type of argument timeptr is changed from struct tm* to const struct tm*.

4608 Issue 5
4609 Normative text previously in the APPLICATION USAGE section is moved to the
4610 DESCRIPTION.

4611 The asctime_r() function is included for alignment with the POSIX Threads Extension.

4612 A note indicating that the asctime() function need not be reentrant is added to the
4613 DESCRIPTION.

4614 Issue 6
4615 The asctime_r() function is marked as part of the Thread-Safe Functions option. |

4616 Extensions beyond the ISO C standard are now marked.

4617 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
4618 its avoidance of possibly using a static data area.

624 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces asctime()

4619 The DESCRIPTION of asctime_r() is updated to describe the format of the string returned. |

4620 The restrict keyword is added to the asctime_r() prototype for alignment with the |
4621 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 625

asin() System Interfaces

4622 NAME
4623 asin, asinf, asinl — arc sine function |

4624 SYNOPSIS
4625 #include <math.h>

4626 double asin(double x);
4627 float asinf(float x); |
4628 long double asinl(long double x); |

4629 DESCRIPTION |
4630 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4631 conflict between the requirements described here and the ISO C standard is unintentional. This
4632 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4633 The asin(), asinf(), and asinl() functions shall compute the principal value of the arc sine of x . |
4634 The value of x should be in the range [−1,1].

4635 An application wishing to check for error situations should set errno to 0, then call asin(). If errno
4636 is non-zero on return, or the return value is NaN, an error has occurred.

4637 RETURN VALUE
4638 Upon successful completion, the asin(), asinf(), and asinl() functions shall return the arc sine of |
4639 XSI x , in the range [−π/2,π/2] radians. If the value of x is not in the range [−1,1], and is not ±Inf or
4640 NaN, either 0.0 or NaN shall be returned anderrno shall be set to [EDOM]. |

4641 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

4642 If x is ±Inf, either 0.0 shall be returned and errno set to [EDOM], or NaN shall be returned and
4643 errno may be set to [EDOM].

4644 If the result underflows, 0.0 shallbe returned and errno may be set to [ERANGE]. |

4645 ERRORS
4646 The asin(), asinf(), and asinl() functions shall fail if: |

4647 XSI [EDOM] The value x is not ±Inf or NaN andis not in the range [−1,1]. |

4648 The asin(), asinf(), and asinl() functions may fail if: |

4649 XSI [EDOM] The value of x is ±Inf or NaN.

4650 [ERANGE] The result underflows |

4651 XSI No other errors shall occur.

4652 EXAMPLES
4653 None.

4654 APPLICATION USAGE
4655 None.

4656 RATIONALE
4657 None.

4658 FUTURE DIRECTIONS
4659 None.

4660 SEE ALSO
4661 isnan(), sin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

626 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces asin()

4662 CHANGE HISTORY
4663 First released in Issue 1. Derived from Issue 1 of the SVID. |

4664 Issue 4
4665 References to matherr() are removed.

4666 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
4667 ISO C standard and to rationalize error handling in the mathematics functions.

4668 The return value specified for [EDOM] is marked as an extension.

4669 Issue 5
4670 The DESCRIPTION is updated to indicate how an application should check for an error. This
4671 text was previously published in the APPLICATION USAGE section. |

4672 Issue 6 |
4673 The asinf() and asinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 627

asinh() System Interfaces

4674 NAME
4675 asinh — hyperbolic arc sine

4676 SYNOPSIS
4677 XSI #include <math.h>

4678 double asinh(double x);
4679

4680 DESCRIPTION
4681 Refer to acosh().

628 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces assert()

4682 NAME
4683 assert — insert program diagnostics

4684 SYNOPSIS
4685 #include <assert.h>

4686 void assert(scalar expression); |

4687 DESCRIPTION |
4688 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4689 conflict between the requirements described here and the ISO C standard is unintentional. This
4690 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4691 The assert() macro inserts diagnostics into programs; it expands to a void expression. When it is |
4692 executed, if expression (which shall have a scalar type) is false (that is, compares equal to 0), |
4693 assert() shall write information about the particular call that failed on stderr and shall call abort(). |

4694 The information written about the call that failed shall include the text of the argument, the |
4695 name of the source file, the source file line number, and the name of the enclosing function, the |
4696 latter are, respectively, the values of the preprocessing macros _ _FILE_ _ and _ _LINE_ _ and of |
4697 the identifier _ _func_ _. |

4698 Forcing a definition of the name NDEBUG, either from the compiler command line or with the |
4699 preprocessor control statement #define NDEBUG ahead of the #include <assert.h> statement,
4700 shall stop assertions from being compiled into the program.

4701 RETURN VALUE
4702 The assert() macro shall return no value.

4703 ERRORS
4704 No errors are defined.

4705 EXAMPLES
4706 None.

4707 APPLICATION USAGE
4708 None.

4709 RATIONALE
4710 None.

4711 FUTURE DIRECTIONS
4712 None.

4713 SEE ALSO
4714 abort(), the Base Definitions volume of IEEE Std. 1003.1-200x, <assert.h>, stderr |

4715 CHANGE HISTORY
4716 First released in Issue 1. Derived from Issue 1 of the SVID. |

4717 Issue 4
4718 The APPLICATION USAGE section is merged into the DESCRIPTION. |

4719 Issue 6 |
4720 The prototype for the expression argument to assert() is changed from int to scalar for alignment |
4721 with the ISO/IEC 9899: 1999 standard. |

4722 The DESCRIPTION of assert() is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 629

atan() System Interfaces

4723 NAME
4724 atan, atanf, atanl — arc tangent function |

4725 SYNOPSIS
4726 #include <math.h>

4727 double atan(double x);
4728 float atanf(float x); |
4729 long double atanl(long double x); |

4730 DESCRIPTION |
4731 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4732 conflict between the requirements described here and the ISO C standard is unintentional. This
4733 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4734 The atan(), atanf (), and atanl () functions shall compute the principal value of the arc tangent of |
4735 x .

4736 An application wishing to check for error situations should set errno to 0 before calling atan(). If
4737 errno is non-zero on return, or the return value is NaN, an error has occurred.

4738 RETURN VALUE
4739 Upon successful completion, the atan(), atanf (), and atanl () functions shall return the arc |
4740 tangent of x in the range [−π/2,π/2] radians. |

4741 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

4742 If the result underflows, 0.0 shall be returned and errno may be set to [ERANGE]. |

4743 ERRORS
4744 The atan(), atanf (), and atanl () functions may fail if: |

4745 XSI [EDOM] The value of x is NaN.

4746 [ERANGE] The result underflows |

4747 XSI No other errors shall occur.

4748 EXAMPLES
4749 None.

4750 APPLICATION USAGE
4751 None.

4752 RATIONALE
4753 None.

4754 FUTURE DIRECTIONS
4755 None.

4756 SEE ALSO
4757 atan2(), isnan(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

4758 CHANGE HISTORY
4759 First released in Issue 1. Derived from Issue 1 of the SVID. |

4760 Issue 4
4761 References to matherr() are removed.

4762 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
4763 ISO C standard and to rationalize error handling in the mathematics functions.

630 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces atan()

4764 The return value specified for [EDOM] is marked as an extension.

4765 Issue 5
4766 The DESCRIPTION is updated to indicate how an application should check for an error. This
4767 text was previously published in the APPLICATION USAGE section. |

4768 Issue 6 |
4769 The atanf () and atanl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 631

atan2() System Interfaces

4770 NAME
4771 atan2 — arc tangent function

4772 SYNOPSIS
4773 #include <math.h>

4774 double atan2(double y, double x);
4775 float atan2f(float y, float x); |
4776 long double atan2l(long double y, long double x); |

4777 DESCRIPTION |
4778 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4779 conflict between the requirements described here and the ISO C standard is unintentional. This
4780 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4781 The atan2(), atan2f (), and atan2l () functions shall compute the principal value of the arc tangent |
4782 of y/x , using the signs of both arguments to determine the quadrant of the return value. |

4783 An application wishing to check for error situations should set errno to 0 before calling atan2().
4784 If errno is non-zero on return, or the return value is NaN, an error has occurred.

4785 RETURN VALUE
4786 Upon successful completion, the atan2(), atan2f (), and atan2l () functions shall return the arc |
4787 tangent of y/x in the range [−π,π] radians. If both arguments are 0.0, an implementation-defined |
4788 value is returned and errno may be set to [EDOM]. |

4789 XSI If x or y is NaN, NaN shall be returned and errno may be set to [EDOM].

4790 If the result underflows, 0.0 shall be returned and errno may be set to [ERANGE]. |

4791 ERRORS
4792 The atan2(), atan2f (), and atan2l () functions may fail if: |

4793 XSI [EDOM] Both arguments are 0.0 or one or more of the arguments is NaN. |

4794 [ERANGE] The result underflows |

4795 XSI No other errors shall occur.

4796 EXAMPLES
4797 None.

4798 APPLICATION USAGE
4799 None.

4800 RATIONALE
4801 None.

4802 FUTURE DIRECTIONS
4803 None.

4804 SEE ALSO
4805 atan(), isnan(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

4806 CHANGE HISTORY
4807 First released in Issue 1. Derived from Issue 1 of the SVID. |

4808 Issue 4
4809 References to matherr() are removed.

4810 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
4811 ISO C standard and to rationalize error handling in the mathematics functions.

632 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces atan2()

4812 The return value specified for [EDOM] is marked as an extension.

4813 Issue 5
4814 The DESCRIPTION is updated to indicate how an application should check for an error. This
4815 text was previously published in the APPLICATION USAGE section.

System Interfaces, Issue 6 633

atanh() System Interfaces

4816 NAME
4817 atanh — hyperbolic arc tangent

4818 SYNOPSIS
4819 XSI #include <math.h>

4820 double atanh(double x);
4821

4822 DESCRIPTION
4823 Refer to acosh().

634 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces atexit()

4824 NAME
4825 atexit — register a function to run at process termination

4826 SYNOPSIS
4827 #include <stdlib.h>

4828 int atexit(void (* func)(void));

4829 DESCRIPTION
4830 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4831 conflict between the requirements described here and the ISO C standard is unintentional. This
4832 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4833 The atexit() function registers the function pointed to by func, to be called without arguments at |
4834 normal program termination. At normal program termination, all functions registered by the |
4835 CX atexit() function shall be called, in the reverse order of their registration. Normal termination |
4836 occurs either by a call to exit() or a return from main(). |

4837 At least 32 functions can be registered with atexit().

4838 CX After a successful call to any of the exec functions, any functions previously registered by atexit()
4839 shall no longer be registered.

4840 RETURN VALUE
4841 Upon successful completion, atexit() shall return 0; otherwise, it shall return a non-zero value.

4842 ERRORS
4843 No errors are defined.

4844 EXAMPLES
4845 None.

4846 APPLICATION USAGE
4847 The functions registered by a call to atexit() must return to ensure that all registered functions
4848 are called.

4849 The application should call sysconf() to obtain the value of {ATEXIT_MAX}, the number of
4850 functions that can be registered. There is no way for an application to tell how many functions
4851 have already been registered with atexit().

4852 RATIONALE
4853 None.

4854 FUTURE DIRECTIONS
4855 None.

4856 SEE ALSO
4857 exit(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

4858 CHANGE HISTORY
4859 First released in Issue 4. Derived from the ANSI C standard. |

4860 Issue 4, Version 2
4861 The APPLICATION USAGE section is updated to indicate how an application can determine the
4862 setting of {ATEXIT_MAX}, which is a constant added for X/OPEN UNIX conformance.

4863 Issue 6
4864 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 635

atof() System Interfaces

4865 NAME
4866 atof — convert a string to double-precision number

4867 SYNOPSIS
4868 #include <stdlib.h>

4869 double atof(const char * str);

4870 DESCRIPTION
4871 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4872 conflict between the requirements described here and the ISO C standard is unintentional. This
4873 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4874 The call atof (str) shall be equivalent to:

4875 strtod(str ,(char **)NULL),

4876 except that the handling of errors may differ. If the value cannot be represented, the behavior is
4877 undefined.

4878 RETURN VALUE
4879 The atof () function shall return the converted value if the value can be represented.

4880 ERRORS
4881 No errors are defined.

4882 EXAMPLES
4883 None.

4884 APPLICATION USAGE
4885 The atof () function is subsumed by strtod() but is retained because it is used extensively in
4886 existing code. If the number is not known to be in range, strtod() should be used because atof () is
4887 not required to perform any error checking.

4888 RATIONALE
4889 None.

4890 FUTURE DIRECTIONS
4891 None.

4892 SEE ALSO
4893 strtod(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

4894 CHANGE HISTORY
4895 First released in Issue 1. Derived from Issue 1 of the SVID. |

4896 Issue 4
4897 Reference to how str is converted is removed from the DESCRIPTION.

4898 The APPLICATION USAGE section is added.

4899 The following change is incorporated for alignment with the ISO C standard:

4900 • The type of argument str is changed from char* to const char*.

636 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces atoi()

4901 NAME
4902 atoi — convert a string to an integer

4903 SYNOPSIS
4904 #include <stdlib.h>

4905 int atoi(const char * str);

4906 DESCRIPTION
4907 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4908 conflict between the requirements described here and the ISO C standard is unintentional. This
4909 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4910 The call atoi (str) shall be equivalent to:

4911 (int) strtol(str, (char **)NULL, 10)

4912 except that the handling of errors may differ. If the value cannot be represented, the behavior is
4913 undefined.

4914 RETURN VALUE
4915 The atoi () function shall return the converted value if the value can be represented.

4916 ERRORS
4917 No errors are defined.

4918 EXAMPLES

4919 Converting an Argument

4920 The following example checks for proper usage of the program. If there is an argument and the
4921 decimal conversion of this argument (obtained using atoi ()) is greater than 0, then the program
4922 has a valid number of minutes to wait for an event.

4923 #include <stdlib.h>
4924 #include <stdio.h>
4925 ...
4926 int minutes_to_event;
4927 ...
4928 if (arg c < 2 || ((minutes_to_event = atoi (argv[1]))) <= 0) {
4929 fprintf(stderr, "Usage: %s minutes\n", argv[0]); exit(1);
4930 }
4931 ...

4932 APPLICATION USAGE
4933 The atoi () function is subsumed by strtol() but is retained because it is used extensively in
4934 existing code. If the number is not known to be in range, strtol() should be used because atoi () is
4935 not required to perform any error checking.

4936 RATIONALE
4937 None.

4938 FUTURE DIRECTIONS
4939 None.

4940 SEE ALSO
4941 strtol(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

System Interfaces, Issue 6 637

atoi() System Interfaces

4942 CHANGE HISTORY
4943 First released in Issue 1. Derived from Issue 1 of the SVID. |

4944 Issue 4
4945 Reference to how str is converted is removed from the DESCRIPTION.

4946 The APPLICATION USAGE section is added.

4947 The following change is incorporated for alignment with the ISO C standard:

4948 • The type of argument str is changed from char* to const char*.

638 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces atol()

4949 NAME
4950 atol, atoll — convert a string to a long integer |

4951 SYNOPSIS
4952 #include <stdlib.h>

4953 long atol(const char * str); |
4954 long long atoll(const char * nptr); |

4955 DESCRIPTION |
4956 CX The functionality described on this reference page is aligned with the ISO C standard. Any
4957 conflict between the requirements described here and the ISO C standard is unintentional. This
4958 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

4959 The call atol (str) shall be equivalent to:

4960 strtol(str, (char **)NULL, 10)

4961 The call atoll (str) shall be equivalent to: |

4962 strtoll(nptr, (char **)NULL, 10) |

4963 except that the handling of errors may differ. If the value cannot be represented, the behavior is |
4964 undefined.

4965 RETURN VALUE
4966 These functions shall return the converted value if the value can be represented. |

4967 ERRORS
4968 No errors are defined.

4969 EXAMPLES
4970 None.

4971 APPLICATION USAGE
4972 The atol () function is subsumed by strtol() but is retained because it is used extensively in
4973 existing code. If the number is not known to be in range, strtol() should be used because atol () is
4974 not required to perform any error checking.

4975 RATIONALE
4976 None.

4977 FUTURE DIRECTIONS
4978 None.

4979 SEE ALSO
4980 strtol(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

4981 CHANGE HISTORY
4982 First released in Issue 1. Derived from Issue 1 of the SVID. |

4983 Issue 4
4984 Reference to how str is converted is removed from the DESCRIPTION.

4985 The APPLICATION USAGE section is added.

4986 The following changes are incorporated for alignment with the ISO C standard:

4987 • The type of argument str is changed from char* to const char*.

4988 • The return type of the function is expanded to long. |

System Interfaces, Issue 6 639

atol() System Interfaces

4989 Issue 6 |
4990 The atoll () function is added for alignment with the ISO/IEC 9899: 1999 standard. |

640 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces basename()

4991 NAME
4992 basename — return the last component of a path name |

4993 SYNOPSIS
4994 XSI #include <libgen.h>

4995 char *basename(char * path);
4996

4997 DESCRIPTION
4998 The basename() function shall take the path name pointed to by path and return a pointer to the
4999 final component of the path name, deleting any trailing ’/’ characters.

5000 If the string consists entirely of the ’/’ character, basename() shall return a pointer to the string
5001 "/" . If the string is exactly "//" , it is implementation-defined whether ’/’ or "//" is |
5002 returned. |

5003 If path is a null pointer or points to an empty string, basename() shall return a pointer to the
5004 string "." .

5005 The basename() function may modify the string pointed to by path , and may return a pointer to
5006 static storage that may then be overwritten by a subsequent call to basename().

5007 The basename() function need not be reentrant. A function that is not required to be reentrant is
5008 not required to be thread-safe.

5009 RETURN VALUE
5010 The basename() function shall return a pointer to the final component of path .

5011 ERRORS
5012 No errors are defined.

5013 EXAMPLES

5014 Using basename()

5015 The following program fragment returns a pointer to the value lib , which is the base name of
5016 /usr/lib.

5017 #include <libgen.h>
5018 ...
5019 char *name = "/usr/lib";
5020 char *base;

5021 base = basename(name);
5022 ...

5023 Sample Input and Output Strings for basename()

5024 In the following table, the input string is the value pointed to by path , and the output string is
5025 the return value of the basename() function.

5026 Input String Output String______________________________
5027 "/usr/lib" "lib"
5028 "/usr/" "usr"
5029 "/" "/"______________________________LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

System Interfaces, Issue 6 641

basename() System Interfaces

5030 APPLICATION USAGE
5031 None.

5032 RATIONALE
5033 None.

5034 FUTURE DIRECTIONS
5035 None.

5036 SEE ALSO
5037 dirname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <libgen.h>, the Shell and |
5038 Utilities volume of IEEE Std. 1003.1-200x, basename |

5039 CHANGE HISTORY
5040 First released in Issue 4, Version 2.

5041 Issue 5
5042 Moved from X/OPEN UNIX extension to BASE.

5043 Normative text previously in the APPLICATION USAGE section is moved to the
5044 DESCRIPTION.

5045 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

5046 Issue 6
5047 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

642 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bcmp()

5048 NAME
5049 bcmp — memory operations (LEGACY)

5050 SYNOPSIS
5051 XSI #include <strings.h>

5052 int bcmp(const void * s1 , const void * s2 , size_t n);
5053

5054 DESCRIPTION
5055 The bcmp() function shall compare the first n bytes of the area pointed to by s1 with the area
5056 pointed to by s2.

5057 RETURN VALUE
5058 The bcmp() function shall return 0 if s1 and s2 are identical; otherwise, it shall return non-zero.
5059 Both areas are assumed to be n bytes long. If the value of n is 0, bcmp() shall return 0.

5060 ERRORS
5061 No errors are defined.

5062 EXAMPLES
5063 None.

5064 APPLICATION USAGE
5065 memcmp() is preferred over this function.

5066 For maximum portability, it is recommended to replace the function call to bcmp() as follows:

5067 #define bcmp(b1,b2,len) memcmp((b1), (b2), (size_t)(len))

5068 RATIONALE
5069 None.

5070 FUTURE DIRECTIONS
5071 This function may be withdrawn in a future version.

5072 SEE ALSO
5073 memcmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

5074 CHANGE HISTORY
5075 First released in Issue 4, Version 2.

5076 Issue 5
5077 Moved from X/OPEN UNIX extension to BASE.

5078 Issue 6
5079 This function is marked LEGACY.

System Interfaces, Issue 6 643

bcopy() System Interfaces

5080 NAME
5081 bcopy — memory operations (LEGACY)

5082 SYNOPSIS
5083 XSI #include <strings.h>

5084 void bcopy(const void * s1 , void * s2 , size_t n);
5085

5086 DESCRIPTION
5087 The bcopy() function shall copy n bytes from the area pointed to by s1 to the area pointed to by
5088 s2.

5089 The bytes are copied correctly even if the area pointed to by s1 overlaps the area pointed to by
5090 s2.

5091 RETURN VALUE
5092 The bcopy() function shall return no value.

5093 ERRORS
5094 No errors are defined.

5095 EXAMPLES
5096 None.

5097 APPLICATION USAGE
5098 memmove() is preferred over this function.

5099 The following are approximately equivalent (note the order of the arguments):

5100 bcopy(s1,s2,n) ˜= memmove(s2,s1,n)

5101 For maximum portability, it is recommended to replace the function call to bcopy() as follows:

5102 #define bcopy(b1,b2,len) (memmove((b2), (b1), (len)), (void) 0)

5103 RATIONALE
5104 None.

5105 FUTURE DIRECTIONS
5106 This function may be withdrawn in a future version.

5107 SEE ALSO
5108 memmove(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

5109 CHANGE HISTORY
5110 First released in Issue 4, Version 2.

5111 Issue 5
5112 Moved from X/OPEN UNIX extension to BASE.

5113 Issue 6
5114 This function is marked LEGACY.

644 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bind()

5115 NAME
5116 bind — bind a name to a socket

5117 SYNOPSIS
5118 #include <sys/socket.h>

5119 int bind(int socket , const struct sockaddr * address ,
5120 socklen_t address_len);

5121 DESCRIPTION
5122 The bind() function shall assign a local socket address address to a socket identified by descriptor
5123 socket that has no local socket address assigned. Sockets created with the socket() function are
5124 initially unnamed; they are identified only by their address family.

5125 The bind() function takes the following arguments:

5126 socket Specifies the file descriptor of the socket to be bound.

5127 address Points to a sockaddr structure containing the address to be bound to the
5128 socket. The length and format of the address depend on the address family of
5129 the socket.

5130 address_len Specifies the length of the sockaddr structure pointed to by the address
5131 argument.

5132 The socket specified by socket may require the process to have appropriate privileges to use the |
5133 bind() function.

5134 RETURN VALUE
5135 Upon successful completion, bind() shall return 0; otherwise, −1 shall be returned and errno set
5136 to indicate the error.

5137 ERRORS
5138 The bind() function shall fail if:

5139 [EADDRINUSE]
5140 The specified address is already in use.

5141 [EADDRNOTAVAIL]
5142 The specified address is not available from the local machine.

5143 [EAFNOSUPPORT]
5144 The specified address is not a valid address for the address family of the
5145 specified socket.

5146 [EBADF] The socket argument is not a valid file descriptor. |

5147 [EINVAL] The socket is already bound to an address, and the protocol does not support
5148 binding to a new address; or the socket has been shut down.

5149 [ENOTSOCK] The socket argument does not refer to a socket.

5150 [EOPNOTSUPP] The socket type of the specified socket does not support binding to an
5151 address.

5152 If the address family of the socket is AF_UNIX, then bind() shall fail if:

5153 [EACCES] A component of the path prefix denies search permission, or the requested
5154 name requires writing in a directory with a mode that denies write
5155 permission.

System Interfaces, Issue 6 645

bind() System Interfaces

5156 [EDESTADDRREQ] or [EISDIR]
5157 The address argument is a null pointer.

5158 [EIO] An I/O error occurred.

5159 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
5160 name in address. |

5161 [ENAMETOOLONG]
5162 A component of a path name exceeded {NAME_MAX} characters, or an entire
5163 path name exceeded {PATH_MAX} characters.

5164 [ENOENT] A component of the path name does not name an existing file or the path
5165 name is an empty string.

5166 [ENOTDIR] A component of the path prefix of the path name in address is not a directory.

5167 [EROFS] The name would reside on a read-only file system.

5168 The bind() function may fail if:

5169 [EACCES] The specified address is protected and the current user does not have
5170 permission to bind to it.

5171 [EINVAL] The address_len argument is not a valid length for the address family.

5172 [EISCONN] The socket is already connected. |

5173 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
5174 resolution of the path name in address. |

5175 [ENAMETOOLONG]
5176 Path name resolution of a symbolic link produced an intermediate result
5177 whose length exceeds {PATH_MAX}.

5178 [ENOBUFS] Insufficient resources were available to complete the call. |

5179 EXAMPLES
5180 None.

5181 APPLICATION USAGE
5182 An application program can retrieve the assigned socket name with the getsockname() function.

5183 RATIONALE
5184 None.

5185 FUTURE DIRECTIONS
5186 None.

5187 SEE ALSO
5188 connect(), getsockname(), listen(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
5189 <sys/socket.h>

CHANGE5190 HISTORY
5191 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

646 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bsd_signal()

5192 NAME
5193 bsd_signal — simplified signal facilities

5194 SYNOPSIS
5195 OB #include <signal.h> |

5196 void (*bsd_signal(int sig , void (* func)(int)))(int);
5197

5198 DESCRIPTION
5199 The bsd_signal() function provides a partially compatible interface for programs written to
5200 historical system interfaces (see APPLICATION USAGE).

5201 The function call bsd_signal(sig, func) has an effect as if implemented as:

5202 void (*bsd_signal(int sig, void (*func)(int)))(int)
5203 {
5204 struct sigaction act, oact;

5205 act.sa_handler = func ;
5206 act.sa_flags = SA_RESTART;
5207 sigemptyset(&act.sa_mask);
5208 sigaddset(&act.sa_mask, sig);
5209 if (sigaction(sig , &act, &oact) == -1)
5210 return(SIG_ERR);
5211 return(oact.sa_handler);
5212 }

5213 The handler function should be declared:

5214 void handler(int sig);

5215 where sig is the signal number. The behavior is undefined if func is a function that takes more
5216 than one argument, or an argument of a different type.

5217 RETURN VALUE
5218 Upon successful completion, bsd_signal() shall return the previous action for sig. Otherwise,
5219 SIG_ERR shall be returned and errno shall be set to indicate the error.

5220 ERRORS
5221 Refer to sigaction ().

5222 EXAMPLES
5223 None.

5224 APPLICATION USAGE
5225 This function is a direct replacement for the BSD signal() function for simple applications that
5226 are installing a single-argument signal handler function. If a BSD signal handler function is being
5227 installed that expects more than one argument, the application has to be modified to use
5228 sigaction (). The bsd_signal() function differs from signal() in that the SA_RESTART flag is set
5229 and the SA_RESETHAND is clear when bsd_signal() is used. The state of these flags is not
5230 specified for signal(). |

5231 It is recommended that new applications use the sigaction () function. |

5232 RATIONALE
5233 None.

System Interfaces, Issue 6 647

bsd_signal() System Interfaces

5234 FUTURE DIRECTIONS
5235 None.

5236 SEE ALSO
5237 sigaction (), sigaddset(), sigemptyset(), signal(), the Base Definitions volume of |
5238 IEEE Std. 1003.1-200x, <signal.h> |

5239 CHANGE HISTORY
5240 First released in Issue 4, Version 2.

5241 Issue 5
5242 Moved from X/OPEN UNIX extension to BASE. |

5243 Issue 6 |
5244 This function is marked obsolescent. |

648 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bsearch()

5245 NAME
5246 bsearch — binary search a sorted table

5247 SYNOPSIS
5248 #include <stdlib.h>

5249 void *bsearch(const void * key , const void * base , size_t nel ,
5250 size_t width , int (* compar)(const void *, const void *));

5251 DESCRIPTION
5252 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5253 conflict between the requirements described here and the ISO C standard is unintentional. This
5254 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5255 The bsearch() function searches an array of nel objects, the initial element of which is pointed to
5256 by base, for an element that matches the object pointed to by key . The size of each element in the
5257 array is specified by width .

5258 The comparison function pointed to by compar is called with two arguments that point to the key
5259 object and to an array element, in that order.

5260 The application shall ensure that the function returns an integer less than, equal to, or greater
5261 than 0 if the key object is considered, respectively, to be less than, to match, or to be greater than
5262 the array element. The application shall ensure that the array consists of all the elements that
5263 compare less than, all the elements that compare equal to, and all the elements that compare
5264 greater than the key object, in that order.

5265 RETURN VALUE
5266 The bsearch() function shall return a pointer to a matching member of the array, or a null pointer
5267 if no match is found. If two or more members compare equal, which member is returned is
5268 unspecified.

5269 ERRORS
5270 No errors are defined.

5271 EXAMPLES
5272 The example below searches a table containing pointers to nodes consisting of a string and its
5273 length. The table is ordered alphabetically on the string in the node pointed to by each entry.

5274 The code fragment below reads in strings and either finds the corresponding node and prints out
5275 the string and its length, or prints an error message.

5276 #include <stdio.h>
5277 #include <stdlib.h>
5278 #include <string.h>

5279 #define TABSIZE 1000

5280 struct node { /* These are stored in the table. */
5281 char *string;
5282 int length;
5283 };
5284 struct node table[TABSIZE]; /* Table to be searched. */
5285 .
5286 .
5287 .
5288 {
5289 struct node *node_ptr, node;
5290 /* routine to compare 2 nodes */

System Interfaces, Issue 6 649

bsearch() System Interfaces

5291 int node_compare(const void *, const void *);
5292 char str_space[20]; /* Space to read string into. */
5293 .
5294 .
5295 .
5296 node.string = str_space;
5297 while (scanf("%s", node.string) != EOF) {
5298 node_ptr = (struct node *)bsearch((void *)(&node),
5299 (void *)table, TABSIZE,
5300 sizeof(struct node), node_compare);
5301 if (node_ptr != NULL) {
5302 (void)printf("string = %20s, length = %d\n",
5303 node_ptr->string, node_ptr->length);
5304 } else {
5305 (void)printf("not found: %s\n", node.string);
5306 }
5307 }
5308 }
5309 /*
5310 This routine compares two nodes based on an
5311 alphabetical ordering of the string field.
5312 */
5313 int
5314 node_compare(const void *node1, const void *node2)
5315 {
5316 return strcoll(((const struct node *)node1)->string,
5317 ((const struct node *)node2)->string);
5318 }

5319 APPLICATION USAGE
5320 The pointers to the key and the element at the base of the table should be of type pointer-to-
5321 element.

5322 The comparison function need not compare every byte, so arbitrary data may be contained in
5323 the elements in addition to the values being compared.

5324 In practice, the array is usually sorted according to the comparison function.

5325 RATIONALE
5326 None.

5327 FUTURE DIRECTIONS
5328 None.

5329 SEE ALSO
5330 hcreate(), lsearch(), qsort(), tsearch(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
5331 <stdlib.h>

CHANGE5332 HISTORY
5333 First released in Issue 1. Derived from Issue 1 of the SVID. |

5334 Issue 4
5335 Text indicating the need for various casts is removed from the APPLICATION USAGE section.

5336 The code in the EXAMPLES section is changed to use strcoll() instead of strcmp() in
5337 node_compare().

650 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bsearch()

5338 The return value and the contents of the array are now requirements on the application.

5339 The DESCRIPTION is changed to specify the order of arguments.

5340 The following changes are incorporated for alignment with the ISO C standard:

5341 • The type of arguments key and base, and the type of arguments to compar , are changed from
5342 void* to const void*.

5343 • The requirement that the table be sorted according to compar is removed from the
5344 DESCRIPTION.

5345 Issue 6
5346 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 651

btowc() System Interfaces

5347 NAME
5348 btowc — single-byte to wide-character conversion

5349 SYNOPSIS
5350 #include <stdio.h>
5351 #include <wchar.h>

5352 wint_t btowc(int c);

5353 DESCRIPTION
5354 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5355 conflict between the requirements described here and the ISO C standard is unintentional. This
5356 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5357 The btowc() function shall determine whether c constitutes a valid (one-byte) character in the
5358 initial shift state.

5359 The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

5360 RETURN VALUE
5361 The btowc() function shall return WEOF if c has the value EOF or if (unsigned char) c does not
5362 constitute a valid (one-byte) character in the initial shift state. Otherwise, it shall return the
5363 wide-character representation of that character.

5364 ERRORS
5365 No errors are defined.

5366 EXAMPLES
5367 None.

5368 APPLICATION USAGE
5369 None.

5370 RATIONALE
5371 None.

5372 FUTURE DIRECTIONS
5373 None.

5374 SEE ALSO
5375 wctob(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

5376 CHANGE HISTORY
5377 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
5378 (E).

652 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces bzero()

5379 NAME
5380 bzero — memory operations (LEGACY)

5381 SYNOPSIS
5382 XSI #include <strings.h>

5383 void bzero(void * s, size_t n);
5384

5385 DESCRIPTION
5386 The bzero() function shall place n zero-valued bytes in the area pointed to by s.

5387 RETURN VALUE
5388 The bzero() function shall return no value.

5389 ERRORS
5390 No errors are defined.

5391 EXAMPLES
5392 None.

5393 APPLICATION USAGE
5394 memset() is preferred over this function.

5395 For maximum portability, it is recommended to replace the function call to bzero() as follows:

5396 #define bzero(b,len) (memset((b), ’\0’, (len)), (void) 0)

5397 RATIONALE
5398 None.

5399 FUTURE DIRECTIONS
5400 This function may be withdrawn in a future version.

5401 SEE ALSO
5402 memset(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

5403 CHANGE HISTORY
5404 First released in Issue 4, Version 2.

5405 Issue 5
5406 Moved from X/OPEN UNIX extension to BASE.

5407 Issue 6
5408 This function is marked LEGACY.

|

System Interfaces, Issue 6 653

cabs() System Interfaces

5409 NAME |
5410 cabs, cabsf, cabsl — return a complex absolute value |

5411 SYNOPSIS |
5412 #include <complex.h> |

5413 double cabs(double complex z); |
5414 float cabsf(float complex z); |
5415 long double cabsl(long double complex z); |

5416 DESCRIPTION |
5417 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5418 conflict between the requirements described here and the ISO C standard is unintentional. This |
5419 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5420 These functions shall compute the complex absolute value (also called norm, modulus, or |
5421 magnitude) of z. |

5422 RETURN VALUE |
5423 These functions shall return the complex absolute value. |

5424 ERRORS |
5425 No errors are defined. |

5426 EXAMPLES |
5427 None. |

5428 APPLICATION USAGE |
5429 None. |

5430 RATIONALE |
5431 None. |

5432 FUTURE DIRECTIONS |
5433 None. |

5434 SEE ALSO |
5435 The Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5436 CHANGE HISTORY |
5437 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

654 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cacos()

5438 NAME |
5439 cacos, cacosf, cacosl — complex arc cosine functions |

5440 SYNOPSIS |
5441 #include <complex.h> |

5442 double complex cacos(double complex z); |
5443 float complex cacosf(float complex z); |
5444 long double complex cacosl(long double complex z); |

5445 DESCRIPTION |
5446 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5447 conflict between the requirements described here and the ISO C standard is unintentional. This |
5448 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5449 These functions shall compute the complex arc cosine of z , with branch cuts outside the interval |
5450 [−1, +1] along the real axis. |

5451 RETURN VALUE |
5452 These functions shall return the complex arc cosine value, in the range of a strip mathematically |
5453 unbounded along the imaginary axis and in the interval [0, π] along the real axis. |

5454 ERRORS |
5455 No errors are defined. |

5456 EXAMPLES |
5457 None. |

5458 APPLICATION USAGE |
5459 None. |

5460 RATIONALE |
5461 None. |

5462 FUTURE DIRECTIONS |
5463 None. |

5464 SEE ALSO |
5465 ccos(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5466 CHANGE HISTORY |
5467 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 655

cacosh() System Interfaces

5468 NAME |
5469 cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions |

5470 SYNOPSIS |
5471 #include <complex.h> |

5472 double complex cacosh(double complex z); |
5473 float complex cacoshf(float complex z); |
5474 long double complex cacoshl(long double complex z); |

5475 DESCRIPTION |
5476 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5477 conflict between the requirements described here and the ISO C standard is unintentional. This |
5478 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5479 These functions shall compute the complex arc hyperbolic cosine of z , with a branch cut at |
5480 values less than 1 along the real axis. |

5481 RETURN VALUE |
5482 These functions shall return the complex arc hyperbolic cosine value, in the range of a half-strip |
5483 of non-negative values along the real axis and in the interval [−iπ, +iπ] along the imaginary axis. |

5484 ERRORS |
5485 No errors are defined. |

5486 EXAMPLES |
5487 None. |

5488 APPLICATION USAGE |
5489 None. |

5490 RATIONALE |
5491 None. |

5492 FUTURE DIRECTIONS |
5493 None. |

5494 SEE ALSO |
5495 ccosh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5496 CHANGE HISTORY |
5497 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

656 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces calloc()

5498 NAME
5499 calloc — a memory allocator

5500 SYNOPSIS
5501 #include <stdlib.h>

5502 void *calloc(size_t nelem , size_t elsize);

5503 DESCRIPTION
5504 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5505 conflict between the requirements described here and the ISO C standard is unintentional. This
5506 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5507 The calloc () function allocates unused space for an array of nelem elements each of whose size in
5508 bytes is elsize . The space is initialized to all bits 0.

5509 The order and contiguity of storage allocated by successive calls to calloc () is unspecified. The
5510 pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
5511 pointer to any type of object and then used to access such an object or an array of such objects in
5512 the space allocated (until the space is explicitly freed or reallocated). Each such allocation shall
5513 yield a pointer to an object disjoint from any other object. The pointer returned points to the start
5514 (lowest byte address) of the allocated space. If the space cannot be allocated, a null pointer is
5515 returned. If the size of the space requested is 0, the behavior is implementation-defined; the |
5516 value returned shall be either a null pointer or a unique pointer.

5517 RETURN VALUE
5518 Upon successful completion with both nelem and elsize non-zero, calloc () shall return a pointer to
5519 the allocated space. If either nelem or elsize is 0, then either a null pointer or a unique pointer
5520 value that can be successfully passed to free() shall be returned. Otherwise, it shall return a null
5521 CX pointer and set errno to indicate the error.

5522 ERRORS
5523 The calloc () function shall fail if:

5524 CX [ENOMEM] Insufficient memory is available. |

5525 EXAMPLES
5526 None.

5527 APPLICATION USAGE
5528 There is now no requirement for the implementation to support the inclusion of <malloc.h>.

5529 RATIONALE
5530 None.

5531 FUTURE DIRECTIONS
5532 None.

5533 SEE ALSO
5534 free(), malloc (), realloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

5535 CHANGE HISTORY
5536 First released in Issue 1. Derived from Issue 1 of the SVID. |

5537 Issue 4
5538 The setting of errno and the [ENOMEM] error are marked as extensions. |

5539 The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
5540 supported on XSI-conformant systems.

System Interfaces, Issue 6 657

calloc() System Interfaces

5541 The following changes are incorporated in this issue for alignment with the ISO C standard:

5542 • The DESCRIPTION is updated to indicate:

5543 — The order and contiguity of storage allocated by successive calls to this function is
5544 unspecified.

5545 — Each allocation yields a pointer to an object disjoint from any other object.

5546 — The returned pointer points to the lowest byte address of the allocation.

5547 — The behavior if space is requested of zero size.

5548 • The RETURN VALUE section is updated to indicate what is returned if either nelem or elsize
5549 is 0.

5550 Issue 6
5551 Extensions beyond the ISO C standard are now marked.

5552 The following new requirements on POSIX implementations derive from alignment with the
5553 Single UNIX Specification:

5554 • The setting of errno and the [ENOMEM] error condition are mandatory if an insufficient
5555 memory condition occurs.

|

658 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces carg()

5556 NAME |
5557 carg, cargf, cargl — complex argument functions |

5558 SYNOPSIS |
5559 #include <complex.h> |

5560 double carg(double complex z); |
5561 float cargf(float complex z); |
5562 long double cargl(long double complex z); |

5563 DESCRIPTION |
5564 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5565 conflict between the requirements described here and the ISO C standard is unintentional. This |
5566 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5567 These functions shall compute the argument (also called phase angle) of z , with a branch cut |
5568 along the negative real axis. |

5569 RETURN VALUE |
5570 These functions shall return the value of the argument in the interval [−π, +π]. |

5571 ERRORS |
5572 No errors are defined. |

5573 EXAMPLES |
5574 None. |

5575 APPLICATION USAGE |
5576 None. |

5577 RATIONALE |
5578 None. |

5579 FUTURE DIRECTIONS |
5580 None. |

5581 SEE ALSO |
5582 cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5583 CHANGE HISTORY |
5584 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 659

casin() System Interfaces

5585 NAME |
5586 casin, casinf, casinl — complex arc sine functions |

5587 SYNOPSIS |
5588 #include <complex.h> |

5589 double complex casin(double complex z); |
5590 float complex casinf(float complex z); |
5591 long double complex casinl(long double complex z); |

5592 DESCRIPTION |
5593 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5594 conflict between the requirements described here and the ISO C standard is unintentional. This |
5595 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5596 These functions shall compute the complex arc sine of z , with branch cuts outside the interval |
5597 [−1, +1] along the real axis. |

5598 RETURN VALUE |
5599 These functions shall return the complex arc sine value, in the range of a strip mathematically |
5600 unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the real axis. |

5601 ERRORS |
5602 No errors are defined. |

5603 EXAMPLES |
5604 None. |

5605 APPLICATION USAGE |
5606 None. |

5607 RATIONALE |
5608 None. |

5609 FUTURE DIRECTIONS |
5610 None. |

5611 SEE ALSO |
5612 csin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5613 CHANGE HISTORY |
5614 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

660 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces casinh()

5615 NAME |
5616 casinh, casinhf, casinhl — complex arc hyperbolic sine functions |

5617 SYNOPSIS |
5618 #include <complex.h> |

5619 double complex casinh(double complex z); |
5620 float complex casinhf(float complex z); |
5621 long double complex casinhl(long double complex z); |

5622 DESCRIPTION |
5623 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5624 conflict between the requirements described here and the ISO C standard is unintentional. This |
5625 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5626 These functions shall compute the complex arc hyperbolic sine of z , with branch cuts outside the |
5627 interval [−i, +i] along the imaginary axis. |

5628 RETURN VALUE |
5629 These functions shall return the complex arc hyperbolic sine value, in the range of a strip |
5630 mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the |
5631 imaginary axis. |

5632 ERRORS |
5633 No errors are defined. |

5634 EXAMPLES |
5635 None. |

5636 APPLICATION USAGE |
5637 None. |

5638 RATIONALE |
5639 None. |

5640 FUTURE DIRECTIONS |
5641 None. |

5642 SEE ALSO |
5643 csinh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5644 CHANGE HISTORY |
5645 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 661

catan() System Interfaces

5646 NAME |
5647 catan, catanf, catanl — complex arc tangent functions |

5648 SYNOPSIS |
5649 #include <complex.h> |

5650 double complex catan(double complex z); |
5651 float complex catanf(float complex z); |
5652 long double complex catanl(long double complex z); |

5653 DESCRIPTION |
5654 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5655 conflict between the requirements described here and the ISO C standard is unintentional. This |
5656 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5657 These functions shall compute the complex arc tangent of z , with branch cuts outside the |
5658 interval [−i, +i] along the imaginary axis. |

5659 RETURN VALUE |
5660 These functions shall return the complex arc tangent value, in the range of a strip |
5661 mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2] along the |
5662 real axis. |

5663 ERRORS |
5664 No errors are defined. |

5665 EXAMPLES |
5666 None. |

5667 APPLICATION USAGE |
5668 None. |

5669 RATIONALE |
5670 None. |

5671 FUTURE DIRECTIONS |
5672 None. |

5673 SEE ALSO |
5674 ctan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5675 CHANGE HISTORY |
5676 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

662 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces catanh()

5677 NAME |
5678 catanh, catanhf, catanhl — complex arc hyperbolic tangent functions |

5679 SYNOPSIS |
5680 #include <complex.h> |

5681 double complex catanh(double complex z); |
5682 float complex catanhf(float complex z); |
5683 long double complex catanhl(long double complex z); |

5684 DESCRIPTION |
5685 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5686 conflict between the requirements described here and the ISO C standard is unintentional. This |
5687 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5688 These functions shall compute the complex arc hyperbolic tangent of z , with branch cuts outside |
5689 the interval [−1, +1] along the real axis. |

5690 RETURN VALUE |
5691 These functions shall return the complex arc hyperbolic tangent value, in the range of a strip |
5692 mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2] along the |
5693 imaginary axis. |

5694 ERRORS |
5695 No errors are defined. |

5696 EXAMPLES |
5697 None. |

5698 APPLICATION USAGE |
5699 None. |

5700 RATIONALE |
5701 None. |

5702 FUTURE DIRECTIONS |
5703 None. |

5704 SEE ALSO |
5705 ctanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5706 CHANGE HISTORY |
5707 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 663

catclose() System Interfaces

5708 NAME
5709 catclose — close a message catalog descriptor

5710 SYNOPSIS
5711 XSI #include <nl_types.h>

5712 int catclose(nl_catd catd);
5713

5714 DESCRIPTION
5715 The catclose () function shall close the message catalog identified by catd . If a file descriptor is
5716 used to implement the type nl_catd, that file descriptor shall be closed.

5717 RETURN VALUE
5718 Upon successful completion, catclose () shall return 0; otherwise, −1 shall be returned, and errno
5719 set to indicate the error.

5720 ERRORS
5721 The catclose () function may fail if:

5722 [EBADF] The catalog descriptor is not valid. |

5723 [EINTR] The catclose () function was interrupted by a signal. |

5724 EXAMPLES
5725 None.

5726 APPLICATION USAGE
5727 None.

5728 RATIONALE
5729 None.

5730 FUTURE DIRECTIONS
5731 None.

5732 SEE ALSO
5733 catgets(), catopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <nl_types.h> |

5734 CHANGE HISTORY
5735 First released in Issue 2.

5736 Issue 4
5737 The [EBADF] and [EINTR] errors are added to the ERRORS section.

664 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces catgets()

5738 NAME
5739 catgets — read a program message

5740 SYNOPSIS
5741 XSI #include <nl_types.h>

5742 char *catgets(nl_catd catd , int s et_id , int msg_id , const char * s);
5743

5744 DESCRIPTION
5745 The catgets() function attempts to read message msg_id , in set set_id , from the message catalog
5746 identified by catd . The catd argument is a message catalog descriptor returned from an earlier
5747 call to catopen(). The s argument points to a default message string which shall be returned by
5748 catgets() if it cannot retrieve the identified message.

5749 The catgets() function need not be reentrant. A function that is not required to be reentrant is not
5750 required to be thread-safe.

5751 RETURN VALUE
5752 If the identified message is retrieved successfully, catgets() shall return a pointer to an internal
5753 buffer area containing the null-terminated message string. If the call is unsuccessful for any
5754 reason, s shall be returned and errno may be set to indicate the error.

5755 ERRORS
5756 The catgets() function may fail if:

5757 [EBADF] The catd argument is not a valid message catalog descriptor open for reading. |

5758 [EINTR] The read operation was terminated due to the receipt of a signal, and no data |
5759 was transferred.

5760 [EINVAL] The message catalog identified by catd is corrupted. |

5761 [ENOMSG] The message identified by set_id and msg_id is not in the message catalog. |

5762 EXAMPLES
5763 None.

5764 APPLICATION USAGE
5765 None.

5766 RATIONALE
5767 None.

5768 FUTURE DIRECTIONS
5769 None.

5770 SEE ALSO
5771 catclose (), catopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <nl_types.h> |

5772 CHANGE HISTORY
5773 First released in Issue 2.

5774 Issue 4
5775 The type of argument s is changed from char* to const char*.

5776 The [EBADF] and [EINTR] errors are added to the ERRORS section.

System Interfaces, Issue 6 665

catgets() System Interfaces

5777 Issue 4, Version 2
5778 The following changes are incorporated for X/OPEN UNIX conformance:

5779 • The RETURN VALUE section notes that errno may be set to indicate an error.

5780 • In the ERRORS section, [EINVAL] and [ENOMSG] are added as optional errors.

5781 Issue 5
5782 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

5783 Issue 6
5784 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

666 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces catopen()

5785 NAME
5786 catopen — open a message catalog

5787 SYNOPSIS
5788 XSI #include <nl_types.h>

5789 nl_catd catopen(const char * name, int oflag);
5790

5791 DESCRIPTION
5792 The catopen() function shall open a message catalog and return a message catalog descriptor.
5793 The name argument specifies the name of the message catalog to be opened. If name contains a
5794 ’/’ , then name specifies a complete name for the message catalog. Otherwise, the environment
5795 variable NLSPATH is used with name substituted for %N (see the Base Definitions volume of |
5796 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables). If NLSPATH does not exist in the |
5797 environment, or if a message catalog cannot be found in any of the components specified by
5798 NLSPATH, then an implementation-defined default path is used. This default may be affected by |
5799 the setting of LC_MESSAGES if the value of oflag is NL_CAT_LOCALE, or the LANG
5800 environment variable if oflag is 0.

5801 A message catalog descriptor remains valid in a process until that process closes it, or a
5802 successful call to one of the exec functions. A change in the setting of the LC_MESSAGES
5803 category may invalidate existing open catalogs.

5804 If a file descriptor is used to implement message catalog descriptors, the FD_CLOEXEC flag
5805 shall be set; see <fcntl.h>.

5806 If the value of the oflag argument is 0, the LANG environment variable is used to locate the
5807 catalog without regard to the LC_MESSAGES category. If the oflag argument is
5808 NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalog (see the |
5809 Base Definitions volume of IEEE Std. 1003.1-200x, Section 8.2, Internationalization Variables). |

5810 RETURN VALUE
5811 Upon successful completion, catopen() shall return a message catalog descriptor for use on
5812 subsequent calls to catgets() and catclose (). Otherwise, catopen() shall return (nl_catd) −1 and set
5813 errno to indicate the error.

5814 ERRORS
5815 The catopen() function may fail if:

5816 [EACCES] Search permission is denied for the component of the path prefix of the |
5817 message catalog or read permission is denied for the message catalog.

5818 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

5819 [ENAMETOOLONG] |
5820 The length of a path name of the message catalog exceeds {PATH_MAX} or a |
5821 path name component is longer than {NAME_MAX}. |

5822 [ENAMETOOLONG]
5823 Path name resolution of a symbolic link produced an intermediate result
5824 whose length exceeds {PATH_MAX}.

5825 [ENFILE] Too many files are currently open in the system. |

5826 [ENOENT] The message catalog does not exist or the name argument points to an empty |
5827 string.

5828 [ENOMEM] Insufficient storage space is available. |

System Interfaces, Issue 6 667

catopen() System Interfaces

5829 [ENOTDIR] A component of the path prefix of the message catalog is not a directory. |

5830 EXAMPLES
5831 None.

5832 APPLICATION USAGE
5833 Some implementations of catopen() use malloc () to allocate space for internal buffer areas. The
5834 catopen() function may fail if there is insufficient storage space available to accommodate these
5835 buffers.

5836 Portable applications must assume that message catalog descriptors are not valid after a call to
5837 one of the exec functions.

5838 Application writers should be aware that guidelines for the location of message catalogs have
5839 not yet been developed. Therefore they should take care to avoid conflicting with catalogs used
5840 by other applications and the standard utilities.

5841 RATIONALE
5842 None.

5843 FUTURE DIRECTIONS
5844 None.

5845 SEE ALSO
5846 catclose (), catgets(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, |
5847 <nl_types.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x |

5848 CHANGE HISTORY
5849 First released in Issue 2.

5850 Issue 4
5851 The type of argument name is changed from char* to const char*.

5852 The DESCRIPTION is updated:

5853 • To indicate the longevity of message catalog descriptors.

5854 • To specify values for the oflag argument and the effect of LC_MESSAGES and NLSPATH.

5855 The [EACCES], [EMFILE], [ENAMETOOLONG], [ENFILE], [ENOENT], and [ENOTDIR] errors |
5856 are added to the ERRORS section. |

5857 The APPLICATION USAGE section is updated to indicate:

5858 • Portable applications should not assume the continued validity of message catalog
5859 descriptors after a call to one of the exec functions.

5860 • Message catalogs must be located with care.

5861 Issue 4, Version 2
5862 The following change is incorporated for X/OPEN UNIX conformance:

5863 • In the ERRORS section, an [ENAMETOOLONG] condition is defined that may report
5864 excessive length of an intermediate result of path name resolution of a symbolic link.

668 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cbrt()

5865 NAME
5866 cbrt, cbrtf, cbrtl — cube root functions |

5867 SYNOPSIS
5868 #include <math.h> |

5869 double cbrt(double x);
5870 float cbrtf(float x); |
5871 long double cbrtl(long double x); |

5872 DESCRIPTION |
5873 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5874 conflict between the requirements described here and the ISO C standard is unintentional. This |
5875 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5876 These functions shall compute the real cube root of x . |

5877 An application wishing to check for error situations should set errno to 0 before calling these |
5878 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

5879 RETURN VALUE
5880 Upon successful completion, these functions shall return the cube root of x . |

5881 If x is ±Inf, these functions shall return x . |

5882 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

5883 ERRORS
5884 These functions may fail if: |

5885 [EDOM] The value of x is NaN.

5886 EXAMPLES
5887 None.

5888 APPLICATION USAGE
5889 None.

5890 RATIONALE
5891 For some applications, a true cube root function, which returns negative results for negative |
5892 arguments, is more appropriate than pow(x , 1.0/3.0), which returns a NaN for x less than 0. |

5893 FUTURE DIRECTIONS
5894 None.

5895 SEE ALSO
5896 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

5897 CHANGE HISTORY
5898 First released in Issue 4, Version 2.

5899 Issue 5
5900 Moved from X/OPEN UNIX extension to BASE. |

5901 Issue 6 |
5902 The cbrt() function is no longer marked XSI. |

5903 The cbrtf() and cbrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |
|

System Interfaces, Issue 6 669

ccos() System Interfaces

5904 NAME |
5905 ccos, ccosf, ccosl — complex cosine functions |

5906 SYNOPSIS |
5907 #include <complex.h> |

5908 double complex ccos(double complex z); |
5909 float complex ccosf(float complex z); |
5910 long double complex ccosl(long double complex z); |

5911 DESCRIPTION |
5912 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5913 conflict between the requirements described here and the ISO C standard is unintentional. This |
5914 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5915 These functions shall compute the complex cosine of z . |

5916 RETURN VALUE |
5917 These functions shall return the complex cosine value. |

5918 ERRORS |
5919 No errors are defined. |

5920 EXAMPLES |
5921 None. |

5922 APPLICATION USAGE |
5923 None. |

5924 RATIONALE |
5925 None. |

5926 FUTURE DIRECTIONS |
5927 None. |

5928 SEE ALSO |
5929 cacos(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5930 CHANGE HISTORY |
5931 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

670 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ccosh()

5932 NAME |
5933 ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions |

5934 SYNOPSIS |
5935 #include <complex.h> |

5936 double complex ccosh(double complex z); |
5937 float complex ccoshf(float complex z); |
5938 long double complex ccoshl(long double complex z); |

5939 DESCRIPTION |
5940 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
5941 conflict between the requirements described here and the ISO C standard is unintentional. This |
5942 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

5943 These functions shall compute the complex hyperbolic cosine of z . |

5944 RETURN VALUE |
5945 These functions shall return the complex hyperbolic cosine value. |

5946 ERRORS |
5947 No errors are defined. |

5948 EXAMPLES |
5949 None. |

5950 APPLICATION USAGE |
5951 None. |

5952 RATIONALE |
5953 None. |

5954 FUTURE DIRECTIONS |
5955 None. |

5956 SEE ALSO |
5957 cacosh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

5958 CHANGE HISTORY |
5959 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 671

ceil() System Interfaces

5960 NAME
5961 ceil, ceilf, ceill — ceiling value function |

5962 SYNOPSIS
5963 #include <math.h>

5964 double ceil(double x);
5965 float ceilf(float x); |
5966 long double ceill(long double x); |

5967 DESCRIPTION |
5968 CX The functionality described on this reference page is aligned with the ISO C standard. Any
5969 conflict between the requirements described here and the ISO C standard is unintentional. This
5970 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

5971 The ceil(), ceilf(), and ceill() functions shall compute the smallest integral value not less than x . |

5972 An application wishing to check for error situations should set errno to 0 before calling ceil(). If
5973 errno is non-zero on return, or the return value is NaN, an error has occurred.

5974 RETURN VALUE
5975 Upon successful completion, the ceil(), ceilf(), and ceill() functions shall return the smallest |
5976 integral value not less than x , expressed as a type double. |

5977 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

5978 If the correct value would cause overflow, HUGE_VAL shall be returned and errno set to
5979 XSI [ERANGE]. If x is ±Inf or ±0, the value of x shall be returned. |

5980 ERRORS
5981 The ceil(), ceilf(), and ceill() functions shall fail if: |

5982 [ERANGE] The result overflows. |

5983 The ceil(), ceilf(), and ceill() functions may fail if: |

5984 XSI [EDOM] The value of x is NaN.

5985 XSI No other errors shall occur.

5986 EXAMPLES
5987 None.

5988 APPLICATION USAGE
5989 The integral value returned by ceil() as a double need not be expressible as an int or long. The |
5990 return value should be tested before assigning it to an integer type to avoid the undefined results
5991 of an integer overflow.

5992 The ceil() function can only overflow when the floating point representation has
5993 DBL_MANT_DIG > DBL_MAX_EXP.

5994 RATIONALE
5995 None.

5996 FUTURE DIRECTIONS
5997 None.

5998 SEE ALSO
5999 floor (), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

672 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ceil()

6000 CHANGE HISTORY
6001 First released in Issue 1. Derived from Issue 1 of the SVID. |

6002 Issue 4
6003 References to matherr() are removed.

6004 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
6005 ISO C standard and to rationalize error handling in the mathematics functions.

6006 The return value specified for [EDOM] is marked as an extension. |

6007 Support for x being ±Inf or ±0 is added to the RETURN VALUE section and marked as an
6008 extension.

6009 Issue 5
6010 The DESCRIPTION is updated to indicate how an application should check for an error. This
6011 text was previously published in the APPLICATION USAGE section. |

6012 Issue 6 |
6013 The ceilf() and ceill() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 673

cexp() System Interfaces

6014 NAME |
6015 cexp, cexpf, cexpl — complex exponential functions |

6016 SYNOPSIS |
6017 #include <complex.h> |

6018 double complex cexp(double complex z); |
6019 float complex cexpf(float complex z); |
6020 long double complex cexpl(long double complex z); |

6021 DESCRIPTION |
6022 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
6023 conflict between the requirements described here and the ISO C standard is unintentional. This |
6024 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

6025 These functions shall compute the complex exponent of z , defined as ez. |

6026 RETURN VALUE |
6027 These functions shall return the complex exponential value of z . |

6028 ERRORS |
6029 No errors are defined. |

6030 EXAMPLES |
6031 None. |

6032 APPLICATION USAGE |
6033 None. |

6034 RATIONALE |
6035 None. |

6036 FUTURE DIRECTIONS |
6037 None. |

6038 SEE ALSO |
6039 clog(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

6040 CHANGE HISTORY |
6041 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

674 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cfgetispeed()

6042 NAME
6043 cfgetispeed — get input baud rate

6044 SYNOPSIS
6045 #include <termios.h>

6046 speed_t cfgetispeed(const struct termios * termios_p);

6047 DESCRIPTION
6048 The cfgetispeed() function shall extract the input baud rate from the termios structure to which
6049 the termios_p argument points.

6050 This function shall return exactly the value in the termios data structure, without interpretation.

6051 RETURN VALUE
6052 Upon successful completion, cfgetispeed() shall return a value of type speed_t representing the
6053 input baud rate.

6054 ERRORS
6055 No errors are defined.

6056 EXAMPLES
6057 None.

6058 APPLICATION USAGE
6059 None.

6060 RATIONALE
6061 The term baud is used historically here, but is not technically correct. This is properly ‘‘bits per
6062 second’’, which may not be the same as baud. However, the term is used because of the
6063 historical usage and understanding.

6064 The cfgetospeed(), cfgetispeed(), cfsetospeed(), and cfsetispeed() functions do not take arguments as
6065 numbers, but rather as symbolic names. There are two reasons for this:

6066 1. Historically, numbers were not used because of the way the rate was stored in the data
6067 structure. This is retained even though a function is now used.

6068 2. More importantly, only a limited set of possible rates is at all portable, and this constrains
6069 the application to that set.

6070 There is nothing to prevent an implementation to accept, as an extension, a number (such as 126)
6071 if it wished, and because the encoding of the Bxxx symbols is not specified, this can be done so
6072 no ambiguity is introduced.

6073 Setting the input baud rate to zero was a mechanism to allow for split baud rates. Clarifications
6074 in this volume of IEEE Std. 1003.1-200x have made it possible to determine whether split rates
6075 are supported and to support them without having to treat zero as a special case. Since this
6076 functionality is also confusing, it has been declared obsolescent. The 0 argument referred to is
6077 the literal constant 0, not the symbolic constant B0. This volume of IEEE Std. 1003.1-200x does
6078 not preclude B0 from being defined as the value 0; in fact, implementations would likely benefit
6079 from the two being equivalent. This volume of IEEE Std. 1003.1-200x does not fully specify
6080 whether the previous cfsetispeed() value is retained after a tcgetattr() as the actual value or as
6081 zero. Therefore, portable applications should always set both the input speed and output speed
6082 when setting either.

6083 In historical implementations, the baud rate information is traditionally kept in c_cflag.
6084 Applications should be written to presume that this might be the case (and thus not blindly copy
6085 c_cflag), but not to rely on it in case it is in some other field of the structure. Setting the c_cflag
6086 field absolutely after setting a baud rate is a non-portable action because of this. In general, the

System Interfaces, Issue 6 675

cfgetispeed() System Interfaces

6087 unused parts of the flag fields might be used by the implementation and should not be blindly
6088 copied from the descriptions of one terminal device to another.

6089 FUTURE DIRECTIONS
6090 None.

6091 SEE ALSO
6092 cfgetospeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume of |
6093 IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, |
6094 Chapter 11, General Terminal Interface |

6095 CHANGE HISTORY
6096 First released in Issue 3.

6097 Entry included for alignment with the POSIX.1-1988 standard.

6098 Issue 4
6099 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

6100 • The type of the argument termios_p is changed from struct termios* to const struct termios*.

6101 • The DESCRIPTION is changed to indicate that the function simply returns the value from
6102 termios_p , irrespective of how that structure was obtained. Issue 3 states that if termios_p was
6103 not obtained by a successful call to tcgetattr(), the behavior is undefined.

676 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cfgetospeed()

6104 NAME
6105 cfgetospeed — get output baud rate

6106 SYNOPSIS
6107 #include <termios.h>

6108 speed_t cfgetospeed(const struct termios * termios_p);

6109 DESCRIPTION
6110 The cfgetospeed() function shall extract the output baud rate from the termios structure to which
6111 the termios_p argument points.

6112 This function shall return exactly the value in the termios data structure, without interpretation.

6113 RETURN VALUE
6114 Upon successful completion, cfgetospeed() shall return a value of type speed_t representing the
6115 output baud rate.

6116 ERRORS
6117 No errors are defined.

6118 EXAMPLES
6119 None.

6120 APPLICATION USAGE
6121 None.

6122 RATIONALE
6123 Refer to cfgetispeed().

6124 FUTURE DIRECTIONS
6125 None.

6126 SEE ALSO
6127 cfgetispeed(), cfsetispeed(), cfsetospeed(), tcgetattr(), the Base Definitions volume of |
6128 IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, |
6129 Chapter 11, General Terminal Interface |

6130 CHANGE HISTORY
6131 First released in Issue 3.

6132 Entry included for alignment with the POSIX.1-1988 standard.

6133 Issue 4
6134 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

6135 • The type of the argument termios_p is changed from struct termios* to const struct termios*.

6136 • The DESCRIPTION is changed to indicate that the function simply returns the value from
6137 termios_p , irrespective of how that structure was obtained. Issue 3 states that if termios_p was
6138 not obtained by a successful call to tcgetattr(), the behavior is undefined.

System Interfaces, Issue 6 677

cfsetispeed() System Interfaces

6139 NAME
6140 cfsetispeed — set input baud rate

6141 SYNOPSIS
6142 #include <termios.h>

6143 int cfsetispeed(struct termios * termios_p , speed_t speed);

6144 DESCRIPTION
6145 The cfsetispeed() function shall set the input baud rate stored in the structure pointed to by
6146 termios_p to speed.

6147 There shall be no effect on the baud rates set in the hardware until a subsequent successful call
6148 to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
6149 baud rates not supported by the terminal device need not be detected until the tcsetattr()
6150 function is called.

6151 RETURN VALUE
6152 Upon successful completion, cfsetispeed() shall return 0; otherwise, −1 shall be returned, and |
6153 errno may be set to indicate the error. |

6154 ERRORS
6155 The cfsetispeed() function may fail if:

6156 [EINVAL] The speed value is not a valid baud rate. |

6157 [EINVAL] The value of speed is outside the range of possible speed values as specified in |
6158 <termios.h>. |

6159 EXAMPLES
6160 None.

6161 APPLICATION USAGE
6162 None.

6163 RATIONALE
6164 Refer to cfgetispeed().

6165 FUTURE DIRECTIONS
6166 None.

6167 SEE ALSO
6168 cfgetispeed(), cfgetospeed(), cfsetospeed(), tcsetattr(), the Base Definitions volume of |
6169 IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, |
6170 Chapter 11, General Terminal Interface |

6171 CHANGE HISTORY
6172 First released in Issue 3.

6173 Entry included for alignment with the POSIX.1-1988 standard.

6174 Issue 4
6175 The first description of the [EINVAL] error is added and is marked as an extension. |

6176 Issue 4, Version 2
6177 The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
6178 speed is outside the range of possible speed values given in <termios.h>.

678 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cfsetispeed()

6179 Issue 6
6180 The following new requirements on POSIX implementations derive from alignment with the
6181 Single UNIX Specification:

6182 • The optional setting of errno and the [EINVAL] error conditions are added.

System Interfaces, Issue 6 679

cfsetospeed() System Interfaces

6183 NAME
6184 cfsetospeed — set output baud rate

6185 SYNOPSIS
6186 #include <termios.h>

6187 int cfsetospeed(struct termios * termios_p , speed_t speed);

6188 DESCRIPTION
6189 The cfsetospeed() function shall set the output baud rate stored in the structure pointed to by
6190 termios_p to speed.

6191 There shall be no effect on the baud rates set in the hardware until a subsequent successful call
6192 to tcsetattr() with the same termios structure. Similarly, errors resulting from attempts to set
6193 baud rates not supported by the terminal device need not be detected until the tcsetattr()
6194 function is called.

6195 RETURN VALUE
6196 Upon successful completion, cfsetospeed() shall return 0; otherwise, it shall return −1 and errno |
6197 may be set to indicate the error. |

6198 ERRORS
6199 The cfsetospeed() function may fail if:

6200 [EINVAL] The speed value is not a valid baud rate. |

6201 [EINVAL] The value of speed is outside the range of possible speed values as specified in |
6202 <termios.h>. |

6203 EXAMPLES
6204 None.

6205 APPLICATION USAGE
6206 None.

6207 RATIONALE
6208 Refer to cfgetispeed().

6209 FUTURE DIRECTIONS
6210 None.

6211 SEE ALSO
6212 cfgetispeed(), cfgetospeed(), cfsetispeed(), tcsetattr(), the Base Definitions volume of |
6213 IEEE Std. 1003.1-200x, <termios.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, |
6214 Chapter 11, General Terminal Interface |

6215 CHANGE HISTORY
6216 First released in Issue 3.

6217 Entry included for alignment with the POSIX.1-1988 standard.

6218 Issue 4
6219 The first description of the [EINVAL] error is added and is marked as an extension. |

6220 Issue 4, Version 2
6221 The ERRORS section is changed to indicate that [EINVAL] may be returned if the specified
6222 speed is outside the range of possible speed values given in <termios.h>.

680 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cfsetospeed()

6223 Issue 6
6224 The following new requirements on POSIX implementations derive from alignment with the
6225 Single UNIX Specification:

6226 • The optional setting of errno and the [EINVAL] error conditions are added.

System Interfaces, Issue 6 681

chdir() System Interfaces

6227 NAME
6228 chdir — change working directory

6229 SYNOPSIS
6230 #include <unistd.h>

6231 int chdir(const char * path);

6232 DESCRIPTION
6233 The chdir() function shall cause the directory named by the path name pointed to by the path
6234 argument to become the current working directory; that is, the starting point for path searches
6235 for path names not beginning with ’/’ .

6236 RETURN VALUE
6237 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, the current
6238 working directory shall remain unchanged, and errno shall be set to indicate the error.

6239 ERRORS
6240 The chdir() function shall fail if:

6241 [EACCES] Search permission is denied for any component of the path name. |

6242 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
6243 argument. |

6244 [ENAMETOOLONG] |
6245 The length of the path argument exceeds {PATH_MAX} or a path name |
6246 component is longer than {NAME_MAX}. |

6247 [ENOENT] A component of path does not name an existing directory or path is an empty |
6248 string.

6249 [ENOTDIR] A component of the path name is not a directory. |

6250 The chdir() function may fail if:

6251 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
6252 resolution of the path argument. |

6253 [ENAMETOOLONG] |
6254 As a result of encountering a symbolic link in resolution of the path argument,
6255 the length of the substituted path name string exceeded {PATH_MAX}. |

6256 EXAMPLES

6257 Changing the Current Working Directory

6258 The following example makes the value pointed to by directory, /tmp, the current working
6259 directory.

6260 #include <unistd.h>
6261 ...
6262 char *directory = "/tmp";
6263 int ret;

6264 ret = chdir (directory);

682 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chdir()

6265 APPLICATION USAGE
6266 The chdir() function only affects the working directory of the current process. The result if a
6267 NULL argument is passed to chdir() is unspecified because some implementations dynamically
6268 allocate space in that case.

6269 RATIONALE
6270 The chdir() function only affects the working directory of the current process.

6271 The result if a NULL argument is passed to chdir() is left implementation-defined because some |
6272 implementations dynamically allocate space in that case. |

6273 FUTURE DIRECTIONS
6274 None.

6275 SEE ALSO
6276 getcwd(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

6277 CHANGE HISTORY
6278 First released in Issue 1. Derived from Issue 1 of the SVID. |

6279 Issue 4
6280 The <unistd.h> header is added to the SYNOPSIS section.

6281 The following change is incorporated for alignment with the ISO POSIX-1 standard:

6282 • The type of argument path is changed from char* to const char*.

6283 The following change is incorporated for alignment with the FIPS requirements:

6284 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
6285 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
6286 an extension.

6287 Issue 4, Version 2
6288 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

6289 • It states that [ELOOP] is returned if too many symbolic links are encountered during path |
6290 name resolution.

6291 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an |
6292 intermediate result of path name resolution of a symbolic link.

6293 Issue 6
6294 The APPLICATION USAGE section is added.

6295 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

6296 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
6297 This is since behavior may vary from one file system to another.

6298 The following new requirements on POSIX implementations derive from alignment with the
6299 Single UNIX Specification:

6300 • The [ELOOP] mandatory error condition is added.

6301 • A second [ENAMETOOLONG] is added as an optional error condition.

6302 The following changes were made to align with the IEEE P1003.1a draft standard:

6303 • The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 683

chmod() System Interfaces

6304 NAME
6305 chmod — change mode of a file

6306 SYNOPSIS
6307 #include <sys/stat.h>

6308 int chmod(const char * path , mode_t mode);

6309 DESCRIPTION
6310 XSI The chmod() function shall change S_ISUID, S_ISGID, S_ISVTX, and the file permission bits of
6311 the file named by the path name pointed to by the path argument to the corresponding bits in the
6312 mode argument. The application shall ensure that the effective user ID of the process matches the
6313 owner of the file or the process has appropriate privileges in order to do this.

6314 S_ISUID, S_ISGID, and the file permission bits are described in <sys/stat.h>.

6315 XSI If a directory is writable and the mode bit S_ISVTX is set on the directory, a process may remove
6316 or rename files within that directory only if one or more of the following is true:

6317 • The effective user ID of the process is the same as that of the owner ID of the file.

6318 • The effective user ID of the process is the same as that of the owner ID of the directory.

6319 • The process has appropriate privileges.
6320 |

6321 XSI If the S_ISVTX bit is set on a non-directory file, the behavior is unspecified.

6322 If the calling process does not have appropriate privileges, and if the group ID of the file does
6323 not match the effective group ID or one of the supplementary group IDs and if the file is a
6324 regular file, bit S_ISGID (set-group-ID on execution) in the file’s mode shall be cleared upon
6325 successful return from chmod().

6326 Additional implementation-defined restrictions may cause the S_ISUID and S_ISGID bits in |
6327 mode to be ignored.

6328 The effect on file descriptors for files open at the time of a call to chmod() is implementation- |
6329 defined. |

6330 Upon successful completion, chmod() shall mark for update the st_ctime field of the file.

6331 RETURN VALUE
6332 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
6333 indicate the error. If −1 is returned, no change to the file mode occurs.

6334 ERRORS
6335 The chmod() function shall fail if:

6336 [EACCES] Search permission is denied on a component of the path prefix. |

6337 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
6338 argument. |

6339 [ENAMETOOLONG] |
6340 The length of the path argument exceeds {PATH_MAX} or a path name
6341 component is longer than {NAME_MAX}. |

6342 [ENOTDIR] A component of the path prefix is not a directory. |

6343 [ENOENT] A component of path does not name an existing file or path is an empty string. |

6344 [EPERM] The effective user ID does not match the owner of the file and the process |
6345 does not have appropriate privileges.

684 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chmod()

6346 [EROFS] The named file resides on a read-only file system. |

6347 The chmod() function may fail if:

6348 [EINTR] A signal was caught during execution of the function. |

6349 [EINVAL] The value of the mode argument is invalid. |

6350 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
6351 resolution of the path argument. |

6352 [ENAMETOOLONG] |
6353 As a result of encountering a symbolic link in resolution of the path argument,
6354 the length of the substituted path name strings exceeded {PATH_MAX}. |

6355 EXAMPLES

6356 Setting Read Permissions for User, Group, and Others

6357 The following example sets read permissions for the owner, group, and others.

6358 #include <sys/stat.h>

6359 const char *path;
6360 ...
6361 chmod(path, S_IRUSR|S_IRGRP|S_IROTH);

6362 Setting Read, Write, and Execute Permissions for the Owner Only

6363 The following example sets read, write, and execute permissions for the owner, and no
6364 permissions for group and others.

6365 #include <sys/stat.h>

6366 const char *path;
6367 ...
6368 chmod(path, S_IRWXU);

6369 Setting Different Permissions for Owner, Group, and Other

6370 The following example sets owner permissions for CHANGEFILE to read, write, and execute,
6371 group permissions to read and execute, and other permissions to read.

6372 #include <sys/stat.h>

6373 #define CHANGEFILE "/etc/myfile"
6374 ...
6375 chmod(CHANGEFILE, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH);

6376 Setting and Checking File Permissions

6377 The following example sets the file permission bits for a file named /home/cnd/mod1, then calls
6378 the stat() function to verify the permissions.

6379 #include <sys/types.h>
6380 #include <sys/stat.h>

6381 int status;
6382 struct stat buffer
6383 ...

System Interfaces, Issue 6 685

chmod() System Interfaces

6384 chmod("home/cnd/mod1", S_IRWXU|S_IRWXG|S_IROTH|S_IWOTH);
6385 status = stat("home/cnd/mod1", &buffer;);

6386 APPLICATION USAGE
6387 In order to ensure that the S_ISUID and S_ISGID bits are set, an application requiring this should
6388 use stat() after a successful chmod() to verify this.

6389 Any file descriptors currently open by any process on the file could possibly become invalid if |
6390 the mode of the file is changed to a value which would deny access to that process. One |
6391 situation where this could occur is on a stateless file system. This behavior will not occur in a |
6392 conforming environment. |

6393 RATIONALE
6394 This volume of IEEE Std. 1003.1-200x specifies that the S_ISGID bit is cleared by chmod() on a
6395 regular file under certain conditions. This is specified on the assumption that regular files may
6396 be executed, and the system should prevent users from making executable setgid() files perform
6397 with privileges that the caller does not have. On implementations that support execution of
6398 other file types, the S_ISGID bit should be cleared for those file types under the same
6399 circumstances.

6400 Implementations that use the S_ISUID bit to indicate some other function (for example,
6401 mandatory record locking) on non-executable files need not clear this bit on writing. They
6402 should clear the bit for executable files and any other cases where the bit grants special powers
6403 to processes that change the file contents. Similar comments apply to the S_ISGID bit.

6404 FUTURE DIRECTIONS
6405 None.

6406 SEE ALSO
6407 chown(), mkdir(), mkfifo (), open(), stat(), statvfs(), the Base Definitions volume of |
6408 IEEE Std. 1003.1-200x, <sys/stat.h>, <sys/types.h> |

6409 CHANGE HISTORY
6410 First released in Issue 1. Derived from Issue 1 of the SVID. |

6411 Issue 4
6412 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
6413 XSI-conformant systems.

6414 The [EINVAL] error is marked as an extension.

6415 The following change is incorporated for alignment with the ISO POSIX-1 standard:

6416 • The type of argument path is changed from char* to const char*.

6417 The following change is incorporated for alignment with the FIPS requirements:

6418 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
6419 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
6420 an extension.

6421 Issue 4, Version 2
6422 The following changes are incorporated for X/OPEN UNIX conformance:

6423 • The DESCRIPTION is updated to describe X/OPEN UNIX functionality relating to
6424 permission checks applied when removing or renaming files in a directory having the
6425 S_ISVTX bit set.

6426 • In the ERRORS section, the condition whereby [ELOOP] is returned if too many symbolic
6427 links are encountered during path name resolution is defined as mandatory, and [EINTR] is

686 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chmod()

6428 added as an optional error.

6429 • In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
6430 excessive length of an intermediate result of path name resolution of a symbolic link.

6431 Issue 6
6432 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

6433 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
6434 This is since behavior may vary from one file system to another.

6435 The following new requirements on POSIX implementations derive from alignment with the
6436 Single UNIX Specification:

6437 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
6438 required for conforming implementations of previous POSIX specifications, it was not
6439 required for UNIX applications.

6440 • The [EINVAL] and [EINTR] optional error conditions are added.

6441 • A second [ENAMETOOLONG] is added as an optional error condition.

6442 The following changes were made to align with the IEEE P1003.1a draft standard:

6443 • The [ELOOP] optional error condition is added.

6444 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 687

chown() System Interfaces

6445 NAME
6446 chown — change owner and group of a file

6447 SYNOPSIS
6448 #include <unistd.h>

6449 int chown(const char * path , uid_t owner , gid_t group);

6450 DESCRIPTION
6451 The path argument points to a path name naming a file. The user ID and group ID of the named
6452 file are set to the numeric values contained in owner and group , respectively.

6453 Only processes with an effective user ID equal to the user ID of the file or with appropriate
6454 privileges may change the ownership of a file. If _POSIX_CHOWN_RESTRICTED is in effect for
6455 path:

6456 • Changing the user ID is restricted to processes with appropriate privileges.

6457 • Changing the group ID is permitted to a process with an effective user ID equal to the user
6458 ID of the file, but without appropriate privileges, if and only if owner is equal to the file’s user
6459 ID or (uid_t)−1 and group is equal either to the calling process’ effective group ID or to one of
6460 its supplementary group IDs.

6461 If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP, or S_IXOTH bits of
6462 the file mode are set, and the process does not have appropriate privileges, the set-user-ID
6463 (S_ISUID) and set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
6464 return from chown(). If the specified file is a regular file, one or more of the S_IXUSR, S_IXGRP,
6465 or S_IXOTH bits of the file mode are set, and the process has appropriate privileges, it is |
6466 implementation-defined whether the set-user-ID and set-group-ID bits are altered. If the chown() |
6467 function is successfully invoked on a file that is not a regular file and one or more of the
6468 S_IXUSR, S_IXGRP, or S_IXOTH bits of the file mode are set, the set-user-ID and set-group-ID
6469 bits may be cleared.

6470 If owner or group is specified as (uid_t)−1 or (gid_t)−1, respectively, the corresponding ID of the
6471 file is unchanged.

6472 Upon successful completion, chown() shall mark for update the st_ctime field of the file.

6473 RETURN VALUE
6474 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
6475 indicate the error. If −1 is returned, no changes are made in the user ID and group ID of the file.

6476 ERRORS
6477 The chown() function shall fail if:

6478 [EACCES] Search permission is denied on a component of the path prefix. |

6479 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
6480 argument.

6481 [ENAMETOOLONG] |
6482 The length of the path argument exceeds {PATH_MAX} or a path name
6483 component is longer than {NAME_MAX}. |

6484 [ENOTDIR] A component of the path prefix is not a directory. |

6485 [ENOENT] A component of path does not name an existing file or path is an empty string. |

6486 [EPERM] The effective user ID does not match the owner of the file, or the calling |
6487 process does not have appropriate privileges and
6488 _POSIX_CHOWN_RESTRICTED indicates that such privilege is required.

688 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chown()

6489 [EROFS] The named file resides on a read-only file system. |

6490 The chown() function may fail if:

6491 [EIO] An I/O error occurred while reading or writing to the file system. |

6492 [EINTR] The chown() function was interrupted by a signal which was caught. |

6493 [EINVAL] The owner or group ID supplied is not a value supported by the |
6494 implementation.

6495 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
6496 resolution of the path argument.

6497 [ENAMETOOLONG] |
6498 As a result of encountering a symbolic link in resolution of the path argument,
6499 the length of the substituted path name string exceeded {PATH_MAX}.

6500 EXAMPLES
6501 None.

6502 APPLICATION USAGE
6503 Although chown() can be used on some systems by the file owner to change the owner and
6504 group to any desired values, the only portable use of this function is to change the group of a file
6505 to the effective GID of the calling process or to a member of its group set.

6506 RATIONALE
6507 System III and System V allow a user to give away files; that is, the owner of a file may change
6508 its user ID to anything. This is a serious problem for implementations that are intended to meet
6509 government security regulations. Version 7 and 4.3 BSD permit only the superuser to change the
6510 user ID of a file. Some government agencies (usually not ones concerned directly with security)
6511 find this limitation too confining. This volume of IEEE Std. 1003.1-200x uses may to permit
6512 secure implementations while not disallowing System V.

6513 System III and System V allow the owner of a file to change the group ID to anything. Version 7
6514 permits only the superuser to change the group ID of a file. 4.3 BSD permits the owner to
6515 change the group ID of a file to its effective group ID or to any of the groups in the list of
6516 supplementary group IDs, but to no others.

6517 The POSIX.1-1990 standard requires that the chown() function invoked by a non-appropriate
6518 privileged process clear the S_ISGID and the S_ISUID bits for regular files, and permits them to
6519 be cleared for other types of files. This is so that changes in accessibility do not accidentally
6520 cause files to become security holes. Unfortunately, requiring these bits to be cleared on non-
6521 executable data files also clears the mandatory file locking bit (shared withwith S_ISGID), which |
6522 is an extension on many implementations (it first appeared in System V). These bits should only
6523 be required to be cleared on regular files that have one or more of their execute bits set.

6524 FUTURE DIRECTIONS
6525 None.

6526 SEE ALSO
6527 chmod(), pathconf (), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
6528 <unistd.h>

CHANGE6529 HISTORY
6530 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 689

chown() System Interfaces

6531 Issue 4
6532 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
6533 XSI-conformant systems.

6534 The value for owner of (uid_t)−1 is added to the DESCRIPTION to allow the use of −1 by the
6535 owner of a file to change the group ID only.

6536 The APPLICATION USAGE section is added.

6537 The following change is incorporated for alignment with the ISO POSIX-1 standard:

6538 • The type of argument path is changed from char* to const char*.

6539 The following changes are incorporated for alignment with the FIPS requirements:

6540 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
6541 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
6542 an extension.

6543 • In the ERRORS section, the condition whereby [EPERM] is returned when an attempt is
6544 made to change the user ID of a file and the caller does not have appropriate privileges is
6545 now defined as mandatory and marked as an extension.

6546 Issue 4, Version 2
6547 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

6548 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
6549 name resolution.

6550 • The [EIO] and [EINTR] optional conditions are added.

6551 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
6552 intermediate result of path name resolution of a symbolic link.

6553 Issue 6
6554 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

6555 • The wording describing the optional dependency on _POSIX_CHOWN_RESTRICTED is
6556 restored.

6557 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
6558 This is since behavior may vary from one file system to another.

6559 • The [EPERM] error is restored as an error dependent on _POSIX_CHOWN_RESTRICTED.
6560 This is since its operand is a path name and applications should be aware that the error may
6561 not occur for that path name if the file system does not support
6562 _POSIX_CHOWN_RESTRICTED.

6563 The following new requirements on POSIX implementations derive from alignment with the
6564 Single UNIX Specification:

6565 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
6566 required for conforming implementations of previous POSIX specifications, it was not
6567 required for UNIX applications.

6568 • The value for owner of (uid_t)−1 allows the use of −1 by the owner of a file to change the
6569 group ID only.

6570 • The [ELOOP] mandatory error condition is added.

6571 • The [EIO] and [EINTR] optional error conditions are added.

690 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces chown()

6572 • A second [ENAMETOOLONG] is added as an optional error condition.

6573 The following changes were made to align with the IEEE P1003.1a draft standard:

6574 • Clarification is added that the S_ISUID and S_ISGID bits do not need to be cleared when the
6575 process has appropriate privileges.

6576 • The [ELOOP] optional error condition is added.
|

System Interfaces, Issue 6 691

cimag() System Interfaces

6577 NAME |
6578 cimag, cimagf, cimagl — complex imaginary functions |

6579 SYNOPSIS |
6580 #include <complex.h> |

6581 double cimag(double complex z); |
6582 float cimagf(float complex z); |
6583 long double cimagl(long double complex z); |

6584 DESCRIPTION |
6585 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
6586 conflict between the requirements described here and the ISO C standard is unintentional. This |
6587 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

6588 These functions shall compute the imaginary part of z . |

6589 RETURN VALUE |
6590 These functions shall return the imaginary part value (as a real). |

6591 ERRORS |
6592 No errors are defined. |

6593 EXAMPLES |
6594 None. |

6595 APPLICATION USAGE |
6596 For a variable z of complex type: |

6597 z == creal(z) + cimag(z)*I |

6598 RATIONALE |
6599 None. |

6600 FUTURE DIRECTIONS |
6601 None. |

6602 SEE ALSO |
6603 carg(), conj(), cproj(), creal(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

6604 CHANGE HISTORY |
6605 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

692 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clearerr()

6606 NAME
6607 clearerr — clear indicators on a stream

6608 SYNOPSIS
6609 #include <stdio.h>

6610 void clearerr(FILE * stream);

6611 DESCRIPTION
6612 CX The functionality described on this reference page is aligned with the ISO C standard. Any
6613 conflict between the requirements described here and the ISO C standard is unintentional. This
6614 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

6615 The clearerr() function shall clear the end-of-file and error indicators for the stream to which
6616 stream points.

6617 RETURN VALUE
6618 The clearerr() function shall return no value.

6619 ERRORS
6620 No errors are defined.

6621 EXAMPLES
6622 None.

6623 APPLICATION USAGE
6624 None.

6625 RATIONALE
6626 None.

6627 FUTURE DIRECTIONS
6628 None.

6629 SEE ALSO
6630 The Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

6631 CHANGE HISTORY
6632 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 693

clock() System Interfaces

6633 NAME
6634 clock — report CPU time used

6635 SYNOPSIS
6636 #include <time.h>

6637 clock_t clock(void);

6638 DESCRIPTION
6639 CX The functionality described on this reference page is aligned with the ISO C standard. Any
6640 conflict between the requirements described here and the ISO C standard is unintentional. This
6641 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

6642 The clock () function shall return the implementation’s best approximation to the processor time
6643 used by the process since the beginning of an implementation-defined time related only to the |
6644 process invocation. |

6645 RETURN VALUE
6646 To determine the time in seconds, the value returned by clock () should be divided by the value
6647 XSI of the macro CLOCKS_PER_SEC. CLOCKS_PER_SEC is defined to be one million in <time.h>.
6648 If the processor time used is not available or its value cannot be represented, the function shall
6649 return the value (clock_t)−1.

6650 ERRORS
6651 No errors are defined.

6652 EXAMPLES
6653 None.

6654 APPLICATION USAGE
6655 In order to measure the time spent in a program, clock () should be called at the start of the
6656 program and its return value subtracted from the value returned by subsequent calls. The value
6657 returned by clock () is defined for compatibility across systems that have clocks with different
6658 resolutions. The resolution on any particular system need not be to microsecond accuracy.

6659 The value returned by clock () may wrap around on some systems. For example, on a machine
6660 with 32-bit values for clock_t, it wraps after 2 147 seconds or 36 minutes.

6661 RATIONALE
6662 None.

6663 FUTURE DIRECTIONS
6664 None.

6665 SEE ALSO
6666 asctime(), ctime(), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(), |
6667 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

6668 CHANGE HISTORY
6669 First released in Issue 1. Derived from Issue 1 of the SVID. |

6670 Issue 4
6671 Reference to the resolution of CLOCKS_PER_SEC is marked as an extension.

6672 The ERRORS section is added.

6673 Advice on how to calculate the time spent in a program is added to the APPLICATION USAGE
6674 section.

6675 The following changes are incorporated for alignment with the ISO C standard:

694 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clock()

6676 • The <time.h> header is added to the SYNOPSIS section.

6677 • The DESCRIPTION and RETURN VALUE sections, though functionally equivalent to Issue
6678 3, are rewritten for clarity and consistency with the ISO C standard. This issue also defines
6679 under what circumstances (clock_t)−1 can be returned by the function.

6680 • The function is no longer marked as an extension.

System Interfaces, Issue 6 695

clock_getcpuclockid() System Interfaces

6681 NAME
6682 clock_getcpuclockid — access a process CPU-time clock (REALTIME)

6683 SYNOPSIS
6684 CPT #include <time.h>

6685 int clock_getcpuclockid(pid_t pid , clockid_t * clock_id); |
6686 |

6687 DESCRIPTION
6688 The clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of the process
6689 specified by pid . If the process described by pid exists and the calling process has permission,
6690 the clock ID of this clock shall be returned in clock_id .

6691 If pid is zero, the clock_getcpuclockid() function shall return the clock ID of the CPU-time clock of
6692 the process making the call, in clock_id .

6693 The conditions under which one process has permission to obtain the CPU-time clock ID of |
6694 other processes are implementation-defined. |

6695 RETURN VALUE
6696 Upon successful completion, clock_getcpuclockid() shall return zero; otherwise, an error number
6697 shall be returned to indicate the error.

6698 ERRORS
6699 The clock_getcpuclockid() function shall fail if:

6700 [EPERM] The requesting process does not have permission to access the CPU-time
6701 clock for the process.

6702 The clock_getcpuclockid() function may fail if:

6703 [ESRCH] No process can be found corresponding to the process specified by pid . |

6704 EXAMPLES
6705 None.

6706 APPLICATION USAGE
6707 The clock_getcpuclockid() function is part of the Process CPU-Time Clocks option and need not |
6708 be provided on all implementations. |

6709 RATIONALE
6710 None.

6711 FUTURE DIRECTIONS
6712 None.

6713 SEE ALSO
6714 clock_getres(), timer_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

6715 CHANGE HISTORY
6716 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

6717 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

696 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clock_getres()

6718 NAME
6719 clock_getres, clock_gettime, clock_settime — clock and timer functions (REALTIME)

6720 SYNOPSIS
6721 TMR #include <time.h>

6722 int clock_getres(clockid_t clock_id , struct timespec * res);
6723 int clock_settime(clockid_t clock_id , const struct timespec * tp);
6724 int clock_gettime(clockid_t clock_id , struct timespec * tp);
6725

6726 DESCRIPTION
6727 The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are |
6728 implementation-defined and cannot be set by a process. If the argument res is not NULL, the |
6729 resolution of the specified clock shall be stored in the location pointed to by res. If res is NULL,
6730 the clock resolution is not returned. If the time argument of clock_settime() is not a multiple of res,
6731 then the value is truncated to a multiple of res.

6732 The clock_gettime() function shall return the current value tp for the specified clock, clock_id .

6733 The clock_settime() function shall set the specified clock, clock_id , to the value specified by tp .
6734 Time values that are between two consecutive non-negative integer multiples of the resolution
6735 of the specified clock are truncated down to the smaller multiple of the resolution.

6736 A clock may be system-wide (that is, visible to all processes) or per-process (measuring time that
6737 is meaningful only within a process). All implementations shall support a clock_id of
6738 CLOCK_REALTIME defined in <time.h>. This clock represents the realtime clock for the
6739 system. For this clock, the values returned by clock_gettime() and specified by clock_settime()
6740 represent the amount of time (in seconds and nanoseconds) since the Epoch. An implementation
6741 may also support additional clocks. The interpretation of time values for these clocks is
6742 unspecified.

6743 If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
6744 shall be used to determine the time of expiration for absolute time services based upon the
6745 CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the
6746 absolute time requested at the invocation of such a time service is before the new value of the
6747 clock, the time service shall expire immediately as if the clock had reached the requested time
6748 normally.

6749 Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on
6750 threads that are blocked waiting for a relative time service based upon this clock, including the
6751 nanosleep() function; nor on the expiration of relative timers based upon this clock.
6752 Consequently, these time services shall expire when the requested relative interval elapses,
6753 independently of the new or old value of the clock.

6754 MON If the Monotonic Clock option is supported, all implementations shall support a clock_id of
6755 CLOCK_MONOTONIC defined in <time.h>. This clock represents the monotonic clock for the
6756 system. For this clock, the value returned by clock_gettime() represents the amount of time (in
6757 seconds and nanoseconds) since an unspecified point in the past (for example, system start-up
6758 time, or the Epoch). This point does not change after system start-up time. The value of the
6759 CLOCK_MONOTONIC clock cannot be set via clock_settime(). This function shall fail if it is
6760 invoked with a clock_id argument of CLOCK_MONOTONIC.

6761 The effect of setting a clock via clock_settime() on armed per-process timers associated with a
6762 clock other than CLOCK_REALTIME is implementation-defined. |

6763 CS If the value of the CLOCK_REALTIME clock is set via clock_settime(), the new value of the clock
6764 shall be used to determine the time at which the system shall awaken a thread blocked on an

System Interfaces, Issue 6 697

clock_getres() System Interfaces

6765 absolute clock_nanosleep() call based upon the CLOCK_REALTIME clock. If the absolute time
6766 requested at the invocation of such a time service is before the new value of the clock, the call
6767 shall return immediately as if the clock had reached the requested time normally.

6768 Setting the value of the CLOCK_REALTIME clock via clock_settime() shall have no effect on any
6769 thread that is blocked on a relative clock_nanosleep() call. Consequently, the call shall return
6770 when the requested relative interval elapses, independently of the new or old value of the clock.

6771 The appropriate privilege to set a particular clock is implementation-defined. |

6772 CPT If _POSIX_CPUTIME is defined, implementations shall support clock ID values obtained by
6773 invoking clock_getcpuclockid(), which represent the CPU-time clock of a given process.
6774 Implementations shall also support the special clockid_t value
6775 CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time clock of the calling process
6776 when invoking one of the clock_* () or timer_*() functions. For these clock IDs, the values |
6777 returned by clock_gettime() and specified by clock_settime() represent the amount of execution
6778 time of the process associated with the clock. Changing the value of a CPU-time clock via
6779 clock_settime () shall have no effect on the behavior of the sporadic server scheduling policy (see
6780 Scheduling Policies (on page 546)).

6781 TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock ID values
6782 obtained by invoking pthread_getcpuclockid(), which represent the CPU-time clock of a given
6783 thread. Implementations shall also support the special clockid_t value
6784 CLOCK_THREAD_CPUTIME_ID, which represents the CPU-time clock of the calling thread
6785 when invoking one of the clock_* () or timer_*() functions. For these clock IDs, the values |
6786 returned by clock_gettime() and specified by clock_settime() represent the amount of execution
6787 time of the thread associated with the clock. Changing the value of a CPU-time clock via
6788 clock_settime () shall have no effect on the behavior of the sporadic server scheduling policy (see
6789 Scheduling Policies (on page 546)).

6790 RETURN VALUE
6791 A return value of 0 shall indicate that the call succeeded. A return value of −1 shall indicate that
6792 an error occurred, and errno shall be set to indicate the error.

6793 ERRORS
6794 The clock_getres(), clock_gettime(), and clock_settime() functions shall fail if:

6795 [EINVAL] The clock_id argument does not specify a known clock. |

6796 The clock_settime() function shall fail if:

6797 [EINVAL] The tp argument to clock_settime() is outside the range for the given clock ID. |

6798 [EINVAL] The tp argument specified a nanosecond value less than zero or greater than
6799 or equal to 1 000 million.

6800 MON [EINVAL] The value of the clock_id argument is CLOCK_MONOTONIC.

6801 The clock_settime() function may fail if:

6802 [EPERM] The requesting process does not have the appropriate privilege to set the |
6803 specified clock.

698 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clock_getres()

6804 EXAMPLES
6805 None.

6806 APPLICATION USAGE
6807 These functions are part of the Timers option and need not be available on all implementations. |

6808 Note that the absolute value of the monotonic clock is meaningless (because its origin is
6809 arbitrary), and thus there is no need to set it. Furthermore, realtime applications can rely on the
6810 fact that the value of this clock is never set and, therefore, that time intervals measured with this
6811 clock will not be affected by calls to clock_settime().

6812 RATIONALE
6813 None.

6814 FUTURE DIRECTIONS
6815 None.

6816 SEE ALSO
6817 clock_getcpuclockid(), clock_nanosleep(), ctime(), mq_timedreceive(), mq_timedsend(), nanosleep(),
6818 pthread_mutex_timedlock(), sem_timedwait(), time(), timer_create(), timer_getoverrun(), the Base |
6819 Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

6820 CHANGE HISTORY
6821 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

6822 Issue 6
6823 The [ENOSYS] error condition has been removed as stubs need not be provided if an
6824 implementation does not support the Timers option. |

6825 The APPLICATION USAGE section is added.

6826 The following changes were made to align with the IEEE P1003.1a draft standard:

6827 • Clarification is added of the effect of resetting the clock resolution.

6828 CPU-time clocks and the clock_getcpuclockid() function are added for alignment with
6829 IEEE Std. 1003.1d-1999.

6830 The following changes are added for alignment with IEEE Std. 1003.1j-2000:

6831 • The DESCRIPTION is updated as follows:

6832 — The value returned by clock_gettime() for CLOCK_MONOTONIC is specified.

6833 — clock_settime() failing for CLOCK_MONOTONIC is specified.

6834 — The effects of clock_settime() on the clock_nanosleep() function with respect to
6835 CLOCK_REALTIME is specified.

6836 • An [EINVAL] error is added to the ERRORS section, indicating that clock_settime() fails for
6837 CLOCK_MONOTONIC.

6838 • The APPLICATION USAGE section notes that the CLOCK_MONOTONIC clock need not
6839 and shall not be set by clock_settime() since the absolute value of the CLOCK_MONOTONIC
6840 clock is meaningless.

6841 • The clock_nanosleep(), mq_timedreceive(), mq_timedsend(), pthread_mutex_timedlock(),
6842 sem_timedwait(), timer_create(), and timer_settime() functions are added to the SEE ALSO
6843 section.

System Interfaces, Issue 6 699

clock_nanosleep() System Interfaces

6844 NAME
6845 clock_nanosleep — high resolution sleep with specifiable clock

6846 SYNOPSIS
6847 CS #include <time.h>

6848 int clock_nanosleep(clockid_t clock_id , int flags ,
6849 const struct timespec * rqtp , struct timespec * rmtp);
6850

6851 DESCRIPTION
6852 If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function shall
6853 cause the current thread to be suspended from execution until either the time interval specified
6854 by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its action is to
6855 invoke a signal-catching function, or the process is terminated. The clock used to measure the
6856 time shall be the clock specified by clock_id .

6857 If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function shall
6858 cause the current thread to be suspended from execution until either the time value of the clock
6859 specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
6860 delivered to the calling thread and its action is to invoke a signal-catching function, or the
6861 process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
6862 equal to the time value of the specified clock, then clock_nanosleep() shall return immediately
6863 and the calling process shall not be suspended.

6864 The suspension time caused by this function may be longer than requested because the
6865 argument value is rounded up to an integer multiple of the sleep resolution, or because of the
6866 scheduling of other activity by the system. But, except for the case of being interrupted by a
6867 signal, the suspension time for the relative clock_nanosleep() function (that is, with the
6868 TIMER_ABSTIME flag not set) shall not be less than the time interval specified by rqtp, as
6869 measured by the corresponding clock. The suspension for the absolute clock_nanosleep() function
6870 (that is, with the TIMER_ABSTIME flag set) shall be in effect at least until the value of the
6871 corresponding clock reaches the absolute time specified by rqtp, except for the case of being
6872 interrupted by a signal.

6873 The use of the clock_nanosleep() function shall have no effect on the action or blockage of any
6874 signal.

6875 The clock_nanosleep() function shall fail if the clock_id argument refers to the CPU-time clock of
6876 the calling thread. It is unspecified if clock_id values of other CPU-time clocks are allowed.

6877 RETURN VALUE
6878 If the clock_nanosleep() function returns because the requested time has elapsed, its return value
6879 shall be zero.

6880 If the clock_nanosleep() function returns because it has been interrupted by a signal, it shall return
6881 the corresponding error value. For the relative clock_nanosleep() function, if the rmtp argument is
6882 non-NULL, the timespec structure referenced by it shall be updated to contain the amount of
6883 time remaining in the interval (the requested time minus the time actually slept). If the rmtp
6884 argument is NULL, the remaining time is not returned. The absolute clock_nanosleep() function
6885 has no effect on the structure referenced by rmtp.

6886 If clock_nanosleep() fails, it shall return the corresponding error value.

700 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clock_nanosleep()

6887 ERRORS
6888 The clock_nanosleep() function shall fail if:

6889 [EINTR] The clock_nanosleep() function was interrupted by a signal.

6890 [EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than
6891 or equal to 1 000 million; or the TIMER_ABSTIME flag was specified in flags
6892 and the rqtp argument is outside the range for the clock specified by clock_id;
6893 or the clock_id argument does not specify a known clock, or specifies the
6894 CPU-time clock of the calling thread.

6895 [ENOTSUP] The clock_id argument specifies a clock for which clock_nanosleep() is not
6896 supported, such as a CPU-time clock.

6897 EXAMPLES
6898 None.

6899 APPLICATION USAGE
6900 Calling clock_nanosleep() with the value TIMER_ABSTIME not set in the flags argument and with
6901 a clock_id of CLOCK_REALTIME is equivalent to calling nanosleep() with the same rqtp and rmtp
6902 arguments.

6903 RATIONALE
6904 The nanosleep() function specifies that the system-wide clock CLOCK_REALTIME is used to
6905 measure the elapsed time for this time service. However, with the introduction of the monotonic
6906 clock CLOCK_MONOTONIC a new relative sleep function is needed to allow an application to
6907 take advantage of the special characteristics of this clock.

6908 There are many applications in which a process needs to be suspended and then activated
6909 multiple times in a periodic way; for example, to poll the status of a non-interrupting device or
6910 to refresh a display device. For these cases, it is known that precise periodic activation cannot be
6911 achieved with a relative sleep() or nanosleep() function call. Suppose, for example, a periodic
6912 process that is activated at time T0, executes for a while, and then wants to suspend itself until
6913 time T0+T, the period being T. If this process wants to use the nanosleep() function, it must first
6914 call clock_gettime() to get the current time, then calculate the difference between the current time
6915 and T0+T and, finally, call nanosleep() using the computed interval. However, the process could
6916 be preempted by a different process between the two function calls, and in this case the interval
6917 computed would be wrong; the process would wake up later than desired. This problem would
6918 not occur with the absolute clock_nanosleep() function, since only one function call would be
6919 necessary to suspend the process until the desired time. In other cases, however, a relative sleep
6920 is needed, and that is why both functionalities are required.

6921 Although it is possible to implement periodic processes using the timers interface, this
6922 implementation would require the use of signals, and the reservation of some signal numbers. In
6923 this regard, the reasons for including an absolute version of the clock_nanosleep() function in
6924 IEEE Std. 1003.1-200x are the same as for the inclusion of the relative nanosleep().

6925 It is also possible to implement precise periodic processes using pthread_cond_timedwait(), in
6926 which an absolute timeout is specified that takes effect if the condition variable involved is
6927 never signaled. However, the use of this interface is unnatural, and involves performing other
6928 operations on mutexes and condition variables that imply an unnecessary overhead.
6929 Furthermore, pthread_cond_timedwait() is not available in implementations that do not support
6930 threads.

6931 Although the interface of the relative and absolute versions of the new high resolution sleep
6932 service is the same clock_nanosleep() function, the rmtp argument is only used in the relative
6933 sleep. This argument is needed in the relative clock_nanosleep() function to reissue the function

System Interfaces, Issue 6 701

clock_nanosleep() System Interfaces

6934 call if it is interrupted by a signal, but it is not needed in the absolute clock_nanosleep() function
6935 call; if the call is interrupted by a signal, the absolute clock_nanosleep() function can be invoked
6936 again with the same rqtp argument used in the interrupted call.

6937 FUTURE DIRECTIONS
6938 None.

6939 SEE ALSO
6940 clock_getres(), nanosleep(), pthread_cond_timedwait(), sleep(), the Base Definitions volume of |
6941 IEEE Std. 1003.1-200x, <time.h> |

6942 CHANGE HISTORY
6943 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

|

702 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces clog()

6944 NAME |
6945 clog, clogf, clogl — complex natural logarithm functions |

6946 SYNOPSIS |
6947 #include <complex.h> |

6948 double complex clog(double complex z); |
6949 float complex clogf(float complex z); |
6950 long double complex clogl(long double complex z); |

6951 DESCRIPTION |
6952 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
6953 conflict between the requirements described here and the ISO C standard is unintentional. This |
6954 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

6955 These functions shall compute the complex natural (base e) logarithm of z , with a branch cut |
6956 along the negative real axis. |

6957 RETURN VALUE |
6958 These functions shall return the complex natural logarithm value, in the range of a strip |
6959 mathematically unbounded along the real axis and in the interval [−iπ, +iπ] along the imaginary |
6960 axis. |

6961 ERRORS |
6962 No errors are defined. |

6963 EXAMPLES |
6964 None. |

6965 APPLICATION USAGE |
6966 None. |

6967 RATIONALE |
6968 None. |

6969 FUTURE DIRECTIONS |
6970 None. |

6971 SEE ALSO |
6972 cexp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

6973 CHANGE HISTORY |
6974 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 703

close() System Interfaces

6975 NAME
6976 close — close a file descriptor

6977 SYNOPSIS
6978 #include <unistd.h>

6979 int close(int fildes);

6980 DESCRIPTION
6981 The close() function shall deallocate the file descriptor indicated by fildes . To deallocate means
6982 to make the file descriptor available for return by subsequent calls to open() or other functions
6983 that allocate file descriptors. All outstanding record locks owned by the process on the file
6984 associated with the file descriptor shall be removed (that is, unlocked).

6985 If close() is interrupted by a signal that is to be caught, it shall return −1 with errno set to [EINTR] |
6986 and the state of fildes is unspecified. If an I/O error occurred while reading from or writing to the
6987 file system during close(), it may return −1 with errno set to [EIO]; if this error is returned, the
6988 state of fildes is unspecified.

6989 When all file descriptors associated with a pipe or FIFO special file are closed, any data
6990 remaining in the pipe or FIFO shall be discarded.

6991 When all file descriptors associated with an open file description have been closed the open file
6992 description shall be freed.

6993 If the link count of the file is 0, when all file descriptors associated with the file are closed, the
6994 space occupied by the file shall be freed and the file shall no longer be accessible.

6995 XSR If a STREAMS-based fildes is closed and the calling process was previously registered to receive
6996 a SIGPOLL signal for events associated with that STREAM, the calling process shall be
6997 unregistered for events associated with the STREAM. The last close() for a STREAM causes the
6998 STREAM associated with fildes to be dismantled. If O_NONBLOCK is not set and there have
6999 been no signals posted for the STREAM, and if there is data on the module’s write queue, close()
7000 waits for an unspecified time (for each module and driver) for any output to drain before
7001 dismantling the STREAM. The time delay can be changed via an I_SETCLTIME ioctl () request. If
7002 the O_NONBLOCK flag is set, or if there are any pending signals, close() does not wait for
7003 output to drain, and dismantles the STREAM immediately.

7004 If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a
7005 pipe, the last close() causes a hangup to occur on the other end of the pipe. In addition, if the
7006 other end of the pipe has been named by fattach (), then the last close() forces the named end to
7007 be detached by fdetach (). If the named end has no open file descriptors associated with it and
7008 gets detached, the STREAM associated with that end is also dismantled.

7009 If fildes refers to the master side of a pseudo-terminal, and this is the last close, a SIGHUP signal
7010 is sent to the process group, if any, for which the slave side of the pseudo-terminal is the
7011 controlling terminal. It is unspecified whether closing the master side of the pseudo-terminal
7012 flushes all queued input and output.

7013 If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message
7014 may be sent to the master.

7015 AIO When there is an outstanding cancelable asynchronous I/O operation against fildes when close()
7016 is called, that I/O operation may be canceled. An I/O operation that is not canceled completes
7017 as if the close() operation had not yet occurred. All operations that are not canceled shall
7018 complete as if the close() blocked until the operations completed. The close() operation itself
7019 need not block awaiting such I/O completion. Whether any I/O operation is canceled, and
7020 which I/O operation may be canceled upon close(), is implementation-defined. |

704 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces close()

7021 MF|SHM If a shared memory object or a memory mapped file remains referenced at the last close (that is,
7022 a process has it mapped), then the entire contents of the memory object shall persist until the
7023 memory object becomes unreferenced. If this is the last close of a shared memory object or a
7024 memory mapped file and the close results in the memory object becoming unreferenced, and the
7025 memory object has been unlinked, then the memory object shall be removed.

7026 If fildes refers to a socket, close() shall cause the socket to be destroyed. If the socket is in
7027 connection-mode, and the SO_LINGER option is set for the socket with non-zero linger time,
7028 and the socket has untransmitted data, then close() shall block for up to the current linger
7029 interval until all data is transmitted.

7030 RETURN VALUE
7031 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
7032 indicate the error.

7033 ERRORS
7034 The close() function shall fail if:

7035 [EBADF] The fildes argument is not a valid file descriptor. |

7036 [EINTR] The close() function was interrupted by a signal. |

7037 The close() function may fail if:

7038 [EIO] An I/O error occurred while reading from or writing to the file system. |

7039 EXAMPLES

7040 Reassigning a File Descriptor

7041 The following example closes the file descriptor associated with standard output for the current
7042 process, re-assigns standard output to a new file descriptor, and closes the original file
7043 descriptor to clean up. This example assumes that the file descriptor 0 (which is the descriptor |
7044 for standard input) is not closed. |

7045 #include <unistd.h>
7046 ...
7047 int pfd;
7048 ...
7049 close(1);
7050 dup(pfd);
7051 close(pfd);
7052 ...

7053 Incidentally, this is exactly what could be achieved using: |

7054 dup2(pfd, 1); |
7055 close(pfd); |

7056 Closing a File Descriptor |

7057 In the following example, close() is used to close a file descriptor after an unsuccessful attempt is
7058 made to associate that file descriptor with a stream.

7059 #include <stdio.h>
7060 #include <unistd.h>
7061 #include <stdlib.h>

System Interfaces, Issue 6 705

close() System Interfaces

7062 #define LOCKFILE "/etc/ptmp"
7063 ...
7064 int pfd;
7065 FILE *fpfd;
7066 ...
7067 if ((fpfd = fdopen (pfd, "w")) == NULL) {
7068 close(pfd);
7069 unlink(LOCKFILE);
7070 exit(1);
7071 }
7072 ...

7073 APPLICATION USAGE
7074 An application that had used the stdio routine fopen() to open a file should use the
7075 corresponding fclose() routine rather than close(). Once a file is closed, the file descriptor no
7076 longer exists, since the integer corresponding to it no longer refers to a file.

7077 RATIONALE
7078 The use of interruptible device close routines should be discouraged to avoid problems with the
7079 implicit closes of file descriptors by exec and exit(). This volume of IEEE Std. 1003.1-200x only |
7080 intends to permit such behavior by specifying the [EINTR] error condition. |

7081 FUTURE DIRECTIONS
7082 None.

7083 SEE ALSO
7084 fattach (), fclose(), fdetach (), fopen(), ioctl (), open(), the Base Definitions volume of |
7085 IEEE Std. 1003.1-200x, <unistd.h>, Section 2.6 (on page 539) |

7086 CHANGE HISTORY
7087 First released in Issue 1. Derived from Issue 1 of the SVID. |

7088 Issue 4
7089 The <unistd.h> header is added to the SYNOPSIS section.

7090 Issue 4, Version 2
7091 The following changes are incorporated for X/OPEN UNIX conformance:

7092 • The DESCRIPTION is updated to describe the actions of closing a file descriptor referring to
7093 a STREAMS-based file or either side of a pseudo-terminal.

7094 • The ERRORS section describes a condition under which the [EIO] error may be returned.

7095 Issue 5
7096 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

7097 Issue 6
7098 The DESCRIPTION related to a STREAMS-based file or pseudo-terminal is marked as part of the
7099 XSI STREAMS Option Group.

7100 The following new requirements on POSIX implementations derive from alignment with the
7101 Single UNIX Specification:

7102 • The [EIO] error condition is added as an optional error.

7103 • The DESCRIPTION is updated to describe the state of the fildes file descriptor as unspecified
7104 if an I/O error occurs and an [EIO] error condition is returned.

7105 Text referring to sockets is added to the DESCRIPTION.

706 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces close()

7106 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
7107 shared memory objects and memory mapped files (and not typed memory objects) are the types
7108 of memory objects to which the paragraph on last closes applies.

System Interfaces, Issue 6 707

closedir() System Interfaces

7109 NAME
7110 closedir — close a directory stream

7111 SYNOPSIS
7112 #include <dirent.h>

7113 int closedir(DIR * dirp);

7114 DESCRIPTION
7115 The closedir() function shall close the directory stream referred to by the argument dirp . Upon
7116 return, the value of dirp may no longer point to an accessible object of the type DIR. If a file
7117 descriptor is used to implement type DIR, that file descriptor shall be closed.

7118 RETURN VALUE
7119 Upon successful completion, closedir() shall return 0; otherwise, −1 shall be returned and errno
7120 set to indicate the error.

7121 ERRORS
7122 The closedir() function may fail if:

7123 [EBADF] The dirp argument does not refer to an open directory stream. |

7124 [EINTR] The closedir() function was interrupted by a signal. |

7125 EXAMPLES

7126 Closing a Directory Stream

7127 The following program fragment demonstrates how the closedir() function is used.

7128 ...
7129 DIR *dir;
7130 struct dirent *dp;
7131 ...
7132 if ((dir = opendir (".")) == NULL) {
7133 ...
7134 }

7135 while ((dp = readdir (dir)) != NULL) {
7136 ...
7137 }

7138 closedir(dir);
7139 ...

7140 APPLICATION USAGE
7141 None.

7142 RATIONALE
7143 None.

7144 FUTURE DIRECTIONS
7145 None.

7146 SEE ALSO
7147 opendir(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dirent.h> |

708 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closedir()

7148 CHANGE HISTORY
7149 First released in Issue 2.

7150 Issue 4
7151 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
7152 XSI-conformant systems.

7153 The [EINTR] error is marked as an extension.

7154 Issue 6
7155 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

7156 The following new requirements on POSIX implementations derive from alignment with the
7157 Single UNIX Specification:

7158 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
7159 required for conforming implementations of previous POSIX specifications, it was not
7160 required for UNIX applications.

7161 • The [EINTR] error condition is added as an optional error condition.

System Interfaces, Issue 6 709

closelog() System Interfaces

7162 NAME
7163 closelog, openlog, setlogmask, syslog — control system log

7164 SYNOPSIS
7165 XSI #include <syslog.h>

7166 void closelog(void);
7167 void openlog(const char * ident , int logopt , int facility);
7168 int setlogmask(int maskpri);
7169 void syslog(int priority , const char * message , ... /* arguments */);
7170

7171 DESCRIPTION
7172 The syslog() function shall send a message to an implementation-defined logging facility, which |
7173 may log it in an implementation-defined system log, write it to the system console, forward it to |
7174 a list of users, or forward it to the logging facility on another host over the network. The logged
7175 message shall include a message header and a message body. The message header contains at
7176 least a timestamp and a tag string.

7177 The message body is generated from the message and following arguments in the same manner
7178 as if these were arguments to printf(), except that occurrences of %m in the format string
7179 pointed to by the message argument are replaced by the error message string associated with the
7180 current value of errno. A trailing <newline> character is added if needed.

7181 Values of the priority argument are formed by OR’ing together a severity level value and an
7182 optional facility value. If no facility value is specified, the current default facility value is used.

7183 Possible values of severity level include:

7184 LOG_EMERG A panic condition.

7185 LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
7186 database.

7187 LOG_CRIT Critical conditions, such as hard device errors.

7188 LOG_ERR Errors.

7189 LOG_WARNING
7190 Warning messages.

7191 LOG_NOTICE Conditions that are not error conditions, but that may require special
7192 handling.

7193 LOG_INFO Informational messages.

7194 LOG_DEBUG Messages that contain information normally of use only when debugging a
7195 program.

7196 The facility indicates the application or system component generating the message. Possible
7197 facility values include:

7198 LOG_USER Messages generated by arbitrary processes. This is the default facility |
7199 identifier if none is specified.

7200 LOG_LOCAL0 Reserved for local use.

7201 LOG_LOCAL1 Reserved for local use.

7202 LOG_LOCAL2 Reserved for local use.

710 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closelog()

7203 LOG_LOCAL3 Reserved for local use.

7204 LOG_LOCAL4 Reserved for local use.

7205 LOG_LOCAL5 Reserved for local use.

7206 LOG_LOCAL6 Reserved for local use.

7207 LOG_LOCAL7 Reserved for local use.

7208 The openlog () function shall set process attributes that affect subsequent calls to syslog(). The
7209 ident argument is a string that is prepended to every message. The logopt argument indicates
7210 logging options. Values for logopt are constructed by a bitwise-inclusive OR of zero or more of
7211 the following:

7212 LOG_PID Log the process ID with each message. This is useful for identifying specific
7213 processes.

7214 LOG_CONS Write messages to the system console if they cannot be sent to the logging
7215 facility. The syslog() function ensures that the process does not acquire the
7216 console as a controlling terminal in the process of writing the message.

7217 LOG_NDELAY Open the connection to the logging facility immediately. Normally the open is
7218 delayed until the first message is logged. This is useful for programs that need
7219 to manage the order in which file descriptors are allocated.

7220 LOG_ODELAY Delay open until syslog() is called.

7221 LOG_NOWAIT Do not wait for child processes that may have been created during the course
7222 of logging the message. This option should be used by processes that enable
7223 notification of child termination using SIGCHLD, since syslog() may
7224 otherwise block waiting for a child whose exit status has already been
7225 collected.

7226 The facility argument encodes a default facility to be assigned to all messages that do not have
7227 an explicit facility already encoded. The initial default facility is LOG_USER.

7228 The openlog () and syslog() functions may allocate a file descriptor. It is not necessary to call
7229 openlog () prior to calling syslog().

7230 The closelog () function shall close any open file descriptors allocated by previous calls to
7231 openlog () or syslog().

7232 The setlogmask () function shall set the log priority mask for the current process to maskpri and
7233 return the previous mask. If the maskpri argument is 0, the current log mask is not modified.
7234 Calls by the current process to syslog() with a priority not set in maskpri shall be rejected. The
7235 default log mask allows all priorities to be logged. A call to openlog () is not required prior to |
7236 calling setlogmask (). |

7237 Symbolic constants for use as values of the logopt , facility , priority , and maskpri arguments are
7238 defined in the <syslog.h> header.

7239 RETURN VALUE
7240 The setlogmask () function shall return the previous log priority mask. The closelog (), openlog (),
7241 and syslog() functions shall return no value.

7242 ERRORS
7243 No errors are defined.

System Interfaces, Issue 6 711

closelog() System Interfaces

7244 EXAMPLES

7245 Using openlog()

7246 The following example causes subsequent calls to syslog() to log the process ID with each
7247 message, and to write messages to the system console if they cannot be sent to the logging
7248 facility.

7249 #include <syslog.h>

7250 char *ident = "Process demo";
7251 int logopt = LOG_PID | LOG_CONS;
7252 int facility = LOG_USER;
7253 ...
7254 openlog(ident, logopt, facility);

7255 Using setlogmask()

7256 The following example causes subsequent calls to syslog() to accept error messages or messages |
7257 generated by arbitrary processes, and to reject all other messages. |

7258 #include <syslog.h>

7259 int result;
7260 int mask = LOG_MASK (LOG_ERR | LOG_USER);
7261 ...
7262 result = setlogmask(mask);

7263 Using syslog

7264 The following example sends the message "This is a message" to the default logging
7265 facility, marking the message as an error message generated by random processes.

7266 #include <syslog.h>

7267 char *message = "This is a message";
7268 int priority = LOG_ERR | LOG_USER;
7269 ...
7270 syslog(priority, message);

7271 APPLICATION USAGE
7272 None.

7273 RATIONALE
7274 None.

7275 FUTURE DIRECTIONS
7276 None.

7277 SEE ALSO
7278 printf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <syslog.h> |

7279 CHANGE HISTORY
7280 First released in Issue 4, Version 2.

712 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces closelog()

7281 Issue 5
7282 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 713

confstr() System Interfaces

7283 NAME
7284 confstr — get configurable variables

7285 SYNOPSIS
7286 #include <unistd.h>

7287 size_t confstr(int name, char * buf , size_t len);

7288 DESCRIPTION
7289 The confstr() function provides a method for applications to get configuration-defined string
7290 values. Its use and purpose are similar to sysconf(), but it is used where string values rather than
7291 numeric values are returned.

7292 The name argument represents the system variable to be queried. The implementation shall
7293 support the following name values, defined in <unistd.h>. It may support others:

7294 _CS_PATH
7295 _CS_POSIX_V6_ILP32_OFF32_CFLAGS |
7296 _CS_POSIX_V6_ILP32_OFF32_LDFLAGS |
7297 _CS_POSIX_V6_ILP32_OFF32_LIBS |
7298 _CS_POSIX_V6_ILP32_OFF32_LINTFLAGS |
7299 _CS_POSIX_V6_ILP32_OFFBIG_CFLAGS |
7300 _CS_POSIX_V6_ILP32_OFFBIG_LDFLAGS |
7301 _CS_POSIX_V6_ILP32_OFFBIG_LIBS |
7302 _CS_POSIX_V6_ILP32_OFFBIG_LINTFLAGS |
7303 _CS_POSIX_V6_LP64_OFF64_CFLAGS |
7304 _CS_POSIX_V6_LP64_OFF64_LDFLAGS |
7305 _CS_POSIX_V6_LP64_OFF64_LIBS |
7306 _CS_POSIX_V6_LP64_OFF64_LINTFLAGS |
7307 _CS_POSIX_V6_LPBIG_OFFBIG_CFLAGS |
7308 _CS_POSIX_V6_LPBIG_OFFBIG_LDFLAGS |
7309 _CS_POSIX_V6_LPBIG_OFFBIG_LIBS |
7310 _CS_POSIX_V6_LPBIG_OFFBIG_LINTFLAGS |
7311 XSI _CS_XBS5_ILP32_OFF32_CFLAGS (LEGACY) |
7312 _CS_XBS5_ILP32_OFF32_LDFLAGS (LEGACY) |
7313 _CS_XBS5_ILP32_OFF32_LIBS (LEGACY) |
7314 _CS_XBS5_ILP32_OFF32_LINTFLAGS (LEGACY) |
7315 _CS_XBS5_ILP32_OFFBIG_CFLAGS (LEGACY) |
7316 _CS_XBS5_ILP32_OFFBIG_LDFLAGS (LEGACY) |
7317 _CS_XBS5_ILP32_OFFBIG_LIBS (LEGACY) |
7318 _CS_XBS5_ILP32_OFFBIG_LINTFLAGS (LEGACY) |
7319 _CS_XBS5_LP64_OFF64_CFLAGS (LEGACY) |
7320 _CS_XBS5_LP64_OFF64_LDFLAGS (LEGACY) |
7321 _CS_XBS5_LP64_OFF64_LIBS (LEGACY) |
7322 _CS_XBS5_LP64_OFF64_LINTFLAGS (LEGACY) |
7323 _CS_XBS5_LPBIG_OFFBIG_CFLAGS (LEGACY) |
7324 _CS_XBS5_LPBIG_OFFBIG_LDFLAGS (LEGACY) |
7325 _CS_XBS5_LPBIG_OFFBIG_LIBS (LEGACY) |
7326 _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS (LEGACY) |
7327 |

7328 If len is not 0, and if name has a configuration-defined value, confstr() shall copy that value into
7329 the len-byte buffer pointed to by buf. If the string to be returned is longer than len bytes,
7330 including the terminating null, then confstr() shall truncate the string to len−1 bytes and null-
7331 terminate the result. The application can detect that the string was truncated by comparing the

714 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces confstr()

7332 value returned by confstr() with len.

7333 If len is 0 and buf is a null pointer, then confstr() shall still return the integer value as defined
7334 below, but shall not return a string. If len is 0 but buf is not a null pointer, the result is
7335 unspecified.

7336 If the implementation supports the Shell option, the string stored in buf after a call to: |

7337 confstr(_CS_PATH, buf, sizeof(buf))

7338 can be used as a value of the PATH environment variable that accesses all of the standard
7339 utilities of IEEE Std. 1003.1-200x, if the return value is less than or equal to sizeof (buf).

7340 RETURN VALUE
7341 If name has a configuration-defined value, confstr() shall return the size of buffer that would be
7342 needed to hold the entire configuration-defined value including the terminating null. If this
7343 return value is greater than len, the string returned in buf is truncated.

7344 If name is invalid, confstr() shall return 0 and set errno to indicate the error.

7345 If name does not have a configuration-defined value, confstr() shall return 0 and leave errno
7346 unchanged.

7347 ERRORS
7348 The confstr() function shall fail if:

7349 [EINVAL] The value of the name argument is invalid. |

7350 EXAMPLES
7351 None.

7352 APPLICATION USAGE
7353 An application can distinguish between an invalid name parameter value and one that
7354 corresponds to a configurable variable that has no configuration-defined value by checking if
7355 errno is modified. This mirrors the behavior of sysconf().

7356 The original need for this function was to provide a way of finding the configuration-defined
7357 default value for the environment variable PATH. Since PATH can be modified by the user to
7358 include directories that could contain utilities replacing the standard utilities in the Shell and |
7359 Utilities volume of IEEE Std. 1003.1-200x, applications need a way to determine the system- |
7360 supplied PATH environment variable value that contains the correct search path for the standard
7361 utilities.

7362 An application could use:

7363 confstr(name, (char *)NULL, (size_t)0)

7364 to find out how big a buffer is needed for the string value; use malloc () to allocate a buffer to
7365 hold the string; and call confstr() again to get the string. Alternately, it could allocate a fixed,
7366 static buffer that is big enough to hold most answers (perhaps 512 or 1 024 bytes), but then use
7367 malloc () to allocate a larger buffer if it finds that this is too small.

7368 RATIONALE
7369 Application developers can normally determine any configuration variable by means of reading
7370 from the stream opened by a call to:

7371 popen("command -p getconf variable", "r");

7372 The confstr() function with a name argument of _CS_PATH returns a string that can be used as a
7373 PATH environment variable setting that will reference the standard shell and utilities as |
7374 described in the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

System Interfaces, Issue 6 715

confstr() System Interfaces

7375 The confstr() function copies the returned string into a buffer supplied by the application instead
7376 of returning a pointer to a string. This allows a cleaner function in some implementations (such
7377 as those with lightweight threads) and resolves questions about when the application must copy |
7378 the string returned.

7379 FUTURE DIRECTIONS
7380 None.

7381 SEE ALSO
7382 pathconf (), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h>, the Shell |
7383 and Utilities volume of IEEE Std. 1003.1-200x, c99 |

7384 CHANGE HISTORY
7385 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

7386 Issue 5
7387 A table indicating the permissible values of name are added to the DESCRIPTION. All those
7388 marked EX are new in this issue.

7389 Issue 6
7390 The Open Group corrigenda item U033/7 has been applied. The return value for the case
7391 returning the size of the buffer now explicitly states that this includes the terminating null.

7392 The following new requirements on POSIX implementations derive from alignment with the
7393 Single UNIX Specification:

7394 • The DESCRIPTION is updated with new arguments which can be used to determine
7395 configuration strings for C compiler flags, linker/loader flags, and libraries for each different
7396 supported programming environment. This is a change to support data size neutrality.

7397 The following changes were made to align with the IEEE P1003.1a draft standard:

7398 • The DESCRIPTION is updated to include text describing how _CS_PATH can be used to
7399 obtain a PATH to access the standard utilities.

7400 The macros associated with the c89 programming models are marked LEGACY and new |
7401 equivalent macros associated with c99 are introduced. |

|

716 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces conj()

7402 NAME |
7403 conj, conjf, conjl — complex conjugate functions |

7404 SYNOPSIS |
7405 #include <complex.h> |

7406 double complex conj(double complex z); |
7407 float complex conjf(float complex z); |
7408 long double complex conjl(long double complex z); |

7409 DESCRIPTION |
7410 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7411 conflict between the requirements described here and the ISO C standard is unintentional. This |
7412 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7413 These functions shall compute the complex conjugate of z , by reversing the sign of its imaginary |
7414 part. |

7415 RETURN VALUE |
7416 These functions return the complex conjugate value. |

7417 ERRORS |
7418 No errors are defined. |

7419 EXAMPLES |
7420 None. |

7421 APPLICATION USAGE |
7422 None. |

7423 RATIONALE |
7424 None. |

7425 FUTURE DIRECTIONS |
7426 None. |

7427 SEE ALSO |
7428 carg(), cimag(), cproj(), creal(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
7429 <complex.h> |

7430 CHANGE HISTORY |
7431 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 717

connect() System Interfaces

7432 NAME
7433 connect — connect a socket

7434 SYNOPSIS
7435 #include <sys/socket.h>

7436 int connect(int socket , const struct sockaddr * address ,
7437 socklen_t address_len);

7438 DESCRIPTION
7439 The connect() function requests a connection to be made on a socket. The function takes the
7440 following arguments:

7441 socket Specifies the file descriptor associated with the socket.

7442 address Points to a sockaddr structure containing the peer address. The length and
7443 format of the address depend on the address family of the socket.

7444 address_len Specifies the length of the sockaddr structure pointed to by the address
7445 argument.

7446 If the socket has not already been bound to a local address, connect() shall bind it to an address
7447 which, unless the socket’s address family is AF_UNIX, is an unused local address.

7448 If the initiating socket is not connection-mode, then connect() shall set the socket’s peer address,
7449 and no connection is made. For SOCK_DGRAM sockets, the peer address identifies where all
7450 datagrams are sent on subsequent send() functions, and limits the remote sender for subsequent
7451 recv() functions. If address is a null address for the protocol, the socket’s peer address shall be
7452 reset.

7453 If the initiating socket is connection-mode, then connect() attempts to establish a connection to
7454 the address specified by the address argument.

7455 If the connection cannot be established immediately and O_NONBLOCK is not set for the file
7456 descriptor for the socket, connect() shall block for up to an unspecified timeout interval until the
7457 connection is established. If the timeout interval expires before the connection is established,
7458 connect() shall fail and the connection attempt shall be aborted. If connect() is interrupted by a
7459 signal that is caught while blocked waiting to establish a connection, connect() shall fail and set
7460 errno to [EINTR], but the connection request shall not be aborted, and the connection shall be
7461 established asynchronously.

7462 If the connection cannot be established immediately and O_NONBLOCK is set for the file
7463 descriptor for the socket, connect() shall fail and set errno to [EINPROGRESS], but the connection
7464 request shall not be aborted, and the connection shall be established asynchronously.
7465 Subsequent calls to connect() for the same socket, before the connection is established, shall fail
7466 and set errno to [EALREADY].

7467 When the connection has been established asynchronously, select() and poll () shall indicate that
7468 the file descriptor for the socket is ready for writing.

7469 The socket in use may require the process to have appropriate privileges to use the connect()
7470 function.

7471 RETURN VALUE
7472 Upon successful completion, connect() shall return 0; otherwise, −1 shall be returned and errno
7473 set to indicate the error.

718 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces connect()

7474 ERRORS
7475 The connect() function shall fail if:

7476 [EADDRNOTAVAIL]
7477 The specified address is not available from the local machine.

7478 [EAFNOSUPPORT]
7479 The specified address is not a valid address for the address family of the
7480 specified socket.

7481 [EALREADY] A connection request is already in progress for the specified socket.

7482 [EBADF] The socket argument is not a valid file descriptor.

7483 [ECONNREFUSED]
7484 The target address was not listening for connections or refused the connection
7485 request. |

7486 [EINPROGRESS] O_NONBLOCK is set for the file descriptor for the socket and the connection
7487 cannot be immediately established; the connection shall be established
7488 asynchronously.

7489 [EINTR] The attempt to establish a connection was interrupted by delivery of a signal
7490 that was caught; the connection shall be established asynchronously.

7491 [EISCONN] The specified socket is connection-mode and is already connected.

7492 [ENETUNREACH]
7493 No route to the network is present.

7494 [ENOTSOCK] The socket argument does not refer to a socket.

7495 [EPROTOTYPE] The specified address has a different type than the socket bound to the
7496 specified peer address.

7497 [ETIMEDOUT] The attempt to connect timed out before a connection was made.

7498 If the address family of the socket is AF_UNIX, then connect() shall fail if:

7499 [EIO] An I/O error occurred while reading from or writing to the file system.

7500 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
7501 name in address. |

7502 [ENAMETOOLONG]
7503 A component of a path name exceeded {NAME_MAX} characters, or an entire
7504 path name exceeded {PATH_MAX} characters.

7505 [ENOENT] A component of the path name does not name an existing file or the path
7506 name is an empty string.

7507 [ENOTDIR] A component of the path prefix of the path name in address is not a directory.

7508 The connect() function may fail if:

7509 [EACCES] Search permission is denied for a component of the path prefix; or write
7510 access to the named socket is denied.

7511 [EADDRINUSE] Attempt to establish a connection that uses addresses that are already in use.

7512 [ECONNRESET] Remote host reset the connection request.

7513 [EHOSTUNREACH]
7514 The destination host cannot be reached (probably because the host is down or

System Interfaces, Issue 6 719

connect() System Interfaces

7515 a remote router cannot reach it).

7516 [EINVAL] The address_len argument is not a valid length for the address family; or
7517 invalid address family in the sockaddr structure. |

7518 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
7519 resolution of the path name in address. |

7520 [ENAMETOOLONG]
7521 Path name resolution of a symbolic link produced an intermediate result
7522 whose length exceeds {PATH_MAX}.

7523 [ENETDOWN] The local network interface used to reach the destination is down. |

7524 [ENOBUFS] No buffer space is available. |

7525 [EOPNOTSUPP] The socket is listening and cannot be connected.

7526 EXAMPLES
7527 None.

7528 APPLICATION USAGE
7529 If connect() fails, the state of the socket is unspecified. Portable applications should close the file
7530 descriptor and create a new socket before attempting to reconnect.

7531 RATIONALE
7532 None.

7533 FUTURE DIRECTIONS
7534 None.

7535 SEE ALSO
7536 accept(), bind(), close(), getsockname(), poll (), select(), send(), shutdown(), socket(), the Base |
7537 Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

7538 CHANGE HISTORY
7539 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

7540 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
7541 [ELOOP] error condition is added. |

|

720 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces copysign()

7542 NAME |
7543 copysign, copysignf, copysignl — number manipulation function |

7544 SYNOPSIS |
7545 #include <math.h> |

7546 double copysign(double x, double y); |
7547 float copysignf(float x, float y); |
7548 long double copysignl(long double x, long double y); |

7549 DESCRIPTION |
7550 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7551 conflict between the requirements described here and the ISO C standard is unintentional. This |
7552 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7553 These functions shall produce a value with the magnitude of x and the sign of y . They produce a |
7554 NaN (with the sign of y) if x is a NaN. On implementations that represent a signed zero but do |
7555 not treat negative zero consistently in arithmetic operations, these functions regard the sign of |
7556 zero as positive. |

7557 An application wishing to check for error situations should set errno to 0 before calling these |
7558 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

7559 RETURN VALUE |
7560 Upon successful completion, these functions shall return a value with the magnitude of x and |
7561 the sign of y . |

7562 If x is ±Inf, these functions shall return x . |

7563 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

7564 ERRORS |
7565 These functions may fail if: |

7566 [EDOM] The value of x is NaN. |

7567 EXAMPLES |
7568 None. |

7569 APPLICATION USAGE |
7570 None. |

7571 RATIONALE |
7572 copysign() and signbit() need not be consistent with each other if the arithmetic is not consistent |
7573 in its treatment of zeros. For example, the IBM S/370 has instructions to flip the sign bit making |
7574 it possible to create a negative zero, but ±0.0 x ±1.0 is always +0.0. In this case, copysign() will |
7575 treat 0.0 as positive, while signbit() will treat it as negative. |

7576 FUTURE DIRECTIONS |
7577 None. |

7578 SEE ALSO |
7579 signbit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

7580 CHANGE HISTORY |
7581 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 721

cos() System Interfaces

7582 NAME
7583 cos, cosf, cosl — cosine function |

7584 SYNOPSIS
7585 #include <math.h>

7586 double cos(double x);
7587 float cosf(float x); |
7588 long double cosl(long double x); |

7589 DESCRIPTION |
7590 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7591 conflict between the requirements described here and the ISO C standard is unintentional. This
7592 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7593 These functions shall compute the cosine of x , measured in radians. |

7594 An application wishing to check for error situations should set errno to 0 before calling cos(). If
7595 errno is non-zero on return, or the returned value is NaN, an error has occurred.

7596 RETURN VALUE
7597 Upon successful completion, these functions shall return the cosine of x . |

7598 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

7599 XSI If x is ±Inf, either 0 shall be returned and errno set to [EDOM], or NaN shall be returned and errno
7600 may be set to [EDOM].

7601 If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |

7602 ERRORS
7603 These functions may fail if: |

7604 XSI [EDOM] The value of x is NaN or x is ±Inf. |

7605 [ERANGE] The result underflows |

7606 XSI No other errors shall occur.

7607 EXAMPLES

7608 Taking the Cosine of a 45-Degree Angle

7609 #include <math.h>
7610 ...
7611 double radians = 45 * M_PI / 180;
7612 double result;
7613 ...
7614 result = cos(radians);

7615 APPLICATION USAGE
7616 The cos() function may lose accuracy when its argument is far from 0.

7617 RATIONALE
7618 None.

7619 FUTURE DIRECTIONS
7620 None.

722 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cos()

7621 SEE ALSO
7622 acos(), isnan(), sin(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

7623 CHANGE HISTORY
7624 First released in Issue 1. Derived from Issue 1 of the SVID. |

7625 Issue 4
7626 References to matherr() are removed.

7627 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
7628 ISO C standard and to rationalize error handling in the mathematics functions.

7629 The return value specified for [EDOM] is marked as an extension.

7630 Issue 5
7631 The DESCRIPTION is updated to indicate how an application should check for an error. This
7632 text was previously published in the APPLICATION USAGE section. |

7633 Issue 6 |
7634 The cosf() and cosl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 723

cosh() System Interfaces

7635 NAME
7636 cosh, coshf, coshl — hyperbolic cosine function |

7637 SYNOPSIS
7638 #include <math.h>

7639 double cosh(double x);
7640 float coshf(float x); |
7641 long double coshl(long double x); |

7642 DESCRIPTION |
7643 CX The functionality described on this reference page is aligned with the ISO C standard. Any
7644 conflict between the requirements described here and the ISO C standard is unintentional. This
7645 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

7646 These functions shall compute the hyperbolic cosine of x . |

7647 An application wishing to check for error situations should set errno to 0 before calling cosh(). If
7648 errno is non-zero on return, or the returned value is NaN, an error has occurred.

7649 RETURN VALUE
7650 Upon successful completion, these functions shall return the hyperbolic cosine of x . |

7651 If the result would cause an overflow, HUGE_VAL shall be returned and errno set to [ERANGE]. |

7652 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

7653 ERRORS
7654 These functions shall fail if: |

7655 [ERANGE] The result would cause an overflow. |

7656 These functions may fail if: |

7657 XSI [EDOM] The value of x is NaN.

7658 XSI No other errors shall occur.

7659 EXAMPLES
7660 None.

7661 APPLICATION USAGE
7662 None.

7663 RATIONALE
7664 None.

7665 FUTURE DIRECTIONS
7666 None.

7667 SEE ALSO
7668 acosh(), isnan(), sinh(), tanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

7669 CHANGE HISTORY
7670 First released in Issue 1. Derived from Issue 1 of the SVID. |

7671 Issue 4
7672 References to matherr() are removed.

7673 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
7674 ISO C standard and to rationalize error handling in the mathematics functions.

724 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cosh()

7675 The return value specified for [EDOM] is marked as an extension.

7676 Issue 5
7677 The DESCRIPTION is updated to indicate how an application should check for an error. This
7678 text was previously published in the APPLICATION USAGE section. |

7679 Issue 6 |
7680 The coshf() and coshl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 725

cpow() System Interfaces

7681 NAME |
7682 cpow, cpowf, cpowl — complex power functions |

7683 SYNOPSIS |
7684 #include <complex.h> |

7685 double complex cpow(double complex x, double complex y); |
7686 float complex cpowf(float complex x, float complex y); |
7687 long double complex cpowl(long double complex x, |
7688 long double complex y); |

7689 DESCRIPTION |
7690 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7691 conflict between the requirements described here and the ISO C standard is unintentional. This |
7692 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7693 These functions shall compute the complex power function xy, with a branch cut for the first |
7694 parameter along the negative real axis. |

7695 RETURN VALUE |
7696 These functions shall return the complex power function value. |

7697 ERRORS |
7698 No errors are defined. |

7699 EXAMPLES |
7700 None. |

7701 APPLICATION USAGE |
7702 None. |

7703 RATIONALE |
7704 None. |

7705 FUTURE DIRECTIONS |
7706 None. |

7707 SEE ALSO |
7708 cabs(), csqrt(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

7709 CHANGE HISTORY |
7710 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

726 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces cproj()

7711 NAME |
7712 cproj, cprojf, cprojl — complex projection functions |

7713 SYNOPSIS |
7714 #include <complex.h> |

7715 double complex cproj(double complex z); |
7716 float complex cprojf(float complex z); |
7717 long double complex cprojl(long double complex z); |

7718 DESCRIPTION |
7719 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7720 conflict between the requirements described here and the ISO C standard is unintentional. This |
7721 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7722 These functions shall compute a projection of z onto the Riemann sphere: z projects to z , except |
7723 that all complex infinities (even those with one infinite part and one NaN part) project to |
7724 positive infinity on the real axis. If z has an infinite part, then cproj(z) is equivalent to: |

7725 INFINIT Y + I * copysign(0.0, cimag(z)) |

7726 RETURN VALUE |
7727 These functions shall return the value of the projection onto the Riemann sphere. |

7728 ERRORS |
7729 No errors are defined. |

7730 EXAMPLES |
7731 None. |

7732 APPLICATION USAGE |
7733 None. |

7734 RATIONALE |
7735 Two topologies are commonly used in complex mathematics: the complex plane with its |
7736 continuum of infinities, and the Riemann sphere with its single infinity. The complex plane is |
7737 better suited for transcendental functions, the Riemann sphere for algebraic functions. The |
7738 complex types with their multiplicity of infinities provide a useful (though imperfect) model for |
7739 the complex plane. The cproj() function helps model the Riemann sphere by mapping all |
7740 infinities to one, and should be used just before any operation, especially comparisons, that |
7741 might give spurious results for any of the other infinities. Note that a complex value with one |
7742 infinite part and one NaN part is regarded as an infinity, not a NaN, because if one part is |
7743 infinite, the complex value is infinite independent of the value of the other part. For the same |
7744 reason, cabs() returns an infinity if its argument has an infinite part and a NaN part. |

7745 FUTURE DIRECTIONS |
7746 None. |

7747 SEE ALSO |
7748 carg(), cimag(), conj(), creal(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
7749 <complex.h> |

7750 CHANGE HISTORY |
7751 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 727

creal() System Interfaces

7752 NAME |
7753 creal, crealf, creall — complex real functions |

7754 SYNOPSIS |
7755 #include <complex.h> |

7756 double creal(double complex z); |
7757 float crealf(float complex z); |
7758 long double creall(long double complex z); |

7759 DESCRIPTION |
7760 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7761 conflict between the requirements described here and the ISO C standard is unintentional. This |
7762 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7763 These functions shall compute the real part of z . |

7764 RETURN VALUE |
7765 These functions shall return the real part value. |

7766 ERRORS |
7767 No errors are defined. |

7768 EXAMPLES |
7769 None. |

7770 APPLICATION USAGE |
7771 For a variable z of complex type: |

7772 z == creal(z) + cimag(z)*I |

7773 RATIONALE |
7774 None. |

7775 FUTURE DIRECTIONS |
7776 None. |

7777 SEE ALSO |
7778 carg(), cimag(), conj(), cproj(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
7779 <complex.h> |

7780 CHANGE HISTORY |
7781 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

728 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces creat()

7782 NAME
7783 creat — create a new file or rewrite an existing one

7784 SYNOPSIS
7785 OH #include <sys/stat.h>
7786 #include <fcntl.h>

7787 int creat(const char * path , mode_t mode);

7788 DESCRIPTION
7789 The function call:

7790 creat(path, mode)

7791 is equivalent to:

7792 open(path, O_WRONLY|O_CREAT|O_TRUNC, mode)

7793 RETURN VALUE
7794 Refer to open().

7795 ERRORS
7796 Refer to open().

7797 EXAMPLES

7798 Creating a File

7799 The following example creates the file /tmp/file with read and write permissions for the file
7800 owner and read permission for group and others. The resulting file descriptor is assigned to the
7801 fd variable.

7802 #include <fcntl.h>
7803 ...
7804 int fd;
7805 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
7806 char *filename = "/tmp/file";
7807 ...
7808 fd = creat(filename, mode);
7809 ...

7810 APPLICATION USAGE
7811 None.

7812 RATIONALE
7813 The creat() function is redundant. Its services are also provided by the open() function. It has
7814 been included primarily for historical purposes since many existing applications depend on it. It
7815 is best considered a part of the C binding rather than a function that should be provided in other
7816 languages.

7817 FUTURE DIRECTIONS
7818 None.

7819 SEE ALSO
7820 open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, <sys/stat.h>, |
7821 <sys/types.h>

System Interfaces, Issue 6 729

creat() System Interfaces

7822 CHANGE HISTORY
7823 First released in Issue 1. Derived from Issue 1 of the SVID. |

7824 Issue 4
7825 The <sys/types.h> and <sys/stat.h> headers are now marked as optional (OH); these headers
7826 need not be included on XSI-conformant systems.

7827 The following change is incorporated for alignment with the ISO POSIX-1 standard:

7828 • The type of argument path is changed from char* to const char*.

7829 Issue 6
7830 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

7831 The following new requirements on POSIX implementations derive from alignment with the
7832 Single UNIX Specification:

7833 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
7834 required for conforming implementations of previous POSIX specifications, it was not
7835 required for UNIX applications.

730 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces crypt()

7836 NAME
7837 crypt — string encoding function (CRYPT)

7838 SYNOPSIS
7839 XSI #include <unistd.h>

7840 char *crypt(const char * key , const char * salt); |
7841 |

7842 DESCRIPTION
7843 The crypt() function is a string encoding function. The algorithm is implementation-defined. |

7844 The key argument points to a string to be encoded. The salt argument is a string chosen from the
7845 set:

7846 a b c d e f g h i j k l m n o p q r s t u v w x y z
7847 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
7848 0 1 2 3 4 5 6 7 8 9 . /

7849 The first two characters of this string may be used to perturb the encoding algorithm.

7850 The return value of crypt() points to static data that is overwritten by each call.

7851 The crypt() function need not be reentrant. A function that is not required to be reentrant is not
7852 required to be thread-safe.

7853 RETURN VALUE
7854 Upon successful completion, crypt() shall return a pointer to the encoded string. The first two
7855 characters of the returned value are those of the salt argument. Otherwise, it shall return a null
7856 pointer and set errno to indicate the error.

7857 ERRORS
7858 The crypt() function shall fail if:

7859 [ENOSYS] The functionality is not supported on this implementation. |

7860 EXAMPLES

7861 Encoding Passwords

7862 The following example finds a user database entry matching a particular user name and changes
7863 the current password to a new password. The crypt() function is used to generate an encoded
7864 version of each password. The first call to crypt() produces an encoded version of the old
7865 password; that encoded password is then compared to the password stored in the user database.
7866 The second call to crypt() encodes the new password before it is stored.

7867 The putpwent() function, used in the following example, is not part of IEEE Std. 1003.1-200x.

7868 #include <unistd.h>
7869 #include <pwd.h>
7870 #include <string.h>
7871 #include <stdio.h>
7872 ...
7873 int valid_change;
7874 int pfd; /* Integer for file descriptor returned by open(). */
7875 FILE *fpfd; /* File pointer for use in putpwent(). */
7876 struct passwd *p;
7877 char user[100];
7878 char oldpasswd[100];
7879 char newpasswd[100];

System Interfaces, Issue 6 731

crypt() System Interfaces

7880 char savepasswd[100];
7881 ...
7882 valid_change = 0;
7883 while ((p = getpwent()) != NULL) {
7884 /* Change entry if found. */
7885 if (strcmp(p->pw_name, user) == 0) {
7886 if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
7887 strcpy(savepasswd, crypt(newpasswd, user));
7888 p->pw_passwd = savepasswd;
7889 valid_change = 1;
7890 }
7891 else {
7892 fprintf(stderr, "Old password is not valid\n");
7893 }
7894 }
7895 /* Put passwd entry into ptmp. */
7896 putpwent(p, fpfd);
7897 }

7898 APPLICATION USAGE
7899 The values returned by this function need not be portable among XSI-conformant systems.

7900 RATIONALE
7901 None.

7902 FUTURE DIRECTIONS
7903 None.

7904 SEE ALSO
7905 encrypt(), setkey(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

7906 CHANGE HISTORY
7907 First released in Issue 1. Derived from Issue 1 of the SVID. |

7908 Issue 4
7909 The <unistd.h> header is added to the SYNOPSIS section.

7910 The type of arguments key and salt are changed from char* to const char*.

7911 The DESCRIPTION now explicitly defines the characters that can appear in the salt argument.

7912 Issue 5
7913 Normative text previously in the APPLICATION USAGE section is moved to the
7914 DESCRIPTION.

|

732 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces csin()

7915 NAME |
7916 csin, csinf, csinl — complex sine functions |

7917 SYNOPSIS |
7918 #include <complex.h> |

7919 double complex csin(double complex z); |
7920 float complex csinf(float complex z); |
7921 long double complex csinl(long double complex z); |

7922 DESCRIPTION |
7923 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7924 conflict between the requirements described here and the ISO C standard is unintentional. This |
7925 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7926 These functions shall compute the complex sine of z . |

7927 RETURN VALUE |
7928 These functions shall return the complex sine value. |

7929 ERRORS |
7930 No errors are defined. |

7931 EXAMPLES |
7932 None. |

7933 APPLICATION USAGE |
7934 None. |

7935 RATIONALE |
7936 None. |

7937 FUTURE DIRECTIONS |
7938 None. |

7939 SEE ALSO |
7940 casin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

7941 CHANGE HISTORY |
7942 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 733

csinh() System Interfaces

7943 NAME |
7944 csinh, csinhf, csinhl — complex hyperbolic sine functions |

7945 SYNOPSIS |
7946 #include <complex.h> |

7947 double complex csinh(double complex z); |
7948 float complex csinhf(float complex z); |
7949 long double complex csinhl(long double complex z); |

7950 DESCRIPTION |
7951 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7952 conflict between the requirements described here and the ISO C standard is unintentional. This |
7953 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7954 These functions shall compute the complex hyperbolic sine of z . |

7955 RETURN VALUE |
7956 These functions shall return the complex hyperbolic sine value. |

7957 ERRORS |
7958 No errors are defined. |

7959 EXAMPLES |
7960 None. |

7961 APPLICATION USAGE |
7962 None. |

7963 RATIONALE |
7964 None. |

7965 FUTURE DIRECTIONS |
7966 None. |

7967 SEE ALSO |
7968 casinh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

7969 CHANGE HISTORY |
7970 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

734 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces csqrt()

7971 NAME |
7972 csqrt, csqrtf, csqrtl — complex square root functions |

7973 SYNOPSIS |
7974 #include <complex.h> |

7975 double complex csqrt(double complex z); |
7976 float complex csqrtf(float complex z); |
7977 long double complex csqrtl(long double complex z); |

7978 DESCRIPTION |
7979 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
7980 conflict between the requirements described here and the ISO C standard is unintentional. This |
7981 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

7982 These functions shall compute the complex square root of z , with a branch cut along the |
7983 negative real axis. |

7984 RETURN VALUE |
7985 These functions shall return the complex square root value, in the range of the right half-plane |
7986 (including the imaginary axis). |

7987 ERRORS |
7988 No errors are defined. |

7989 EXAMPLES |
7990 None. |

7991 APPLICATION USAGE |
7992 None. |

7993 RATIONALE |
7994 None. |

7995 FUTURE DIRECTIONS |
7996 None. |

7997 SEE ALSO |
7998 cabs(), cpow(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

7999 CHANGE HISTORY |
8000 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 735

ctan() System Interfaces

8001 NAME |
8002 ctan, ctanf, ctanl — complex tangent functions |

8003 SYNOPSIS |
8004 #include <complex.h> |

8005 double complex ctan(double complex z); |
8006 float complex ctanf(float complex z); |
8007 long double complex ctanl(long double complex z); |

8008 DESCRIPTION |
8009 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
8010 conflict between the requirements described here and the ISO C standard is unintentional. This |
8011 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

8012 These functions shall compute the complex tangent of z . |

8013 RETURN VALUE |
8014 These functions shall return the complex tangent value. |

8015 ERRORS |
8016 No errors are defined. |

8017 EXAMPLES |
8018 None. |

8019 APPLICATION USAGE |
8020 None. |

8021 RATIONALE |
8022 None. |

8023 FUTURE DIRECTIONS |
8024 None. |

8025 SEE ALSO |
8026 catan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

8027 CHANGE HISTORY |
8028 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

736 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctanh()

8029 NAME |
8030 ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions |

8031 SYNOPSIS |
8032 #include <complex.h> |

8033 double complex ctanh(double complex z); |
8034 float complex ctanhf(float complex z); |
8035 long double complex ctanhl(long double complex z); |

8036 DESCRIPTION |
8037 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
8038 conflict between the requirements described here and the ISO C standard is unintentional. This |
8039 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

8040 These functions shall compute the complex hyperbolic tangent of z . |

8041 RETURN VALUE |
8042 These functions shall return the complex hyperbolic tangent value. |

8043 ERRORS |
8044 No errors are defined. |

8045 EXAMPLES |
8046 None. |

8047 APPLICATION USAGE |
8048 None. |

8049 RATIONALE |
8050 None. |

8051 FUTURE DIRECTIONS |
8052 None. |

8053 SEE ALSO |
8054 catanh (), the Base Definitions volume of IEEE Std. 1003.1-200x, <complex.h> |

8055 CHANGE HISTORY |
8056 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 737

ctermid() System Interfaces

8057 NAME
8058 ctermid — generate a path name for controlling terminal

8059 SYNOPSIS
8060 #include <stdio.h>

8061 char *ctermid(char * s);

8062 DESCRIPTION
8063 The ctermid() function shall generate a string that, when used as a path name, refers to the
8064 current controlling terminal for the current process. If ctermid() returns a path name, access to
8065 the file is not guaranteed.

8066 If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS
8067 functions, it shall ensure that the ctermid() function is called with a non-NULL parameter.

8068 RETURN VALUE
8069 If s is a null pointer, the string is generated in an area that may be static (and therefore may be
8070 overwritten by each call), the address of which shall be returned. Otherwise, s is assumed to |
8071 point to a character array of at least {L_ctermid} bytes; the string is placed in this array and the |
8072 value of s shall be returned. The symbolic constant {L_ctermid} is defined in <stdio.h>, and shall |
8073 have a value greater than 0.

8074 The ctermid() function shall return an empty string if the path name that would refer to the
8075 controlling terminal cannot be determined, or if the function is unsuccessful.

8076 ERRORS
8077 No errors are defined.

8078 EXAMPLES

8079 Determining the Controlling Terminal for the Current Process

8080 The following example returns a pointer to a string that identifies the controlling terminal for the
8081 current process. The path name for the terminal is stored in the array pointed to by the ptr |
8082 argument, which has a size of {L_ctermid} bytes, as indicated by the term argument. |

8083 #include <stdio.h>
8084 ...
8085 char term[L_ctermid];
8086 char *ptr;

8087 ptr = ctermid(term);

8088 APPLICATION USAGE
8089 The difference between ctermid() and ttyname() is that ttyname() must be handed a file
8090 descriptor and return a path of the terminal associated with that file descriptor, while ctermid()
8091 returns a string (such as "/dev/tty") that refers to the current controlling terminal if used as a
8092 path name.

8093 RATIONALE
8094 {L_ctermid} must be defined appropriately for a given implementation and must be greater than |
8095 zero so that array declarations using it are accepted by the compiler. The value includes the
8096 terminating null byte.

8097 Portable applications that use threads cannot call ctermid() with NULL as the parameter if either
8098 _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS is defined. If s is not NULL, the
8099 ctermid() function generates a string that, when used as a path name, refers to the current
8100 controlling terminal for the current process. If s is NULL, the return value of ctermid() is

738 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctermid()

8101 undefined.

8102 If the ctermid() function returns a path name, access to the file is not guaranteed.

8103 There is no additional burden on the programmer—changing to use a hypothetical thread-safe
8104 version of ctermid() along with allocating a buffer is more of a burden than merely allocating a
8105 buffer. Application code should not assume that the returned string is short, as some
8106 implementations have more than two path name components before reaching a logical device
8107 name.

8108 FUTURE DIRECTIONS
8109 None.

8110 SEE ALSO
8111 ttyname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

8112 CHANGE HISTORY
8113 First released in Issue 1. Derived from Issue 1 of the SVID. |

8114 Issue 4
8115 The following change is incorporated for alignment with the ISO POSIX-1 standard:

8116 • The DESCRIPTION and RETURN VALUE sections, though functionally identical to Issue 3,
8117 are rewritten.

8118 Issue 5
8119 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

8120 Issue 6
8121 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 739

ctime() System Interfaces

8122 NAME
8123 ctime, ctime_r — convert a time value to date and time string

8124 SYNOPSIS
8125 #include <time.h>

8126 char *ctime(const time_t * clock);
8127 TSF char *ctime_r(const time_t * clock , char * buf);
8128

8129 DESCRIPTION
8130 CX The functionality described on this reference page is aligned with the ISO C standard. Any
8131 conflict between the requirements described here and the ISO C standard is unintentional. This
8132 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

8133 The ctime() function shall convert the time pointed to by clock , representing time in seconds
8134 since the Epoch, to local time in the form of a string. It is equivalent to:

8135 asctime(localtime(clock))

8136 CX The asctime(), ctime(), gmtime(), and localtime () functions return values in one of two static
8137 objects: a broken-down time structure and an array of char. Execution of any of the functions
8138 may overwrite the information returned in either of these objects by any of the other functions.

8139 The ctime() function need not be reentrant. A function that is not required to be reentrant is not
8140 required to be thread-safe.

8141 TSF The ctime_r() function shall convert the calendar time pointed to by clock to local time in exactly
8142 the same form as ctime() and puts the string into the array pointed to by buf (which contains at
8143 least 26 bytes) and return buf.

8144 Unlike ctime(), the thread-safe version ctime_r() is not required to set tzname .

8145 RETURN VALUE
8146 The ctime() function shall return the pointer returned by asctime() with that broken-down time
8147 as an argument.

8148 TSF Upon successful completion, ctime_r() shall return a pointer to the string pointed to by buf.
8149 When an error is encountered, a null pointer shall be returned.

8150 ERRORS
8151 No errors are defined.

8152 EXAMPLES
8153 None.

8154 APPLICATION USAGE
8155 Values for the broken-down time structure can be obtained by calling gmtime() or localtime ().
8156 The ctime() function is included for compatibility with older implementations, and does not
8157 support localized date and time formats. Applications should use the strftime() function to
8158 achieve maximum portability.

8159 The ctime_r() function is thread-safe and shall return values in a user-supplied buffer instead of
8160 possibly using a static data area that may be overwritten by each call.

8161 RATIONALE
8162 None.

740 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ctime()

8163 FUTURE DIRECTIONS
8164 None.

8165 SEE ALSO
8166 asctime(), clock (), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(), |
8167 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

8168 CHANGE HISTORY
8169 First released in Issue 1. Derived from Issue 1 of the SVID. |

8170 Issue 4
8171 The APPLICATION USAGE section is expanded to describe the time-handling functions
8172 generally and to refer users to strftime(), which is a locale-dependent time-handling function.

8173 The following change is incorporated for alignment with the ISO C standard:

8174 • The type of argument clock is changed from time_t* to const time_t*.

8175 Issue 5
8176 Normative text previously in the APPLICATION USAGE section is moved to the
8177 DESCRIPTION.

8178 The ctime_r() function is included for alignment with the POSIX Threads Extension.

8179 A note indicating that the ctime() function need not be reentrant is added to the DESCRIPTION.

8180 Issue 6
8181 Extensions beyond the ISO C standard are now marked.

8182 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

8183 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
8184 its avoidance of possibly using a static data area.

System Interfaces, Issue 6 741

daylight System Interfaces

8185 NAME
8186 daylight — daylight savings time flag

8187 SYNOPSIS
8188 XSI #include <time.h>

8189 extern int daylight;
8190

8191 DESCRIPTION
8192 Refer to tzset().

742 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dbm_clearerr()

8193 NAME
8194 dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
8195 dbm_open, dbm_store — database functions

8196 SYNOPSIS
8197 XSI #include <ndbm.h>

8198 int dbm_clearerr(DBM * db);
8199 void dbm_close(DBM * db);
8200 int dbm_delete(DBM * db, datum key);
8201 int dbm_error(DBM * db);
8202 datum dbm_fetch(DBM * db, datum key);
8203 datum dbm_firstkey(DBM * db);
8204 datum dbm_nextkey(DBM * db);
8205 DBM *dbm_open(const char * file , int open_flags , mode_t file_mode);
8206 int dbm_store(DBM * db, datum key , datum content , int store_mode);
8207

8208 DESCRIPTION
8209 These functions create, access, and modify a database.

8210 A datum consists of at least two members, dptr and dsize . The dptr member points to an object
8211 that is dsize bytes in length. Arbitrary binary data, as well as character strings, may be stored in
8212 the object pointed to by dptr .

8213 The database is stored in two files. One file is a directory containing a bit map of keys and has
8214 .dir as its suffix. The second file contains all data and has .pag as its suffix.

8215 The dbm_open() function shall open a database. The file argument to the function is the path
8216 name of the database. The function opens two files named file.dir and file.pag. The open_flags
8217 argument has the same meaning as the flags argument of open() except that a database opened
8218 for write-only access opens the files for read and write access and the behavior of the
8219 O_APPEND flag is unspecified. The file_mode argument has the same meaning as the third
8220 argument of open().

8221 The dbm_close() function shall close a database. The application shall ensure that argument db is
8222 a pointer to a dbm structure that has been returned from a call to dbm_open().

8223 The dbm_fetch() function shall read a record from a database. The argument db is a pointer to a
8224 database structure that has been returned from a call to dbm_open(). The argument key is a
8225 datum that has been initialized by the application to the value of the key that matches the key of
8226 the record the program is fetching.

8227 The dbm_store() function shall write a record to a database. The argument db is a pointer to a
8228 database structure that has been returned from a call to dbm_open(). The argument key is a
8229 datum that has been initialized by the application to the value of the key that identifies (for
8230 subsequent reading, writing, or deleting) the record the application is writing. The argument
8231 content is a datum that has been initialized by the application to the value of the record the
8232 program is writing. The argument store_mode controls whether dbm_store() replaces any pre-
8233 existing record that has the same key that is specified by the key argument. The application shall
8234 set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains a record that
8235 matches the key argument and store_mode is DBM_REPLACE, the existing record is replaced with
8236 the new record. If the database contains a record that matches the key argument and store_mode
8237 is DBM_INSERT, the existing record is left unchanged and the new record ignored. If the
8238 database does not contain a record that matches the key argument and store_mode is either
8239 DBM_INSERT or DBM_REPLACE, the new record is inserted in the database.

System Interfaces, Issue 6 743

dbm_clearerr() System Interfaces

8240 The application shall ensure that the sum of the sizes of a key/content pair does not exceed the |
8241 internal block size. Moreover, the application shall ensure that all key/content pairs that hash |
8242 together fit on a single block. The dbm_store() function shall return an error in the event that a |
8243 disk block fills with inseparable data.

8244 The dbm_delete() function shall delete a record and its key from the database. The argument db is
8245 a pointer to a database structure that has been returned from a call to dbm_open(). The argument
8246 key is a datum that has been initialized by the application to the value of the key that identifies
8247 the record the program is deleting.

8248 The dbm_firstkey() function shall return the first key in the database. The argument db is a
8249 pointer to a database structure that has been returned from a call to dbm_open().

8250 The dbm_nextkey() function shall return the next key in the database. The argument db is a
8251 pointer to a database structure that has been returned from a call to dbm_open(). The application
8252 shall ensure that the dbm_firstkey() function is called before calling dbm_nextkey(). Subsequent
8253 calls to dbm_nextkey() return the next key until all of the keys in the database have been
8254 returned.

8255 The dbm_error() function shall return the error condition of the database. The argument db is a
8256 pointer to a database structure that has been returned from a call to dbm_open().

8257 The dbm_clearerr() function shall clear the error condition of the database. The argument db is a
8258 pointer to a database structure that has been returned from a call to dbm_open().

8259 These database functions shall support an internal block size large enough to support |
8260 key/content pairs of at least 1 023 bytes. |

8261 The dptr pointers returned by these functions may point into static storage that may be changed
8262 by subsequent calls.

8263 These functions need not be reentrant. A function that is not required to be reentrant is not
8264 required to be thread-safe.

8265 RETURN VALUE
8266 The dbm_store() and dbm_delete() functions shall return 0 when they succeed and a negative
8267 value when they fail.

8268 The dbm_store() function shall return 1 if it is called with a flags value of DBM_INSERT and the
8269 function finds an existing record with the same key.

8270 The dbm_error() function shall return 0 if the error condition is not set and return a non-zero
8271 value if the error condition is set.

8272 The return value of dbm_clearerr() is unspecified.

8273 The dbm_firstkey() and dbm_nextkey() functions shall return a key datum. When the end of the
8274 database is reached, the dptr member of the key is a null pointer. If an error is detected, the dptr
8275 member of the key shall be a null pointer and the error condition of the database shall be set.

8276 The dbm_fetch() function shall return a content datum. If no record in the database matches the
8277 key or if an error condition has been detected in the database, the dptr member of the content
8278 shall be a null pointer.

8279 The dbm_open() function shall return a pointer to a database structure. If an error is detected
8280 during the operation, dbm_open() shall return a (DBM*)0.

744 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dbm_clearerr()

8281 ERRORS
8282 No errors are defined.

8283 EXAMPLES
8284 None.

8285 APPLICATION USAGE
8286 The following code can be used to traverse the database:

8287 for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

8288 The dbm_ functions provided in this library should not be confused in any way with those of a
8289 general-purpose database management system. These functions do not provide for multiple
8290 search keys per entry, they do not protect against multi-user access (in other words they do not
8291 lock records or files), and they do not provide the many other useful database functions that are
8292 found in more robust database management systems. Creating and updating databases by use of
8293 these functions is relatively slow because of data copies that occur upon hash collisions. These
8294 functions are useful for applications requiring fast lookup of relatively static information that is
8295 to be indexed by a single key.

8296 The dbm_delete() function need not physically reclaim file space, although it does make it
8297 available for reuse by the database.

8298 After calling dbm_store() or dbm_delete() during a pass through the keys by dbm_firstkey() and
8299 dbm_nextkey(), the application should reset the database by calling dbm_firstkey() before again
8300 calling dbm_nextkey(). The contents of these files are unspecified and may not be portable.

8301 RATIONALE
8302 None.

8303 FUTURE DIRECTIONS
8304 None.

8305 SEE ALSO
8306 open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ndbm.h> |

8307 CHANGE HISTORY
8308 First released in Issue 4, Version 2.

8309 Issue 5
8310 Moved from X/OPEN UNIX extension to BASE.

8311 Normative text previously in the APPLICATION USAGE section is moved to the
8312 DESCRIPTION.

8313 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

8314 Issue 6
8315 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 745

difftime() System Interfaces

8316 NAME
8317 difftime — compute the difference between two calendar time values

8318 SYNOPSIS
8319 #include <time.h>

8320 double difftime(time_t time1 , time_t time0);

8321 DESCRIPTION
8322 CX The functionality described on this reference page is aligned with the ISO C standard. Any
8323 conflict between the requirements described here and the ISO C standard is unintentional. This
8324 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

8325 The difftime () function shall compute the difference between two calendar times (as returned by
8326 time()): time1− time0.

8327 RETURN VALUE
8328 The difftime () function shall return the difference expressed in seconds as a type double.

8329 ERRORS
8330 No errors are defined.

8331 EXAMPLES
8332 None.

8333 APPLICATION USAGE
8334 None.

8335 RATIONALE
8336 None.

8337 FUTURE DIRECTIONS
8338 None.

8339 SEE ALSO
8340 asctime(), clock (), ctime(), gmtime(), localtime (), mktime(), strftime(), strptime(), time(), utime(), |
8341 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

8342 CHANGE HISTORY
8343 First released in Issue 4. Derived from the ISO C standard. |

746 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dirname()

8344 NAME
8345 dirname — report the parent directory name of a file path name |

8346 SYNOPSIS
8347 XSI #include <libgen.h>

8348 char *dirname(char * path);
8349

8350 DESCRIPTION
8351 The dirname() function shall take a pointer to a character string that contains a path name, and
8352 return a pointer to a string that is a path name of the parent directory of that file. Trailing ’/’
8353 characters in the path are not counted as part of the path.

8354 If path does not contain a ’/’ , then dirname() shall return a pointer to the string "." . If path is a
8355 null pointer or points to an empty string, dirname() shall return a pointer to the string "." .

8356 The dirname() function need not be reentrant. A function that is not required to be reentrant is
8357 not required to be thread-safe.

8358 RETURN VALUE
8359 The dirname() function shall return a pointer to a string that is the parent directory of path . If
8360 path is a null pointer or points to an empty string, a pointer to a string "." is returned.

8361 The dirname() function may modify the string pointed to by path , and may return a pointer to
8362 static storage that may then be overwritten by subsequent calls to dirname().

8363 ERRORS
8364 No errors are defined.

8365 EXAMPLES
8366 The following code fragment reads a path name, changes the current working directory to the
8367 parent directory, and opens the file.

8368 char path[MAXPATHLEN], *pathcopy;
8369 int fd;
8370 fgets(path, MAXPATHLEN, stdin);
8371 pathcopy = strdup(path);
8372 chdir(dirname(pathcopy));
8373 fd = open(basename(path), O_RDONLY);

8374 Sample Input and Output Strings for dirname()

8375 In the following table, the input string is the value pointed to by path , and the output string is
8376 the return value of the dirname() function.

8377 Input String Output String______________________________
8378 "/usr/lib" "/usr"
8379 "/usr/" "/"
8380 "usr" "."
8381 "/" "/"
8382 "." "."
8383 ".." "."______________________________L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

System Interfaces, Issue 6 747

dirname() System Interfaces

8384 Changing the Current Directory to the Parent Directory

8385 The following program fragment reads a path name, changes the current working directory to
8386 the parent directory, and opens the file.

8387 #include <unistd.h>
8388 #include <limits.h>
8389 #include <stdio.h>
8390 #include <fcntl.h>
8391 #include <string.h>
8392 #include <libgen.h>
8393 ...
8394 char path[PATH_MAX], *pathcopy;
8395 int fd;
8396 ...
8397 fgets(path, PATH_MAX, stdin);
8398 pathcopy = strdup(path);
8399 chdir(dirname(pathcopy));
8400 fd = open(basename(path), O_RDONLY);

8401 APPLICATION USAGE
8402 The dirname() and basename() functions together yield a complete path name. The expression
8403 dirname(path) obtains the path name of the directory where basename(path) is found.

8404 Since the meaning of the leading "//" is implementation-defined, dirname("//foo) may return |
8405 either "//" or ’/’ (but nothing else). |

8406 RATIONALE
8407 None.

8408 FUTURE DIRECTIONS
8409 None.

8410 SEE ALSO
8411 basename(), the Base Definitions volume of IEEE Std. 1003.1-200x, <libgen.h> |

8412 CHANGE HISTORY
8413 First released in Issue 4, Version 2.

8414 Issue 5
8415 Moved from X/OPEN UNIX extension to BASE.

8416 Normative text previously in the APPLICATION USAGE section is moved to the
8417 DESCRIPTION.

8418 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

748 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces div()

8419 NAME
8420 div — compute the quotient and remainder of an integer division

8421 SYNOPSIS
8422 #include <stdlib.h>

8423 div_t div(int numer , int denom);

8424 DESCRIPTION
8425 CX The functionality described on this reference page is aligned with the ISO C standard. Any
8426 conflict between the requirements described here and the ISO C standard is unintentional. This
8427 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

8428 The div() function shall compute the quotient and remainder of the division of the numerator
8429 numer by the denominator denom. If the division is inexact, the resulting quotient is the integer
8430 of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be
8431 represented, the behavior is undefined; otherwise, quot*denom+rem shall equal numer.

8432 RETURN VALUE
8433 The div() function shall return a structure of type div_t, comprising both the quotient and the
8434 remainder. The structure includes the following members, in any order:

8435 int quot; /* quotient */
8436 int rem; /* remainder */

8437 ERRORS
8438 No errors are defined.

8439 EXAMPLES
8440 None.

8441 APPLICATION USAGE
8442 None.

8443 RATIONALE
8444 None.

8445 FUTURE DIRECTIONS
8446 None.

8447 SEE ALSO
8448 ldiv (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

8449 CHANGE HISTORY
8450 First released in Issue 4. Derived from the ISO C standard. |

System Interfaces, Issue 6 749

dlclose() System Interfaces

8451 NAME
8452 dlclose — close a dlopen() object

8453 SYNOPSIS
8454 XSI #include <dlfcn.h>

8455 int dlclose(void * handle); |
8456 |

8457 DESCRIPTION
8458 The dlclose() function is used to inform the system that the object referenced by a handle returned
8459 from a previous dlopen() invocation is no longer needed by the application.

8460 The use of dlclose() reflects a statement of intent on the part of the process, but does not create
8461 any requirement upon the implementation, such as removal of the code or symbols referenced
8462 by handle . Once an object has been closed using dlclose() an application should assume that its
8463 symbols are no longer available to dlsym(). All objects loaded automatically as a result of
8464 invoking dlopen() on the referenced object are also closed if this is the last reference to it.

8465 Although a dlclose() operation is not required to remove structures from an address space,
8466 neither is an implementation prohibited from doing so. The only restriction on such a removal is
8467 that no object shall be removed to which references have been relocated, until or unless all such
8468 references are removed. For instance, an object that had been loaded with a dlopen() operation
8469 specifying the RTLD_GLOBAL flag might provide a target for dynamic relocations performed in
8470 the processing of other objects—in such environments, an application may assume that no
8471 relocation, once made, shall be undone or remade unless the object requiring the relocation has
8472 itself been removed.

8473 RETURN VALUE
8474 If the referenced object was successfully closed, dlclose() shall return 0. If the object could not be
8475 closed, or if handle does not refer to an open object, dlclose() shall return a non-zero value. More
8476 detailed diagnostic information shall be available through dlerror().

8477 ERRORS
8478 No errors are defined.

8479 EXAMPLES
8480 The following example illustrates use of dlopen() and dlclose():

8481 ...
8482 /* Open a dynamic library and then close it ... */

8483 #include <dlfcn.h>
8484 void *mylib;
8485 int eret;

8486 mylib = dlopen("mylib.so.1", RTLD_LAZY);
8487 ...
8488 eret = dlclose(mylib);
8489 ...

8490 APPLICATION USAGE
8491 A portable application should employ a handle returned from a dlopen() invocation only within a
8492 given scope bracketed by the dlopen() and dlclose() operations. Implementations are free to use
8493 reference counting or other techniques such that multiple calls to dlopen() referencing the same
8494 object may return the same object for handle . Implementations are also free to reuse a handle .
8495 For these reasons, the value of a handle must be treated as an opaque object by the application,
8496 used only in calls to dlsym() and dlclose().

750 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dlclose()

8497 RATIONALE
8498 None.

8499 FUTURE DIRECTIONS
8500 None.

8501 SEE ALSO
8502 dlerror(), dlopen(), dlsym(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h> |

8503 CHANGE HISTORY
8504 First released in Issue 5.

8505 Issue 6
8506 The DESCRIPTION is updated to say that the referenced object is closed ‘‘if this is the last
8507 reference to it’’.

System Interfaces, Issue 6 751

dlerror() System Interfaces

8508 NAME
8509 dlerror — get diagnostic information

8510 SYNOPSIS
8511 XSI #include <dlfcn.h>

8512 char *dlerror(void);
8513

8514 DESCRIPTION
8515 The dlerror() function shall return a null-terminated character string (with no trailing <newline>)
8516 that describes the last error that occurred during dynamic linking processing. If no dynamic
8517 linking errors have occurred since the last invocation of dlerror(), dlerror() shall return NULL.
8518 Thus, invoking dlerror() a second time, immediately following a prior invocation, shall result in
8519 NULL being returned.

8520 The dlerror() function need not be reentrant. A function that is not required to be reentrant is not
8521 required to be thread-safe.

8522 RETURN VALUE
8523 If successful, dlerror() shall return a null-terminated character string; otherwise, NULL shall be
8524 returned.

8525 ERRORS
8526 No errors are defined.

8527 EXAMPLES
8528 The following example prints out the last dynamic linking error:

8529 ...
8530 #include <dlfcn.h>

8531 char *errstr;

8532 errstr = dlerror();
8533 if (errstr != NULL)
8534 printf ("A dynamic linking error occurred: (%s)\n", errstr);
8535 ...

8536 APPLICATION USAGE
8537 The messages returned by dlerror() may reside in a static buffer that is overwritten on each call
8538 to dlerror(). Application code should not write to this buffer. Programs wishing to preserve an
8539 error message should make their own copies of that message. Depending on the application
8540 environment with respect to asynchronous execution events, such as signals or other
8541 asynchronous computation sharing the address space, portable applications should use a critical
8542 section to retrieve the error pointer and buffer.

8543 RATIONALE
8544 None.

8545 FUTURE DIRECTIONS
8546 None.

8547 SEE ALSO
8548 dlclose(), dlopen(), dlsym(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h> |

752 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dlerror()

8549 CHANGE HISTORY
8550 First released in Issue 5.

8551 Issue 6
8552 In the DESCRIPTION the note about reentrancy and thread-safety is added.

System Interfaces, Issue 6 753

dlopen() System Interfaces

8553 NAME
8554 dlopen — gain access to an executable object file

8555 SYNOPSIS
8556 XSI #include <dlfcn.h>

8557 void *dlopen(const char * file , int mode);
8558

8559 DESCRIPTION
8560 The dlopen() function shall make an executable object file specified by file available to the calling
8561 program. The class of files eligible for this operation and the manner of their construction are
8562 specified by the implementation, though typically such files are executable objects such as
8563 shared libraries, relocatable files, or programs. Note that some implementations permit the
8564 construction of dependencies between such objects that are embedded within files. In such
8565 cases, a dlopen() operation shall load such dependencies in addition to the object referenced by
8566 file . Implementations may also impose specific constraints on the construction of programs that
8567 can employ dlopen() and its related services.

8568 A successful dlopen() shall return a handle which the caller may use on subsequent calls to
8569 dlsym() and dlclose(). The value of this handle should not be interpreted in any way by the caller.

8570 file is used to construct a path name to the object file. If file contains a slash character, the file
8571 argument is used as the path name for the file. Otherwise, file is used in an implementation- |
8572 defined manner to yield a path name. |

8573 If the value of file is 0, dlopen() shall provide a handle on a global symbol object. This object
8574 provides access to the symbols from an ordered set of objects consisting of the original program
8575 image file, together with any objects loaded at program start-up as specified by that process
8576 image file (for example, shared libraries), and the set of objects loaded using a dlopen() operation
8577 together with the RTLD_GLOBAL flag. As the latter set of objects can change during execution,
8578 the set identified by handle can also change dynamically.

8579 Only a single copy of an object file is brought into the address space, even if dlopen() is invoked
8580 multiple times in reference to the file, and even if different path names are used to reference the
8581 file.

8582 The mode parameter describes how dlopen() shall operate upon file with respect to the processing
8583 of relocations and the scope of visibility of the symbols provided within file . When an object is
8584 brought into the address space of a process, it may contain references to symbols whose
8585 addresses are not known until the object is loaded. These references shall be relocated before the
8586 symbols can be accessed. The mode parameter governs when these relocations take place and
8587 may have the following values:

8588 RTLD_LAZY Relocations shall be performed at an implementation-defined time, |
8589 ranging from the time of the dlopen() call until the first reference to a
8590 given symbol occurs. Specifying RTLD_LAZY should improve
8591 performance on implementations supporting dynamic symbol binding as
8592 a process may not reference all of the functions in any given object. And,
8593 for systems supporting dynamic symbol resolution for normal process
8594 execution, this behavior mimics the normal handling of process
8595 execution.

8596 RTLD_NOW All necessary relocations shall be performed when the object is first
8597 loaded. This may waste some processing if relocations are performed for
8598 functions that are never referenced. This behavior may be useful for
8599 applications that need to know as soon as an object is loaded that all |

754 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dlopen()

8600 symbols referenced during execution are available. |

8601 Any object loaded by dlopen() that requires relocations against global symbols can reference the
8602 symbols in the original process image file, any objects loaded at program start-up, from the
8603 object itself as well as any other object included in the same dlopen() invocation, and any objects
8604 that were loaded in any dlopen() invocation and which specified the RTLD_GLOBAL flag. To
8605 determine the scope of visibility for the symbols loaded with a dlopen() invocation, the mode
8606 parameter should be a bitwise-inclusive OR with one of the following values:

8607 RTLD_GLOBAL The object’s symbols shall be made available for the relocation processing
8608 of any other object. In addition, symbol lookup using dlopen(0, mode) and
8609 an associated dlsym() allows objects loaded with this mode to be searched.

8610 RTLD_LOCAL The object’s symbols shall not be made available for the relocation
8611 processing of any other object.

8612 If neither RTLD_GLOBAL nor RTLD_LOCAL are specified, then an implementation-defined |
8613 default behavior shall be applied. |

8614 If a file is specified in multiple dlopen() invocations, mode is interpreted at each invocation. Note,
8615 however, that once RTLD_NOW has been specified all relocations shall have been completed
8616 rendering further RTLD_NOW operations redundant and any further RTLD_LAZY operations
8617 irrelevant. Similarly, note that once RTLD_GLOBAL has been specified the object shall maintain
8618 the RTLD_GLOBAL status regardless of any previous or future specification of RTLD_LOCAL,
8619 as long as the object remains in the address space (see dlclose()).

8620 Symbols introduced into a program through calls to dlopen() may be used in relocation
8621 activities. Symbols so introduced may duplicate symbols already defined by the program or
8622 previous dlopen() operations. To resolve the ambiguities such a situation might present, the
8623 resolution of a symbol reference to symbol definition is based on a symbol resolution order. Two
8624 such resolution orders are defined: load or dependency ordering. Load order establishes an
8625 ordering among symbol definitions, such that the definition first loaded (including definitions
8626 from the image file and any dependent objects loaded with it) has priority over objects added
8627 later (via dlopen()). Load ordering is used in relocation processing. Dependency ordering uses a
8628 breadth-first order starting with a given object, then all of its dependencies, then any dependents
8629 of those, iterating until all dependencies are satisfied. With the exception of the global symbol
8630 object obtained via a dlopen() operation on a file of 0, dependency ordering is used by the
8631 dlsym() function. Load ordering is used in dlsym() operations upon the global symbol object.

8632 When an object is first made accessible via dlopen() it and its dependent objects are added in
8633 dependency order. Once all the objects are added, relocations are performed using load order.
8634 Note that if an object or its dependencies had been previously loaded, the load and dependency
8635 orders may yield different resolutions.

8636 The symbols introduced by dlopen() operations, and available through dlsym() are at a
8637 minimum those which are exported as symbols of global scope by the object. Typically such
8638 symbols shall be those that were specified in (for example) C source code as having extern
8639 linkage. The precise manner in which an implementation constructs the set of exported symbols
8640 for a dlopen() object is specified by that implementation.

8641 RETURN VALUE
8642 If file cannot be found, cannot be opened for reading, is not of an appropriate object format for
8643 processing by dlopen(), or if an error occurs during the process of loading file or relocating its
8644 symbolic references, dlopen() shall return NULL. More detailed diagnostic information shall be
8645 available through dlerror().

System Interfaces, Issue 6 755

dlopen() System Interfaces

8646 ERRORS
8647 No errors are defined.

8648 EXAMPLES
8649 None.

8650 APPLICATION USAGE
8651 None.

8652 RATIONALE
8653 None.

8654 FUTURE DIRECTIONS
8655 None.

8656 SEE ALSO
8657 dlclose(), dlerror(), dlsym(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h> |

8658 CHANGE HISTORY
8659 First released in Issue 5.

756 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dlsym()

8660 NAME
8661 dlsym — obtain the address of a symbol from a dlopen() object

8662 SYNOPSIS
8663 XSI #include <dlfcn.h>

8664 void *dlsym(void *restrict handle , const char *restrict name); |
8665 |

8666 DESCRIPTION
8667 The dlsym() function allows a process to obtain the address of a symbol defined within an object
8668 made accessible through a dlopen() call. handle is the value returned from a call to dlopen() (and
8669 which has not since been released via a call to dlclose()), and name is the symbol’s name as a
8670 character string.

8671 The dlsym() function shall search for the named symbol in all objects loaded automatically as a
8672 result of loading the object referenced by handle (see dlopen()). Load ordering is used in dlsym()
8673 operations upon the global symbol object. The symbol resolution algorithm used shall be
8674 dependency order as described in dlopen().

8675 The RTLD_NEXT flag is reserved for future use.

8676 RETURN VALUE
8677 If handle does not refer to a valid object opened by dlopen(), or if the named symbol cannot be
8678 found within any of the objects associated with handle , dlsym() shall return NULL. More
8679 detailed diagnostic information shall be available through dlerror().

8680 ERRORS
8681 No errors are defined.

8682 EXAMPLES
8683 The following example shows how dlopen() and dlsym() can be used to access either function or
8684 data objects. For simplicity, error checking has been omitted.

8685 void *handle;
8686 int *iptr, (*fptr)(int);

8687 /* open the needed object */
8688 handle = dlopen("/usr/home/me/libfoo.so.1", RTLD_LAZY);

8689 /* find the address of function and data objects */
8690 fptr = (int (*)(int))dlsym(handle, "my_function");
8691 iptr = (int *)dlsym(handle, "my_object");

8692 /* invoke function, passing value of integer as a parameter */
8693 (*fptr)(*iptr);

8694 APPLICATION USAGE
8695 Special purpose values for handle are reserved for future use. These values and their meanings
8696 are:

8697 RTLD_NEXT Specifies the next object after this one that defines name. This one refers to the
8698 object containing the invocation of dlsym(). The next object is the one found
8699 upon the application of a load order symbol resolution algorithm (see
8700 dlopen()). The next object is either one of global scope (because it was
8701 introduced as part of the original process image or because it was added with
8702 a dlopen() operation including the RTLD_GLOBAL flag), or is an object that
8703 was included in the same dlopen() operation that loaded this one.

System Interfaces, Issue 6 757

dlsym() System Interfaces

8704 The RTLD_NEXT flag is useful to navigate an intentionally created hierarchy
8705 of multiply-defined symbols created through interposition. For example, if a
8706 program wished to create an implementation of malloc () that embedded some
8707 statistics gathering about memory allocations, such an implementation could
8708 use the real malloc () definition to perform the memory allocation—and itself
8709 only embed the necessary logic to implement the statistics gathering function.

8710 RATIONALE
8711 None.

8712 FUTURE DIRECTIONS
8713 None.

8714 SEE ALSO
8715 dlclose(), dlerror(), dlopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dlfcn.h> |

8716 CHANGE HISTORY
8717 First released in Issue 5. |

8718 Issue 6 |
8719 The restrict keyword is added to the dlsym() prototype for alignment with the |
8720 ISO/IEC 9899: 1999 standard. |

758 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces drand48()

8721 NAME
8722 drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48 — generate
8723 uniformly distributed pseudo-random numbers

8724 SYNOPSIS
8725 XSI #include <stdlib.h>

8726 double drand48(void);
8727 double erand48(unsigned short xsubi [3]); |
8728 long jrand48(unsigned short xsubi [3]); |
8729 void lcong48(unsigned short param [7]); |
8730 long lrand48(void); |
8731 long mrand48(void); |
8732 long nrand48(unsigned short xsubi [3]); |
8733 unsigned short *seed48(unsigned short seed16v [3]); |
8734 void srand48(long seedval); |
8735 |

8736 DESCRIPTION
8737 This family of functions generates pseudo-random numbers using a linear congruential
8738 algorithm and 48-bit integer arithmetic.

8739 The drand48() and erand48() functions shall return non-negative, double-precision, floating-
8740 point values, uniformly distributed over the interval [0.0,1.0).

8741 The lrand48() and nrand48() functions shall return non-negative, long integers, uniformly
8742 distributed over the interval [0,231).

8743 The mrand48() and jrand48() functions shall return signed long integers uniformly distributed
8744 over the interval [−231,231).

8745 The srand48(), seed48(), and lcong48 () are initialization entry points, one of which should be
8746 invoked before either drand48(), lrand48(), or mrand48() is called. (Although it is not
8747 recommended practice, constant default initializer values shall be supplied automatically if
8748 drand48(), lrand48(), or mrand48() is called without a prior call to an initialization entry point.)
8749 The erand48(), nrand48(), and jrand48() functions do not require an initialization entry point to
8750 be called first.

8751 All the routines work by generating a sequence of 48-bit integer values, Xi, according to the
8752 linear congruential formula:

8753 Xn +1 = (aXn + c)mod m n ≥ 0

8754 The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless lcong48 () is invoked,
8755 the multiplier value a and the addend value c are given by:

8756 a = 5DEECE66D 16 = 273673163155 8

8757 c = B 16 = 13 8

8758 The value returned by any of the drand48(), erand48(), jrand48(), lrand48(), mrand48(), or
8759 nrand48() functions is computed by first generating the next 48-bit Xi in the sequence. Then the
8760 appropriate number of bits, according to the type of data item to be returned, are copied from
8761 the high-order (leftmost) bits of Xi and transformed into the returned value.

8762 The drand48(), lrand48(), and mrand48() functions store the last 48-bit Xi generated in an
8763 internal buffer; that is why the application shall ensure that these are initialized prior to being
8764 invoked. The erand48(), nrand48(), and jrand48() functions require the calling program to
8765 provide storage for the successive Xi values in the array specified as an argument when the

System Interfaces, Issue 6 759

drand48() System Interfaces

8766 functions are invoked. That is why these routines do not have to be initialized; the calling
8767 program merely has to place the desired initial value of Xi into the array and pass it as an
8768 argument. By using different arguments, erand48(), nrand48(), and jrand48() allow separate
8769 modules of a large program to generate several independent streams of pseudo-random numbers;
8770 that is, the sequence of numbers in each stream shall not depend upon how many times the
8771 routines are called to generate numbers for the other streams.

8772 The initializer function srand48() sets the high-order 32 bits of Xi to the low-order 32 bits
8773 contained in its argument. The low-order 16 bits of Xi are set to the arbitrary value 330E16 .

8774 The initializer function seed48() sets the value of Xi to the 48-bit value specified in the argument
8775 array. The low-order 16 bits of Xi are set to the low-order 16 bits of seed16v[0]. The mid-order 16
8776 bits of Xi are set to the low-order 16 bits of seed16v[1]. The high-order 16 bits of Xi are set to the
8777 low-order 16 bits of seed16v[2]. In addition, the previous value of Xi is copied into a 48-bit
8778 internal buffer, used only by seed48(), and a pointer to this buffer is the value returned by
8779 seed48(). This returned pointer, which can just be ignored if not needed, is useful if a program is
8780 to be restarted from a given point at some future time—use the pointer to get at and store the
8781 last Xi value, and then use this value to re-initialize via seed48() when the program is restarted.

8782 The initializer function lcong48 () allows the user to specify the initial Xi, the multiplier value a,
8783 and the addend value c. Argument array elements param[0-2] specify Xi, param[3-5] specify the
8784 multiplier a, and param[6] specifies the 16-bit addend c. After lcong48 () is called, a subsequent
8785 call to either srand48() or seed48() shall restore the standard multiplier and addend values, a and
8786 c, specified above.

8787 The drand48(), lrand48(), and mrand48() functions need not be reentrant. A function that is not
8788 required to be reentrant is not required to be thread-safe.

8789 RETURN VALUE
8790 As described in the DESCRIPTION above.

8791 ERRORS
8792 No errors are defined.

8793 EXAMPLES
8794 None.

8795 APPLICATION USAGE
8796 None.

8797 RATIONALE
8798 None.

8799 FUTURE DIRECTIONS
8800 None.

8801 SEE ALSO
8802 rand(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

8803 CHANGE HISTORY
8804 First released in Issue 1. Derived from Issue 1 of the SVID. |

8805 Issue 4
8806 The type long is replaced by long and the type unsigned short is replaced by unsigned short in |
8807 the SYNOPSIS section.

8808 In the DESCRIPTION, the description of srand48() is amended to fix a limitation in Issue 3,
8809 which indicates that the high-order 32 bits of Xi are set to the {LONG_BIT} bits in the argument.
8810 Though unintentional, the implication of this statement is that {LONG_BIT} would be 32 on all

760 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces drand48()

8811 systems compliant with Issue 3, when in fact Issue 3 imposes no such restriction.

8812 The <stdlib.h> header is added to the SYNOPSIS section.

8813 The argument list for the lrand48() and mrand48() functions now contains void.

8814 Issue 5
8815 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

8816 Issue 6
8817 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 761

dup() System Interfaces

8818 NAME
8819 dup, dup2 — duplicate an open file descriptor

8820 SYNOPSIS
8821 #include <unistd.h>

8822 int dup(int fildes);
8823 int dup2(int fildes , int fildes2);

8824 DESCRIPTION
8825 The dup() and dup2() functions provide an alternative interface to the service provided by
8826 fcntl() using the F_DUPFD command. The call:

8827 fid = dup(fildes);

8828 is equivalent to:

8829 fid = fcntl(fildes , F_DUPFD, 0);

8830 The call:

8831 fid = dup2(fildes , fildes2);

8832 is equivalent to:

8833 close(fildes2);
8834 fid = fcntl(fildes , F_DUPFD, fildes2);

8835 except for the following:

8836 • If fildes2 is less than 0 or greater than or equal to {OPEN_MAX}, dup2() shall return −1 with
8837 errno set to [EBADF]. |

8838 • If fildes is a valid file descriptor and is equal to fildes2 , dup2() shall return fildes2 without
8839 closing it.

8840 • If fildes is not a valid file descriptor, dup2() shall return −1 and shall not close fildes2 .

8841 • The value returned shall be equal to the value of fildes2 upon successful completion, or −1
8842 upon failure.

8843 RETURN VALUE
8844 Upon successful completion a non-negative integer, namely the file descriptor, shall be returned;
8845 otherwise, −1 shall be returned and errno set to indicate the error.

8846 ERRORS
8847 The dup() function shall fail if:

8848 [EBADF] The fildes argument is not a valid open file descriptor. |

8849 [EMFILE] The number of file descriptors in use by this process would exceed |
8850 {OPEN_MAX}.

8851 The dup2() function shall fail if:

8852 [EBADF] The fildes argument is not a valid open file descriptor or the argument fildes2 is |
8853 negative or greater than or equal to {OPEN_MAX}.

8854 [EINTR] The dup2() function was interrupted by a signal. |

762 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces dup()

8855 EXAMPLES

8856 Redirecting Standard Output to a File

8857 The following example closes standard output for the current processes, re-assigns standard
8858 output to go to the file referenced by pfd , and closes the original file descriptor to clean up.

8859 #include <unistd.h>
8860 ...
8861 int pfd;
8862 ...
8863 close(1);
8864 dup(pfd);
8865 close(pfd);
8866 ...

8867 Redirecting Error Messages

8868 The following example redirects messages from stderr to stdout .

8869 #include <unistd.h>
8870 ...
8871 dup2(1, 2);
8872 ...

8873 APPLICATION USAGE
8874 None.

8875 RATIONALE
8876 The dup() and dup2() functions are redundant. Their services are also provided by the fcntl()
8877 function. They have been included in this volume of IEEE Std. 1003.1-200x primarily for
8878 historical reasons, since many existing applications use them.

8879 While the brief code segment shown is very similar in behavior to dup2(), a conforming
8880 implementation based on other functions defined in this volume of IEEE Std. 1003.1-200x is
8881 significantly more complex. Least obvious is the possible effect of a signal-catching function that
8882 could be invoked between steps and allocate or deallocate file descriptors. This could be avoided
8883 by blocking signals.

8884 The dup2() function is not marked obsolescent because it presents a type-safe version of
8885 functionality provided in a type-unsafe version by fcntl(). It is used in the POSIX Ada binding.

8886 The dup2() function is not intended for use in critical regions as a synchronization mechanism.

8887 In the description of [EBADF], the case of fildes being out of range is covered by the given case of |
8888 fildes not being valid. The descriptions for fildes and fildes2 are different because the only kind of
8889 invalidity that is relevant for fildes2 is whether it is out of range; that is, it does not matter
8890 whether fildes2 refers to an open file when the dup2() call is made.

8891 FUTURE DIRECTIONS
8892 None.

8893 SEE ALSO
8894 close(), fcntl(), open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

System Interfaces, Issue 6 763

dup() System Interfaces

8895 CHANGE HISTORY
8896 First released in Issue 1. Derived from Issue 1 of the SVID. |

8897 Issue 4
8898 The <unistd.h> header is added to the SYNOPSIS section.

8899 [EINTR] is no longer required for dup() because fcntl() does not return [EINTR] for F_DUPFD.

8900 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

8901 • In the DESCRIPTION, the fourth bullet item describing differences between dup() and
8902 dup2() is added.

8903 • In the ERRORS section, error values returned by dup() and dup2() are now described
8904 separately.

8905 Issue 6
8906 The RATIONALE section is added.

764 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ecvt()

8907 NAME
8908 ecvt, fcvt, gcvt — convert a floating-point number to a string (LEGACY)

8909 SYNOPSIS
8910 XSI #include <stdlib.h>

8911 char *ecvt(double value , int ndigit , int *restrict decpt , |
8912 int *restrict sign); |
8913 char *fcvt(double value , int ndigit , int *restrict decpt , |
8914 int *restrict sign); |
8915 char *gcvt(double value , int ndigit , char * buf); |
8916

8917 DESCRIPTION
8918 The ecvt(), fcvt(), and gcvt() functions shall convert floating-point numbers to null-terminated
8919 strings.

8920 The ecvt() function shall convert value to a null-terminated string of ndigit digits (where ndigit is
8921 reduced to an unspecified limit determined by the precision of a double) and return a pointer to
8922 the string. The high-order digit is non-zero, unless the value is 0. The low-order digit is rounded.
8923 The position of the radix character relative to the beginning of the string is stored in the integer
8924 pointed to by decpt (negative means to the left of the returned digits). If value is zero, it is
8925 unspecified whether the integer pointed to by decpt would be 0 or 1. The radix character is not
8926 included in the returned string. If the sign of the result is negative, the integer pointed to by sign
8927 is non-zero; otherwise, it is 0.

8928 If the converted value is out of range or is not representable, the contents of the returned string
8929 are unspecified.

8930 The fcvt() function is identical to ecvt() except that ndigit specifies the number of digits desired
8931 after the radix character. The total number of digits in the result string is restricted to an
8932 unspecified limit as determined by the precision of a double.

8933 The gcvt() function shall convert value to a null-terminated string (similar to that of the %g
8934 format of printf()) in the array pointed to by buf and return buf. It produces ndigit significant
8935 digits (limited to an unspecified value determined by the precision of a double) in %f if possible,
8936 or %e (scientific notation) otherwise. A minus sign is included in the returned string if value is
8937 less than 0. A radix character is included in the returned string if value is not a whole number.
8938 Trailing zeros are suppressed where value is not a whole number. The radix character is
8939 determined by the current locale. If setlocale () has not been called successfully, the default locale,
8940 POSIX, is used. The default locale specifies a period (’.’) as the radix character. The
8941 LC_NUMERIC category determines the value of the radix character within the current locale.

8942 These functions need not be reentrant. A function that is not required to be reentrant is not
8943 required to be thread-safe.

8944 RETURN VALUE
8945 The ecvt() and fcvt() functions shall return a pointer to a null-terminated string of digits.

8946 The gcvt() function shall return buf.

8947 The return values from ecvt() and fcvt() may point to static data which may be overwritten by
8948 subsequent calls to these functions.

8949 ERRORS
8950 No errors are defined.

System Interfaces, Issue 6 765

ecvt() System Interfaces

8951 EXAMPLES
8952 None.

8953 APPLICATION USAGE
8954 sprintf() is preferred over this function.

8955 RATIONALE
8956 None.

8957 FUTURE DIRECTIONS
8958 These functions may be withdrawn in a future version.

8959 SEE ALSO
8960 printf(), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

8961 CHANGE HISTORY
8962 First released in Issue 4, Version 2.

8963 Issue 5
8964 Moved from X/OPEN UNIX extension to BASE.

8965 Normative text previously in the APPLICATION USAGE section is moved to the
8966 DESCRIPTION.

8967 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

8968 Issue 6
8969 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

8970 This function is marked LEGACY. |

8971 The restrict keyword is added to the ecvt() and fcvt() prototypes for alignment with the |
8972 ISO/IEC 9899: 1999 standard. |

766 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces encrypt()

8973 NAME
8974 encrypt — encoding function (CRYPT)

8975 SYNOPSIS
8976 XSI #include <unistd.h>

8977 void encrypt(char block [64], int edflag);
8978

8979 DESCRIPTION
8980 The encrypt() function provides (rather primitive) access to an implementation-defined |
8981 encoding algorithm. The key generated by setkey() is used to encrypt the string block with |
8982 encrypt().

8983 The block argument to encrypt() is an array of length 64 bytes containing only the bytes with
8984 numerical value of 0 and 1. The array is modified in place to a similar array using the key set by
8985 setkey(). If edflag is 0, the argument is encoded. If edflag is 1, the argument may be decoded (see
8986 the APPLICATION USAGE section); if the argument is not decoded, errno shall be set to
8987 [ENOSYS]. |

8988 The encrypt() function shall not change the setting of errno if successful. An application wishing
8989 to check for error situations should set errno to 0 before calling encrypt(). If errno is non-zero on
8990 return, an error has occurred.

8991 The encrypt() function need not be reentrant. A function that is not required to be reentrant is
8992 not required to be thread-safe.

8993 RETURN VALUE
8994 The encrypt() function shall return no value.

8995 ERRORS
8996 The encrypt() function shall fail if:

8997 [ENOSYS] The functionality is not supported on this implementation. |

8998 EXAMPLES
8999 None.

9000 APPLICATION USAGE
9001 In some environments, decoding might not be implemented. This is related to U.S. Government
9002 restrictions on encryption and decryption routines: the DES decryption algorithm cannot be
9003 exported outside the U.S. Historical practice has been to ship a different version of the
9004 encryption library without the decryption feature in the routines supplied. Thus the exported
9005 version of encrypt() does encoding but not decoding.

9006 RATIONALE
9007 None.

9008 FUTURE DIRECTIONS
9009 None.

9010 SEE ALSO
9011 crypt(), setkey(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

9012 CHANGE HISTORY
9013 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 767

encrypt() System Interfaces

9014 Issue 4
9015 The <unistd.h> header is added to the SYNOPSIS section.

9016 The DESCRIPTION is amended:

9017 • To specify the encoding algorithm as implementation-defined |

9018 • To change entry to function

9019 • To make decoding optional

9020 The APPLICATION USAGE section is expanded to explain the restrictions on the availability of
9021 the DES decryption algorithm.

9022 Issue 5
9023 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

9024 Issue 6
9025 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

768 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endgrent()

9026 NAME
9027 endgrent, getgrent, setgrent — group database entry functions

9028 SYNOPSIS
9029 XSI #include <grp.h>

9030 void endgrent(void);
9031 struct group *getgrent(void);
9032 void setgrent(void);
9033

9034 DESCRIPTION
9035 The endgrent() function may be called to close the group database when processing is complete. |

9036 An implementation that provides extended security controls may impose further |
9037 implementation-defined restrictions on accessing the group database. In particular, the system |
9038 may deny the existence of some or all of the group database entries associated with groups other |
9039 than those groups associated with the caller and may omit users other than the caller from the |
9040 list of members of groups in database entries that are returned. |

9041 The getgrent() function shall return a pointer to a structure containing the broken-out fields of an |
9042 entry in the group database. When first called, getgrent() shall return a pointer to a group
9043 structure containing the first entry in the group database. Thereafter, it shall return a pointer to a
9044 group structure containing the next group structure in the group database, so successive calls
9045 may be used to search the entire database.

9046 The setgrent() function effectively rewinds the group database to allow repeated searches.

9047 These functions need not be reentrant. A function that is not required to be reentrant is not |
9048 required to be thread-safe.

9049 RETURN VALUE
9050 When first called, getgrent() shall return a pointer to the first group structure in the group
9051 database. Upon subsequent calls it shall return the next group structure in the group database.
9052 The getgrent() function shall return a null pointer on end-of-file or an error and errno may be set
9053 to indicate the error.

9054 The return value may point to a static area which is overwritten by a subsequent call to
9055 getgrgid(), getgrnam(), or getgrent().

9056 ERRORS
9057 The getgrent() function may fail if:

9058 [EINTR] A signal was caught during the operation. |

9059 [EIO] An I/O error has occurred. |

9060 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

9061 [ENFILE] The maximum allowable number of files is currently open in the system. |

System Interfaces, Issue 6 769

endgrent() System Interfaces

9062 EXAMPLES
9063 None.

9064 APPLICATION USAGE
9065 These functions are provided due to their historical usage. Applications should avoid
9066 dependencies on fields in the group database, whether the database is a single file, or where in
9067 the file system name space the database resides. Applications should use getgrnam() and
9068 getgrgid() whenever possible because it avoids these dependencies.

9069 RATIONALE
9070 None.

9071 FUTURE DIRECTIONS
9072 None.

9073 SEE ALSO
9074 getgrgid(), getgrnam(), getlogin (), getpwent(), the Base Definitions volume of |
9075 IEEE Std. 1003.1-200x, <grp.h> |

9076 CHANGE HISTORY
9077 First released in Issue 4, Version 2.

9078 Issue 5
9079 Moved from X/OPEN UNIX extension to BASE.

9080 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
9081 VALUE section.

9082 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

9083 Issue 6
9084 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

770 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endhostent()

9085 NAME
9086 endhostent, freehostent, gethostent, sethostent — network host database functions

9087 SYNOPSIS
9088 #include <netdb.h>

9089 void endhostent(void);
9090 void freehostent(struct hostent * ptr);
9091 struct hostent *gethostent(void);
9092 void sethostent(int stayopen);

9093 DESCRIPTION
9094 These functions enable applications to retrieve information about hosts. This information is
9095 considered to be stored in a database that can be accessed sequentially or randomly.
9096 Implementation of this database is unspecified.

9097 Note: In many cases it is implemented by the Domain Name System, as documented in
9098 RFC 1034, RFC 1035, and RFC 1886.

9099 Entries are returned in hostent structures. Refer to gethostbyaddr() for a definition of the hostent
9100 structure.

9101 The endhostent() function shall close the connection to the database, releasing any open file
9102 descriptor.

9103 The freehostent() function shall free the memory occupied by the hostent structure pointed to by |
9104 ptr and any structures pointed to from that structure, provided that hostent was obtained by a |
9105 call to getipnodebyaddr() or getipnodebyname(). Applications shall not call freehostent() except to
9106 pass it a pointer that was obtained from getipnodebyaddr() or getipnodebyname().

9107 The gethostent() function shall read the next entry in the database, opening and closing a |
9108 connection to the database as necessary. |

9109 The sethostent() function shall open a connection to the database and set the next entry for
9110 retrieval to the first entry in the database. If the stayopen argument is non-zero, the connection
9111 shall not be closed by a call to gethostent(), getipnodebyname(), gethostbyname(), getipnodebyaddr(),
9112 or gethostbyaddr(), and the implementation may maintain an open file descriptor. |

9113 These functions need not be reentrant. A function that is not required to be reentrant is not |
9114 required to be thread-safe. |

9115 RETURN VALUE
9116 Upon successful completion, the gethostent() function shall return a pointer to a hostent
9117 structure if the requested entry was found, and a null pointer if the end of the database was
9118 reached or the requested entry was not found.

9119 ERRORS
9120 No errors are defined for endhostent(), gethostent(), and sethostent().

9121 EXAMPLES
9122 None.

9123 APPLICATION USAGE
9124 The hostent structure returned by getipnodebyaddr() and getipnodebyname(), and any structures
9125 pointed to from those structures, are dynamically allocated. Applications should call
9126 freehostent() to free the memory used by these structures.

9127 The gethostent() function may return pointers to static data, which may be overwritten by
9128 subsequent calls to any of these functions. Applications shall not call freehostent() for this area.

System Interfaces, Issue 6 771

endhostent() System Interfaces

9129 RATIONALE
9130 None.

9131 FUTURE DIRECTIONS
9132 None.

9133 SEE ALSO
9134 endservent(), gethostbyaddr(), gethostbyname(), getipnodebyaddr(), getipnodebyname(), the Base |
9135 Definitions volume of IEEE Std. 1003.1-200x, <netdb.h> |

9136 CHANGE HISTORY
9137 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

772 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endnetent()

9138 NAME
9139 endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database functions

9140 SYNOPSIS
9141 #include <netdb.h>

9142 void endnetent(void);
9143 struct netent *getnetbyaddr(uint32_t net , int type);
9144 struct netent *getnetbyname(const char * name);
9145 struct netent *getnetent(void);
9146 void setnetent(int stayopen);

9147 DESCRIPTION
9148 These functions enable applications to retrieve information about networks. This information is
9149 considered to be stored in a database that can be accessed sequentially or randomly.
9150 Implementation of this database is unspecified.

9151 The endnetent() function shall close the database, releasing any open file descriptor.

9152 The getnetbyaddr() function shall search the database from the beginning, and find the first entry
9153 for which the address family specified by type matches the n_addrtype member and the network
9154 number net matches the n_net member, opening a connection to the database if necessary. The
9155 net argument shall be the network number in host byte order.

9156 The getnetbyname() function shall search the database from the beginning and find the first entry
9157 for which the network name specified by name matches the n_name member, opening and |
9158 closing a connection to the database as necessary. |

9159 The getnetent() function shall read the next entry of the database, opening a connection to the
9160 database if necessary.

9161 The setnetent() function shall open and rewind the database. If the stayopen argument is non-
9162 zero, the connection to the net database shall not be closed after each call to getnetent() (either
9163 directly, or indirectly through one of the other getnet*() functions), and the implementation may
9164 maintain an open file descriptor to the database.

9165 The getnetbyaddr(), getnetbyname(), and getnetent(), functions shall each return a pointer to a
9166 netent structure, the members of which shall contain the fields of an entry in the network
9167 database. |

9168 These functions need not be reentrant. A function that is not required to be reentrant is not |
9169 required to be thread-safe. |

9170 RETURN VALUE
9171 Upon successful completion, getnetbyaddr(), getnetbyname(), and getnetent(), shall return a
9172 pointer to a netent structure if the requested entry was found, and a null pointer if the end of the
9173 database was reached or the requested entry was not found. Otherwise, a null pointer shall be
9174 returned.

9175 ERRORS
9176 No errors are defined.

System Interfaces, Issue 6 773

endnetent() System Interfaces

9177 EXAMPLES
9178 None.

9179 APPLICATION USAGE
9180 The getnetbyaddr(), getnetbyname(), and getnetent(), functions may return pointers to static data,
9181 which may be overwritten by subsequent calls to any of these functions.

9182 RATIONALE
9183 None.

9184 FUTURE DIRECTIONS
9185 None.

9186 SEE ALSO
9187 The Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h> |

9188 CHANGE HISTORY
9189 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

774 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endprotoent()

9190 NAME
9191 endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent — network protocol
9192 database functions

9193 SYNOPSIS
9194 #include <netdb.h>

9195 void endprotoent(void);
9196 struct protoent *getprotobyname(const char * name);
9197 struct protoent *getprotobynumber(int proto);
9198 struct protoent *getprotoent(void);
9199 void setprotoent(int stayopen);

9200 DESCRIPTION
9201 These functions enable applications to retrieve information about protocols. This information is
9202 considered to be stored in a database that can be accessed sequentially or randomly.
9203 Implementation of this database is unspecified.

9204 The endprotoent() function shall close the connection to the database, releasing any open file
9205 descriptor.

9206 The getprotobyname() function shall search the database from the beginning and find the first
9207 entry for which the protocol name specified by name matches the p_name member, opening a
9208 connection to the database if necessary.

9209 The getprotobynumber() function shall search the database from the beginning and find the first
9210 entry for which the protocol number specified by proto matches the p_proto member, opening a |
9211 connection to the database if necessary.

9212 The getprotoent() function shall read the next entry of the database, opening and closing a |
9213 connection to the database as necessary. |

9214 The setprotoent() function shall open a connection to the database, and set the next entry to the
9215 first entry. If the stayopen argument is non-zero, the connection to the network protocol database
9216 shall not be closed after each call to getprotoent() (either directly, or indirectly through one of the
9217 other getproto*() functions), and the implementation may maintain an open file descriptor for
9218 the database.

9219 The getprotobyname(), getprotobynumber(), and getprotoent(), functions shall each return a pointer
9220 to a protoent structure, the members of which shall contain the fields of an entry in the network
9221 protocol database. |

9222 These functions need not be reentrant. A function that is not required to be reentrant is not |
9223 required to be thread-safe. |

9224 RETURN VALUE
9225 Upon successful completion, getprotobyname(), getprotobynumber(), and getprotoent() return a
9226 pointer to a protoent structure if the requested entry was found, and a null pointer if the end of
9227 the database was reached or the requested entry was not found. Otherwise, a null pointer is
9228 returned.

9229 ERRORS
9230 No errors are defined.

System Interfaces, Issue 6 775

endprotoent() System Interfaces

9231 EXAMPLES
9232 None.

9233 APPLICATION USAGE
9234 The getprotobyname(), getprotobynumber(), and getprotoent() functions may return pointers to
9235 static data, which may be overwritten by subsequent calls to any of these functions.

9236 RATIONALE
9237 None.

9238 FUTURE DIRECTIONS
9239 None.

9240 SEE ALSO
9241 The Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h> |

9242 CHANGE HISTORY
9243 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

776 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endpwent()

9244 NAME
9245 endpwent, getpwent, setpwent — user database functions

9246 SYNOPSIS
9247 XSI #include <pwd.h>

9248 void endpwent(void);
9249 struct passwd *getpwent(void);
9250 void setpwent(void);
9251

9252 DESCRIPTION
9253 The endpwent() function may be called to close the user database when processing is complete. |

9254 An implementation that provides extended security controls may impose further |
9255 implementation-defined restrictions on accessing the user database. In particular, the system |
9256 may deny the existence of some or all of the user database entries associated with users other |
9257 than the caller. |

9258 The getpwent() function shall return a pointer to a structure containing the broken-out fields of |
9259 an entry in the user database. Each entry in the user database contains a passwd structure. When
9260 first called, getpwent() shall return a pointer to a passwd structure containing the first entry in
9261 the user database. Thereafter, it shall return a pointer to a passwd structure containing the next
9262 entry in the user database. Successive calls can be used to search the entire user database.

9263 If an end-of-file or an error is encountered on reading, getpwent() shall return a null pointer.

9264 The setpwent() function effectively rewinds the user database to allow repeated searches.

9265 These functions need not be reentrant. A function that is not required to be reentrant is not |
9266 required to be thread-safe.

9267 RETURN VALUE
9268 The getpwent() function shall return a null pointer on end-of-file or error.

9269 ERRORS
9270 The getpwent(), setpwent(), and endpwent() functions may fail if:

9271 [EIO] An I/O error has occurred. |

9272 In addition, getpwent() and setpwent() may fail if:

9273 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

9274 [ENFILE] The maximum allowable number of files is currently open in the system. |

9275 The return value may point to a static area which is overwritten by a subsequent call to
9276 getpwuid(), getpwnam(), or getpwent().

9277 EXAMPLES

9278 Searching the User Database

9279 The following example uses the getpwent() function to get successive entries in the user
9280 database, returning a pointer to a passwd structure that contains information about each user.
9281 The call to endpwent() closes the user database and cleans up.

9282 #include <pwd.h>
9283 ...
9284 struct passwd *p;
9285 ...

System Interfaces, Issue 6 777

endpwent() System Interfaces

9286 while ((p = getpwent ()) != NULL) {
9287 ...
9288 }

9289 endpwent();
9290 ...

9291 APPLICATION USAGE
9292 These functions are provided due to their historical usage. Applications should avoid
9293 dependencies on fields in the password database, whether the database is a single file, or where
9294 in the file system name space the database resides. Applications should use getpwuid()
9295 whenever possible because it avoids these dependencies.

9296 RATIONALE
9297 None.

9298 FUTURE DIRECTIONS
9299 None.

9300 SEE ALSO
9301 endgrent(), getlogin (), getpwnam(), getpwuid(), the Base Definitions volume of |
9302 IEEE Std. 1003.1-200x, <pwd.h> |

9303 CHANGE HISTORY
9304 First released in Issue 4, Version 2.

9305 Issue 5
9306 Moved from X/OPEN UNIX extension to BASE.

9307 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
9308 VALUE section.

9309 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

9310 Issue 6
9311 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

778 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endservent()

9312 NAME
9313 endservent, getservbyname, getservbyport, getservent, setservent — network services database
9314 functions

9315 SYNOPSIS
9316 #include <netdb.h>

9317 void endservent(void);
9318 struct servent *getservbyname(const char * name, const char * proto);
9319 struct servent *getservbyport(int port , const char * proto);
9320 struct servent *getservent(void);
9321 void setservent(int stayopen);

9322 DESCRIPTION
9323 These functions enable applications to retrieve information about network services. This
9324 information is considered to be stored in a database that can be accessed sequentially or
9325 randomly. Implementation of this database is unspecified.

9326 The endservent() function shall close the database, releasing any open file descriptor.

9327 The getservbyname() function shall search the database from the beginning and find the first
9328 entry for which the service name specified by name matches the s_name member and the protocol
9329 name specified by proto matches the s_proto member, opening a connection to the database if
9330 necessary. If proto is a null pointer, any value of the s_proto member shall be matched.

9331 The getservbyport() function shall search the database from the beginning and find the first entry
9332 for which the port specified by port matches the s_port member and the protocol name specified
9333 by proto matches the s_proto member, opening a connection to the database if necessary. If proto
9334 is a null pointer, any value of the s_proto member shall be matched. The port argument shall be in
9335 network byte order.

9336 The getservent() function shall read the next entry of the database, opening and closing a |
9337 connection to the database as necessary. |

9338 The setservent() function shall open a connection to the database, and set the next entry to the
9339 first entry. If the stayopen argument is non-zero, the net database shall not be closed after each
9340 call to the getservent() function (either directly, or indirectly through one of the other getserv*()
9341 functions), and the implementation may maintain an open file descriptor for the database.

9342 The getservbyname(), getservbyport(), and getservent() functions shall each return a pointer to a
9343 servent structure, the members of which shall contain the fields of an entry in the network
9344 services database. |

9345 These functions need not be reentrant. A function that is not required to be reentrant is not |
9346 required to be thread-safe. |

9347 RETURN VALUE
9348 Upon successful completion, getservbyname(), getservbyport(), and getservent() return a pointer to
9349 a servent structure if the requested entry was found, and a null pointer if the end of the database
9350 was reached or the requested entry was not found. Otherwise, a null pointer is returned.

9351 ERRORS
9352 No errors are defined.

System Interfaces, Issue 6 779

endservent() System Interfaces

9353 EXAMPLES
9354 None.

9355 APPLICATION USAGE
9356 The port argument of getservbyport() need not be compatible with the port values of all address
9357 families.

9358 The getservbyname(), getservbyport(), and getservent() functions may return pointers to static
9359 data, which may be overwritten by subsequent calls to any of these functions.

9360 RATIONALE
9361 None.

9362 FUTURE DIRECTIONS
9363 None.

9364 SEE ALSO
9365 endhostent(), endprotoent(), htonl(), inet_addr(), the Base Definitions volume of |
9366 IEEE Std. 1003.1-200x, <netdb.h> |

9367 CHANGE HISTORY
9368 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

780 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endutxent()

9369 NAME
9370 endutxent, getutxent, getutxid, getutxline, pututxline, setutxent — user accounting database
9371 functions

9372 SYNOPSIS
9373 XSI #include <utmpx.h>

9374 void endutxent(void);
9375 struct utmpx *getutxent(void);
9376 struct utmpx *getutxid(const struct utmpx * id);
9377 struct utmpx *getutxline(const struct utmpx * line);
9378 struct utmpx *pututxline(const struct utmpx * utmpx);
9379 void setutxent(void);
9380

9381 DESCRIPTION
9382 These functions provide access to the user accounting database.

9383 The endutxent() function closes the user accounting database. |

9384 An implementation that provides extended security controls may impose further |
9385 implementation-defined restrictions on accessing the user accounting database. In particular, the |
9386 system may deny the existence of some or all of the user accounting database entries associated |
9387 with users other than the caller. |

9388 The getutxent() function reads in the next entry from the user accounting database. If the |
9389 database is not already open, it opens it. If it reaches the end of the database, it fails.

9390 The getutxid() function searches forward from the current point in the database. If the ut_type
9391 value of the utmpx structure pointed to by id is BOOT_TIME, OLD_TIME, or NEW_TIME, then
9392 it stops when it finds an entry with a matching ut_type value. If the ut_type value is
9393 INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then it stops when
9394 it finds an entry whose type is one of these four and whose ut_id member matches the ut_id
9395 member of the utmpx structure pointed to by id . If the end of the database is reached without a
9396 match, getutxid() fails.

9397 The getutxid() or getutxline() function may cache data. For this reason, to use getutxline() to
9398 search for multiple occurrences, it is necessary to zero out the static data after each success, or
9399 getutxline() could just return a pointer to the same utmpx structure over and over again.

9400 There is one exception to the rule about removing the structure before further reads are done.
9401 The implicit read done by pututxline() (if it finds that it is not already at the correct place in the
9402 user accounting database) shall not modify the static structure returned by getutxent(),
9403 getutxid(), or getutxline(), if the application has just modified this structure and passed the
9404 pointer back to pututxline().

9405 For all entries that match a request, the ut_type member indicates the type of the entry. Other
9406 members of the entry shall contain meaningful data based on the value of the ut_type member as
9407 follows:

System Interfaces, Issue 6 781

endutxent() System Interfaces

9408 ___
9409 ut_type Member Other Members with Meaningful Data___
9410 EMPTY No others
9411 BOOT_TIME ut_tv
9412 OLD_TIME ut_tv
9413 NEW_TIME ut_tv
9414 USER_PROCESS ut_id, ut_user (login name of the user), ut_line, ut_pid, ut_tv
9415 INIT_PROCESS ut_id, ut_pid, ut_tv
9416 ut_id , ut_user (implementation-defined name of the login
9417 process), ut_pid , ut_tv

LOGIN_PROCESS

9418 DEAD_PROCESS ut_id, ut_pid, ut_tv___LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L

9419 The getutxline() function searches forward from the current point in the database until it finds an
9420 entry of the type LOGIN_PROCESS or USER_PROCESS which also has a ut_line value matching
9421 that in the utmpx structure pointed to by line . If the end of the database is reached without a
9422 match, getutxline() fails.

9423 If the process has appropriate privileges, the pututxline() function writes out the structure into
9424 the user accounting database. It uses getutxid() to search for a record that satisfies the request. If
9425 this search succeeds, then the entry is replaced. Otherwise, a new entry is made at the end of the
9426 user accounting database.

9427 The setutxent() function resets the input to the beginning of the database. This should be done
9428 before each search for a new entry if it is desired that the entire database be examined.

9429 These functions need not be reentrant. A function that is not required to be reentrant is not |
9430 required to be thread-safe.

9431 RETURN VALUE
9432 Upon successful completion, getutxent(), getutxid(), and getutxline() shall return a pointer to a
9433 utmpx structure containing a copy of the requested entry in the user accounting database.
9434 Otherwise, a null pointer shall be returned.

9435 The return value may point to a static area which is overwritten by a subsequent call to
9436 getutxid() or getutxline().

9437 Upon successful completion, pututxline() shall return a pointer to a utmpx structure containing a
9438 copy of the entry added to the user accounting database. Otherwise, a null pointer shall be
9439 returned.

9440 The endutxent() and setutxent() functions shall return no value.

9441 ERRORS
9442 No errors are defined for the endutxent(), getutxent(), getutxid(), getutxline(), and setutxent()
9443 functions.

9444 The pututxline() function may fail if:

9445 [EPERM] The process does not have appropriate privileges. |

782 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces endutxent()

9446 EXAMPLES
9447 None.

9448 APPLICATION USAGE
9449 The sizes of the arrays in the structure can be found using the sizeof operator.

9450 RATIONALE
9451 None.

9452 FUTURE DIRECTIONS
9453 None.

9454 SEE ALSO
9455 The Base Definitions volume of IEEE Std. 1003.1-200x, <utmpx.h> |

9456 CHANGE HISTORY
9457 First released in Issue 4, Version 2.

9458 Issue 5
9459 Moved from X/OPEN UNIX extension to BASE.

9460 Normative text previously in the APPLICATION USAGE section is moved to the
9461 DESCRIPTION.

9462 A note indicating that these functions need not be reentrant is added to the DESCRIPTION.

9463 Issue 6
9464 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

System Interfaces, Issue 6 783

environ System Interfaces

9465 NAME
9466 environ — array of character pointers to the environment strings

9467 SYNOPSIS
9468 extern char **environ;

9469 DESCRIPTION
9470 Refer to the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables |
9471 and exec. |

784 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces erand48()

9472 NAME
9473 erand48 — generate uniformly distributed pseudo-random numbers

9474 SYNOPSIS
9475 XSI #include <stdlib.h>

9476 double erand48(unsigned short xsubi [3]); |
9477 |

9478 DESCRIPTION
9479 Refer to drand48().

System Interfaces, Issue 6 785

erf() System Interfaces

9480 NAME
9481 erf, erfc, erfcf, erfcl, erff, erfl — error and complementary error functions |

9482 SYNOPSIS
9483 XSI #include <math.h>

9484 double erf(double x);
9485 double erfc(double x);
9486 float erfcf(float x); |
9487 long double erfcl(long double x); |
9488 float erff(float x); |
9489 long double erfl(long double x); |
9490 |

9491 DESCRIPTION
9492 The erf(), erff,() and erfl() functions shall compute the error function of x , defined as: |

9493 √MMπ
2____

0
∫
x

e−t2

dt

9494 The erfc(), erfcf(), and erfcl() functions shall compute 1.0 − erf(x). |

9495 An application wishing to check for error situations should set errno to 0 before calling erf(). If
9496 errno is non-zero on return, or the return value is NaN, an error has occurred.

9497 RETURN VALUE
9498 Upon successful completion, these functions shall return the value of the error function and |
9499 complementary error function, respectively. |

9500 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

9501 If the correct value would cause underflow, 0 shall be returned and errno may be set to
9502 [ERANGE]. |

9503 ERRORS
9504 The erfc(), erfcf(), and erfcl() functions shall fail if: |

9505 [ERANGE] The value of x is too large. |

9506 The erf() and erfc() functions may fail if: |

9507 [EDOM] The value of x is NaN. |

9508 [ERANGE] The result underflows |

9509 No other errors shall occur.

9510 EXAMPLES
9511 None.

9512 APPLICATION USAGE
9513 The erfc() function is provided because of the extreme loss of relative accuracy if erf(x) is called
9514 for large x and the result subtracted from 1.0.

9515 RATIONALE
9516 None.

9517 FUTURE DIRECTIONS
9518 None.

786 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces erf()

9519 SEE ALSO
9520 isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

9521 CHANGE HISTORY
9522 First released in Issue 1. Derived from Issue 1 of the SVID. |

9523 Issue 4
9524 References to matherr() are removed.

9525 The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
9526 handling in the mathematics functions.

9527 Issue 5
9528 The DESCRIPTION is updated to indicate how an application should check for an error. This
9529 text was previously published in the APPLICATION USAGE section. |

9530 Issue 6 |
9531 The erfcf(), erfcl(), erff(), and erfl() functions are added for alignment with the |
9532 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 787

errno System Interfaces

9533 NAME
9534 errno — error return value |

9535 SYNOPSIS
9536 #include <errno.h>

9537 DESCRIPTION
9538 errno is used by many functions to return error values.

9539 Many functions provide an error number in errno which has type int and is defined in <errno.h>.
9540 The value of errno shall be defined only after a call to a function for which it is explicitly stated to
9541 be set and until it is changed by the next function call. The value of errno should only be
9542 examined when it is indicated to be valid by a function’s return value. Programs should obtain
9543 the definition of errno by the inclusion of <errno.h>. No function in this volume of |
9544 IEEE Std. 1003.1-200x shall set errno to 0. |

9545 It is unspecified whether errno is a macro or an identifier declared with external linkage. If a
9546 macro definition is suppressed in order to access an actual object, or a program defines an
9547 identifier with the name errno, the behavior is undefined.

9548 The symbolic values stored in errno are documented in the ERRORS sections on all relevant
9549 pages.

9550 RETURN VALUE
9551 None.

9552 ERRORS
9553 None.

9554 EXAMPLES
9555 None.

9556 APPLICATION USAGE
9557 Previously both POSIX and X/Open documents were more restrictive than the ISO C standard
9558 in that they required errno to be defined as an external variable, whereas the ISO C standard
9559 required only that errno be defined as a modifiable lvalue with type int.

9560 A program that uses errno for error checking should set it to 0 before a function call, then inspect
9561 it before a subsequent function call.

9562 RATIONALE
9563 None.

9564 FUTURE DIRECTIONS
9565 None.

9566 SEE ALSO
9567 Section 2.3, the Base Definitions volume of IEEE Std. 1003.1-200x, <errno.h> |

9568 CHANGE HISTORY
9569 First released in Issue 1. Derived from Issue 1 of the SVID. |

9570 Issue 4
9571 The FUTURE DIRECTIONS section is deleted.

9572 The following changes are incorporated for alignment with the ISO C standard:

9573 • The DESCRIPTION now guarantees that errno is set to 0 at program start-up, and that it is
9574 never reset to 0 by any XSI function.

788 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces errno

9575 • The APPLICATION USAGE section is added. This issue is aligned with the ISO C standard,
9576 which permits errno to be a macro.

9577 Issue 5
9578 The following sentence is deleted from the DESCRIPTION: ‘‘The value of errno is 0 at program
9579 start-up, but is never set to 0 by any XSI function’’. The DESCRIPTION also no longer states that
9580 conforming implementations may support the declaration:

9581 extern int errno;

9582 Issue 6 |
9583 Obsolescent text regarding defining errno as: |

9584 extern int errno |

9585 is removed. |

9586 Text regarding no function setting errno to zero to indicate an error is changed to no function |
9587 shall set errno to zero. This is for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 789

exec System Interfaces

9588 NAME
9589 environ, execl, execv, execle, execve, execlp, execvp — execute a file

9590 SYNOPSIS
9591 #include <unistd.h>

9592 extern char **environ;
9593 int execl(const char * path , const char * arg0 , ... /*, (char *)0 */);
9594 int execv(const char * path , char *const argv []);
9595 int execle(const char * path , const char * arg0 , ... /*,
9596 (char *)0, char *const envp []*/);
9597 int execve(const char * path , char *const argv [], char *const envp []);
9598 int execlp(const char * file , const char * arg0 , ... /*, (char *)0 */);
9599 int execvp(const char * file , char *const argv []);

9600 DESCRIPTION
9601 The exec functions shall replace the current process image with a new process image. The new
9602 image is constructed from a regular, executable file called the new process image file . There shall
9603 be no return from a successful exec, because the calling process image is overlaid by the new
9604 process image.

9605 When a C-language program is executed as a result of this call, it shall be entered as a C-
9606 language function call as follows:

9607 int main (int argc, char *argv []);

9608 where argc is the argument count and argv is an array of character pointers to the arguments
9609 themselves. In addition, the following variable:

9610 extern char **environ;

9611 is initialized as a pointer to an array of character pointers to the environment strings. The argv
9612 and environ arrays are each terminated by a null pointer. The null pointer terminating the argv
9613 array is not counted in argc .

9614 THR Conforming multi-threaded applications shall not use the environ variable to access or modify
9615 any environment variable while any other thread is concurrently modifying any environment
9616 variable. A call to any function dependent on any environment variable shall be considered a use
9617 of the environ variable to access that environment variable.

9618 The arguments specified by a program with one of the exec functions shall be passed on to the
9619 new process image in the corresponding main() arguments.

9620 The argument path points to a path name that identifies the new process image file.

9621 The argument file is used to construct a path name that identifies the new process image file. If
9622 the file argument contains a slash character, the file argument shall be used as the path name for
9623 this file. Otherwise, the path prefix for this file is obtained by a search of the directories passed
9624 as the environment variable PATH (see the Base Definitions volume of IEEE Std. 1003.1-200x, |
9625 Chapter 8, Environment Variables). If this environment variable is not present, the results of the |
9626 search are implementation-defined. |

9627 If the process image file is not a valid executable object, execlp() and execvp() shall use the |
9628 contents of that file as standard input to a command interpreter conforming to system(). In this |
9629 case, the command interpreter becomes the new process image.

9630 The arguments represented by arg0 ,. . . are pointers to null-terminated character strings. These
9631 strings constitute the argument list available to the new process image. The list is terminated by
9632 a null pointer. The argument arg0 should point to a file name that is associated with the process

790 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9633 being started by one of the exec functions.

9634 The argument argv is an array of character pointers to null-terminated strings. The application
9635 shall ensure that the last member of this array is a null pointer. These strings constitute the
9636 argument list available to the new process image. The value in argv[0] should point to a file
9637 name that is associated with the process being started by one of the exec functions.

9638 The argument envp is an array of character pointers to null-terminated strings. These strings
9639 constitute the environment for the new process image. The envp array is terminated by a null
9640 pointer.

9641 For those forms not containing an envp pointer (execl(), execv(), execlp(), and execvp()), the
9642 environment for the new process image is taken from the external variable environ in the calling
9643 process.

9644 The number of bytes available for the new process’ combined argument and environment lists is
9645 {ARG_MAX}. It is implementation-defined whether null terminators, pointers, and/or any |
9646 alignment bytes are included in this total.

9647 File descriptors open in the calling process image remain open in the new process image, except
9648 for those whose close-on-exec flag FD_CLOEXEC is set. For those file descriptors that remain
9649 open, all attributes of the open file description remain unchanged. For any file descriptor that is
9650 closed for this reason, file locks are removed as a result of the close as described in close(). Locks
9651 that are not removed by closing of file descriptors remain unchanged.

9652 Directory streams open in the calling process image shall be closed in the new process image.

9653 XSI The state of conversion descriptors and message catalog descriptors in the new process image is
9654 undefined. For the new process, the equivalent of:

9655 setlocale(LC_ALL, "C")

9656 is executed at start-up.

9657 Signals set to the default action (SIG_DFL) in the calling process image shall be set to the default
9658 action in the new process image. Signals set to be ignored (SIG_IGN) by the calling process
9659 image shall be set to be ignored by the new process image. Signals set to be caught by the calling
9660 XSI process image shall be set to the default action in the new process image (see <signal.h>). After
9661 a successful call to any of the exec functions, alternate signal stacks are not preserved and the
9662 SA_ONSTACK flag shall be cleared for all signals.

9663 After a successful call to any of the exec functions, any functions previously registered by atexit()
9664 are no longer registered.

9665 XSI If the ST_NOSUID bit is set for the file system containing the new process image file, then the
9666 effective user ID, effective group ID, saved set-user-ID, and saved set-group-ID are unchanged
9667 in the new process image. Otherwise, if the set-user-ID mode bit of the new process image file is
9668 set, the effective user ID of the new process image is set to the user ID of the new process image
9669 file. Similarly, if the set-group-ID mode bit of the new process image file is set, the effective
9670 group ID of the new process image is set to the group ID of the new process image file. The real
9671 user ID, real group ID, and supplementary group IDs of the new process image remain the same
9672 as those of the calling process image. The effective user ID and effective group ID of the new
9673 process image shall be saved (as the saved set-user-ID and the saved set-group-ID) for use by
9674 setuid().

9675 XSI Any shared memory segments attached to the calling process image shall not be attached to the
9676 new process image.

System Interfaces, Issue 6 791

exec System Interfaces

9677 SEM Any named semaphores open in the calling process shall be closed as if by appropriate calls to
9678 sem_close().

9679 TYM Any blocks of typed memory that were mapped in the calling process are unmapped, as if
9680 munmap() was implicitly called to unmap them.

9681 ML Memory locks established by the calling process via calls to mlockall () or mlock() shall be
9682 removed. If locked pages in the address space of the calling process are also mapped into the
9683 address spaces of other processes and are locked by those processes, the locks established by the
9684 other processes shall be unaffected by the call by this process to the exec function. If the exec
9685 function fails, the effect on memory locks is unspecified.

9686 MF|SHM Memory mappings created in the process are unmapped before the address space is rebuilt for
9687 the new process image.

9688 PS For the SCHED_FIFO and SCHED_RR scheduling policies, the policy and priority settings shall
9689 not be changed by a call to an exec function. For other scheduling policies, the policy and priority
9690 settings on exec are implementation-defined. |

9691 TMR Per-process timers created by the calling process shall be deleted before replacing the current
9692 process image with the new process image.

9693 MSG All open message queue descriptors in the calling process shall be closed, as described in
9694 mq_close().

9695 AIO Any outstanding asynchronous I/O operations may be canceled. Those asynchronous I/O
9696 operations that are not canceled shall complete as if the exec function had not yet occurred, but
9697 any associated signal notifications shall be suppressed. It is unspecified whether the exec
9698 function itself blocks awaiting such I/O completion. In no event, however, shall the new process
9699 image created by the exec function be affected by the presence of outstanding asynchronous I/O
9700 operations at the time the exec function is called. Whether any I/O is canceled, and which I/O
9701 may be canceled upon exec, is implementation-defined. |

9702 CPT The new process image shall inherit the CPU-time clock of the calling process image. This |
9703 inheritance means that the process CPU-time clock of the process being execed shall not be |
9704 reinitialized or altered as a result of the exec function other than to reflect the time spent by the
9705 process executing the exec function itself.

9706 TCT The initial value of the CPU-time clock of the initial thread of the new process image shall be set
9707 to zero.

9708 TRC If the calling process is being traced, the new process image continues to be traced into the same |
9709 trace stream as the original process image, but the new process image shall not inherit the |
9710 mapping of trace event names to trace event type identifiers that was defined by calls to the |
9711 posix_trace_eventid_open() or the posix_trace_trid_eventid_open() functions in the calling process |
9712 image. |

9713 If the calling process is a trace controller process, any trace streams that were created by the |
9714 calling process shall be shut down as described in the posix_trace_shutdown() function. |

9715 The new process also inherits at least the following attributes from the calling process image: |

9716 XSI • Nice value (see nice())

9717 XSI • semadj values (see semop())

9718 • Process ID

9719 • Parent process ID

792 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9720 • Process group ID

9721 • Session membership

9722 • Real user ID

9723 • Real group ID

9724 • Supplementary group IDs

9725 • Time left until an alarm clock signal (see alarm())

9726 • Current working directory

9727 • Root directory

9728 • File mode creation mask (see umask())

9729 XSI • File size limit (see ulimit())

9730 • Process signal mask (see sigprocmask ())

9731 • Pending signal (see sigpending())

9732 • tms_utime, tms_stime, tms_cutime, and tms_cstime (see times())

9733 XSI • Resource limits

9734 XSI • Controlling terminal

9735 XSI • Interval timers

9736 All other process attributes defined in this volume of IEEE Std. 1003.1-200x shall be the same in
9737 the new and old process images. The inheritance of process attributes not defined by this |
9738 volume of IEEE Std. 1003.1-200x is implementation-defined. |

9739 A call to any exec function from a process with more than one thread results in all threads being
9740 terminated and the new executable image being loaded and executed. No destructor functions
9741 shall be called.

9742 Upon successful completion, the exec functions shall mark for update the st_atime field of the file.
9743 If an exec function failed but was able to locate the process image file , whether the st_atime field is
9744 marked for update is unspecified. Should the exec function succeed, the process image file shall
9745 be considered to have been opened with open(). The corresponding close() shall be considered
9746 to occur at a time after this open, but before process termination or successful completion of a
9747 subsequent call to one of the exec functions. The argv[] and envp[] arrays of pointers and the
9748 strings to which those arrays point shall not be modified by a call to one of the exec functions,
9749 except as a consequence of replacing the process image.

9750 XSI The saved resource limits in the new process image are set to be a copy of the process’
9751 corresponding hard and soft limits.

9752 RETURN VALUE
9753 If one of the exec functions returns to the calling process image, an error has occurred; the return
9754 value shall be −1, and errno shall be set to indicate the error.

9755 ERRORS
9756 The exec functions shall fail if:

9757 [E2BIG] The number of bytes used by the new process image’s argument list and |
9758 environment list is greater than the system-imposed limit of {ARG_MAX}
9759 bytes.

System Interfaces, Issue 6 793

exec System Interfaces

9760 [EACCES] Search permission is denied for a directory listed in the new process image |
9761 file’s path prefix, or the new process image file denies execution permission,
9762 or the new process image file is not a regular file and the implementation does
9763 not support execution of files of its type.

9764 [EINVAL] The new process image file has the appropriate permission and has a
9765 recognized executable binary format, but the system does not support
9766 execution of a file with this format.

9767 [ELOOP] A loop exists in symbolic links encountered during resolution of the path or file |
9768 argument.

9769 [ENAMETOOLONG] |
9770 The length of the path or file arguments exceeds {PATH_MAX} or a path name |
9771 component is longer than {NAME_MAX}. |

9772 [ENOENT] A component of path or file does not name an existing file or path or file is an |
9773 empty string.

9774 [ENOTDIR] A component of the new process image file’s path prefix is not a directory. |

9775 The exec functions, except for execlp() and execvp(), shall fail if:

9776 [ENOEXEC] The new process image file has the appropriate access permission but has an |
9777 unrecognized format.

9778 The exec functions may fail if:

9779 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
9780 resolution of the path or file argument.

9781 [ENAMETOOLONG] |
9782 As a result of encountering a symbolic link in resolution of the path argument,
9783 the length of the substituted path name string exceeded {PATH_MAX}.

9784 [ENOMEM] The new process image requires more memory than is allowed by the |
9785 hardware or system-imposed memory management constraints.

9786 [ETXTBSY] The new process image file is a pure procedure (shared text) file that is |
9787 currently open for writing by some process.

9788 EXAMPLES

9789 Using execl()

9790 The following example executes the ls command, specifying the path name of the executable
9791 (/bin/ls) and using arguments supplied directly to the command to produce single-column
9792 output.

9793 #include <unistd.h>

9794 int ret;
9795 ...
9796 ret = execl ("/bin/ls", "ls", "-1", NULL);

794 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9797 Using execle()

9798 The following example is similar to Using execl() (on page 794). In addition, it specifies the
9799 environment for the new process image using the env argument.

9800 #include <unistd.h>

9801 int ret;
9802 char *env[] = { "HOME=/usr/home", "LOGNAME=home", NULL };
9803 ...
9804 ret = execle ("/bin/ls", "ls", "-l", NULL, env);

9805 Using execlp()

9806 The following example searches for the location of the ls command among the directories
9807 specified by the PATH environment variable.

9808 #include <unistd.h>

9809 int ret;
9810 ...
9811 ret = execlp ("ls", "ls", "-l", NULL);

9812 Using execv()

9813 The following example passes arguments to the ls command in the cmd array.

9814 #include <unistd.h>

9815 int ret;
9816 char *cmd[] = { "ls", "-l", NULL };
9817 ...
9818 ret = execv ("/bin/ls", cmd);

9819 Using execve()

9820 The following example passes arguments to the ls command in the cmd array, and specifies the
9821 environment for the new process image using the env argument.

9822 #include <unistd.h>

9823 int ret;
9824 char *cmd[] = { "ls", "-l", NULL };
9825 char *env[] = { "HOME=/usr/home", "LOGNAME=home", NULL };
9826 ...
9827 ret = execve ("/bin/ls", cmd, env);

9828 Using execvp()

9829 The following example searches for the location of the ls command among the directories
9830 specified by the PATH environment variable, and passes arguments to the ls command in the
9831 cmd array.

9832 #include <unistd.h>

9833 int ret;
9834 char *cmd[] = { "ls", "-l", NULL };
9835 ...

System Interfaces, Issue 6 795

exec System Interfaces

9836 ret = execvp ("ls", cmd);

9837 APPLICATION USAGE
9838 As the state of conversion descriptors and message catalog descriptors in the new process image
9839 is undefined, portable applications should not rely on their use and should close them prior to
9840 calling one of the exec functions.

9841 Applications that require other than the default POSIX locale should call setlocale () with the
9842 appropriate parameters to establish the locale of the new process.

9843 The environ array should not be accessed directly by the application.

9844 RATIONALE
9845 Early proposals required that the value of argc passed to main() be ‘‘one or greater’’. This was
9846 driven by the same requirement in drafts of the ISO C standard. In fact, historical
9847 implementations have passed a value of zero when no arguments are supplied to the caller of
9848 the exec functions. This requirement was removed from the ISO C standard and subsequently
9849 removed from this volume of IEEE Std. 1003.1-200x as well. The wording, in particular the use of
9850 the word should, requires a Strictly Conforming POSIX Application to pass at least one argument
9851 to the exec function, thus guaranteeing that argc be one or greater when invoked by such an
9852 application. In fact, this is good practice, since many existing applications reference argv[0]
9853 without first checking the value of argc .

9854 The requirement on a Strictly Conforming POSIX Application also states that the value passed
9855 as the first argument be a file name associated with the process being started. Although some
9856 existing applications pass a path name rather than a file name in some circumstances, a file
9857 name is more generally useful, since the common usage of argv[0] is in printing diagnostics. In
9858 some cases the file name passed is not the actual file name of the file; for example, many
9859 implementations of the login utility use a convention of prefixing a hyphen (’ −’) to the actual
9860 file name, which indicates to the command interpreter being invoked that it is a ‘‘login shell’’.

9861 Some systems can exec shell scripts. |

9862 One common historical implementation is that the execl(), execv(), execle(), and execve()
9863 functions return an [ENOEXEC] error for any file not recognizable as executable, including a
9864 shell script. When the execlp() and execvp() functions encounter such a file, they assume the file
9865 to be a shell script and invoke a known command interpreter to interpret such files. These
9866 implementations of execvp() and execlp() only give the [ENOEXEC] error in the rare case of a
9867 problem with the command interpreter’s executable file. Because of these implementations, the
9868 [ENOEXEC] error is not mentioned for execlp() or execvp(), although implementations can still
9869 give it.

9870 Another way that some historical implementations handle shell scripts is by recognizing the first
9871 two bytes of the file as the character string "#!" and using the remainder of the first line of the
9872 file as the name of the command interpreter to execute.

9873 Some implementations provide a third argument to main() called envp. This is defined as a
9874 pointer to the environment. The ISO C standard specifies invoking main() with two arguments,
9875 so implementations must support applications written this way. Since this volume of
9876 IEEE Std. 1003.1-200x defines the global variable environ , which is also provided by historical
9877 implementations and can be used anywhere that envp could be used, there is no functional need
9878 for the envp argument. Applications should use the getenv() function rather than accessing the
9879 environment directly via either envp or environ . Implementations are required to support the
9880 two-argument calling sequence, but this does not prohibit an implementation from supporting
9881 envp as an optional third argument.

796 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9882 This volume of IEEE Std. 1003.1-200x specifies that signals set to SIG_IGN remain set to
9883 SIG_IGN, and that the process signal mask be unchanged across an exec. This is consistent with
9884 historical implementations, and it permits some useful functionality, such as the nohup
9885 command. However, it should be noted that many existing applications wrongly assume that
9886 they start with certain signals set to the default action and/or unblocked. In particular,
9887 applications written with a simpler signal model that does not include blocking of signals, such
9888 as the one in the ISO C standard, may not behave properly if invoked with some signals blocked.
9889 Therefore, it is best not to block or ignore signals across execs without explicit reason to do so,
9890 and especially not to block signals across execs of arbitrary (not closely co-operating) programs.

9891 The exec functions always save the value of the effective user ID and effective group ID of the
9892 process at the completion of the exec, whether or not the set-user-ID or the set-group-ID bit of
9893 the process image file is set.

9894 The statement about argv[] and envp[] being constants is included to make explicit to future
9895 writers of language bindings that these objects are completely constant. Due to a limitation of
9896 the ISO C standard, it is not possible to state that idea in standard C. Specifying two levels of
9897 const−qualification for the argv[] and envp[] parameters for the exec functions may seem to be the
9898 natural choice, given that these functions do not modify either the array of pointers or the
9899 characters to which the function points, but this would disallow existing correct code. Instead,
9900 only the array of pointers is noted as constant. The table of assignment compatibility for dst=src,
9901 derived from the ISO C standard summarizes the compatibility:

9902 dst: char *[] const char *[] char *const[] const char *const[]___
9903 src:
9904 char *[] VALID — VALID —
9905 const char *[] — VALID — VALID
9906 char * const [] — — VALID —
9907 const char *const[] — — — VALID___LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

9908 Since all existing code has a source type matching the first row, the column that gives the most
9909 valid combinations is the third column. The only other possibility is the fourth column, but
9910 using it would require a cast on the argv or envp arguments. It is unfortunate that the fourth
9911 column cannot be used, because the declaration a non-expert would naturally use would be that
9912 in the second row.

9913 The ISO C standard and this volume of IEEE Std. 1003.1-200x do not conflict on the use of
9914 environ , but some historical implementations of environ may cause a conflict. As long as environ
9915 is treated in the same way as an entry point (for example, fork ()), it conforms to both standards.
9916 A library can contain fork (), but if there is a user-provided fork (), that fork () is given precedence
9917 and no problem ensues. The situation is similar for environ : the definition in this volume of
9918 IEEE Std. 1003.1-200x is to be used if there is no user-provided environ to take precedence. At
9919 least three implementations are known to exist that solve this problem.

9920 [E2BIG] The limit {ARG_MAX} applies not just to the size of the argument list, but to |
9921 the sum of that and the size of the environment list.

9922 [EFAULT] Some historical systems return [EFAULT] rather than [ENOEXEC] when the
9923 new process image file is corrupted. They are non-conforming.

9924 [EINVAL] This error condition was added to IEEE Std. 1003.1-200x to allow an
9925 implementation to detect executable files generated for different architectures,
9926 and indicate this situation to the application. Historical implementations of
9927 shells, execvp(), and execlp() that encounter an [ENOEXEC] error will execute
9928 a shell on the assumption that the file is a shell script. This will not produce
9929 the desired effect when the file is a valid executable for a different

System Interfaces, Issue 6 797

exec System Interfaces

9930 architecture. An implementation may now choose to avoid this problem by
9931 returning [EINVAL] when a valid executable for a different architecture is
9932 encountered. Some historical implementations return [EINVAL] to indicate
9933 that the path argument contains a character with the high order bit set. The
9934 standard developers chose to deviate from historical practice for the following
9935 reasons:

9936 1. The new utilization of [EINVAL] will provide some measure of utility to
9937 the user community.

9938 2. Historical use of [EINVAL] is not acceptable in an internationalized
9939 operating environment.

9940 [ENAMETOOLONG] |
9941 Since the file path name may be constructed by taking elements in the PATH
9942 variable and putting them together with the file name, the
9943 [ENAMETOOLONG] error condition could also be reached this way.

9944 [ETXTBSY] System V returns this error when the executable file is currently open for |
9945 writing by some process. This volume of IEEE Std. 1003.1-200x neither
9946 requires nor prohibits this behavior.

9947 Other systems (such as System V) may return [EINTR] from exec. This is not addressed by this |
9948 volume of IEEE Std. 1003.1-200x, but implementations may have a window between the call to
9949 exec and the time that a signal could cause one of the exec calls to return with [EINTR].

9950 FUTURE DIRECTIONS
9951 None.

9952 SEE ALSO
9953 alarm(), atexit(), chmod(), close(), exit(), fcntl(), fork (), fstatvfs (), getenv(), getitimer(), getrlimit(),
9954 mmap(), nice(), <REFERENCE UNDEFINED>(posix_trace_eventid), posix_trace_shutdown(), |
9955 posix_trace_trid_eventid_open(), putenv(), semop(), setlocale (), shmat(), sigaction (), sigaltstack (), |
9956 sigpending(), sigprocmask (), system(), times(), ulimit(), umask(), the Base Definitions volume of |
9957 IEEE Std. 1003.1-200x, <unistd.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter |
9958 11, General Terminal Interface |

9959 CHANGE HISTORY
9960 First released in Issue 1. Derived from Issue 1 of the SVID. |

9961 Issue 4
9962 The <unistd.h> header is added to the SYNOPSIS section.

9963 The const keyword is added to identifiers of constant type (for example, path , file).

9964 In the DESCRIPTION:

9965 • An indication of the disposition of conversion descriptors after a call to one of the exec
9966 functions is added.

9967 • A statement about the interaction between exec and atexit() is added.

9968 • usually in the descriptions of argument pointers is removed.

9969 • owner ID is changed to user ID.

9970 • Shared memory is no longer optional.

9971 • The penultimate paragraph is changed to correct an error in Issue 3. It now refers to ‘‘All
9972 other process attributes . . .’’ instead of ‘‘All the process attributes . . .’’

798 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exec

9973 A note about the initialization of locales is added to the APPLICATION USAGE section.

9974 The following change is incorporated for alignment with the ISO POSIX-1 standard:

9975 • In the ERRORS section, the description of the [ENOEXEC] error is changed to indicate that |
9976 this error does not apply to execlp() and execvp(), and the [ENOMEM] error is added. |

9977 The following change is incorporated for alignment with the FIPS requirements:

9978 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path |
9979 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
9980 an extension.

9981 Issue 4, Version 2
9982 The following changes are incorporated for X/OPEN UNIX conformance:

9983 • The DESCRIPTION is changed:

9984 — To indicate the disposition of alternate signal stacks, the SA_ONSTACK flag, and
9985 mappings established through mmap() after a successful call to one of the exec functions.

9986 — The effects of ST_NOSUID being set for a file system are defined.

9987 — A statement is added that mappings established through mmap() are not preserved across
9988 an exec.

9989 — The list of inherited process attributes is extended to include resource limits, the
9990 controlling terminal, and interval timers.

9991 • In the ERRORS section:

9992 — The condition whereby [ELOOP] is returned if too many symbolic links are encountered
9993 during path name resolution is defined as mandatory.

9994 — A second [ENAMETOOLONG] condition is defined that may report excessive length of
9995 an intermediate result of path name resolution of a symbolic link.

9996 Issue 5
9997 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
9998 Threads Extension.

9999 Large File Summit extensions are added.

10000 Issue 6
10001 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

10002 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
10003 This is since behavior may vary from one file system to another.

10004 The following new requirements on POSIX implementations derive from alignment with the
10005 Single UNIX Specification:

10006 • In the DESCRIPTION, behavior is defined for when the process image file is not a valid
10007 executable.

10008 • In this issue, _POSIX_SAVED_IDS is mandated, thus the effective user ID and effective group
10009 ID of the new process image shall be saved (as the saved set-user-ID and the saved set-
10010 group-ID) for use by the setuid() function.

10011 • The [ELOOP] mandatory error condition is added.

10012 • A second [ENAMETOOLONG] is added as an optional error condition.

System Interfaces, Issue 6 799

exec System Interfaces

10013 • The [ETXTBSY] optional error condition is added.

10014 The following changes were made to align with the IEEE P1003.1a draft standard:

10015 • The [EINVAL] mandatory error condition is added.

10016 • The [ELOOP] optional error condition is added.

10017 The description of CPU-time clock semantics is added for alignment with
10018 IEEE Std. 1003.1d-1999.

10019 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding semantics
10020 for typed memory.

10021 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

10022 The description of tracing semantics is added for alignment with IEEE Std. 1003.1q-2000. |

800 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exit()

10023 NAME
10024 exit, _Exit, _exit — terminate a process |

10025 SYNOPSIS
10026 #include <stdlib.h>

10027 void exit(int status);

10028 #include <unistd.h>

10029 void _Exit(int status); |
10030 void _exit(int status); |

10031 DESCRIPTION
10032 CX The functionality described on this reference page for the exit() function is aligned with the
10033 ISO C standard. Any conflict between the requirements described here and the ISO C standard
10034 are unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10035 The exit() function shall first call all functions registered by atexit(), in the reverse order of their |
10036 registration, except that a function is called after any previously registered functions that had |
10037 already been called at the time it was registered. Each function is called as many times as it was |
10038 registered. If, during the call to any such function, a call to the longjmp() function is made that |
10039 would terminate the call to the registered function, the behavior is undefined. |

10040 If a function registered by a call to atexit() fails to return, the remaining registered functions shall
10041 not be called and the rest of the exit() processing shall not be completed. If exit() is called more
10042 than once, the effects are undefined.

10043 CX The exit() function then flushes all output streams, closes all open streams, and removes all files
10044 created by tmpfile(). Finally, control is returned to the host environment as described below. The
10045 values of status can be EXIT_SUCCESS or EXIT_FAILURE, as described in <stdlib.h>, or any |
10046 CX implementation-defined value, although note that only the range 0 through 255 shall be |
10047 available to a waiting parent process.

10048 The _Exit() and _exit() functions shall be functionally identical. |

10049 CX The _Exit(), _exit(), and exit() functions shall terminate the calling process with the following |
10050 consequences:

10051 XSI • All of the file descriptors, directory streams, conversion descriptors, and message catalog
10052 descriptorsopen in the calling process are closed.

10053 XSIXSI • If the parent process of the calling process is executing a wait(),waitid (),or waitpid (), and has |
10054 neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of the
10055 calling process’ termination and the low-order eight bits (that is, bits 0377) of status are made
10056 available to it. If the parent is not waiting, the child’s status shall be made available to it
10057 XSI when the parent subsequently executes wait(),waitid (),or waitpid (). |

10058 XSIXSI • If the parent process of the calling process is not executing a wait(),waitid (),or waitpid (), and |
10059 has not set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the calling process is
10060 transformed into a zombie process. A zombie process is an inactive process and it shall be
10061 XSI deleted at some later time when its parent process executes wait(),waitid (),or waitpid (). |

10062 • Termination of a process does not directly terminate its children. The sending of a SIGHUP
10063 signal as described below indirectly terminates children in some circumstances.

10064 • If the implementation supports the SIGCHLD signal, a SIGCHLD shall be sent to the parent
10065 process.

System Interfaces, Issue 6 801

exit() System Interfaces

10066 XSI • If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the
10067 status shall be discarded, and the lifetime of the calling process shall end immediately. If |
10068 SA_NOCLDWAIT is set, it is implementation-defined whether a SIGCHLD signal shall be |
10069 sent to the parent process.

10070 • The parent process ID of all of the calling process’ existing child processes and zombie
10071 processes is set to the process ID of an implementation-defined system process. That is, these |
10072 processes are inherited by a special system process. |

10073 XSI • Each attached shared-memory segment is detached and the value of shm_nattch (see
10074 shmget()) in the data structure associated with its shared memory ID is decremented by 1.

10075 XSI • For each semaphore for which the calling process has set a semadj value (see semop()), that
10076 value is added to the semval of the specified semaphore.

10077 • If the process is a controlling process, the SIGHUP signal shall be sent to each process in the
10078 foreground process group of the controlling terminal belonging to the calling process.

10079 • If the process is a controlling process, the controlling terminal associated with the session is
10080 disassociated from the session, allowing it to be acquired by a new controlling process.

10081 • If the exit of the process causes a process group to become orphaned, and if any member of
10082 the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
10083 SIGCONT signal shall be sent to each process in the newly-orphaned process group.

10084 SEM • All open named semaphores in the calling process shall be closed as if by appropriate calls to
10085 sem_close().

10086 ML • Any memory locks established by the process via calls to mlockall () or mlock() shall be
10087 removed. If locked pages in the address space of the calling process are also mapped into the
10088 address spaces of other processes and are locked by those processes, the locks established by
10089 the other processes shall be unaffected by the call by this process to _Exit() or _exit(). |

10090 MF|SHM • Memory mappings created in the process are unmapped before the process is destroyed.

10091 TYM • Any blocks of typed memory that were mapped in the calling process are unmapped, as if
10092 munmap() was implicitly called to unmap them.

10093 MSG • All open message queue descriptors in the calling process shall be closed as if by appropriate
10094 calls to mq_close().

10095 AIO • Any outstanding cancelable asynchronous I/O operations may be canceled. Those
10096 asynchronous I/O operations that are not canceled shall complete as if the _Exit() or _exit() |
10097 operation had not yet occurred, but any associated signal notifications shall be suppressed.
10098 The _Exit() or _exit() operation may block awaiting such I/O completion. Whether any I/O |
10099 is canceled, and which I/O may be canceled upon _Exit() or _exit(), is implementation- |
10100 defined. |

10101 • Threads terminated by a call to _Exit() or _exit() shall not invoke their cancelation cleanup |
10102 handlers or per-thread data destructors.

10103 TRC If the calling process is a trace controller process, any trace streams that were created by the |
10104 calling process shall be shut down as described by the posix_trace_shutdown() function, and any |
10105 process’ mapping of trace event names to trace event type identifiers built for these trace |
10106 streams may be deallocated. |

802 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exit()

10107 RETURN VALUE
10108 These functions do not return.

10109 ERRORS
10110 No errors are defined.

10111 EXAMPLES
10112 None.

10113 APPLICATION USAGE
10114 Normally applications should use exit() rather than _Exit() or _exit(). |

10115 RATIONALE

10116 Process Termination

10117 Early proposals drew a different distinction between normal and abnormal process termination. |
10118 Abnormal termination was caused only by certain signals and resulted in implementation- |
10119 defined ‘‘actions’’, as discussed below. Subsequent proposals distinguished three types of |
10120 termination: normal termination (as in the current specification), simple abnormal termination, and |
10121 abnormal termination with actions. Again the distinction between the two types of abnormal |
10122 termination was that they were caused by different signals and that implementation-defined |
10123 actions would result in the latter case. Given that these actions were completely |
10124 implementation-defined, the early proposals were only saying when the actions could occur and |
10125 how their occurrence could be detected, but not what they were. This was of little or no use to
10126 portable applications, and thus the distinction is not made in this volume of |
10127 IEEE Std. 1003.1-200x. |

10128 The implementation-defined actions usually include, in most historical implementations, the |
10129 creation of a file named core in the current working directory of the process. This file contains an
10130 image of the memory of the process, together with descriptive information about the process,
10131 perhaps sufficient to reconstruct the state of the process at the receipt of the signal.

10132 There is a potential security problem in creating a core file if the process was set-user-ID and the
10133 current user is not the owner of the program, if the process was set-group-ID and none of the
10134 user’s groups match the group of the program, or if the user does not have permission to write in
10135 the current directory. In this situation, an implementation either should not create a core file or
10136 should make it unreadable by the user.

10137 Despite the silence of this volume of IEEE Std. 1003.1-200x on this feature, applications are
10138 advised not to create files named core because of potential conflicts in many implementations.
10139 Some historical implementations use a different name than core for the file, such as by
10140 appending the process ID to the file name.

10141 Terminating a Process

10142 It is important that the consequences of process termination as described occur regardless of
10143 whether the process called _exit() (perhaps indirectly through exit()) or instead was terminated
10144 due to a signal or for some other reason. Note that in the specific case of exit() this means that
10145 the status argument to exit() is treated the same as the status argument to _exit().

10146 A language other than C may have other termination primitives than the C-language exit()
10147 function, and programs written in such a language should use its native termination primitives,
10148 but those should have as part of their function the behavior of _exit() as described.
10149 Implementations in languages other than C are outside the scope of the present version of this
10150 volume of IEEE Std. 1003.1-200x, however.

System Interfaces, Issue 6 803

exit() System Interfaces

10151 As required by the ISO C standard, using return from main() is equivalent to calling exit() with
10152 the same argument value. Also, reaching the end of the main() function is equivalent to using
10153 exit() with an unspecified value.

10154 A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument status
10155 conventionally indicates successful termination. This corresponds to the specification for exit()
10156 in the ISO C standard. The convention is followed by utilities such as make and various shells,
10157 which interpret a zero status from a child process as success. For this reason, applications should
10158 not call exit(0) or _exit(0) when they terminate unsuccessfully; for example, in signal-catching
10159 functions.

10160 Historically, the implementation-defined process that inherits children whose parents have |
10161 terminated without waiting on them is called init and has a process ID of 1.

10162 The sending of a SIGHUP to the foreground process group when a controlling process
10163 terminates corresponds to somewhat different historical implementations. In System V, the
10164 kernel sends a SIGHUP on termination of (essentially) a controlling process. In 4.2 BSD, the
10165 kernel does not send SIGHUP in a case like this, but the termination of a controlling process is
10166 usually noticed by a system daemon, which arranges to send a SIGHUP to the foreground
10167 process group with the vhangup() function. However, in 4.2 BSD, due to the behavior of the
10168 shells that support job control, the controlling process is usually a shell with no other processes
10169 in its process group. Thus, a change to make _exit() behave this way in such systems should not
10170 cause problems with existing applications.

10171 The termination of a process may cause a process group to become orphaned in either of two
10172 ways. The connection of a process group to its parent(s) outside of the group depends on both
10173 the parents and their children. Thus, a process group may be orphaned by the termination of the
10174 last connecting parent process outside of the group or by the termination of the last direct
10175 descendant of the parent process(es). In either case, if the termination of a process causes a
10176 process group to become orphaned, processes within the group are disconnected from their job
10177 control shell, which no longer has any information on the existence of the process group.
10178 Stopped processes within the group would languish forever. In order to avoid this problem,
10179 newly orphaned process groups that contain stopped processes are sent a SIGHUP signal and a
10180 SIGCONT signal to indicate that they have been disconnected from their session. The SIGHUP
10181 signal causes the process group members to terminate unless they are catching or ignoring
10182 SIGHUP. Under most circumstances, all of the members of the process group are stopped if any
10183 of them are stopped.

10184 The action of sending a SIGHUP and a SIGCONT signal to members of a newly orphaned
10185 process group is similar to the action of 4.2 BSD, which sends SIGHUP and SIGCONT to each
10186 stopped child of an exiting process. If such children exit in response to the SIGHUP, any
10187 additional descendants receive similar treatment at that time. In this volume of
10188 IEEE Std. 1003.1-200x, the signals are sent to the entire process group at the same time. Also, in
10189 this volume of IEEE Std. 1003.1-200x, but not in 4.2 BSD, stopped processes may be orphaned,
10190 but may be members of a process group that is not orphaned; therefore, the action taken at
10191 _exit() must consider processes other than child processes.

10192 It is possible for a process group to be orphaned by a call to setpgid() or setsid(), as well as by
10193 process termination. This volume of IEEE Std. 1003.1-200x does not require sending SIGHUP
10194 and SIGCONT in those cases, because, unlike process termination, those cases are not caused
10195 accidentally by applications that are unaware of job control. An implementation can choose to
10196 send SIGHUP and SIGCONT in those cases as an extension; such an extension must be
10197 documented as required in <signal.h>. |

10198 The ISO/IEC 9899: 1999 standard adds the _Exit() function that results in immediate program |
10199 termination without triggering signals or atexit()-registered functions. In IEEE Std. 1003.1-200x, |

804 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exit()

10200 this is equivalent to the _exit() function. |

10201 FUTURE DIRECTIONS
10202 None.

10203 SEE ALSO
10204 atexit(), close(), fclose(), longjmp(), <REFERENCE UNDEFINED>(posix_trace_eventid), |
10205 posix_trace_shutdown(), posix_trace_trid_eventid_open(), semop(), shmget(), sigaction (), wait(), |
10206 waitid (), waitpid (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, <unistd.h> |

10207 CHANGE HISTORY
10208 First released in Issue 1. Derived from Issue 1 of the SVID. |

10209 Issue 4
10210 The <unistd.h> header is added to the SYNOPSIS for _exit().

10211 In the DESCRIPTION, text is added describing the behavior when a function registered by
10212 atexit() fails to return, and the consequences of calling exit() more than once.

10213 The phrase ‘‘If the implementation supports job control’’ is removed from the last bullet in the
10214 DESCRIPTION. This is because job control is now defined as mandatory for all conforming
10215 implementations.

10216 The following change is incorporated for alignment with the ISO C standard:

10217 • In the DESCRIPTION, interactions between exit() and atexit() are defined, and it is now
10218 stated explicitly that all files created by tmpfile() are removed.

10219 Issue 4, Version 2
10220 The following changes to the DESCRIPTION are incorporated for X/OPEN UNIX conformance:

10221 • References to the functions wait3() and waitid () are added in appropriate places throughout
10222 the text.

10223 • Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are defined.

10224 • It is specified that each mapped memory object is unmapped.

10225 Issue 5
10226 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
10227 Threads Extension.

10228 Interactions with the SA_NOCLDWAIT flag and SIGCHLD signal are further clarified.

10229 The values of status from exit() are better described.

10230 Issue 6
10231 Extensions beyond the ISO C standard are now marked.

10232 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding semantics
10233 for typed memory. |

10234 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

10235 • The _Exit() function is included. |

10236 • The DESCRIPTION is updated. |

10237 The description of tracing semantics is added for alignment with IEEE Std. 1003.1q-2000. |

10238 References to the wait3() function are removed. |

System Interfaces, Issue 6 805

exp() System Interfaces

10239 NAME
10240 exp, expf, expl — exponential function |

10241 SYNOPSIS
10242 #include <math.h>

10243 double exp(double x);
10244 float expf(float x); |
10245 long double expl(long double x); |

10246 DESCRIPTION |
10247 CX The functionality described on this reference page is aligned with the ISO C standard. Any
10248 conflict between the requirements described here and the ISO C standard is unintentional. This
10249 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10250 These functions shall compute the exponent of x , defined as ex . |

10251 An application wishing to check for error situations should set errno to 0 before calling exp(). If
10252 errno is non-zero on return, or the return value is NaN, an error has occurred.

10253 RETURN VALUE
10254 Upon successful completion, these functions shall return the exponential value of x . |

10255 If the correct value would cause overflow, exp() shall return HUGE_VAL and set errno to
10256 [ERANGE]. |

10257 If the correct value would cause underflow, exp() shall return 0 and may set errno to [ERANGE].

10258 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

10259 ERRORS
10260 These functions shall fail if: |

10261 [ERANGE] The result overflows. |

10262 These functions may fail if: |

10263 XSI [EDOM] The value of x is NaN. |

10264 [ERANGE] The result underflows |

10265 XSI No other errors shall occur.

10266 EXAMPLES
10267 None.

10268 APPLICATION USAGE
10269 None.

10270 RATIONALE
10271 None.

10272 FUTURE DIRECTIONS
10273 None.

10274 SEE ALSO
10275 isnan(), log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

10276 CHANGE HISTORY
10277 First released in Issue 1. Derived from Issue 1 of the SVID. |

806 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exp()

10278 Issue 4
10279 References to matherr() are removed.

10280 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
10281 ISO C standard and to rationalize error handling in the mathematics functions.

10282 The return value specified for [EDOM] is marked as an extension. |

10283 Issue 5
10284 The DESCRIPTION is updated to indicate how an application should check for an error. This
10285 text was previously published in the APPLICATION USAGE section. |

10286 Issue 6 |
10287 The expf() and expl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 807

exp2() System Interfaces

10288 NAME |
10289 exp2, exp2f, exp2l — exponential base 2 functions |

10290 SYNOPSIS |
10291 #include <math.h> |

10292 double exp2(double x); |
10293 float exp2f(float x); |
10294 long double exp2l(long double x); |

10295 DESCRIPTION |
10296 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
10297 conflict between the requirements described here and the ISO C standard is unintentional. This |
10298 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

10299 These functions shall compute the base 2 exponent of x , defined as ex. |

10300 An application wishing to check for error situations should set errno to 0 before calling these |
10301 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

10302 RETURN VALUE |
10303 Upon successful completion, these functions shall return 2x. |

10304 If the correct value would cause overflow, these functions shall return HUGE_VAL and set errno |
10305 to [ERANGE]. |

10306 If the correct value would cause underflow, these functions shall return 0 and may set errno to |
10307 [ERANGE]. |

10308 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

10309 ERRORS |
10310 These functions shall fail if: |

10311 [ERANGE] The result overflows. |

10312 These functions may fail if: |

10313 [EDOM] The value of x is NaN. |

10314 [ERANGE] The result underflows |

10315 No other errors shall occur. |

10316 EXAMPLES |
10317 None. |

10318 APPLICATION USAGE |
10319 None. |

10320 RATIONALE |
10321 None. |

10322 FUTURE DIRECTIONS |
10323 None. |

10324 SEE ALSO |
10325 exp(), isnan(), log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

808 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces exp2()

10326 CHANGE HISTORY |
10327 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 809

expm1() System Interfaces

10328 NAME
10329 expm1, expm1f, expm1l — compute exponential functions |

10330 SYNOPSIS
10331 #include <math.h> |

10332 double expm1(double x); |
10333 float expm1f(float x); |
10334 long double expm1l(long double x); |

10335 DESCRIPTION |
10336 These functions shall compute ex−1.0. |

10337 RETURN VALUE
10338 If x is NaN, then these functions shall return NaN and errno may be set to [EDOM]. |

10339 If x is positive infinity, these functions shall return positive infinity. |

10340 If x is negative infinity, these functions shall return −1.0. |

10341 If the value overflows, these functions shall return HUGE_VAL and may set errno to [ERANGE]. |

10342 ERRORS
10343 These functions may fail if: |

10344 [EDOM] The value of x is NaN. |

10345 [ERANGE] The result overflows. |

10346 EXAMPLES
10347 None.

10348 APPLICATION USAGE
10349 The value of expm1(x) may be more accurate than exp(x)−1.0 for small values of x .

10350 The expm1() and log1p () functions are useful for financial calculations of ((1+x)n−1)/x, namely:

10351 expm1(n * log1p(x))/x

10352 when x is very small (for example, when calculating small daily interest rates). These functions
10353 also simplify writing accurate inverse hyperbolic functions.

10354 RATIONALE
10355 None.

10356 FUTURE DIRECTIONS
10357 None.

10358 SEE ALSO
10359 exp(), ilogb (), log1p (), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

10360 CHANGE HISTORY
10361 First released in Issue 4, Version 2.

10362 Issue 5
10363 Moved from X/OPEN UNIX extension to BASE. |

10364 Issue 6 |
10365 The expm1f() and expm1l() functions are added for alignment with the ISO/IEC 9899: 1999 |
10366 standard. |

810 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fabs()

10367 NAME
10368 fabs, fabsf, fabsl — absolute value function |

10369 SYNOPSIS
10370 #include <math.h>

10371 double fabs(double x);
10372 float fabsf(float x); |
10373 long double fabsl(long double x); |

10374 DESCRIPTION |
10375 CX The functionality described on this reference page is aligned with the ISO C standard. Any
10376 conflict between the requirements described here and the ISO C standard is unintentional. This
10377 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10378 These functions shall compute the absolute value of x ,|x|. |

10379 An application wishing to check for error situations should set errno to 0 before calling fabs(). If
10380 errno is non-zero on return, or the return value is NaN, an error has occurred.

10381 RETURN VALUE
10382 Upon successful completion, these functions shall return the absolute value of x . |

10383 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

10384 If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |

10385 ERRORS
10386 These functions may fail if: |

10387 XSI [EDOM] The value of x is NaN. |

10388 [ERANGE] The result underflows |

10389 XSI No other errors shall occur.

10390 EXAMPLES
10391 None.

10392 APPLICATION USAGE
10393 None.

10394 RATIONALE
10395 None.

10396 FUTURE DIRECTIONS
10397 None.

10398 SEE ALSO
10399 isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

10400 CHANGE HISTORY
10401 First released in Issue 1. Derived from Issue 1 of the SVID. |

10402 Issue 4
10403 References to matherr() are removed.

10404 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
10405 ISO C standard and to rationalize error handling in the mathematics functions.

10406 The return value specified for [EDOM] is marked as an extension.

System Interfaces, Issue 6 811

fabs() System Interfaces

10407 Issue 5
10408 The DESCRIPTION is updated to indicate how an application should check for an error. This
10409 text was previously published in the APPLICATION USAGE section. |

10410 Issue 6 |
10411 The fabsf() and fabsl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

812 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fattach()

10412 NAME
10413 fattach — attach a STREAMS-based file descriptor to a file in the file system name space
10414 (STREAMS)

10415 SYNOPSIS
10416 XSR #include <stropts.h>

10417 int fattach(int fildes , const char * path);
10418

10419 DESCRIPTION

10420 Notes to Reviewers
10421 This section with side shading will not appear in the final copy. - Ed.

10422 Re D1, XSH, ERN 111: if the original file had multiple links, the streams file still has only one? I
10423 presume that a stream is actually attached to an inode, not a file name. If so, there continue to
10424 exist multiple links to the object, even though it shows a link count of 1. If it associated the
10425 stream with a file name, then the following sentence is wrong.
10426 The fattach () function attaches a STREAMS-based file descriptor to a file, effectively associating
10427 a path name with fildes . The application shall ensure that the fildes argument is a valid open file
10428 descriptor associated with a STREAMS file. The path argument points to a path name of an
10429 existing file. The application shall ensure that the process has appropriate privileges, or is the
10430 owner of the file named by path and has write permission. A successful call to fattach () shall
10431 cause all path names that name the file named by path to name the STREAMS file associated
10432 with fildes , until the STREAMS file is detached from the file. A STREAMS file can be attached to
10433 more than one file and can have several path names associated with it.

10434 The attributes of the named STREAMS file shall be initialized as follows: the permissions, user
10435 ID, group ID, and times are set to those of the file named by path , the number of links is set to 1,
10436 and the size and device identifier are set to those of the STREAMS file associated with fildes . If
10437 any attributes of the named STREAMS file are subsequently changed (for example, by chmod()),
10438 neither the attributes of the underlying file nor the attributes of the STREAMS file to which fildes
10439 refers shall be affected.

10440 File descriptors referring to the underlying file, opened prior to an fattach () call, shall continue to
10441 refer to the underlying file.

10442 RETURN VALUE
10443 Upon successful completion, fattach () shall return 0. Otherwise, −1 shall be returned and errno
10444 set to indicate the error.

10445 ERRORS
10446 The fattach () function shall fail if:

10447 [EACCES] Search permission is denied for a component of the path prefix, or the process |
10448 is the owner of path but does not have write permissions on the file named by
10449 path .

10450 [EBADF] The fildes argument is not a valid open file descriptor. |

10451 [EBUSY] The file named by path is currently a mount point or has a STREAMS file |
10452 attached to it. |

10453 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
10454 argument. |

System Interfaces, Issue 6 813

fattach() System Interfaces

10455 [ENAMETOOLONG] |
10456 The size of path exceeds {PATH_MAX} or a component of path is longer than |
10457 {NAME_MAX}. |

10458 [ENOENT] A component of path does not name an existing file or path is an empty string. |

10459 [ENOTDIR] A component of the path prefix is not a directory. |

10460 [EPERM] The effective user ID of the process is not the owner of the file named by path |
10461 and the process does not have appropriate privilege. |

10462 The fattach () function may fail if:

10463 [EINVAL] The fildes argument does not refer to a STREAMS file. |

10464 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
10465 resolution of the path argument. |

10466 [ENAMETOOLONG] |
10467 Path name resolution of a symbolic link produced an intermediate result
10468 whose length exceeds {PATH_MAX}.

10469 [EXDEV] A link to a file on another file system was attempted. |

10470 EXAMPLES

10471 Attaching a File Descriptor to a File

10472 In the following example, fd refers to an open STREAMS file. The call to fattach () associates this
10473 STREAM with the file /tmp/named-STREAM, such that any future calls to open /tmp/named-
10474 STREAM, prior to breaking the attachment via a call to fdetach (), will instead create a new file
10475 handle referring to the STREAMS file associated with fd .

10476 #include <stropts.h>
10477 ...
10478 int fd;
10479 char *filename = "/tmp/named-STREAM";
10480 int ret;

10481 ret = fattach(fd, filename);

10482 APPLICATION USAGE
10483 The fattach () function behaves similarly to the traditional mount() function in the way a file is
10484 temporarily replaced by the root directory of the mounted file system. In the case of fattach (), the
10485 replaced file need not be a directory and the replacing file is a STREAMS file.

10486 RATIONALE
10487 None.

10488 FUTURE DIRECTIONS
10489 None.

10490 SEE ALSO
10491 fdetach (), isastream(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stropts.h> |

10492 CHANGE HISTORY
10493 First released in Issue 4, Version 2.

814 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fattach()

10494 Issue 5
10495 Moved from X/OPEN UNIX extension to BASE.

10496 The [EXDEV] error is added to the list of optional errors in the ERRORS section.

10497 Issue 6
10498 This function is marked as part of the XSI STREAMS Option Group.

10499 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

10500 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
10501 [ELOOP] error condition is added. |

System Interfaces, Issue 6 815

fchdir() System Interfaces

10502 NAME
10503 fchdir — change working directory |

10504 SYNOPSIS
10505 XSI #include <unistd.h>

10506 int fchdir(int fildes);
10507

10508 DESCRIPTION
10509 The fchdir() function has the same effect as chdir() except that the directory that is to be the new
10510 current working directory is specified by the file descriptor fildes .

10511 RETURN VALUE
10512 Upon successful completion, fchdir() shall return 0. Otherwise, it shall return −1 and set errno to
10513 indicate the error. On failure the current working directory shall remain unchanged.

10514 ERRORS
10515 The fchdir() function shall fail if:

10516 [EACCES] Search permission is denied for the directory referenced by fildes . |

10517 [EBADF] The fildes argument is not an open file descriptor. |

10518 [ENOTDIR] The open file descriptor fildes does not refer to a directory. |

10519 The fchdir() may fail if:

10520 [EINTR] A signal was caught during the execution of fchdir(). |

10521 [EIO] An I/O error occurred while reading from or writing to the file system. |

10522 EXAMPLES
10523 None.

10524 APPLICATION USAGE
10525 None.

10526 RATIONALE
10527 None.

10528 FUTURE DIRECTIONS
10529 None.

10530 SEE ALSO
10531 chdir(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

10532 CHANGE HISTORY
10533 First released in Issue 4, Version 2.

10534 Issue 5
10535 Moved from X/OPEN UNIX extension to BASE.

816 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fchmod()

10536 NAME
10537 fchmod — change mode of a file

10538 SYNOPSIS
10539 #include <sys/stat.h>

10540 int fchmod(int fildes , mode_t mode);

10541 DESCRIPTION
10542 The fchmod() function has the same effect as chmod() except that the file whose permissions are
10543 changed is specified by the file descriptor fildes .

10544 SHM If fildes references a shared memory object, the fchmod() function need only affect the S_IRUSR,
10545 S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

10546 TYM If fildes references a typed memory object, the behavior of fchmod() is unspecified. |

10547 Notes to Reviewers |
10548 This section with side shading will not appear in the final copy. - Ed. |

10549 D3, XSH, ERN 178 suggests adding text as follows: "If fildes refers to a STREAM (which is |
10550 fattached() into the file system name space) the call returns successfully, doing nothing. If fildes |
10551 refers to a stream, <do what?>." |

10552 RETURN VALUE |
10553 Upon successful completion, fchmod() shall return 0. Otherwise, it shall return −1 and set errno to
10554 indicate the error.

10555 ERRORS
10556 The fchmod() function shall fail if:

10557 [EBADF] The fildes argument is not an open file descriptor. |

10558 [EPERM] The effective user ID does not match the owner of the file and the process |
10559 does not have appropriate privilege.

10560 [EROFS] The file referred to by fildes resides on a read-only file system. |

10561 The fchmod() function may fail if:

10562 XSI [EINTR] The fchmod() function was interrupted by a signal. |

10563 XSI [EINVAL] The value of the mode argument is invalid. |

10564 [EINVAL] The fildes argument refers to a pipe and the implementation disallows
10565 execution of fchmod() on a pipe.

10566 EXAMPLES

10567 Changing the Current Permissions for a File

10568 The following example shows how to change the permissions for a file named /home/cnd/mod1
10569 so that the owner and group have read/write/execute permissions, but the world only has
10570 read/write permissions.

10571 #include <sys/stat.h>
10572 #include <fcntl.h>

10573 mode_t mode;
10574 int fildes;
10575 ...

System Interfaces, Issue 6 817

fchmod() System Interfaces

10576 fildes = open("/home/cnd/mod1", O_RDWR);
10577 fchmod(fildes, S_IRWXU | S_IRWXG | S_IROTH | S_IWOTH);

10578 APPLICATION USAGE
10579 None.

10580 RATIONALE
10581 None.

10582 FUTURE DIRECTIONS
10583 None.

10584 SEE ALSO
10585 chmod(), chown(), creat(), fcntl(), fstatvfs (), mknod(), open(), read(), stat(), write(), the Base |
10586 Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h> |

10587 CHANGE HISTORY
10588 First released in Issue 4, Version 2.

10589 Issue 5
10590 Moved from X/OPEN UNIX extension to BASE and aligned with fchmod() in the POSIX
10591 Realtime Extension. Specifically, the second paragraph of the DESCRIPTION is added and a
10592 second instance of [EINVAL] is defined in the list of optional errors.

10593 Issue 6
10594 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by stating that
10595 fchmod() behavior is unspecified for typed memory objects.

818 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fchown()

10596 NAME
10597 fchown — change owner and group of a file |

10598 SYNOPSIS
10599 #include <unistd.h> |

10600 int fchown(int fildes , uid_t owner , gid_t group);

10601 DESCRIPTION |
10602 The fchown() function has the same effect as chown() except that the file whose owner and group
10603 are changed is specified by the file descriptor fildes .

10604 RETURN VALUE
10605 Upon successful completion, fchown() shall return 0. Otherwise, it shall return −1 and set errno to
10606 indicate the error.

10607 ERRORS
10608 The fchown() function shall fail if:

10609 [EBADF] The fildes argument is not an open file descriptor. |

10610 [EPERM] The effective user ID does not match the owner of the file or the process does |
10611 not have appropriate privilege and _POSIX_CHOWN_RESTRICTED indicates
10612 that such privilege is required.

10613 [EROFS] The file referred to by fildes resides on a read-only file system. |

10614 The fchown() function may fail if:

10615 [EINVAL] The owner or group ID is not a value supported by the implementation. The |
10616 fildes argument refers to a pipe and the implementation disallows execution of
10617 fchown() on a pipe. |

10618 Notes to Reviewers |
10619 This section with side shading will not appear in the final copy. - Ed. |

10620 D3, XSH, ERN 177 states that STREAMS ignore the call, but raises a question |
10621 about AF_UNIX sockets in the file system name space. |

10622 [EIO] A physical I/O error has occurred. |

10623 [EINTR] The fchown() function was interrupted by a signal which was caught. |

10624 EXAMPLES

10625 Changing the Current Owner of a File

10626 The following example shows how to change the owner of a file named /home/cnd/mod1 to
10627 ‘‘jones’’ and the group to ‘‘cnd’’.

10628 The numeric value for the user ID is obtained by extracting the user ID from the user database
10629 entry associated with ‘‘jones’’. Similarly, the numeric value for the group ID is obtained by
10630 extracting the group ID from the group database entry associated with ‘‘cnd’’. This example
10631 assumes the calling program has appropriate privileges.

10632 #include <sys/types.h>
10633 #include <unistd.h>
10634 #include <fcntl.h>
10635 #include <pwd.h>
10636 #include <grp.h>

System Interfaces, Issue 6 819

fchown() System Interfaces

10637 struct passwd *pwd;
10638 struct group *grp;
10639 int fildes;
10640 ...
10641 fildes = open("/home/cnd/mod1", O_RDWR);
10642 pwd = getpwnam("jones");
10643 grp = getgrnam("cnd");
10644 fchown(fildes, pwd->pw_uid, grp->gr_gid);

10645 APPLICATION USAGE
10646 None.

10647 RATIONALE
10648 None.

10649 FUTURE DIRECTIONS
10650 None.

10651 SEE ALSO
10652 chown(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

10653 CHANGE HISTORY
10654 First released in Issue 4, Version 2.

10655 Issue 5
10656 Moved from X/OPEN UNIX extension to BASE.

10657 Issue 6
10658 The following changes were made to align with the IEEE P1003.1a draft standard:

10659 • Clarification is added that a call to fchown() may not be allowed on a pipe.

10660 The fchwon() function is now defined as mandatory. |

820 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fclose()

10661 NAME
10662 fclose — close a stream

10663 SYNOPSIS
10664 #include <stdio.h>

10665 int fclose(FILE * stream);

10666 DESCRIPTION
10667 CX The functionality described on this reference page is aligned with the ISO C standard. Any
10668 conflict between the requirements described here and the ISO C standard is unintentional. This
10669 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

10670 The fclose() function shall cause the stream pointed to by stream to be flushed and the associated
10671 file to be closed. Any unwritten buffered data for the stream shall be written to the file; any
10672 unread buffered data shall be discarded. Whether or not the call succeeds, the stream shall be |
10673 disassociated from the file and any buffer set by the setbuf() or setvbuf() function shall be |
10674 disassociated from the stream. If the associated buffer was automatically allocated, it shall be |
10675 CX deallocated. It shall mark for update the st_ctime and st_mtime fields of the underlying file, if the |
10676 stream was writable, and if buffered data remains that has not yet been written to the file. The
10677 fclose() function shall perform the equivalent of a close() on the file descriptor that is associated |
10678 with the stream pointed to by stream.

10679 After the call to fclose(), any use of stream results in undefined behavior. |

10680 RETURN VALUE
10681 CX Upon successful completion, fclose() shall return 0; otherwise, it shall return EOF and set errno to
10682 indicate the error.

10683 ERRORS
10684 The fclose() function shall fail if:

10685 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
10686 process would be delayed in the write operation.

10687 CX [EBADF] The file descriptor underlying stream is not valid. |

10688 CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size. |

10689 XSI [EFBIG] An attempt was made to write a file that exceeds the process’ file size limit. |

10690 CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the |
10691 offset maximum associated with the corresponding stream.

10692 CX [EINTR] The fclose() function was interrupted by a signal. |

10693 CX [EIO] The process is a member of a background process group attempting to write |
10694 to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
10695 blocking SIGTTOU, and the process group of the process is orphaned. This
10696 error may also be returned under implementation-defined conditions. |

10697 CX [ENOSPC] There was no free space remaining on the device containing the file. |

10698 CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by |
10699 any process. A SIGPIPE signal shall also be sent to the thread.

10700 The fclose() function may fail if:

10701 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
10702 capabilities of the device.

System Interfaces, Issue 6 821

fclose() System Interfaces

10703 EXAMPLES
10704 None.

10705 APPLICATION USAGE
10706 None.

10707 RATIONALE
10708 None.

10709 FUTURE DIRECTIONS
10710 None.

10711 SEE ALSO
10712 close(), fopen(), getrlimit(), ulimit(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
10713 <stdio.h>

CHANGE10714 HISTORY
10715 First released in Issue 1. Derived from Issue 1 of the SVID. |

10716 Issue 4
10717 The last sentence of the first paragraph in the DESCRIPTION is changed to say close() instead of
10718 fclose(). This was an error in Issue 3.

10719 The following paragraph is withdrawn from the DESCRIPTION (by POSIX as well as X/Open)
10720 because of the possibility of causing applications to malfunction, and the impossibility of
10721 implementing these mechanisms for pipes:

10722 If the file is not already at EOF, and the file is one capable of seeking, the file offset of the
10723 underlying open file description is adjusted so that the next operation on the open file
10724 description deals with the byte after the last one read from or written to the stream being
10725 closed.

10726 It is replaced with a statement that any subsequent use of stream is undefined.

10727 The [EFBIG] error is marked to indicate the extensions.

10728 Issue 4, Version 2
10729 A cross-reference to getrlimit() is added.

10730 Issue 5
10731 Large File Summit extensions are added.

10732 Issue 6
10733 Extensions beyond the ISO C standard are now marked.

10734 The following new requirements on POSIX implementations derive from alignment with the
10735 Single UNIX Specification:

10736 • The [EFBIG] error is added as part of the large file support extensions.

10737 • The [ENXIO] optional error condition is added.

10738 The DESCRIPTION is updated to note that the stream and any buffer are disassociated whether |
10739 or not the call succeeds. This is for alignment with the ISO/IEC 9899: 1999 standard. |

822 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fcntl()

10740 NAME
10741 fcntl — file control

10742 SYNOPSIS
10743 OH #include <unistd.h>
10744 #include <fcntl.h>

10745 int fcntl(int fildes , int cmd, ...);

10746 DESCRIPTION
10747 The fcntl() function provides for control over open files. The fildes argument is a file descriptor.

10748 The available values for cmd are defined in <fcntl.h>, which include:

10749 F_DUPFD Return a new file descriptor which is the lowest numbered available (that is,
10750 not already open) file descriptor greater than or equal to the third argument,
10751 arg, taken as an integer of type int. The new file descriptor refers to the same
10752 open file description as the original file descriptor, and shares any locks. The
10753 FD_CLOEXEC flag associated with the new file descriptor is cleared to keep
10754 the file open across calls to one of the exec functions.

10755 F_GETFD Get the file descriptor flags defined in <fcntl.h> that are associated with the
10756 file descriptor fildes . File descriptor flags are associated with a single file
10757 descriptor and do not affect other file descriptors that refer to the same file.

10758 F_SETFD Set the file descriptor flags defined in <fcntl.h>, that are associated with fildes ,
10759 to the third argument, arg, taken as type int. If the FD_CLOEXEC flag in the
10760 third argument is 0, the file shall remain open across the exec functions;
10761 otherwise, the file shall be closed upon successful execution of one of the exec
10762 functions.

10763 F_GETFL Get the file status flags and file access modes, defined in <fcntl.h>, for the file
10764 description associated with fildes . The file access modes can be extracted from
10765 the return value using the mask O_ACCMODE, which is defined in <fcntl.h>.
10766 File status flags and file access modes are associated with the file description
10767 and do not affect other file descriptors that refer to the same file with different
10768 open file descriptions.

10769 F_SETFL Set the file status flags, defined in <fcntl.h>, for the file description associated
10770 with fildes from the corresponding bits in the third argument, arg, taken as
10771 type int. Bits corresponding to the file access mode and the oflag values that
10772 are set in arg are ignored. If any bits in arg other than those mentioned here are
10773 changed by the application, the result is unspecified.

10774 F_GETOWN If fildes refers to a socket, get the process or process group ID specified to
10775 receive SIGURG signals when out-of-band data is available. Positive values
10776 indicate a process ID; negative values, other than −1, indicate a process group
10777 ID. If fildes does not refer to a socket, the results are unspecified.

10778 F_SETOWN If fildes refers to a socket, set the process or process group ID specified to
10779 receive SIGURG signals when out-of-band data is available, using the value of
10780 the third argument, arg, taken as type int. Positive values indicate a process
10781 ID; negative values, other than −1, indicate a process group ID. If fildes does
10782 not refer to a socket, the results are unspecified.

10783 The following values for cmd are available for advisory record locking. Record locking is
10784 supported for regular files, and may be supported for other files.

System Interfaces, Issue 6 823

fcntl() System Interfaces

10785 F_GETLK Get the first lock which blocks the lock description pointed to by the third
10786 argument, arg, taken as a pointer to type struct flock, defined in <fcntl.h>.
10787 The information retrieved overwrites the information passed to fcntl() in the
10788 structure flock. If no lock is found that would prevent this lock from being
10789 created, then the structure shall be left unchanged except for the lock type
10790 which shall be set to F_UNLCK.

10791 F_SETLK Set or clear a file segment lock according to the lock description pointed to by
10792 the third argument, arg, taken as a pointer to type struct flock, defined in
10793 <fcntl.h>. F_SETLK is used to establish shared (or read) locks (F_RDLCK) or
10794 exclusive (or write) locks (F_WRLCK), as well as to remove either type of lock
10795 (F_UNLCK). F_RDLCK, F_WRLCK, and F_UNLCK are defined in <fcntl.h>.
10796 If a shared or exclusive lock cannot be set, fcntl() shall return immediately
10797 with a return value of −1.

10798 F_SETLKW This command is the same as F_SETLK except that if a shared or exclusive
10799 lock is blocked by other locks, the thread shall wait until the request can be
10800 satisfied. If a signal that is to be caught is received while fcntl() is waiting for a
10801 region, fcntl() shall be interrupted. Upon return from the signal handler,
10802 fcntl() shall return −1 with errno set to [EINTR], and the lock operation shall |
10803 not be done.

10804 Additional implementation-defined values for cmd may be defined in <fcntl.h>. Their names |
10805 shall start with F_.

10806 When a shared lock is set on a segment of a file, other processes shall be able to set shared locks
10807 on that segment or a portion of it. A shared lock prevents any other process from setting an
10808 exclusive lock on any portion of the protected area. A request for a shared lock shall fail if the
10809 file descriptor was not opened with read access.

10810 An exclusive lock shall prevent any other process from setting a shared lock or an exclusive lock
10811 on any portion of the protected area. A request for an exclusive lock shall fail if the file
10812 descriptor was not opened with write access.

10813 The structure flock describes the type (l_type), starting offset (l_whence), relative offset (l_start),
10814 size (l_len), and process ID (l_pid) of the segment of the file to be affected.

10815 The value of l_whence is {SEEK_SET}, {SEEK_CUR}, or {SEEK_END}, to indicate that the relative
10816 offset l_start bytes shall be measured from the start of the file, current position, or end of the file,
10817 respectively. The value of l_len is the number of consecutive bytes to be locked. The value of |
10818 l_len may be negative (where the definition of off_t permits negative values of l_len). The l_pid |
10819 field is only used with F_GETLK to return the process ID of the process holding a blocking lock.
10820 After a successful F_GETLK request, when a blocking lock is found, the values returned in the
10821 flock structure shall be as follows:

10822 l_type Type of blocking lock found.

10823 l_whence {SEEK_SET}.

10824 l_start Start of the blocking lock.

10825 l_len Length of the blocking lock.

10826 l_pid Process ID of the process that holds the blocking lock.

10827 If the command is F_SETLKW and the process must wait for another process to release a lock,
10828 then the range of bytes to be locked shall be determined before the fcntl() function blocks. If the
10829 file size or file descriptor seek offset change while fcntl() is blocked, this shall not affect the
10830 range of bytes locked.

824 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fcntl()

10831 If l_len is positive, the area affected starts at l_start and ends at l_start+ l_len−1. If l_len is |
10832 negative, the area affected starts at l_start+ l_len and ends at l_start−1. Locks may start and |
10833 extend beyond the current end of a file, but the application shall ensure that they are not
10834 negative relative to the beginning of the file. A lock shall be set to extend to the largest possible
10835 value of the file offset for that file by setting l_len to 0. If such a lock also has l_start set to 0 and
10836 l_whence is set to {SEEK_SET}, the whole file shall be locked.

10837 There shall be at most one type of lock set for each byte in the file. Before a successful return
10838 from an F_SETLK or an F_SETLKW request when the calling process has previously existing
10839 locks on bytes in the region specified by the request, the previous lock type for each byte in the
10840 specified region shall be replaced by the new lock type. As specified above under the
10841 descriptions of shared locks and exclusive locks, an F_SETLK or an F_SETLKW request
10842 (respectively) shall fail or block when another process has existing locks on bytes in the specified
10843 region and the type of any of those locks conflicts with the type specified in the request.

10844 All locks associated with a file for a given process shall be removed when a file descriptor for
10845 that file is closed by that process or the process holding that file descriptor terminates. Locks are
10846 not inherited by a child process.

10847 A potential for deadlock occurs if a process controlling a locked region is put to sleep by
10848 attempting to lock another process’ locked region. If the system detects that sleeping until a
10849 locked region is unlocked would cause a deadlock, fcntl() shall fail with an [EDEADLK] error. |

10850 SHM When the file descriptor fildes refers to a shared memory object, the behavior of fcntl() shall be
10851 the same as for a regular file except the effect of the following values for the argument cmd shall
10852 be unspecified: F_SETFL, F_GETLK, F_SETLK, and F_SETLKW.

10853 TYM If fildes refers to a typed memory object, the result of the fcntl() function is unspecified.

10854 An unlock (F_UNLCK) request in which l_len is non-zero and the offset of the last byte of the |
10855 requested segment is the maximum value for an object of type off_t, when the process has an
10856 existing lock in which l_len is 0 and which includes the last byte of the requested segment, shall
10857 be treated as a request to unlock from the start of the requested segment with an l_len equal to 0.
10858 Otherwise, an unlock (F_UNLCK) request shall attempt to unlock only the requested segment. |

10859 RETURN VALUE
10860 Upon successful completion, the value returned shall depend on cmd as follows:

10861 F_DUPFD A new file descriptor.

10862 F_GETFD Value of flags defined in <fcntl.h>. The return value shall not be negative.

10863 F_SETFD Value other than −1.

10864 F_GETFL Value of file status flags and access modes. The return value is not negative.

10865 F_SETFL Value other than −1.

10866 F_GETLK Value other than −1.

10867 F_SETLK Value other than −1.

10868 F_SETLKW Value other than −1.

10869 F_GETOWN Value of the socket owner process or process group; this will not be −1.

10870 F_SETOWN Value other than −1.

10871 Otherwise, −1 shall be returned and errno set to indicate the error.

System Interfaces, Issue 6 825

fcntl() System Interfaces

10872 ERRORS
10873 The fcntl() function shall fail if:

10874 [EACCES] or [EAGAIN] |
10875 The cmd argument is F_SETLK; the type of lock (l_type) is a shared (F_RDLCK)
10876 or exclusive (F_WRLCK) lock and the segment of a file to be locked is already
10877 exclusive-locked by another process, or the type is an exclusive lock and some
10878 portion of the segment of a file to be locked is already shared-locked or
10879 exclusive-locked by another process.

10880 [EBADF] The fildes argument is not a valid open file descriptor, or the argument cmd is |
10881 F_SETLK or F_SETLKW, the type of lock, l_type , is a shared lock (F_RDLCK),
10882 and fildes is not a valid file descriptor open for reading, or the type of lock
10883 l_type , is an exclusive lock (F_WRLCK), and fildes is not a valid file descriptor
10884 open for writing.

10885 [EINTR] The cmd argument is F_SETLKW and the function was interrupted by a signal. |

10886 [EINVAL] The cmd argument is invalid, or the cmd argument is F_DUPFD and arg is |
10887 negative or greater than or equal to {OPEN_MAX}, or the cmd argument is
10888 F_GETLK, F_SETLK, or F_SETLKW and the data pointed to by arg is not valid,
10889 or fildes refers to a file that does not support locking.

10890 [EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descriptors are |
10891 currently open in the calling process, or no file descriptors greater than or
10892 equal to arg are available.

10893 [ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the lock or unlock |
10894 request would result in the number of locked regions in the system exceeding
10895 a system-imposed limit. |

10896 [EOVERFLOW] One of the values to be returned cannot be represented correctly. |

10897 [EOVERFLOW] The cmd argument is F_GETLK, F_SETLK, or F_SETLKW and the smallest or, |
10898 if l_len is non-zero, the largest offset of any byte in the requested segment
10899 cannot be represented correctly in an object of type off_t. |

10900 The fcntl() function may fail if:

10901 [EDEADLK] The cmd argument is F_SETLKW, the lock is blocked by some lock from |
10902 another process and putting the calling process to sleep, waiting for that lock
10903 to become free would cause a deadlock.

10904 EXAMPLES
10905 None.

10906 APPLICATION USAGE
10907 None.

10908 RATIONALE
10909 The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number
10910 of arguments. It is used because System V uses pointers for the implementation of file locking
10911 functions.

10912 The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag values to allow
10913 for future growth. Applications using these functions should do a read-modify-write operation
10914 on them, rather than assuming that only the values defined by this volume of
10915 IEEE Std. 1003.1-200x are valid. It is a common error to forget this, particularly in the case of
10916 F_SETFD.

826 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fcntl()

10917 This volume of IEEE Std. 1003.1-200x permits concurrent read and write access to file data using
10918 the fcntl() function; this is a change from the 1984 /usr/group standard and early proposals.
10919 Without concurrency controls, this feature may not be fully utilized without occasional loss of |
10920 data. |

10921 Data losses occur in several ways. One case occurs when several processes try to update the
10922 same record, without sequencing controls; several updates may occur in parallel and the last
10923 writer ‘‘wins’’. Another case is a bit-tree or other internal list-based database that is undergoing
10924 reorganization. Without exclusive use to the tree segment by the updating process, other reading
10925 processes chance getting lost in the database when the index blocks are split, condensed,
10926 inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly
10927 general and does not handle the bit-tree example well.

10928 This facility is only required for regular files because it is not appropriate for many devices such
10929 as terminals and network connections.

10930 Since fcntl() works with ‘‘any file descriptor associated with that file, however it is obtained’’,
10931 the file descriptor may have been inherited through a fork () or exec operation and thus may
10932 affect a file that another process also has open.

10933 The use of the open file description to identify what to lock requires extra calls and presents
10934 problems if several processes are sharing an open file description, but there are too many
10935 implementations of the existing mechanism for this volume of IEEE Std. 1003.1-200x to use
10936 different specifications.

10937 Another consequence of this model is that closing any file descriptor for a given file (whether or
10938 not it is the same open file description that created the lock) causes the locks on that file to be
10939 relinquished for that process. Equivalently, any close for any file/process pair relinquishes the
10940 locks owned on that file for that process. But note that while an open file description may be
10941 shared through fork (), locks are not inherited through fork (). Yet locks may be inherited through
10942 one of the exec functions.

10943 The identification of a machine in a network environment is outside of the scope of this volume
10944 of IEEE Std. 1003.1-200x. Thus, an l_sysid member, such as found in System V, is not included in
10945 the locking structure.

10946 Before successful return from an F_SETLK or F_SETLKW request, the previous lock type for
10947 each byte in the specified region shall be replaced by the new lock type. This can result in a
10948 previously locked region being split into smaller regions. If this would cause the number of
10949 regions being held by all processes in the system to exceed a system-imposed limit, the fcntl()
10950 function shall return −1 with errno set to [ENOLCK]. |

10951 Mandatory locking was a major feature of the 1984 /usr/group standard. |

10952 For advisory file record locking to be effective, all processes that have access to a file must |
10953 cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode |
10954 record locking is important when it cannot be assumed that all processes are cooperating. For |
10955 example, if one user uses an editor to update a file at the same time that a second user executes |
10956 another process that updates the same file and if only one of the two processes is using advisory |
10957 locking, the processes are not cooperating. Enforcement-mode record locking would protect |
10958 against accidental collisions. |

10959 Secondly, advisory record locking requires a process using locking to bracket each I/O operation |
10960 with lock (or test) and unlock operations. With enforcement-mode file and record locking, a
10961 process can lock the file once and unlock when all I/O operations have been completed.
10962 Enforcement-mode record locking provides a base that can be enhanced; for example, with
10963 sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so

System Interfaces, Issue 6 827

fcntl() System Interfaces

10964 other processes could read it, but none of them could write it.

10965 Mandatory locks were omitted for several reasons:

10966 1. Mandatory lock setting was done by multiplexing the set-group-ID bit in most
10967 implementations; this was confusing, at best.

10968 2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

10969 3. Any publicly readable file could be locked by anyone. Many historical implementations
10970 keep the password database in a publicly readable file. A malicious user could thus
10971 prohibit logins. Another possibility would be to hold open a long-distance telephone line.

10972 4. Some demand-paged historical implementations offer memory mapped files, and
10973 enforcement cannot be done on that type of file.

10974 Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a
10975 timeout facility in applications requiring it. This is useful in deadlock detection. Because
10976 implementation of full deadlock detection is not always feasible, the [EDEADLK] error was |
10977 made optional.

10978 FUTURE DIRECTIONS
10979 None.

10980 SEE ALSO
10981 close(), exec, open(), sigaction (), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, |
10982 <signal.h>, <unistd.h>

CHANGE10983 HISTORY
10984 First released in Issue 1. Derived from Issue 1 of the SVID. |

10985 Issue 4
10986 The <sys/types.h> and <unistd.h> headers are now marked as optional (OH); these headers do
10987 not need to be included on XSI-conformant systems.

10988 In the DESCRIPTION, sentences describing behavior when l_len is negative are marked as an
10989 extension, and the description of locks is corrected to make it a requirement on the application.

10990 The following change is incorporated for alignment with the ISO POSIX-1 standard:

10991 • In the DESCRIPTION, the meaning of a successful F_SETLK or F_SETLKW request is
10992 clarified, after a POSIX Request for Interpretation.

10993 Issue 5
10994 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
10995 Threads Extension.

10996 Large File Summit extensions are added.

10997 Issue 6
10998 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

10999 The following new requirements on POSIX implementations derive from alignment with the
11000 Single UNIX Specification:

11001 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
11002 required for conforming implementations of previous POSIX specifications, it was not
11003 required for UNIX applications.

11004 • In the DESCRIPTION, sentences describing behavior when l_len is negative are now
11005 mandated, and the description of unlock (F_UNLOCK) when l_len is non-negative is
11006 mandated.

828 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fcntl()

11007 • In the ERRORS section, the [EINVAL] error condition has the case mandated when the cmd is
11008 invalid, and two [EOVERFLOW] error conditions are added.

11009 The F_GETOWN and F_SETOWN values are added for sockets.

11010 The following changes were made to align with the IEEE P1003.1a draft standard:

11011 • Clarification is added that the extent of the bytes locked is determined prior to the blocking
11012 action.

11013 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
11014 fcntl() results are unspecified for typed memory objects.

11015 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 829

fcvt() System Interfaces

11016 NAME
11017 fcvt — convert a floating-point number to a string (LEGACY)

11018 SYNOPSIS
11019 XSI #include <stdlib.h>

11020 char *fcvt(double value , int ndigit , int *restrict decpt , |
11021 int *restrict sign); |
11022 |

11023 DESCRIPTION
11024 Refer to ecvt().

830 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdatasync()

11025 NAME
11026 fdatasync — synchronize the data of a file (REALTIME)

11027 SYNOPSIS
11028 SIO #include <unistd.h>

11029 int fdatasync(int fildes);
11030

11031 DESCRIPTION
11032 The fdatasync () function shall force all currently queued I/O operations associated with the file
11033 indicated by file descriptor fildes to the synchronized I/O completion state.

11034 The functionality is as described for fsync() (with the symbol _POSIX_SYNCHRONIZED_IO
11035 defined), with the exception that all I/O operations shall be completed as defined for
11036 synchronized I/O data integrity completion.

11037 RETURN VALUE
11038 If successful, the fdatasync () function shall return the value 0; otherwise, the function shall return
11039 the value −1 and set errno to indicate the error. If the fdatasync () function fails, outstanding I/O
11040 operations are not guaranteed to have been completed.

11041 ERRORS
11042 The fdatasync () function shall fail if:

11043 [EBADF] The fildes argument is not a valid file descriptor open for writing. |

11044 [EINVAL] This implementation does not support synchronized I/O for this file. |

11045 In the event that any of the queued I/O operations fail, fdatasync () shall return the error
11046 conditions defined for read() and write().

11047 EXAMPLES
11048 None.

11049 APPLICATION USAGE
11050 None.

11051 RATIONALE
11052 None.

11053 FUTURE DIRECTIONS
11054 None.

11055 SEE ALSO
11056 aio_fsync (), fcntl(), fsync(), open(), read(), write(), the Base Definitions volume of |
11057 IEEE Std. 1003.1-200x, <unistd.h> |

11058 CHANGE HISTORY
11059 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

11060 Issue 6
11061 The [ENOSYS] error condition has been removed as stubs need not be provided if an
11062 implementation does not support the Synchronized Input and Output option. |

11063 The fdatasync () function is marked as part of the Synchronized Input and Output option. |

System Interfaces, Issue 6 831

fdetach() System Interfaces

11064 NAME
11065 fdetach — detach a name from a STREAMS-based file descriptor (STREAMS)

11066 SYNOPSIS
11067 XSR #include <stropts.h>

11068 int fdetach(const char * path);
11069

11070 DESCRIPTION
11071 The fdetach () function detaches a STREAMS-based file from the file to which it was attached by a
11072 previous call to fattach (). The path argument points to the path name of the attached STREAMS
11073 file. The application shall ensure that the process has appropriate privileges or be the owner of
11074 the file. A successful call to fdetach () shall cause all path names that named the attached
11075 STREAMS file to again name the file to which the STREAMS file was attached. All subsequent
11076 operations on path shall operate on the underlying file and not on the STREAMS file.

11077 All open file descriptions established while the STREAMS file was attached to the file referenced
11078 by path shall still refer to the STREAMS file after the fdetach () has taken effect.

11079 If there are no open file descriptors or other references to the STREAMS file, then a successful
11080 call to fdetach () shall have the same effect as performing the last close() on the attached file.

11081 RETURN VALUE
11082 Upon successful completion, fdetach () shall return 0; otherwise, it shall return −1 and set errno to
11083 indicate the error.

11084 ERRORS
11085 The fdetach () function shall fail if:

11086 [EACCES] Search permission is denied on a component of the path prefix. |

11087 [EINVAL] The path argument names a file that is not currently attached. |

11088 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
11089 argument. |

11090 [ENAMETOOLONG] |
11091 The size of a path name exceeds {PATH_MAX} or a path name component is |
11092 longer than {NAME_MAX}. |

11093 [ENOENT] A component of path does not name an existing file or path is an empty string. |

11094 [ENOTDIR] A component of the path prefix is not a directory. |

11095 [EPERM] The effective user ID is not the owner of path and the process does not have |
11096 appropriate privileges. |

11097 The fdetach () function may fail if:

11098 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
11099 resolution of the path argument. |

11100 [ENAMETOOLONG] |
11101 Path name resolution of a symbolic link produced an intermediate result
11102 whose length exceeds {PATH_MAX}.

832 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdetach()

11103 EXAMPLES

11104 Detaching a File

11105 The following example detaches the STREAMS-based file /tmp/named-STREAM from the file to
11106 which it was attached by a previous, successful call to fattach (). Subsequent calls to open this
11107 file refer to the underlying file, not to the STREAMS file.

11108 #include <stropts.h>
11109 ...
11110 char *filename = "/tmp/named-STREAM";
11111 int ret;

11112 ret = fdetach(filename);

11113 APPLICATION USAGE
11114 None.

11115 RATIONALE
11116 None.

11117 FUTURE DIRECTIONS
11118 None.

11119 SEE ALSO
11120 fattach (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stropts.h> |

11121 CHANGE HISTORY
11122 First released in Issue 4, Version 2.

11123 Issue 5
11124 Moved from X/OPEN UNIX extension to BASE.

11125 Issue 6
11126 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

11127 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
11128 [ELOOP] error condition is added. |

|

System Interfaces, Issue 6 833

fdim() System Interfaces

11129 NAME |
11130 fdim, fdimf, fdiml — compute positive difference between two floating-point numbers |

11131 SYNOPSIS |
11132 #include <math.h> |

11133 double fdim(double x, double y); |
11134 float fdimf(float x, float y); |
11135 long double fdiml(long double x, long double y); |

11136 DESCRIPTION |
11137 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11138 conflict between the requirements described here and the ISO C standard is unintentional. This |
11139 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11140 These functions shall determine the positive difference between their arguments. If x is greater |
11141 than y , x−y is returned. If x is less than or equal to y , +0 is returned. |

11142 An application wishing to check for error situations should set errno to 0 before calling these |
11143 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

11144 RETURN VALUE |
11145 Upon successful completion, these functions shall return the positive difference value. |

11146 If x or y is NaN, NaN shall be returned and errno may be set to [EDOM]. |

11147 If the magnitude of the result is too large or too small, the numeric result is unspecified and errno |
11148 may be set to [ERANGE]. |

11149 ERRORS |
11150 These functions may fail if: |

11151 [EDOM] The value of x or y is NaN. |

11152 [ERANGE] The magnitude of the result is too large or too small. |

11153 EXAMPLES |
11154 None. |

11155 APPLICATION USAGE |
11156 None. |

11157 RATIONALE |
11158 None. |

11159 FUTURE DIRECTIONS |
11160 None. |

11161 SEE ALSO |
11162 fmax(), fmin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

11163 CHANGE HISTORY |
11164 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

834 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdopen()

11165 NAME
11166 fdopen — associate a stream with a file descriptor

11167 SYNOPSIS
11168 #include <stdio.h>

11169 FILE *fdopen(int fildes , const char * mode);

11170 DESCRIPTION
11171 The fdopen() function shall associate a stream with a file descriptor.

11172 The mode argument is a character string having one of the following values:

11173 r or rb Open a file for reading.

11174 w or wb Open a file for writing.

11175 a or ab Open a file for writing at end of file.

11176 r+ or rb+ or r+b Open a file for update (reading and writing).

11177 w+ or wb+ or w+b Open a file for update (reading and writing).

11178 a+ or ab+ or a+b Open a file for update (reading and writing) at end of file.

11179 The meaning of these flags is exactly as specified in fopen(), except that modes beginning with w
11180 do not cause truncation of the file.

11181 Additional values for the mode argument may be supported by an implementation.

11182 The application shall ensure that the mode of the stream as expressed by the type argument is
11183 allowed by the file access mode of the open file description to which fildes refers. The file
11184 position indicator associated with the new stream is set to the position indicated by the file
11185 offset associated with the file descriptor.

11186 The error and end-of-file indicators for the stream shall be cleared. The fdopen() function may
11187 cause the st_atime field of the underlying file to be marked for update.

11188 SHM If fildes refers to a shared memory object, the result of the fdopen() function is unspecified.

11189 TYM If fildes refers to a typed memory object, the result of the fdopen() function is unspecified.

11190 The fdopen() function shall preserve the offset maximum previously set for the open file
11191 description corresponding to fildes .

11192 RETURN VALUE
11193 Upon successful completion, fdopen() shall return a pointer to a stream; otherwise, a null pointer
11194 shall be returned and errno set to indicate the error.

11195 ERRORS
11196 The fdopen() function may fail if:

11197 [EBADF] The fildes argument is not a valid file descriptor. |

11198 [EINVAL] The mode argument is not a valid mode. |

11199 [EMFILE] {FOPEN_MAX} streams are currently open in the calling process. |

11200 [EMFILE] {STREAM_MAX} streams are currently open in the calling process. |

11201 [ENOMEM] Insufficient space to allocate a buffer. |

System Interfaces, Issue 6 835

fdopen() System Interfaces

11202 EXAMPLES
11203 None.

11204 APPLICATION USAGE
11205 File descriptors are obtained from calls like open(), dup(), creat(), or pipe(), which open files but
11206 do not return streams.

11207 RATIONALE
11208 The file descriptor may have been obtained from open(), creat(), pipe(), dup(), or fcntl();
11209 inherited through fork () or exec; or perhaps obtained by implementation-defined means, such as |
11210 the 4.3 BSD socket() call. |

11211 The meanings of the type arguments of fdopen() and fopen() differ. With fdopen(), open for write
11212 (w or w+) does not truncate, and append (a or a+) cannot create for writing. There is no need for b
11213 in the format due to the equivalence of binary and text files in this volume of
11214 IEEE Std. 1003.1-200x. Although not explicitly required by this volume of IEEE Std. 1003.1-200x,
11215 a good implementation of append (a) mode would cause the O_APPEND flag to be set.

11216 FUTURE DIRECTIONS
11217 None.

11218 SEE ALSO
11219 fclose(), fopen(), open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, Section |
11220 2.5.1 (on page 535)

11221 CHANGE HISTORY
11222 First released in Issue 1. Derived from Issue 1 of the SVID. |

11223 Issue 4
11224 In the DESCRIPTION, the use and settings of the mode argument are changed to include binary
11225 streams and are marked as extensions.

11226 All errors identified in the ERRORS section are marked as extensions, and the [EMFILE] error is
11227 added.

11228 The APPLICATION USAGE section is added.

11229 The following change is incorporated for alignment with the ISO POSIX-1 standard:

11230 • The type of argument mode is changed from char* to const char*.

11231 Issue 5
11232 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

11233 Large File Summit extensions are added.

11234 Issue 6
11235 The following new requirements on POSIX implementations derive from alignment with the
11236 Single UNIX Specification:

11237 • In the DESCRIPTION, the use and setting of the mode argument are changed to include
11238 binary streams.

11239 • In the DESCRIPTION, text is added for large file support to indicate setting of the offset
11240 maximum in the open file description.

11241 • All errors identified in the ERRORS section are added.

11242 • In the DESCRIPTION, text is added that the fdopen() function may cause st_atime to be
11243 updated.

836 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fdopen()

11244 The following changes were made to align with the IEEE P1003.1a draft standard:

11245 • Clarification is added that it is the responsibility of the application to ensure that the mode is
11246 compatible with the open file descriptor.

11247 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
11248 fdopen() results are unspecified for typed memory objects.

|

System Interfaces, Issue 6 837

feclearexcept() System Interfaces

11249 NAME |
11250 feclearexcept — clear floating-point exception |

11251 SYNOPSIS |
11252 #include <fenv.h> |

11253 void feclearexcept(int excepts); |

11254 DESCRIPTION |
11255 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11256 conflict between the requirements described here and the ISO C standard is unintentional. This |
11257 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11258 The feclearexcept() function shall clear the supported floating-point exceptions represented by |
11259 excepts. |

11260 RETURN VALUE |
11261 None. |

11262 ERRORS |
11263 No errors are defined. |

11264 EXAMPLES |
11265 None. |

11266 APPLICATION USAGE |
11267 None. |

11268 RATIONALE |
11269 None. |

11270 FUTURE DIRECTIONS |
11271 None. |

11272 SEE ALSO |
11273 fegetexceptflag(), feraiseexcept(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of |
11274 IEEE Std. 1003.1-200x, <fenv.h> |

11275 CHANGE HISTORY |
11276 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

838 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fegetenv()

11277 NAME |
11278 fegetenv, fesetenv — get and set current floating-point environment |

11279 SYNOPSIS |
11280 #include <fenv.h> |

11281 void fegetenv(fenv_t * envp); |
11282 void fesetenv(const fenv_t * envp); |

11283 DESCRIPTION |
11284 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11285 conflict between the requirements described here and the ISO C standard is unintentional. This |
11286 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11287 The fegetenv() function shall store the current floating-point environment in the object pointed to |
11288 by envp. |

11289 The fesetenv() function shall establish the floating-point environment represented by the object |
11290 pointed to by envp. The argument envp shall point to an object set by a call to fegetenv() or |
11291 feholdexcept (), or equal a floating-point environment macro. The fesetenv() function does not |
11292 raise floating-point exceptions, but only installs the state of the floating-point status flags |
11293 represented through its argument. |

11294 RETURN VALUE |
11295 None. |

11296 ERRORS |
11297 No errors are defined. |

11298 EXAMPLES |
11299 None. |

11300 APPLICATION USAGE |
11301 None. |

11302 RATIONALE |
11303 None. |

11304 FUTURE DIRECTIONS |
11305 None. |

11306 SEE ALSO |
11307 feholdexcept (), feupdateenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fenv.h> |

11308 CHANGE HISTORY |
11309 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 839

fegetexceptflag() System Interfaces

11310 NAME |
11311 fegetexceptflag, fesetexceptflag — get and set floating-point status flags |

11312 SYNOPSIS |
11313 #include <fenv.h> |

11314 void fegetexceptflag(fexcept_t * flagp , int excepts); |
11315 void fesetexceptflag(const fexcept_t * flagp , int excepts); |

11316 DESCRIPTION |
11317 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11318 conflict between the requirements described here and the ISO C standard is unintentional. This |
11319 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11320 The fegetexceptflag() function shall store an implementation-defined representation of the states |
11321 of the floating-point status flags indicated by the argument excepts in the object pointed to by the |
11322 argument flagp . |

11323 The fesetexceptflag() function shall set the floating-point status flags indicated by the argument |
11324 excepts to the states stored in the object pointed to by flagp . The value pointed to by flagp shall |
11325 have been set by a previous call to fegetexceptflag() whose second argument represented at least |
11326 those floating-point exceptions represented by the argument excepts. This function does not |
11327 raise floating-point exceptions, but only sets the state of the flags. |

11328 RETURN VALUE |
11329 None. |

11330 ERRORS |
11331 No errors are defined. |

11332 EXAMPLES |
11333 None. |

11334 APPLICATION USAGE |
11335 None. |

11336 RATIONALE |
11337 None. |

11338 FUTURE DIRECTIONS |
11339 None. |

11340 SEE ALSO |
11341 feclearexcept(), feraiseexcept(), fetestexcept(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
11342 <fenv.h> |

11343 CHANGE HISTORY |
11344 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

840 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fegetround()

11345 NAME |
11346 fegetround, fesetround — get and set current rounding direction |

11347 SYNOPSIS |
11348 #include <fenv.h> |

11349 int fegetround(void); |
11350 int fesetround(int round); |

11351 DESCRIPTION |
11352 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11353 conflict between the requirements described here and the ISO C standard is unintentional. This |
11354 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11355 The fegetround() function shall get the current rounding direction. |

11356 The fesetround() function shall establish the rounding direction represented by its argument |
11357 round. If the argument is not equal to the value of a rounding direction macro, the rounding |
11358 direction is not changed. |

11359 RETURN VALUE |
11360 The fegetround() function shall return the value of the rounding direction macro representing the |
11361 current rounding direction or a negative value if there is no such rounding direction macro or |
11362 the current rounding direction is not determinable. |

11363 The fesetround() function shall return a zero value if and only if the argument is equal to a |
11364 rounding direction macro (that is, if and only if the requested rounding direction was |
11365 established). |

11366 ERRORS |
11367 No errors are defined. |

11368 EXAMPLES |
11369 The following example saves, sets, and restores the rounding direction, reporting an error and |
11370 aborting if setting the rounding direction fails: |

11371 #include <fenv.h> |
11372 #include <assert.h> |
11373 void f(int round_dir) |
11374 { |
11375 #pragma STDC FENV_ACCESS ON |
11376 int save_round; |
11377 int setround_ok; |
11378 save_round = fegetround(); |
11379 setround_ok = fesetround(round_dir); |
11380 assert(setround_ok == 0); |
11381 /* ... */ |
11382 fesetround(save_round); |
11383 /* ... */ |
11384 } |

11385 APPLICATION USAGE |
11386 None. |

11387 RATIONALE |
11388 None. |

System Interfaces, Issue 6 841

fegetround() System Interfaces

11389 FUTURE DIRECTIONS |
11390 None. |

11391 SEE ALSO |
11392 The Base Definitions volume of IEEE Std. 1003.1-200x, <fenv.h> |

11393 CHANGE HISTORY |
11394 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

842 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces feholdexcept()

11395 NAME |
11396 feholdexcept — save current floating-point environment |

11397 SYNOPSIS |
11398 #include <fenv.h> |

11399 int feholdexcept(fenv_t * envp); |

11400 DESCRIPTION |
11401 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11402 conflict between the requirements described here and the ISO C standard is unintentional. This |
11403 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11404 The feholdexcept () function shall save the current floating-point environment in the object |
11405 pointed to by envp, clear the floating-point status flags, and then install a non-stop (continue on |
11406 floating-point exceptions) mode, if available, for all floating-point exceptions. |

11407 RETURN VALUE |
11408 The feholdexcept () function shall return zero if and only if non-stop floating-point exception |
11409 handling was successfully installed. |

11410 ERRORS |
11411 No errors are defined. |

11412 EXAMPLES |
11413 None. |

11414 APPLICATION USAGE |
11415 None. |

11416 RATIONALE |
11417 The feholdexcept () function should be effective on typical IEC 60559: 1989 standard |
11418 implementations which have the default non-stop mode and at least one other mode for trap |
11419 handling or aborting. If the implementation provides only the non-stop mode, then installing the |
11420 non-stop mode is trivial. |

11421 FUTURE DIRECTIONS |
11422 None. |

11423 SEE ALSO |
11424 fegetenv(), fesetenv(), feupdateenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
11425 <fenv.h> |

11426 CHANGE HISTORY |
11427 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 843

feof() System Interfaces

11428 NAME
11429 feof — test end-of-file indicator on a stream

11430 SYNOPSIS
11431 #include <stdio.h>

11432 int feof(FILE * stream);

11433 DESCRIPTION
11434 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11435 conflict between the requirements described here and the ISO C standard is unintentional. This
11436 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11437 The feof() function shall test the end-of-file indicator for the stream pointed to by stream.

11438 RETURN VALUE
11439 The feof() function shall return non-zero if and only if the end-of-file indicator is set for stream.

11440 ERRORS
11441 No errors are defined.

11442 EXAMPLES
11443 None.

11444 APPLICATION USAGE
11445 None.

11446 RATIONALE
11447 None.

11448 FUTURE DIRECTIONS
11449 None.

11450 SEE ALSO
11451 clearerr(), ferror(), fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

11452 CHANGE HISTORY
11453 First released in Issue 1. Derived from Issue 1 of the SVID. |

11454 Issue 4
11455 The ERRORS section is rewritten, such that no error return values are now defined for this
11456 function.

|

844 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces feraiseexcept()

11457 NAME |
11458 feraiseexcept — raise floating-point exception |

11459 SYNOPSIS |
11460 #include <fenv.h> |

11461 void feraiseexcept(int excepts); |

11462 DESCRIPTION |
11463 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11464 conflict between the requirements described here and the ISO C standard is unintentional. This |
11465 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11466 The feraiseexcept() function shall raise the supported floating-point exceptions represented by |
11467 the argument excepts. The order in which these floating-point exceptions are raised is |
11468 unspecified. Whether the feraiseexcept() function additionally raises the inexact floating-point |
11469 exception whenever it raises the overflow or underflow floating-point exception is |
11470 implementation-defined. |

11471 RETURN VALUE |
11472 None. |

11473 ERRORS |
11474 No errors are defined. |

11475 EXAMPLES |
11476 None. |

11477 APPLICATION USAGE |
11478 The effect is intended to be similar to that of floating-point exceptions raised by arithmetic |
11479 operations. Hence, enabled traps for floating-point exceptions raised by this function are taken. |

11480 RATIONALE |
11481 Raising overflow or underflow is allowed to also raise inexact because on some architectures the |
11482 only practical way to raise an exception is to execute an instruction that has the exception as a |
11483 side effect. The function is not restricted to accept only valid coincident expressions for atomic |
11484 operations, so the function can be used to raise exceptions accrued over several operations. |

11485 FUTURE DIRECTIONS |
11486 None. |

11487 SEE ALSO |
11488 feclearexcept(), fegetexceptflag(), fesetexceptflag(), fetestexcept(), the Base Definitions volume of |
11489 IEEE Std. 1003.1-200x, <fenv.h> |

11490 CHANGE HISTORY |
11491 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 845

ferror() System Interfaces

11492 NAME
11493 ferror — test error indicator on a stream

11494 SYNOPSIS
11495 #include <stdio.h>

11496 int ferror(FILE * stream);

11497 DESCRIPTION
11498 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11499 conflict between the requirements described here and the ISO C standard is unintentional. This
11500 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11501 The ferror() function shall test the error indicator for the stream pointed to by stream.

11502 RETURN VALUE
11503 The ferror() function shall return non-zero if and only if the error indicator is set for stream.

11504 ERRORS
11505 No errors are defined.

11506 EXAMPLES
11507 None.

11508 APPLICATION USAGE
11509 None.

11510 RATIONALE
11511 None.

11512 FUTURE DIRECTIONS
11513 None.

11514 SEE ALSO
11515 clearerr(), feof(), fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

11516 CHANGE HISTORY
11517 First released in Issue 1. Derived from Issue 1 of the SVID. |

11518 Issue 4
11519 The ERRORS section is rewritten, such that no error return values are now defined for this
11520 function.

|

846 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fesetenv()

11521 NAME |
11522 fesetenv — set current floating-point environment |

11523 SYNOPSIS |
11524 #include <fenv.h> |

11525 void fesetenv(const fenv_t * envp); |

11526 DESCRIPTION |
11527 Refer to fegetenv(). |

|

System Interfaces, Issue 6 847

fesetexceptflag() System Interfaces

11528 NAME |
11529 fesetexceptflag — set floating-point status flags |

11530 SYNOPSIS |
11531 #include <fenv.h> |

11532 void fesetexceptflag(const fexcept_t * flagp , int excepts); |

11533 DESCRIPTION |
11534 Refer to fegetexceptflag(). |

|

848 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fesetround()

11535 NAME |
11536 fesetround — set current rounding direction |

11537 SYNOPSIS |
11538 #include <fenv.h> |

11539 int fesetround(int round); |

11540 DESCRIPTION |
11541 Refer to fegetround(). |

|

System Interfaces, Issue 6 849

fetestexcept() System Interfaces

11542 NAME |
11543 fetestexcept — test floating-point exception flags |

11544 SYNOPSIS |
11545 #include <fenv.h> |

11546 int fetestexcept(int excepts); |

11547 DESCRIPTION |
11548 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11549 conflict between the requirements described here and the ISO C standard is unintentional. This |
11550 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11551 The fetestexcept() function shall determine which of a specified subset of the floating-point |
11552 exception flags are currently set. The excepts argument specifies the floating-point status flags to |
11553 be queried. |

11554 RETURN VALUE |
11555 The fetestexcept() function shall return the value of the bitwise-inclusive OR of the floating-point |
11556 exception macros corresponding to the currently set floating-point exceptions included in |
11557 excepts. |

11558 ERRORS |
11559 No errors are defined. |

11560 EXAMPLES |
11561 The following example calls function f() if an invalid exception is set, and then function g() if an |
11562 overflow exception is set: |

11563 #include <fenv.h> |
11564 /* ... */ |
11565 { |
11566 #pragma STDC FENV_ACCESS ON |
11567 int set_excepts; |
11568 feclearexcept(FE_INVALID | FE_OVERFLOW); |
11569 // maybe raise exceptions |
11570 set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW); |
11571 if (set_excepts & FE_INVALID) f(); |
11572 if (set_excepts & FE_OVERFLOW) g(); |
11573 /* ... */ |
11574 } |

11575 APPLICATION USAGE |
11576 None. |

11577 RATIONALE |
11578 None. |

11579 FUTURE DIRECTIONS |
11580 None. |

11581 SEE ALSO |
11582 feclearexcept(), fegetexceptflag(), feraiseexcept(), the Base Definitions volume of |
11583 IEEE Std. 1003.1-200x, <fenv.h> |

850 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fetestexcept()

11584 CHANGE HISTORY |
11585 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 851

feupdateenv() System Interfaces

11586 NAME |
11587 feupdateenv — update floating-point environment |

11588 SYNOPSIS |
11589 #include <fenv.h> |

11590 void feupdateenv(const fenv_t * envp); |

11591 DESCRIPTION |
11592 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
11593 conflict between the requirements described here and the ISO C standard is unintentional. This |
11594 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

11595 The feupdateenv() function shall save the currently raised floating-point exceptions in its |
11596 automatic storage, install the floating-point environment represented by the object pointed to by |
11597 envp, and then raise the saved floating-point exceptions. The argument envp shall point to an |
11598 object set by a call to feholdexcept () or fegetenv(), or equal a floating-point environment macro. |

11599 RETURN VALUE |
11600 None. |

11601 ERRORS |
11602 No errors are defined. |

11603 EXAMPLES |
11604 The following example shows sample code to hide spurious underflow floating-point |
11605 exceptions: |

11606 #include <fenv.h> |
11607 double f(double x) |
11608 { |
11609 #pragma STDC FENV_ACCESS ON |
11610 double result; |
11611 fenv_t save_env; |
11612 feholdexcept(&save_env); |
11613 // compute result |
11614 if (/* test spurious underflow */) |
11615 feclearexcept(FE_UNDERFLOW); |
11616 feupdateenv(&save_env); |
11617 return result; |
11618 } |

11619 APPLICATION USAGE |
11620 None. |

11621 RATIONALE |
11622 None. |

11623 FUTURE DIRECTIONS |
11624 None. |

11625 SEE ALSO |
11626 fegetenv(), feholdexcept (), the Base Definitions volume of IEEE Std. 1003.1-200x, <fenv.h> |

11627 CHANGE HISTORY |
11628 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

852 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fflush()

11629 NAME
11630 fflush — flush a stream

11631 SYNOPSIS
11632 #include <stdio.h>

11633 int fflush(FILE * stream);

11634 DESCRIPTION
11635 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11636 conflict between the requirements described here and the ISO C standard is unintentional. This
11637 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11638 If stream points to an output stream or an update stream in which the most recent operation was
11639 CX not input, fflush() causes any unwritten data for that stream to be written to the file, and the
11640 st_ctime and st_mtime fields of the underlying file are marked for update.

11641 If stream is a null pointer, fflush() shall perform this flushing action on all streams for which the
11642 behavior is defined above.

11643 RETURN VALUE
11644 Upon successful completion, fflush() shall return 0; otherwise, it shall set the error indicator for |
11645 CX the stream, return EOF, and set errno to indicate the error. |

11646 ERRORS
11647 The fflush() function shall fail if:

11648 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
11649 process would be delayed in the write operation.

11650 CX [EBADF] The file descriptor underlying stream is not valid. |

11651 CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size. |

11652 XSI [EFBIG] An attempt was made to write a file that exceeds the process’ file size limit. |

11653 CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the |
11654 offset maximum associated with the corresponding stream.

11655 CX [EINTR] The fflush() function was interrupted by a signal. |

11656 CX [EIO] The process is a member of a background process group attempting to write |
11657 to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
11658 blocking SIGTTOU, and the process group of the process is orphaned. This
11659 error may also be returned under implementation-defined conditions. |

11660 CX [ENOSPC] There was no free space remaining on the device containing the file. |

11661 CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by |
11662 any process. A SIGPIPE signal shall also be sent to the thread.

11663 The fflush() function may fail if:

11664 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
11665 capabilities of the device.

System Interfaces, Issue 6 853

fflush() System Interfaces

11666 EXAMPLES

11667 Sending Prompts to Standard Output

11668 The following example uses printf() calls to print a series of prompts for information the user
11669 must enter from standard input. The fflush() calls force the output to standard output. The
11670 fflush() function is used because standard output is usually buffered and the prompt may not
11671 immediately be printed on the output or terminal. The gets() calls read strings from standard
11672 input and place the results in variables, for use later in the program

11673 #include <stdio.h>
11674 ...
11675 char user[100];
11676 char oldpasswd[100];
11677 char newpasswd[100];
11678 ...
11679 printf("User name: ");
11680 fflush(stdout);
11681 gets(user);

11682 printf("Old password: ");
11683 fflush(stdout);
11684 gets(oldpasswd);

11685 printf("New password: ");
11686 fflush(stdout);
11687 gets(newpasswd);
11688 ...

11689 APPLICATION USAGE
11690 None.

11691 RATIONALE
11692 Data buffered by the system may make determining the validity of the position of the current
11693 file descriptor impractical. Thus, enforcing the repositioning of the file descriptor after fflush()
11694 on streams open for read() is not mandated by IEEE Std. 1003.1-200x.

11695 FUTURE DIRECTIONS
11696 None.

11697 SEE ALSO
11698 getrlimit(), ulimit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

11699 CHANGE HISTORY
11700 First released in Issue 1. Derived from Issue 1 of the SVID. |

11701 Issue 4
11702 The following change is incorporated for alignment with the ISO C standard:

11703 • The DESCRIPTION is changed to describe the behavior of fflush() if stream is a null pointer.

11704 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

11705 • The following two paragraphs are withdrawn from the DESCRIPTION (by POSIX as well as
11706 X/Open) because of the possibility of causing applications to malfunction, and the
11707 impossibility of implementing these mechanisms for pipes:

854 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fflush()

11708 If the stream is open for reading, any unread data buffered in the stream is discarded.

11709 For a stream open for reading, if the file is not already at EOF, and the file is one capable
11710 of seeking, the file offset of the underlying open file description is adjusted so that the
11711 next operation on the open file description deals with the byte after the last one read
11712 from, or written to, the stream being flushed.

11713 • The [EFBIG] error is marked to indicate the extensions.

11714 Issue 5
11715 Large File Summit extensions are added.

11716 Issue 6
11717 Extensions beyond the ISO C standard are now marked.

11718 The following new requirements on POSIX implementations derive from alignment with the
11719 Single UNIX Specification:

11720 • The [EFBIG] error is added as part of the large file support extensions.

11721 • The [ENXIO] optional error condition is added.

11722 The RETURN VALUE section is updated to note that the error indicator shall be set for the |
11723 stream. This is for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 855

ffs() System Interfaces

11724 NAME
11725 ffs — find first set bit

11726 Notes to Reviewers
11727 This section with side shading will not appear in the final copy. - Ed.

11728 This function or these functions are recommended to become mandatory parts of POSIX.1 in the
11729 next draft.

11730 SYNOPSIS
11731 XSI #include <strings.h>

11732 int ffs(int i);
11733

11734 DESCRIPTION
11735 The ffs() function shall find the first bit set (beginning with the least significant bit) in i , and
11736 return the index of that bit. Bits are numbered starting at one (the least significant bit).

11737 RETURN VALUE
11738 The ffs() function shall return the index of the first bit set. If i is 0, then ffs() shall return 0.

11739 ERRORS
11740 No errors are defined.

11741 EXAMPLES
11742 None.

11743 APPLICATION USAGE
11744 None.

11745 RATIONALE
11746 None.

11747 FUTURE DIRECTIONS
11748 None.

11749 SEE ALSO
11750 The Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

11751 CHANGE HISTORY
11752 First released in Issue 4, Version 2.

11753 Issue 5
11754 Moved from X/OPEN UNIX extension to BASE.

856 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetc()

11755 NAME
11756 fgetc — get a byte from a stream

11757 SYNOPSIS
11758 #include <stdio.h>

11759 int fgetc(FILE * stream);

11760 DESCRIPTION
11761 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11762 conflict between the requirements described here and the ISO C standard is unintentional. This
11763 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11764 If the end-of-file indicator for the input stream pointed to by stream is not set and a next |
11765 character is present, the fgetc() function obtains the next byte (if present) as an unsigned char |
11766 converted to an int, from the input stream pointed to by stream, and advances the associated file
11767 position indicator for the stream (if defined).

11768 CX The fgetc() function may mark the st_atime field of the file associated with stream for update. The
11769 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
11770 fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
11771 data not supplied by a prior call to ungetc() or ungetwc().

11772 RETURN VALUE
11773 Upon successful completion, fgetc() shall return the next byte from the input stream pointed to
11774 by stream. If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the |
11775 end-of-file indicator for the stream shall be set and fgetc() shall return EOF. If a read error occurs, |
11776 CX the error indicator for the stream shall be set, fgetc() shall return EOF, and shall set errno to
11777 indicate the error.

11778 ERRORS
11779 The fgetc() function shall fail if data needs to be read and:

11780 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
11781 process would be delayed in the fgetc() operation.

11782 CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for |
11783 reading.

11784 CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data |
11785 was transferred.

11786 CX [EIO] A physical I/O error has occurred, or the process is in a background process |
11787 group attempting to read from its controlling terminal, and either the process
11788 is ignoring or blocking the SIGTTIN signal or the process group is orphaned. |
11789 This error may also be generated for implementation-defined reasons. |

11790 CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the |
11791 offset maximum associated with the corresponding stream.

11792 The fgetc() function may fail if:

11793 CX [ENOMEM] Insufficient storage space is available. |

11794 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
11795 capabilities of the device.

System Interfaces, Issue 6 857

fgetc() System Interfaces

11796 EXAMPLES
11797 None.

11798 APPLICATION USAGE
11799 If the integer value returned by fgetc() is stored into a variable of type char and then compared
11800 against the integer constant EOF, the comparison may never succeed, because sign-extension of
11801 a variable of type char on widening to integer is implementation-defined. |

11802 The ferror() or feof() functions must be used to distinguish between an error condition and an
11803 end-of-file condition.

11804 RATIONALE
11805 None.

11806 FUTURE DIRECTIONS
11807 None.

11808 SEE ALSO
11809 feof(), ferror(), fopen(), getchar(), getc(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
11810 <stdio.h>

CHANGE11811 HISTORY
11812 First released in Issue 1. Derived from Issue 1 of the SVID. |

11813 Issue 4
11814 In the DESCRIPTION:

11815 • The text is changed to make it clear that the function returns a byte value.

11816 • The list of functions that may cause the st_atime field to be updated is revised.

11817 In the ERRORS section, text is added to indicate that error returns are only generated when data
11818 needs to be read into the stream buffer.

11819 Also in the ERRORS section, in previous issues generation of the [EIO] error depended on
11820 whether or not an implementation supported Job Control. This functionality is now defined as
11821 mandatory.

11822 The [ENXIO] and [ENOMEM] errors are marked as extensions.

11823 In the APPLICATION USAGE section, text is added to indicate how an application can
11824 distinguish between an error condition and an end-of-file condition.

11825 The description of [EINTR] is amended.

11826 Issue 4, Version 2
11827 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
11828 I/O error occurs.

11829 Issue 5
11830 Large File Summit extensions are added.

11831 Issue 6
11832 Extensions beyond the ISO C standard are now marked.

11833 The following new requirements on POSIX implementations derive from alignment with the
11834 Single UNIX Specification:

11835 • The [EIO] and [EOVERFLOW] mandatory error conditions are added.

11836 • The [ENOMEM] and [ENXIO] optional error conditions are added.

858 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetc()

11837 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

11838 • The DESCRIPTION is updated to clarify the behavior when the end-of-file indicator for the |
11839 input stream is not set. |

11840 • The RETURN VALUE section is updated to note that the error indicator shall be set for the |
11841 stream. |

|

System Interfaces, Issue 6 859

fgetpos() System Interfaces

11842 NAME
11843 fgetpos — get current file position information

11844 SYNOPSIS
11845 #include <stdio.h>

11846 int fgetpos(FILE *restrict stream , fpos_t *restrict pos); |

11847 DESCRIPTION |
11848 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11849 conflict between the requirements described here and the ISO C standard is unintentional. This
11850 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11851 The fgetpos() function shall store the current value of the file position indicator for the stream
11852 pointed to by stream in the object pointed to by pos . The value stored contains unspecified
11853 information usable by fsetpos() for repositioning the stream to its position at the time of the call
11854 to fgetpos().

11855 RETURN VALUE
11856 Upon successful completion, fgetpos() shall return 0; otherwise, it shall return a non-zero value
11857 and set errno to indicate the error.

11858 ERRORS
11859 The fgetpos() function shall fail if:

11860 CX [EOVERFLOW] The current value of the file position cannot be represented correctly in an |
11861 object of type fpos_t.

11862 The fgetpos() function may fail if:

11863 CX [EBADF] The file descriptor underlying stream is not valid. |

11864 CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket. |
11865

11866 EXAMPLES
11867 None.

11868 APPLICATION USAGE
11869 None.

11870 RATIONALE
11871 None.

11872 FUTURE DIRECTIONS
11873 None.

11874 SEE ALSO
11875 fopen(), ftell (), rewind(), ungetc(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
11876 <stdio.h>

CHANGE11877 HISTORY
11878 First released in Issue 4. Derived from the ISO C standard. |

11879 Issue 5
11880 Large File Summit extensions are added.

11881 Issue 6
11882 Extensions beyond the ISO C standard are now marked.

11883 The following new requirements on POSIX implementations derive from alignment with the
11884 Single UNIX Specification:

860 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetpos()

11885 • The [EIO] mandatory error condition is added.

11886 • The [EBADF] and [ESPIPE] optional error conditions are added.

11887 An additional [ESPIPE] error condition is added for sockets. |

11888 The prototype for fgetpos() is changed for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 861

fgets() System Interfaces

11889 NAME
11890 fgets — get a string from a stream

11891 SYNOPSIS
11892 #include <stdio.h>

11893 char *fgets(char *restrict s, int n, FILE *restrict stream); |

11894 DESCRIPTION |
11895 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11896 conflict between the requirements described here and the ISO C standard is unintentional. This
11897 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11898 The fgets() function shall read bytes from stream into the array pointed to by s, until n−1 bytes
11899 are read, or a <newline> character is read and transferred to s, or an end-of-file condition is
11900 encountered. The string is then terminated with a null byte.

11901 CX The fgets() function may mark the st_atime field of the file associated with stream for update. The
11902 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
11903 fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
11904 data not supplied by a prior call to ungetc() or ungetwc().

11905 RETURN VALUE
11906 Upon successful completion, fgets() shall return s. If the stream is at end-of-file, the end-of-file
11907 indicator for the stream shall be set and fgets() shall return a null pointer. If a read error occurs,
11908 CX the error indicator for the stream shall be set, fgets() shall return a null pointer, and shall set
11909 errno to indicate the error.

11910 ERRORS
11911 Refer to fgetc().

11912 EXAMPLES

11913 Reading Input

11914 The following example uses fgets() to read each line of input. {LINE_MAX}, which defines the
11915 maximum size of the input line, is defined in the <limits.h> header.

11916 #include <stdio.h>
11917 ...
11918 char line[LINE_MAX];
11919 ...
11920 while (fgets(line, LINE_MAX, fp) != NULL) {
11921 ...
11922 }
11923 ...

11924 APPLICATION USAGE
11925 None.

11926 RATIONALE
11927 None.

11928 FUTURE DIRECTIONS
11929 None.

862 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgets()

11930 SEE ALSO
11931 fopen(), fread(), gets(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

11932 CHANGE HISTORY
11933 First released in Issue 1. Derived from Issue 1 of the SVID. |

11934 Issue 4
11935 In the DESCRIPTION, the text is changed to make it clear that the function reads bytes rather
11936 than (possibly multi-byte) characters, and the list of functions that may cause the st_atime field to
11937 be updated is revised.

11938 Issue 6
11939 Extensions beyond the ISO C standard are now marked. |

11940 The prototype for fgets() is changed for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 863

fgetwc() System Interfaces

11941 NAME
11942 fgetwc — get a wide-character code from a stream

11943 SYNOPSIS
11944 #include <stdio.h>
11945 #include <wchar.h>

11946 wint_t fgetwc(FILE * stream);

11947 DESCRIPTION
11948 CX The functionality described on this reference page is aligned with the ISO C standard. Any
11949 conflict between the requirements described here and the ISO C standard is unintentional. This
11950 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

11951 The fgetwc() function shall obtain the next character (if present) from the input stream pointed to
11952 by stream, convert that to the corresponding wide-character code, and advance the associated
11953 file position indicator for the stream (if defined).

11954 If an error occurs, the resulting value of the file position indicator for the stream is
11955 indeterminate.

11956 CX The fgetwc() function may mark the st_atime field of the file associated with stream for update.
11957 The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
11958 fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
11959 data not supplied by a prior call to ungetc() or ungetwc().

11960 RETURN VALUE
11961 Upon successful completion, the fgetwc() function shall return the wide-character code of the
11962 character read from the input stream pointed to by stream converted to a type wint_t. If the
11963 stream is at end-of-file, the end-of-file indicator for the stream shall be set and fgetwc() shall
11964 return WEOF. If a read error occurs, the error indicator for the stream shall be set, fgetwc() shall
11965 CX return WEOF, and shall set errno to indicate the error.

11966 ERRORS
11967 The fgetwc() function shall fail if data needs to be read and:

11968 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
11969 process would be delayed in the fgetwc() operation.

11970 CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for |
11971 reading.

11972 CX [EINTR] The read operation was terminated due to the receipt of a signal, and no data |
11973 was transferred.

11974 CX [EIO] A physical I/O error has occurred, or the process is in a background process |
11975 group attempting to read from its controlling terminal, and either the process
11976 is ignoring or blocking the SIGTTIN signal or the process group is orphaned. |
11977 This error may also be generated for implementation-defined reasons. |

11978 CX [EOVERFLOW] The file is a regular file and an attempt was made to read at or beyond the |
11979 offset maximum associated with the corresponding stream.

11980 The fgetwc() function may fail if:

11981 CX [ENOMEM] Insufficient storage space is available. |

11982 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
11983 capabilities of the device.

864 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetwc()

11984 CX [EILSEQ] The data obtained from the input stream does not form a valid character. |

11985 EXAMPLES
11986 None.

11987 APPLICATION USAGE
11988 The ferror() or feof() functions must be used to distinguish between an error condition and an
11989 end-of-file condition.

11990 RATIONALE
11991 None.

11992 FUTURE DIRECTIONS
11993 None.

11994 SEE ALSO
11995 feof(), ferror(), fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, |
11996 <wchar.h>

CHANGE11997 HISTORY
11998 First released in Issue 4. Derived from the MSE working draft. |

11999 Issue 4, Version 2
12000 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
12001 I/O error occurs.

12002 Issue 5
12003 The Optional Header (OH) marking is removed from <stdio.h>.

12004 Large File Summit extensions are added.

12005 Issue 6
12006 Extensions beyond the ISO C standard are now marked.

12007 The following new requirements on POSIX implementations derive from alignment with the
12008 Single UNIX Specification:

12009 • The [EIO] and [EOVERFLOW] mandatory error conditions are added.

12010 • The [ENOMEM], [ENXIO], and [EILSEQ] optional error conditions are added.

System Interfaces, Issue 6 865

fgetws() System Interfaces

12011 NAME
12012 fgetws — get a wide-character string from a stream

12013 SYNOPSIS
12014 #include <stdio.h>
12015 #include <wchar.h>

12016 wchar_t *fgetws(wchar_t *restrict ws, int n, |
12017 FILE *restrict stream); |

12018 DESCRIPTION |
12019 CX The functionality described on this reference page is aligned with the ISO C standard. Any
12020 conflict between the requirements described here and the ISO C standard is unintentional. This
12021 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12022 The fgetws() function shall read characters from the stream, convert these to the corresponding
12023 wide-character codes, place them in the wchar_t array pointed to by ws, until n−1 characters are
12024 read, or a <newline> character is read, converted, and transferred to ws, or an end-of-file
12025 condition is encountered. The wide-character string, ws, is then terminated with a null wide-
12026 character code.

12027 If an error occurs, the resulting value of the file position indicator for the stream is
12028 indeterminate.

12029 CX The fgetws() function may mark the st_atime field of the file associated with stream for update.
12030 The st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
12031 fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
12032 data not supplied by a prior call to ungetc() or ungetwc().

12033 RETURN VALUE
12034 Upon successful completion, fgetws() shall return ws. If the stream is at end-of-file, the end-of-
12035 file indicator for the stream shall be set and fgetws() shall return a null pointer. If a read error
12036 CX occurs, the error indicator for the stream shall be set, fgetws() shall return a null pointer, and
12037 shall set errno to indicate the error.

12038 ERRORS
12039 Refer to fgetwc().

12040 EXAMPLES
12041 None.

12042 APPLICATION USAGE
12043 None.

12044 RATIONALE
12045 None.

12046 FUTURE DIRECTIONS
12047 None.

12048 SEE ALSO
12049 fopen(), fread(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h> |

12050 CHANGE HISTORY
12051 First released in Issue 4. Derived from the MSE working draft. |

866 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fgetws()

12052 Issue 5
12053 The Optional Header (OH) marking is removed from <stdio.h>.

12054 Issue 6
12055 Extensions beyond the ISO C standard are now marked. |

12056 The prototype for fgetws() is changed for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 867

fileno() System Interfaces

12057 NAME
12058 fileno — map a stream pointer to a file descriptor

12059 SYNOPSIS
12060 #include <stdio.h>

12061 int fileno(FILE * stream);

12062 DESCRIPTION
12063 The fileno () function shall return the integer file descriptor associated with the stream pointed to
12064 by stream.

12065 RETURN VALUE
12066 Upon successful completion, fileno () shall return the integer value of the file descriptor
12067 associated with stream. Otherwise, the value −1 shall be returned and errno set to indicate the
12068 error.

12069 ERRORS
12070 The fileno () function may fail if:

12071 [EBADF] The stream argument is not a valid stream. |

12072 EXAMPLES
12073 None.

12074 APPLICATION USAGE
12075 None.

12076 RATIONALE
12077 Without some specification of which file descriptors are associated with these streams, it is
12078 impossible for an application to set up the streams for another application it starts with fork ()
12079 and exec. In particular, it would not be possible to write a portable version of the sh command
12080 interpreter (although there may be other constraints that would prevent that portability).

12081 FUTURE DIRECTIONS
12082 None.

12083 SEE ALSO
12084 fdopen(), fopen(), stdin , the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, Section |
12085 2.5.1 (on page 535)

12086 CHANGE HISTORY
12087 First released in Issue 1. Derived from Issue 1 of the SVID. |

12088 Issue 4
12089 The [EBADF] error is marked as an extension.

12090 Issue 6
12091 The following new requirements on POSIX implementations derive from alignment with the
12092 Single UNIX Specification:

12093 • The [EBADF] optional error condition is added.

868 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces flockfile()

12094 NAME
12095 flockfile, ftrylockfile, funlockfile — stdio locking functions

12096 SYNOPSIS
12097 TSF #include <stdio.h>

12098 void flockfile(FILE * file);
12099 int ftrylockfile(FILE * file);
12100 void funlockfile(FILE * file);
12101

12102 DESCRIPTION
12103 The flockfile (), ftrylockfile (), and funlockfile () functions provide for explicit application-level
12104 locking of stdio (FILE*) objects. These functions can be used by a thread to delineate a sequence
12105 of I/O statements that are executed as a unit.

12106 The flockfile () function is used by a thread to acquire ownership of a (FILE*) object.

12107 The ftrylockfile () function is used by a thread to acquire ownership of a (FILE*) object if the
12108 object is available; ftrylockfile () is a non-blocking version of flockfile ().

12109 The funlockfile () function is used to relinquish the ownership granted to the thread. The
12110 behavior is undefined if a thread other than the current owner calls the funlockfile () function.

12111 Logically, there is a lock count associated with each (FILE*) object. This count is implicitly
12112 initialized to zero when the (FILE*) object is created. The (FILE*) object is unlocked when the
12113 count is zero. When the count is positive, a single thread owns the (FILE*) object. When the
12114 flockfile () function is called, if the count is zero or if the count is positive and the caller owns the
12115 (FILE*) object, the count is incremented. Otherwise, the calling thread is suspended, waiting for
12116 the count to return to zero. Each call to funlockfile () decrements the count. This allows matching
12117 calls to flockfile () (or successful calls to ftrylockfile ()) and funlockfile () to be nested.

12118 All functions that reference (FILE*) objects shall behave as if they use flockfile () and funlockfile ()
12119 internally to obtain ownership of these (FILE*) objects.

12120 RETURN VALUE
12121 None for flockfile () and funlockfile (). The ftrylockfile () function shall return zero for success and
12122 non-zero to indicate that the lock cannot be acquired.

12123 ERRORS
12124 No errors are defined.

12125 EXAMPLES
12126 None.

12127 APPLICATION USAGE
12128 Applications using these functions may be subject to priority inversion, as discussed in the Base |
12129 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

12130 RATIONALE
12131 The flockfile () and funlockfile () functions provide an orthogonal mutual exclusion lock for each
12132 FILE. The ftrylockfile () function provides a non-blocking attempt to acquire a file lock,
12133 analogous to pthread_mutex_trylock().

12134 These locks behave as if they are the same as those used internally by stdio for thread-safety.
12135 This both provides thread-safety of these functions without requiring a second level of internal
12136 locking and allows functions in stdio to be implemented in terms of other stdio functions.

12137 Application writers and implementors should be aware that there are potential deadlock
12138 problems on FILE objects. For example, the line-buffered flushing semantics of stdio (requested

System Interfaces, Issue 6 869

flockfile() System Interfaces

12139 via {_IOLBF}) require that certain input operations sometimes cause the buffered contents of |
12140 implementation-defined line-buffered output streams to be flushed. If two threads each hold the |
12141 lock on the other’s FILE, deadlock ensues. This type of deadlock can be avoided by acquiring
12142 FILE locks in a consistent order. In particular, the line-buffered output stream deadlock can
12143 typically be avoided by acquiring locks on input streams before locks on output streams if a
12144 thread would be acquiring both.

12145 In summary, threads sharing stdio streams with other threads can use flockfile () and funlockfile ()
12146 to cause sequences of I/O performed by a single thread to be kept bundled. The only case where
12147 the use of flockfile () and funlockfile () is required is to provide a scope protecting uses of the
12148 *_unlocked() functions/macros. This moves the cost/performance tradeoff to the optimal point.

12149 FUTURE DIRECTIONS
12150 None.

12151 SEE ALSO
12152 getc_unlocked (), putc_unlocked(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

12153 CHANGE HISTORY
12154 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

12155 Issue 6
12156 These functions are marked as part of the Thread-Safe Functions option. |

870 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces floor()

12157 NAME
12158 floor, floorf, floorl — floor function |

12159 SYNOPSIS
12160 #include <math.h>

12161 double floor(double x);
12162 float floorf(float x); |
12163 long double floorl(long double x); |

12164 DESCRIPTION |
12165 CX The functionality described on this reference page is aligned with the ISO C standard. Any
12166 conflict between the requirements described here and the ISO C standard is unintentional. This
12167 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12168 These functions shall compute the largest integral value not greater than x . |

12169 An application wishing to check for error situations should set errno to 0 before calling floor (). If
12170 errno is non-zero on return, or the return value is NaN, an error has occurred.

12171 RETURN VALUE
12172 Upon successful completion, these functions shall return the largest integral value not greater |
12173 than x , expressed as a double. |

12174 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

12175 If the correct value would cause overflow, −HUGE_VAL shall be returned and errno set to
12176 [ERANGE]. |

12177 XSI If x is ±Inf or ±0, the value of x shall be returned.

12178 ERRORS
12179 These functions shall fail if: |

12180 [ERANGE] The result would cause an overflow. |

12181 These functions may fail if: |

12182 XSI [EDOM] The value of x is NaN. |

12183 XSI No other errors shall occur.

12184 EXAMPLES
12185 None.

12186 APPLICATION USAGE
12187 The integral value returned by floor () as a double might not be expressible as an int or long. The |
12188 return value should be tested before assigning it to an integer type to avoid the undefined results
12189 of an integer overflow.

12190 The floor () function can only overflow when the floating point representation has
12191 DBL_MANT_DIG > DBL_MAX_EXP.

12192 RATIONALE
12193 None.

12194 FUTURE DIRECTIONS
12195 None.

System Interfaces, Issue 6 871

floor() System Interfaces

12196 SEE ALSO
12197 ceil(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

12198 CHANGE HISTORY
12199 First released in Issue 1. Derived from Issue 1 of the SVID. |

12200 Issue 4
12201 References to matherr() are removed.

12202 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
12203 ISO C standard and to rationalize handling in the mathematics functions.

12204 The word long has been replaced with the words long in the APPLICATION USAGE section. |

12205 The return value specified for [EDOM] is marked as an extension.

12206 Issue 5
12207 The DESCRIPTION is updated to indicate how an application should check for an error. This
12208 text was previously published in the APPLICATION USAGE section. |

12209 Issue 6 |
12210 The floorf () and floorl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

|

872 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fma()

12211 NAME |
12212 fma, fmaf, fmal — floating-point multiply-add |

12213 SYNOPSIS |
12214 #include <math.h> |

12215 double fma(double x, double y, double z); |
12216 float fmaf(float x, float y, float z); |
12217 long double fmal(long double x, long double y, long double z); |

12218 DESCRIPTION |
12219 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
12220 conflict between the requirements described here and the ISO C standard is unintentional. This |
12221 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

12222 These functions shall compute (x * y) + z, rounded as one ternary operation: they shall compute |
12223 the value (as if) to infinite precision and round once to the result format, according to the |
12224 rounding mode characterized by the value of FLT_ROUNDS. |

12225 An application wishing to check for error situations should set errno to 0 before calling these |
12226 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

12227 RETURN VALUE |
12228 Upon successful completion, these functions shall return (x * y) + z, rounded as one ternary |
12229 operation. |

12230 If x , y , or z is NaN, NaN shall be returned and errno may be set to [EDOM]. |

12231 ERRORS |
12232 These functions may fail if: |

12233 [EDOM] The value of x , y , or z is NaN. |

12234 EXAMPLES |
12235 None. |

12236 APPLICATION USAGE |
12237 None. |

12238 RATIONALE |
12239 In many cases, clever use of floating (fused) multiply-add leads to much improved code; but its |
12240 unexpected use by the compiler can undermine carefully written code. The FP_CONTRACT |
12241 macro can be used to disallow use of floating multiply-add; and the fma() function guarantees |
12242 its use where desired. Many current machines provide hardware floating multiply-add |
12243 instructions; software implementation can be used for others. |

12244 FUTURE DIRECTIONS |
12245 None. |

12246 SEE ALSO |
12247 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

12248 CHANGE HISTORY |
12249 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 873

fmax() System Interfaces

12250 NAME |
12251 fmax, fmaxf, fmaxl — determine maximum numeric value of two floating-point numbers |

12252 SYNOPSIS |
12253 #include <math.h> |

12254 double fmax(double x, double y); |
12255 float fmaxf(float x, float y); |
12256 long double fmaxl(long double x, long double y); |

12257 DESCRIPTION |
12258 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
12259 conflict between the requirements described here and the ISO C standard is unintentional. This |
12260 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

12261 These functions shall determine the maximum numeric value of their arguments. NaN |
12262 arguments shall be treated as missing data: if one argument is a NaN and the other numeric, |
12263 then the fmax(), fmaxf(), and fmaxl() functions shall choose the numeric value. |

12264 An application wishing to check for error situations should set errno to 0 before calling these |
12265 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

12266 RETURN VALUE |
12267 Upon successful completion, these functions shall return the maximum numeric value of their |
12268 arguments. |

12269 If x and y are NaN, NaN shall be returned and errno may be set to [EDOM]. |

12270 ERRORS |
12271 These functions may fail if: |

12272 [EDOM] The value of x and y is NaN. |

12273 EXAMPLES |
12274 None. |

12275 APPLICATION USAGE |
12276 None. |

12277 RATIONALE |
12278 None. |

12279 FUTURE DIRECTIONS |
12280 None. |

12281 SEE ALSO |
12282 fdim(), fmin(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

12283 CHANGE HISTORY |
12284 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

874 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fmin()

12285 NAME |
12286 fmin, fminf, fminl — determine minimum numeric value of two floating-point numbers |

12287 SYNOPSIS |
12288 #include <math.h> |

12289 double fmin(double x, double y); |
12290 float fminf(float x, float y); |
12291 long double fminl(long double x, long double y); |

12292 DESCRIPTION |
12293 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
12294 conflict between the requirements described here and the ISO C standard is unintentional. This |
12295 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

12296 These functions shall determine the minimum numeric value of their arguments. NaN |
12297 arguments shall be treated as missing data: if one argument is a NaN and the other numeric, |
12298 then these functions shall choose the numeric value. |

12299 An application wishing to check for error situations should set errno to 0 before calling these |
12300 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

12301 RETURN VALUE |
12302 Upon successful completion, these functions shall return the minimum numeric value of their |
12303 arguments. |

12304 If x and y are NaN, NaN shall be returned and errno may be set to [EDOM]. |

12305 ERRORS |
12306 These functions may fail if: |

12307 [EDOM] The value of x and y is NaN. |

12308 EXAMPLES |
12309 None. |

12310 APPLICATION USAGE |
12311 None. |

12312 RATIONALE |
12313 None. |

12314 FUTURE DIRECTIONS |
12315 None. |

12316 SEE ALSO |
12317 fdim(), fmax(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

12318 CHANGE HISTORY |
12319 First released in Issue 6. Derived from ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 875

fmod() System Interfaces

12320 NAME
12321 fmod, fmodf, fmodl — floating-point remainder value function |

12322 SYNOPSIS
12323 #include <math.h>

12324 double fmod(double x, double y);
12325 float fmodf(float x, float y); |
12326 long double fmodl(long double x, long double y); |

12327 DESCRIPTION |
12328 CX The functionality described on this reference page is aligned with the ISO C standard. Any
12329 conflict between the requirements described here and the ISO C standard is unintentional. This
12330 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12331 These functions shall return the floating-point remainder of the division of x by y . |

12332 An application wishing to check for error situations should set errno to 0 before calling fmod(). If
12333 errno is non-zero on return, or the return value is NaN, an error has occurred.

12334 RETURN VALUE
12335 These functions shall return the value x−i*y , for some integer i such that, if y is non-zero, the |
12336 result has the same sign as x and magnitude less than the magnitude of y .

12337 XSI If x or y is NaN, NaN shall be returned and errno may be set to [EDOM]. |

12338 XSI If y is 0, NaN shall be returnedand errno set to [EDOM], or 0 shall be returned and errno may be
12339 set to [EDOM].

12340 XSI If x is ±Inf, either 0 shall be returned and errno set to [EDOM], or NaN shall be returned and errno
12341 may be set to [EDOM].

12342 If y is non-zero, fmod(±0,y) shall return the value of x . If x is not ±Inf, fmod(x ,±Inf) shall return
12343 the value of x .

12344 If the result underflows, 0 shall be returned and errno may be set to [ERANGE]. |

12345 ERRORS
12346 These functions may fail if: |

12347 XSI [EDOM] One or both of the arguments is NaN, or y is 0, or x is ±Inf. |

12348 [ERANGE] The result underflows |

12349 XSI No other errors shall occur.

12350 EXAMPLES
12351 None.

12352 APPLICATION USAGE
12353 Portable applications should not call fmod() with y equal to 0, because the result is |
12354 implementation-defined. The application should verify y is non-zero before calling fmod(). |

12355 RATIONALE
12356 None.

12357 FUTURE DIRECTIONS
12358 None.

876 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fmod()

12359 SEE ALSO
12360 isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

12361 CHANGE HISTORY
12362 First released in Issue 1. Derived from Issue 1 of the SVID. |

12363 Issue 4
12364 References to matherr() are removed.

12365 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
12366 ISO C standard and to rationalize error handling in the mathematics functions.

12367 The return value specified for [EDOM] is marked as an extension.

12368 Issue 5
12369 The DESCRIPTION is updated to indicate how an application should check for an error. This
12370 text was previously published in the APPLICATION USAGE section. |

12371 Issue 6 |
12372 The fmodf() and fmodl() functions are added for alignment with the ISO/IEC 9899: 1999 |
12373 standard. |

System Interfaces, Issue 6 877

fmtmsg() System Interfaces

12374 NAME
12375 fmtmsg — display a message in the specified format on standard error and/or a system console

12376 SYNOPSIS
12377 XSI #include <fmtmsg.h>

12378 int fmtmsg(long classification , const char * label , int severity ,
12379 const char * text , const char * action , const char * tag);
12380

12381 DESCRIPTION
12382 The fmtmsg() function can be used to display messages in a specified format instead of the
12383 traditional printf() function.

12384 Based on a message’s classification component, fmtmsg() writes a formatted message either to
12385 standard error, to the console, or to both.

12386 A formatted message consists of up to five components as defined below. The component
12387 classification is not part of a message displayed to the user, but defines the source of the message
12388 and directs the display of the formatted message.

12389 classification Contains identifiers from the following groups of major classifications and
12390 subclassifications. Any one identifier from a subclass may be used in
12391 combination with a single identifier from a different subclass. Two or more
12392 identifiers from the same subclass should not be used together, with the
12393 exception of identifiers from the display subclass. (Both display subclass
12394 identifiers may be used so that messages can be displayed to both standard
12395 error and the system console).

12396 Major Classifications
12397 Identifies the source of the condition. Identifiers are: MM_HARD
12398 (hardware), MM_SOFT (software), and MM_FIRM (firmware).

12399 Message Source Subclassifications
12400 Identifies the type of software in which the problem is detected.
12401 Identifiers are: MM_APPL (application), MM_UTIL (utility), and
12402 MM_OPSYS (operating system).

12403 Display Subclassifications
12404 Indicates where the message is to be displayed. Identifiers are:
12405 MM_PRINT to display the message on the standard error stream,
12406 MM_CONSOLE to display the message on the system console. One or
12407 both identifiers may be used.

12408 Status Subclassifications
12409 Indicates whether the application can recover from the condition.
12410 Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
12411 recoverable).

12412 An additional identifier, MM_NULLMC, indicates that no classification
12413 component is supplied for the message.

12414 label Identifies the source of the message. The format is two fields separated by a
12415 colon. The first field is up to 10 bytes, the second is up to 14 bytes.

12416 severity Indicates the seriousness of the condition. Identifiers for the levels of severity
12417 are:

878 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fmtmsg()

12418 MM_HALT Indicates that the application has encountered a severe fault
12419 and is halting. Produces the string "HALT" .

12420 MM_ERROR Indicates that the application has detected a fault. Produces
12421 the string "ERROR". |

12422 MM_WARNING Indicates a condition that is out of the ordinary, that might
12423 be a problem, and should be watched. Produces the string
12424 "WARNING".

12425 MM_INFO Provides information about a condition that is not in error.
12426 Produces the string "INFO" .

12427 MM_NOSEV Indicates that no severity level is supplied for the message.

12428 text Describes the error condition that produced the message. The character string
12429 is not limited to a specific size. If the character string is empty, then the text
12430 produced is unspecified.

12431 action Describes the first step to be taken in the error-recovery process. The fmtmsg()
12432 function precedes the action string with the prefix: "TO FIX:" . The action
12433 string is not limited to a specific size.

12434 tag An identifier that references on-line documentation for the message.
12435 Suggested usage is that tag includes the label and a unique identifying number.
12436 A sample tag is "XSI:cat:146" .

12437 The MSGVERB environment variable (for message verbosity) tells fmtmsg() which message
12438 components it is to select when writing messages to standard error. The value of MSGVERB is a
12439 colon-separated list of optional keywords. Valid keywords are: label, severity, text, action, and tag. If
12440 MSGVERB contains a keyword for a component and the component’s value is not the
12441 component’s null value, fmtmsg() includes that component in the message when writing the
12442 message to standard error. If MSGVERB does not include a keyword for a message component,
12443 that component is not included in the display of the message. The keywords may appear in any
12444 order. If MSGVERB is not defined, if its value is the null string, if its value is not of the correct
12445 format, or if it contains keywords other than the valid ones listed above, fmtmsg() selects all
12446 components.

12447 MSGVERB affects only which components are selected for display to standard error. All
12448 message components are included in console messages.

12449 RETURN VALUE
12450 The fmtmsg() function shall return one of the following values:

12451 MM_OK The function succeeded.

12452 MM_NOTOK The function failed completely.

12453 MM_NOMSG The function was unable to generate a message on standard error, but
12454 otherwise succeeded.

12455 MM_NOCON The function was unable to generate a console message, but otherwise
12456 succeeded.

12457 ERRORS
12458 None.

System Interfaces, Issue 6 879

fmtmsg() System Interfaces

12459 EXAMPLES

12460 1. The following example of fmtmsg():

12461 fmtmsg(MM_PRINT, "XSI:cat", MM_ERROR, "illegal option",
12462 "refer to cat in user’s reference manual", "XSI:cat:001")

12463 produces a complete message in the specified message format:

12464 XSI:cat: ERROR: illegal option
12465 TO FIX: refer to cat in user’s reference manual XSI:cat:001

12466 2. When the environment variable MSGVERB is set as follows:

12467 MSGVERB=severity:text:action

12468 and Example 1 is used, fmtmsg() produces:

12469 ERROR: illegal option
12470 TO FIX: refer to cat in user’s reference manual

12471 APPLICATION USAGE
12472 One or more message components may be systematically omitted from messages generated by
12473 an application by using the null value of the argument for that component.

12474 RATIONALE
12475 None.

12476 FUTURE DIRECTIONS
12477 None.

12478 SEE ALSO
12479 printf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fmtmsg.h> |

12480 CHANGE HISTORY
12481 First released in Issue 4, Version 2.

12482 Issue 5
12483 Moved from X/OPEN UNIX extension to BASE.

880 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fnmatch()

12484 NAME
12485 fnmatch — match a file name or a path name

12486 SYNOPSIS
12487 #include <fnmatch.h>

12488 int fnmatch(const char * pattern , const char * string , int flags);

12489 DESCRIPTION
12490 The fnmatch() function shall match patterns as described in the Shell and Utilities volume of |
12491 IEEE Std. 1003.1-200x, Section 2.14.1, Patterns Matching a Single Character, and Section 2.14.2, |
12492 Patterns Matching Multiple Characters. It checks the string specified by the string argument to |
12493 see if it matches the pattern specified by the pattern argument.

12494 The flags argument modifies the interpretation of pattern and string. It is the bitwise-inclusive OR
12495 of zero or more of the flags defined in <fnmatch.h>. If the FNM_PATHNAME flag is set in flags,
12496 then a slash character (’/’) in string shall be explicitly matched by a slash in pattern; it shall not
12497 be matched by either the asterisk or question-mark special characters, nor by a bracket
12498 expression. If the FNM_PATHNAME flag is not set, the slash character is treated as an ordinary
12499 character.

12500 If FNM_NOESCAPE is not set in flags, a backslash character (’\’) in pattern followed by any
12501 other character shall match that second character in string. In particular, "\\" shall match a
12502 backslash in string. If FNM_NOESCAPE is set, a backslash character shall be treated as an
12503 ordinary character.

12504 If FNM_PERIOD is set in flags, then a leading period (’.’) in string shall match a period in
12505 pattern; as described by rule 2 in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section |
12506 2.14.3, Patterns Used for File Name Expansion where the location of ‘‘leading’’ is indicated by |
12507 the value of FNM_PATHNAME:

12508 • If FNM_PATHNAME is set, a period is ‘‘leading’’ if it is the first character in string or if it
12509 immediately follows a slash.

12510 • If FNM_PATHNAME is not set, a period is ‘‘leading’’ only if it is the first character of string.

12511 If FNM_PERIOD is not set, then no special restrictions are placed on matching a period.

12512 RETURN VALUE
12513 If string matches the pattern specified by pattern, then fnmatch() shall return 0. If there is no
12514 match, fnmatch() shall return FNM_NOMATCH, which is defined in <fnmatch.h>. If an error
12515 occurs, fnmatch() shall return another non-zero value.

12516 ERRORS
12517 No errors are defined.

12518 EXAMPLES
12519 None.

12520 APPLICATION USAGE
12521 The fnmatch() function has two major uses. It could be used by an application or utility that
12522 needs to read a directory and apply a pattern against each entry. The find utility is an example of
12523 this. It can also be used by the pax utility to process its pattern operands, or by applications that
12524 need to match strings in a similar manner.

12525 The name fnmatch() is intended to imply file name match, rather than path name match. The
12526 default action of this function is to match file names, rather than path names, since it gives no
12527 special significance to the slash character. With the FNM_PATHNAME flag, fnmatch() does
12528 match path names, but without tilde expansion, parameter expansion, or special treatment for a

System Interfaces, Issue 6 881

fnmatch() System Interfaces

12529 period at the beginning of a file name.

12530 RATIONALE
12531 This function replaced the REG_FILENAME flag of regcomp() in early proposals of this volume
12532 of IEEE Std. 1003.1-200x. It provides virtually the same functionality as the regcomp() and
12533 regexec() functions using the REG_FILENAME and REG_FSLASH flags (the REG_FSLASH flag
12534 was proposed for regcomp(), and would have had the opposite effect from FNM_PATHNAME),
12535 but with a simpler function and less system overhead.

12536 FUTURE DIRECTIONS
12537 None.

12538 SEE ALSO
12539 glob(), wordexp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fnmatch.h>, the Shell |
12540 and Utilities volume of IEEE Std. 1003.1-200x |

12541 CHANGE HISTORY
12542 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

12543 Issue 5
12544 Moved from POSIX2 C-language Binding to BASE.

882 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fopen()

12545 NAME
12546 fopen — open a stream

12547 SYNOPSIS
12548 #include <stdio.h>

12549 FILE *fopen(const char *restrict filename , const char *restrict mode); |

12550 DESCRIPTION |
12551 CX The functionality described on this reference page is aligned with the ISO C standard. Any
12552 conflict between the requirements described here and the ISO C standard is unintentional. This
12553 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

12554 The fopen() function shall open the file whose path name is the string pointed to by filename , and
12555 associates a stream with it.

12556 The argument mode points to a string. If the string is one of the following, the file is open in the |
12557 indicated mode. Otherwise, the behavior is undefined. |

12558 r or rb Open file for reading.

12559 w or wb Truncate to zero length or create file for writing.

12560 a or ab Append; open or create file for writing at end-of-file.

12561 r+ or rb+ or r+b Open file for update (reading and writing).

12562 w+ or wb+ or w+b Truncate to zero length or create file for update.

12563 a+ or ab+ or a+b Append; open or create file for update, writing at end-of-file.

12564 CX The character ’b’ has no effect, but is allowed for ISO C standard conformance. Opening a file
12565 with read mode (r as the first character in the mode argument) shall fail if the file does not exist or
12566 cannot be read.

12567 Opening a file with append mode (a as the first character in the mode argument) shall cause all
12568 subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
12569 calls to fseek().

12570 When a file is opened with update mode (’+’ as the second or third character in the mode
12571 argument), both input and output may be performed on the associated stream. However, the
12572 application shall ensure that output is not directly followed by input without an intervening call
12573 to fflush() or to a file positioning function (fseek(), fsetpos(), or rewind()), and input is not directly
12574 followed by output without an intervening call to a file positioning function, unless the input
12575 operation encounters end-of-file.

12576 When opened, a stream is fully buffered if and only if it can be determined not to refer to an
12577 interactive device. The error and end-of-file indicators for the stream shall be cleared.

12578 CX If mode is w, a, w+, or a+, and the file did not previously exist, upon successful completion,
12579 fopen() function shall mark for update the st_atime , st_ctime, and st_mtime fields of the file and
12580 the st_ctime and st_mtime fields of the parent directory.

12581 If mode is w or w+ and the file did previously exist, upon successful completion, fopen() shall
12582 mark for update the st_ctime and st_mtime fields of the file. The fopen() function shall allocate a
12583 file descriptor as open() does.

12584 XSI After a successful call to the fopen() function, the orientation of the stream shall be cleared, the
12585 encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
12586 initial conversion state.

System Interfaces, Issue 6 883

fopen() System Interfaces

12587 The largest value that can be represented correctly in an object of type off_t shall be established
12588 as the offset maximum in the open file description.

12589 RETURN VALUE
12590 Upon successful completion, fopen() shall return a pointer to the object controlling the stream.
12591 CX Otherwise, a null pointer shall be returned, and errno shall be set to indicate the error.

12592 ERRORS
12593 The fopen() function shall fail if:

12594 CX [EACCES] Search permission is denied on a component of the path prefix, or the file |
12595 exists and the permissions specified by mode are denied, or the file does not
12596 exist and write permission is denied for the parent directory of the file to be
12597 created.

12598 CX [EINTR] A signal was caught during fopen(). |

12599 CX [EISDIR] The named file is a directory and mode requires write access. |

12600 CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
12601 argument. |

12602 CX [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

12603 CX [ENAMETOOLONG] |
12604 The length of the filename argument exceeds {PATH_MAX} or a path name |
12605 component is longer than {NAME_MAX}. |

12606 CX [ENFILE] The maximum allowable number of files is currently open in the system. |

12607 CX [ENOENT] A component of filename does not name an existing file or filename is an empty |
12608 string.

12609 CX [ENOSPC] The directory or file system that would contain the new file cannot be |
12610 expanded, the file does not exist, and it was to be created.

12611 CX [ENOTDIR] A component of the path prefix is not a directory. |

12612 CX [ENXIO] The named file is a character special or block special file, and the device |
12613 associated with this special file does not exist.

12614 CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented |
12615 correctly in an object of type off_t.

12616 CX [EROFS] The named file resides on a read-only file system and mode requires write |
12617 access.

12618 The fopen() function may fail if:

12619 CX [EINVAL] The value of the mode argument is not valid. |

12620 CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
12621 resolution of the path argument. |

12622 CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process. |

12623 CX [EMFILE] {STREAM_MAX} streams are currently open in the calling process. |

12624 CX [ENAMETOOLONG] |
12625 Path name resolution of a symbolic link produced an intermediate result
12626 whose length exceeds {PATH_MAX}.

884 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fopen()

12627 CX [ENOMEM] Insufficient storage space is available. |

12628 CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode |
12629 requires write access.

12630 EXAMPLES

12631 Opening a File

12632 The following example tries to open the file named file for reading. The fopen() function returns |
12633 a file pointer that is used in subsequent fgets() and fclose() calls. If the program cannot open the |
12634 file, it just ignores it.

12635 #include <stdio.h>
12636 ...
12637 FILE *fp;
12638 ...
12639 void rgrep(const char *file)
12640 {
12641 ...
12642 if ((fp = fopen(file, "r")) == NULL)
12643 return;
12644 ...
12645 }

12646 APPLICATION USAGE
12647 None.

12648 RATIONALE
12649 None.

12650 FUTURE DIRECTIONS
12651 None.

12652 SEE ALSO
12653 fclose(), fdopen(), freopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

12654 CHANGE HISTORY
12655 First released in Issue 1. Derived from Issue 1 of the SVID. |

12656 Issue 4
12657 In the DESCRIPTION, the descriptions of input and output operations on update streams are
12658 changed to be requirements on the application.

12659 The [EMFILE] error is added to the ERRORS section, and all the optional errors are marked as
12660 extensions.

12661 The following changes are incorporated for alignment with the ISO C standard:

12662 • The type of arguments filename and mode are changed from char* to const char*.

12663 • In the DESCRIPTION, the use and settings of the mode argument are changed to support
12664 binary streams, and setpos() is added to the list of file positioning functions.

12665 The following change is incorporated for alignment with the FIPS requirements:

12666 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
12667 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
12668 an extension.

System Interfaces, Issue 6 885

fopen() System Interfaces

12669 Issue 4, Version 2
12670 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

12671 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
12672 name resolution.

12673 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
12674 intermediate result of path name resolution of a symbolic link.

12675 Issue 5
12676 Large File Summit extensions are added.

12677 Issue 6
12678 Extensions beyond the ISO C standard are now marked.

12679 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

12680 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
12681 This is since behavior may vary from one file system to another.

12682 The following new requirements on POSIX implementations derive from alignment with the
12683 Single UNIX Specification:

12684 • In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
12685 description. This change is to support large files.

12686 • In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
12687 large files.

12688 • The [ELOOP] mandatory error condition is added.

12689 • The [EINVAL], [EMFILE], [ENAMETOOLONG], [ENOMEM], and [ETXTBSY] optional error
12690 conditions are added.

12691 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

12692 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

12693 • The prototype for fopen() is updated. |

12694 • The DESCRIPTION is updated to note that if the argument mode points to a string other than |
12695 those listed, then the behavior is undefined. |

12696 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
12697 [ELOOP] error condition is added. |

886 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fork()

12698 NAME
12699 fork — create a new process

12700 SYNOPSIS
12701 #include <unistd.h>

12702 pid_t fork(void);

12703 DESCRIPTION
12704 The fork () function creates a new process. The new process (child process) shall be an exact copy
12705 of the calling process (parent process) except as detailed below:

12706 • The child process has a unique process ID.

12707 • The child process ID also does not match any active process group ID.

12708 • The child process has a different parent process ID (that is, the process ID of the parent
12709 process).

12710 • The child process has its own copy of the parent’s file descriptors. Each of the child’s file
12711 descriptors refers to the same open file description with the corresponding file descriptor of
12712 the parent.

12713 • The child process has its own copy of the parent’s open directory streams. Each open
12714 directory stream in the child process may share directory stream positioning with the
12715 corresponding directory stream of the parent.

12716 XSI • The child process may have its own copy of the parent’s message catalog descriptors.

12717 • The child process’ values of tms_utime, tms_stime, tms_cutime, and tms_cstime are set to 0.

12718 • The time left until an alarm clock signal is reset to zero, and the alarm, if any, is canceled; see
12719 alarm().

12720 XSI • All semadj values are cleared.

12721 • File locks set by the parent process are not inherited by the child process.

12722 • The set of signals pending for the child process is initialized to the empty set.

12723 XSI • Interval timers are reset in the child process.

12724 SEM • Any semaphores that are open in the parent process shall also be open in the child process.

12725 ML • The child process does not inherit any address space memory locks established by the parent
12726 process via calls to mlockall () or mlock().

12727 MF|SHM • Memory mappings created in the parent are retained in the child process. MAP_PRIVATE
12728 mappings inherited from the parent shall also be MAP_PRIVATE mappings in the child, and
12729 any modifications to the data in these mappings made by the parent prior to calling fork ()
12730 shall be visible to the child. Any modifications to the data in MAP_PRIVATE mappings made
12731 by the parent after fork () returns shall be visible only to the parent. Modifications to the data
12732 in MAP_PRIVATE mappings made by the child shall be visible only to the child.

12733 PS • For the SCHED_FIFO and SCHED_RR scheduling policies, the child process shall inherit the
12734 policy and priority settings of the parent process during a fork () function. For other
12735 scheduling policies, the policy and priority settings on fork () are implementation-defined. |

12736 TMR • Per-process timers created by the parent are not inherited by the child process.

12737 MSG • The child process has its own copy of the message queue descriptors of the parent. Each of
12738 the message descriptors of the child refers to the same open message queue description as
12739 the corresponding message descriptor of the parent.

System Interfaces, Issue 6 887

fork() System Interfaces

12740 AIO • No asynchronous input or asynchronous output operations are inherited by the child
12741 process.

12742 • A process is created with a single thread. If a multi-threaded process calls fork (), the new
12743 process contains a replica of the calling thread and its entire address space, possibly
12744 including the states of mutexes and other resources. Consequently, to avoid errors, the child
12745 process may only execute async-signal-safe operations until such time as one of the exec
12746 THR functions is called. Fork handlers may be established by means of the pthread_atfork()
12747 function in order to maintain application invariants across fork () calls. |

12748 TRC TRI • If the Trace option and the Trace Inherit option are both supported: |

12749 If the calling process was being traced in a trace stream that had its inheritance policy set to |
12750 POSIX_TRACE_INHERITED, the child process shall be traced into that trace stream, and the |
12751 child process shall inherit the parent’s mapping of trace event names to trace event type |
12752 identifiers. If the trace stream in which the calling process was being traced had its |
12753 inheritance policy set to POSIX_TRACE_CLOSE_FOR_CHILD, the child process shall not be |
12754 traced into that trace stream. The inheritance policy is set by a call to the |
12755 posix_trace_attr_setinherited() function. |

12756 TRC • If the Trace option is supported, but the Trace Inherit option is not supported: |

12757 The child process shall not be traced into any of the trace streams of its parent process. |

12758 • If the Trace option is supported, the child process of a trace controller process shall not |
12759 control the trace streams controlled by its parent process. |

12760 CPT The initial value of the CPU-time clock of the child process shall be set to zero.

12761 TCT The initial value of the CPU-time clock of the single thread of the child process shall be set to
12762 zero.

12763 Notes to Reviewers
12764 This section with side shading will not appear in the final copy. - Ed.

12765 Check this text is correct after new addenda are rolled in. (Ref D1, XSH, ERN 126)
12766 For process characteristics not defined by this volume of IEEE Std. 1003.1-200x, their inheritance
12767 is not defined by this volume of IEEE Std. 1003.1-200x. Process characteristics defined by this
12768 volume of IEEE Std. 1003.1-200x have their inheritance explicitly defined.

12769 After fork (), both the parent and the child processes are capable of executing independently
12770 before either one terminates.

12771 RETURN VALUE
12772 Upon successful completion, fork () shall return 0 to the child process and shall return the
12773 process ID of the child process to the parent process. Both processes shall continue to execute
12774 from the fork () function. Otherwise, −1 shall be returned to the parent process, no child process
12775 shall be created, and errno shall be set to indicate the error.

12776 ERRORS
12777 The fork () function shall fail if:

12778 [EAGAIN] The system lacked the necessary resources to create another process, or the |
12779 system-imposed limit on the total number of processes under execution
12780 system-wide or by a single user {CHILD_MAX} would be exceeded.

12781 The fork () function may fail if:

888 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fork()

12782 [ENOMEM] Insufficient storage space is available. |

12783 EXAMPLES
12784 None.

12785 APPLICATION USAGE
12786 None.

12787 RATIONALE
12788 Many historical implementations have timing windows where a signal sent to a process group
12789 (for example, an interactive SIGINT) just prior to or during execution of fork () is delivered to the
12790 parent following the fork () but not to the child because the fork () code clears the child’s set of
12791 pending signals. This volume of IEEE Std. 1003.1-200x does not require, or even permit, this
12792 behavior. However, it is pragmatic to expect that problems of this nature may continue to exist
12793 in implementations that appear to conform to this volume of IEEE Std. 1003.1-200x and pass
12794 available verification suites. This behavior is only a consequence of the implementation failing to
12795 make the interval between signal generation and delivery totally invisible. From the
12796 application’s perspective, a fork () call should appear atomic. A signal that is generated prior to
12797 the fork () should be delivered prior to the fork (). A signal sent to the process group after the
12798 fork () should be delivered to both parent and child. The implementation may actually initialize
12799 internal data structures corresponding to the child’s set of pending signals to include signals
12800 sent to the process group during the fork (). Since the fork () call can be considered as atomic
12801 from the application’s perspective, the set would be initialized as empty and such signals would
12802 have arrived after the fork (); see also <signal.h>.

12803 One approach that has been suggested to address the problem of signal inheritance across fork ()
12804 is to add an [EINTR] error, which would be returned when a signal is detected during the call. |
12805 While this is preferable to losing signals, it was not considered an optimal solution. Although it
12806 is not recommended for this purpose, such an error would be an allowable extension for an
12807 implementation.

12808 The [ENOMEM] error value is reserved for those implementations that detect and distinguish |
12809 such a condition. This condition occurs when an implementation detects that there is not enough
12810 memory to create the process. This is intended to be returned when [EAGAIN] is inappropriate |
12811 because there can never be enough memory (either primary or secondary storage) to perform the
12812 operation. Because fork () duplicates an existing process, this must be a condition where there is
12813 sufficient memory for one such process, but not for two. Many historical implementations
12814 actually return [ENOMEM] due to temporary lack of memory, a case that is not generally |
12815 distinct from [EAGAIN] from the perspective of a portable application.

12816 Part of the reason for including the optional error [ENOMEM] is because the SVID specifies it
12817 and it should be reserved for the error condition specified there. The condition is not applicable
12818 on many implementations.

12819 IEEE Std. 1003.1-1988 neglected to require concurrent execution of the parent and child of fork (). |
12820 A system that single-threads processes was clearly not intended and is considered an
12821 unacceptable ‘‘toy implementation’’ of this volume of IEEE Std. 1003.1-200x. The only objection
12822 anticipated to the phrase ‘‘executing independently’’ is testability, but this assertion should be
12823 testable. Such tests require that both the parent and child can block on a detectable action of the
12824 other, such as a write to a pipe or a signal. An interactive exchange of such actions should be
12825 possible for the system to conform to the intent of this volume of IEEE Std. 1003.1-200x.

12826 The [EAGAIN] error exists to warn applications that such a condition might occur. Whether it
12827 occurs or not is not in any practical sense under the control of the application because the
12828 condition is usually a consequence of the user’s use of the system, not of the application’s code.
12829 Thus, no application can or should rely upon its occurrence under any circumstances, nor

System Interfaces, Issue 6 889

fork() System Interfaces

12830 should the exact semantics of what concept of ‘‘user’’ is used be of concern to the application
12831 writer. Validation writers should be cognizant of this limitation.

12832 There are two reasons why POSIX programmers call fork (). One reason is to create a new thread
12833 of control within the same program (which was originally only possible in POSIX by creating a
12834 new process); the other is to create a new process running a different program. In the latter case,
12835 the call to fork () is soon followed by a call to one of the exec functions.

12836 The general problem with making fork () work in a multi-threaded world is what to do with all
12837 of the threads. There are two alternatives. One is to copy all of the threads into the new process.
12838 This causes the programmer or implementation to deal with threads that are suspended on
12839 system calls or that might be about to execute system calls that should not be executed in the
12840 new process. The other alternative is to copy only the thread that calls fork (). This creates the
12841 difficulty that the state of process-local resources is usually held in process memory. If a thread
12842 that is not calling fork () holds a resource, that resource is never released in the child process
12843 because the thread whose job it is to release the resource does not exist in the child process.

12844 When a programmer is writing a multi-threaded program, the first described use of fork (),
12845 creating new threads in the same program, is provided by the pthread_create() function. The
12846 fork () function is thus used only to run new programs, and the effects of calling functions that
12847 require certain resources between the call to fork () and the call to an exec function are undefined.

12848 The addition of the forkall () function to the standard was considered and rejected. The forkall () |
12849 function lets all the threads in the parent be duplicated in the child. This essentially duplicates
12850 the state of the parent in the child. This allows threads in the child to continue processing and
12851 allows locks and the state to be preserved without explicit pthread_atfork() code. The calling
12852 process has to ensure that the threads processing state that is shared between the parent and
12853 child (that is, file descriptors or MAP_SHARED memory) behaves properly after forkall (). For
12854 example, if a thread is reading a file descriptor in the parent when forkall () is called, then two
12855 threads (one in the parent and one in the child) are reading the file descriptor after the forkall ().
12856 If this is not desired behavior, the parent process has to synchronize with such threads before
12857 calling forkall ().

12858 When forkall () is called, threads, other than the calling thread, that are in POSIX System
12859 Interfaces functions that can return with an [EINTR] error may have those functions return
12860 [EINTR] if the implementation cannot ensure that the function behaves correctly in the parent
12861 and child. In particular, pthread_cond_wait() and pthread_cond_timedwait() need to return in order
12862 to ensure that the condition has not changed. These functions can be awakened by a spurious
12863 condition wakeup rather than returning [EINTR].

12864 FUTURE DIRECTIONS
12865 None.

12866 SEE ALSO
12867 alarm(), exec, fcntl(), posix_trace_attr_getinherited(), posix_trace_trid_eventid_open(), semop(), |
12868 signal(), times(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
12869 <unistd.h>

CHANGE12870 HISTORY
12871 First released in Issue 1. Derived from Issue 1 of the SVID. |

12872 Issue 4
12873 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
12874 XSI-conformant systems.

12875 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

890 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fork()

12876 • The argument list is explicitly defined as void.

12877 • Though functionally identical to Issue 3, the DESCRIPTION has been reorganized to improve
12878 clarity and to align more closely with the ISO POSIX-1 standard.

12879 • The description of the [EAGAIN] error is updated to indicate that this error can also be
12880 returned if a system lacks the resources to create another process.

12881 Issue 4, Version 2
12882 The DESCRIPTION is changed for X/OPEN UNIX conformance to identify that interval timers
12883 are reset in the child process.

12884 Issue 5
12885 The DESCRIPTION is changed for alignment with the POSIX Realtime Extension and the POSIX
12886 Threads Extension.

12887 Issue 6
12888 The following new requirements on POSIX implementations derive from alignment with the
12889 Single UNIX Specification:

12890 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
12891 required for conforming implementations of previous POSIX specifications, it was not
12892 required for UNIX applications.

12893 The following changes were made to align with the IEEE P1003.1a draft standard:

12894 • The effect of fork () on a pending alarm call in the child process is clarified.

12895 The description of CPU-time clock semantics is added for alignment with
12896 IEEE Std. 1003.1d-1999. |

12897 The description of tracing semantics is added for alignment with IEEE Std. 1003.1q-2000. |

System Interfaces, Issue 6 891

fpathconf() System Interfaces

12898 NAME
12899 fpathconf, pathconf — get configurable path name variables

12900 SYNOPSIS
12901 #include <unistd.h>

12902 long fpathconf(int fildes , int name); |
12903 long pathconf(const char * path , int name); |

12904 DESCRIPTION |
12905 The fpathconf () and pathconf () functions provide a method for the application to determine the
12906 current value of a configurable limit or option (variable) that is associated with a file or directory.

12907 For pathconf (), the path argument points to the path name of a file or directory.

12908 For fpathconf (), the fildes argument is an open file descriptor.

12909 The name argument represents the variable to be queried relative to that file or directory.
12910 Implementations shall support all of the variables listed in the following table and may support
12911 others. The variables in the following table come from <limits.h> or <unistd.h> and the
12912 symbolic constants, defined in <unistd.h>, are the corresponding values used for name. Support
12913 for some path name configuration variables is dependent on implementation options (see
12914 shading and margin codes in the table below). Where an implementation option is not
12915 supported, the variable need not be supported.
12916 ___
12917 Variable Value of name Notes___
12918 {FILESIZEBITS} _PC_FILESIZEBITS 3, 4
12919 {LINK_MAX} _PC_LINK_MAX 1
12920 {MAX_CANON} _PC_MAX_CANON 2
12921 {MAX_INPUT} _PC_MAX_INPUT 2
12922 {NAME_MAX} _PC_NAME_MAX 3, 4
12923 {PATH_MAX} _PC_PATH_MAX 4, 5
12924 {PIPE_BUF} _PC_PIPE_BUF 6
12925 ADV {POSIX_ALLOC_SIZE_MIN} _PC_ALLOC_SIZE_MIN
12926 ADV {POSIX_REC_INCR_XFER_SIZE} _PC_REC_INCR_XFER_SIZE
12927 ADV {POSIX_REC_MAX_XFER_SIZE} _PC_REC_MAX_XFER_SIZE
12928 ADV {POSIX_REC_MIN_XFER_SIZE} _PC_REC_MIN_XFER_SIZE
12929 ADV {POSIX_REC_XFER_ALIGN} _PC_REC_XFER_ALIGN
12930 {SYMLINK_MAX} _PC_SYMLINK_MAX 4,9
12931 _POSIX_CHOWN_RESTRICTED _PC_CHOWN_RESTRICTED 7
12932 _POSIX_NO_TRUNC _PC_NO_TRUNC 3, 4
12933 _POSIX_VDISABLE _PC_VDISABLE 2
12934 _POSIX_ASYNC_IO _PC_ASYNC_IO 8
12935 _POSIX_PRIO_IO _PC_PRIO_IO 8
12936 _POSIX_SYNC_IO _PC_SYNC_IO 8___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

12937 Notes:

12938 1. If path or fildes refers to a directory, the value returned applies to the directory
12939 itself.

12940 2. If path or fildes does not refer to a terminal file, it is unspecified whether an
12941 implementation supports an association of the variable name with the specified
12942 file.

892 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fpathconf()

12943 3. If path or fildes refers to a directory, the value returned applies to file names
12944 within the directory.

12945 4. If path or fildes does not refer to a directory, it is unspecified whether an
12946 implementation supports an association of the variable name with the specified
12947 file.

12948 5. If path or fildes refers to a directory, the value returned is the maximum length
12949 of a relative path name when the specified directory is the working directory.

12950 6. If path refers to a FIFO, or fildes refers to a pipe or FIFO, the value returned
12951 applies to the referenced object. If path or fildes refers to a directory, the value
12952 returned applies to any FIFO that exists or can be created within the directory.
12953 If path or fildes refers to any other type of file, it is unspecified whether an
12954 implementation supports an association of the variable name with the specified
12955 file.

12956 7. If path or fildes refers to a directory, the value returned applies to any files, other
12957 than directories, that exist or can be created within the directory.

12958 8. If path or fildes refers to a directory, it is unspecified whether an implementation
12959 supports an association of the variable name with the specified file.

12960 9. If path or fildes refers to a directory, the value returned is the maximum length
12961 of the string that a symbolic link in that directory can contain.

12962 RETURN VALUE
12963 If name is an invalid value, both pathconf () and fpathconf () shall return −1 and set errno to
12964 indicate the error.

12965 If the variable corresponding to name has no limit for the path or file descriptor, both pathconf ()
12966 and fpathconf () shall return −1 without changing errno. If the implementation needs to use path
12967 to determine the value of name and the implementation does not support the association of name
12968 with the file specified by path , or if the process did not have appropriate privileges to query the
12969 file specified by path , or path does not exist, pathconf () shall return −1 and set errno to indicate the
12970 error.

12971 If the implementation needs to use fildes to determine the value of name and the implementation
12972 does not support the association of name with the file specified by fildes , or if fildes is an invalid
12973 file descriptor, fpathconf () shall return −1 and set errno to indicate the error.

12974 Otherwise, pathconf () or fpathconf () shall return the current variable value for the file or
12975 directory without changing errno. The value returned shall not be more restrictive than the
12976 corresponding value available to the application when it was compiled with the
12977 implementation’s <limits.h> or <unistd.h>.

12978 ERRORS
12979 The pathconf () function shall fail if:

12980 [EINVAL] The value of name is not valid. |

12981 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
12982 argument. |

12983 The pathconf () function may fail if:

12984 [EACCES] Search permission is denied for a component of the path prefix. |

12985 [EINVAL] The implementation does not support an association of the variable name with |
12986 the specified file.

System Interfaces, Issue 6 893

fpathconf() System Interfaces

12987 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
12988 resolution of the path argument.

12989 [ENAMETOOLONG] |
12990 The length of the path argument exceeds {PATH_MAX} or a path name
12991 component is longer than {NAME_MAX}. |

12992 [ENAMETOOLONG] |
12993 As a result of encounering a symbolic link in resolution of the path argument,
12994 the length of the substituted path name string exceeded {PATH_MAX}. |

12995 [ENOENT] A component of path does not name an existing file or path is an empty string. |

12996 [ENOTDIR] A component of the path prefix is not a directory. |

12997 The fpathconf () function shall fail if:

12998 [EINVAL] The value of name is not valid. |

12999 The fpathconf () function may fail if:

13000 [EBADF] The fildes argument is not a valid file descriptor. |

13001 [EINVAL] The implementation does not support an association of the variable name with |
13002 the specified file.

13003 EXAMPLES
13004 None.

13005 APPLICATION USAGE
13006 None.

13007 RATIONALE
13008 The pathconf () function was proposed immediately after the sysconf() function when it was
13009 realized that some configurable values may differ across file system, directory, or device
13010 boundaries.

13011 For example, {NAME_MAX} frequently changes between System V and BSD-based file systems;
13012 System V uses a maximum of 14, BSD 255. On an implementation that provides both types of file
13013 systems, an application would be forced to limit all path name components to 14 bytes, as this
13014 would be the value specified in <limits.h> on such a system.

13015 Therefore, various useful values can be queried on any path name or file descriptor, assuming
13016 that the appropriate permissions are in place.

13017 The value returned for the variable {PATH_MAX} indicates the longest relative path name that
13018 could be given if the specified directory is the process’ current working directory. A process may
13019 not always be able to generate a name that long and use it if a subdirectory in the path name
13020 crosses into a more restrictive file system.

13021 The value returned for the variable _POSIX_CHOWN_RESTRICTED also applies to directories
13022 that do not have file systems mounted on them. The value may change when crossing a mount
13023 point, so applications that need to know should check for each directory. (An even easier check
13024 is to try the chown() function and look for an error in case it happens.)

13025 Unlike the values returned by sysconf(), the path name-oriented variables are potentially more
13026 volatile and are not guaranteed to remain constant throughout the process’ lifetime. For
13027 example, in between two calls to pathconf (), the file system in question may have been
13028 unmounted and remounted with different characteristics.

894 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fpathconf()

13029 Also note that most of the errors are optional. If one of the variables always has the same value
13030 on an implementation, the implementation need not look at path or fildes to return that value and
13031 is, therefore, not required to detect any of the errors except the meaning of [EINVAL] that |
13032 indicates that the value of name is not valid for that variable.

13033 If the value of any of the limits are indeterminate (logically infinite), they are defined in
13034 <limits.h> and the pathconf () and fpathconf () functions return −1 without changing errno. This
13035 can be distinguished from the case of giving an unrecognized name argument because errno is set
13036 to [EINVAL] in this case.

13037 Since −1 is a valid return value for the pathconf () and fpathconf () functions, applications should
13038 set errno to zero before calling them and check errno only if the return value is −1.

13039 For the case of {SYMLINK_MAX}, since both pathconf () and open() follow symbolic links, there
13040 is no way that path or fildes could refer to a symbolic link.

13041 FUTURE DIRECTIONS
13042 None.

13043 SEE ALSO
13044 confstr(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <unistd.h>, |
13045 the Shell and Utilities volume of IEEE Std. 1003.1-200x |

13046 CHANGE HISTORY
13047 First released in Issue 3.

13048 Entry included for alignment with the POSIX.1-1988 standard.

13049 Issue 4
13050 The fpathconf () function now has the full long return type in the SYNOPSIS section. |

13051 The following changes gave been made for alignment with the ISO POSIX-1 standard:

13052 • The type of argument path is changed from char* to const char*. Also, the return value of
13053 both functions is changed from long to long. |

13054 • In the DESCRIPTION, the words ‘‘The behavior is undefined if’’ have been replaced by ‘‘it is
13055 unspecified whether an implementation supports an association of the variable name with
13056 the specified file’’ in notes 2, 4, and 6.

13057 • In the RETURN VALUE section, errors associated with the use of path and fildes , when an
13058 implementation does not support the requested association, are now specified separately.

13059 • The requirement that errno be set to indicate the error is added.

13060 The following change is incorporated for alignment with the FIPS requirements:

13061 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
13062 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
13063 an extension.

13064 Issue 4, Version 2
13065 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

13066 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
13067 name resolution.

13068 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
13069 intermediate result of path name resolution of a symbolic link.

System Interfaces, Issue 6 895

fpathconf() System Interfaces

13070 Issue 5
13071 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

13072 Large File Summit extensions are added.

13073 Issue 6
13074 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

13075 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
13076 This is since behavior may vary from one file system to another.

13077 The following new requirements on POSIX implementations derive from alignment with the
13078 Single UNIX Specification:

13079 • The DESCRIPTION is updated to include {FILESIZEBITS}.

13080 • The [ELOOP] mandatory error condition is added.

13081 • A second [ENAMETOOLONG] is added as an optional error condition.

13082 The following changes were made to align with the IEEE P1003.1a draft standard:

13083 • The _PC_SYMLINK_MAX entry is added to the table in the DESCRIPTION.

13084 The pathconf () variables {POSIX_ALLOC_SIZE_MIN}, {POSIX_REC_INCR_XFER_SIZE},
13085 {POSIX_REC_MAX_XFER_SIZE}, {POSIX_REC_MIN_XFER_SIZE},
13086 {POSIX_REC_XFER_ALIGN} and their associated names are added for alignment with
13087 IEEE Std. 1003.1d-1999.

|

896 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fpclassify()

13088 NAME |
13089 fpclassify — classify real floating type |

13090 SYNOPSIS |
13091 #include <math.h> |

13092 int fpclassify(real-floating x); |

13093 DESCRIPTION |
13094 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
13095 conflict between the requirements described here and the ISO C standard is unintentional. This |
13096 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

13097 The fpclassify () macro shall classify its argument value as NaN, infinite, normal, subnormal, |
13098 zero, or into another implementation-defined category. First, an argument represented in a |
13099 format wider than its semantic type is converted to its semantic type. Then classification is based |
13100 on the type of the argument. |

13101 RETURN VALUE |
13102 The fpclassify () macro shall return the value of the number classification macro appropriate to |
13103 the value of its argument. |

13104 ERRORS |
13105 No errors are defined. |

13106 EXAMPLES |
13107 None. |

13108 APPLICATION USAGE |
13109 None. |

13110 RATIONALE |
13111 None. |

13112 FUTURE DIRECTIONS |
13113 None. |

13114 SEE ALSO |
13115 isfinite (), isinf(), isnan(), isnormal(), signbit(), the Base Definitions volume of |
13116 IEEE Std. 1003.1-200x, <math.h> |

13117 CHANGE HISTORY |
13118 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 897

fprintf() System Interfaces

13119 NAME
13120 fprintf, printf, snprintf, sprintf — print formatted output

13121 SYNOPSIS
13122 #include <stdio.h>

13123 int fprintf(FILE *restrict stream , const char *restrict format , ...); |
13124 int printf(const char *restrict format , ...); |
13125 int snprintf(char *restrict s, size_t n, const char *restrict format , ...);|
13126 int sprintf(char *restrict s, const char *restrict format , ...); |

13127 DESCRIPTION |
13128 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13129 conflict between the requirements described here and the ISO C standard is unintentional. This
13130 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13131 The fprintf () function places output on the named output stream. The printf() function places
13132 output on the standard output stream stdout . The sprintf() function places output followed by
13133 the null byte, ’\0’ , in consecutive bytes starting at *s; it is the user’s responsibility to ensure that
13134 enough space is available.

13135 XSI The snprintf() function is identical to sprintf() with the addition of the n argument, which states
13136 the size of the buffer referred to by s. If n is greater than zero, but not large enough to hold all
13137 output bytes specified by the format, output bytes beyond the n-1st are discarded rather than
13138 being written into the array.

13139 If copying takes place between objects that overlap as a result of a call to sprintf() or snprintf(),
13140 the results are undefined.

13141 Each of these functions converts, formats, and prints its arguments under control of the format .
13142 The format is a character string, beginning and ending in its initial shift state, if any. The format is
13143 composed of zero or more directives: ordinary characters , which are simply copied to the output
13144 stream, and conversion specifications, each of which results in the fetching of zero or more
13145 arguments. The results are undefined if there are insufficient arguments for the format . If the
13146 format is exhausted while arguments remain, the excess arguments are evaluated but are
13147 otherwise ignored.

13148 XSI Conversions can be applied to the nth argument after the format in the argument list, rather than
13149 to the next unused argument. In this case, the conversion character ’%’ (see below) is replaced
13150 by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}], giving the
13151 position of the argument in the argument list. This feature provides for the definition of format
13152 strings that select arguments in an order appropriate to specific languages (see the EXAMPLES
13153 section).

13154 In format strings containing the "%n$" form of conversion specifications, numbered arguments
13155 in the argument list can be referenced from the format string as many times as required.

13156 In format strings containing the ’%’ form of conversion specifications, each argument in the
13157 argument list is used exactly once.

13158 All forms of the fprintf () functions allow for the insertion of a language-dependent radix
13159 character in the output string. The radix character is defined in the program’s locale (category
13160 LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
13161 radix character defaults to a period (’.’).

13162 XSI Each conversion specification is introduced by the ’%’ character or by the character sequence
13163 "%n$" ,after which the following appear in sequence:

898 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13164 • Zero or more flags (in any order), which modify the meaning of the conversion specification.

13165 • An optional minimum field width . If the converted value has fewer bytes than the field
13166 width, it shall be padded with spaces by default on the left; it shall be padded on the right, if
13167 the left-adjustment flag (’ −’), described below, is given to the field width. The field width
13168 takes the form of an asterisk (’*’), described below, or a decimal integer.

13169 • An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x,
13170 and X conversions; the number of digits to appear after the radix character for the e, E, and f
13171 conversions; the maximum number of significant digits for the g and G conversions; or the
13172 XSI maximum number of bytes to be printed from a string in s and S conversions. The precision
13173 takes the form of a period (’.’) followed either by an asterisk (’*’), described below, or an
13174 optional decimal digit string, where a null digit string is treated as 0. If a precision appears
13175 with any other conversion character, the behavior is undefined.

13176 • An optional length modifier that specifies the size of the argument. |

13177 • A conversion character that indicates the type of conversion to be applied.

13178 A field width, or precision, or both, may be indicated by an asterisk (’*’). In this case an
13179 argument of type int supplies the field width or precision. Applications shall ensure that
13180 arguments specifying field width, or precision, or both appear in that order before the argument,
13181 if any, to be converted. A negative field width is taken as a ’ −’ flag followed by a positive field
13182 XSI width. A negative precision is taken as if the precision were omitted. In format strings
13183 containing the "%n$" form of a conversion specification, a field width or precision may be
13184 indicated by the sequence "*m$" , where m is a decimal integer in the range [1,{NL_ARGMAX}]
13185 giving the position in the argument list (after the format argument) of an integer argument
13186 containing the field width or precision, for example:

13187 printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

13188 The format can contain either numbered argument specifications (that is, "%n$" and "*m$"), or
13189 unnumbered argument specifications (that is, ’%’ and ’*’), but normally not both. The only
13190 exception to this is that "%%" can be mixed with the "%n$" form. The results of mixing
13191 numbered and unnumbered argument specifications in a format string are undefined. When
13192 numbered argument specifications are used, specifying the Nth argument requires that all the
13193 leading arguments, from the first to the (N−1)th, are specified in the format string.

13194 The flag characters and their meanings are:

13195 XSI ’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g, or %G)
13196 shall be formatted with thousands’ grouping characters. For other conversions the
13197 behavior is undefined. The non-monetary grouping character is used.

13198 − The result of the conversion shall be left-justified within the field. The conversion is
13199 right-justified if this flag is not specified.

13200 + The result of a signed conversion shall always begin with a sign (’+’ or ’ −’). The
13201 conversion shall begin with a sign only when a negative value is converted if this flag is
13202 not specified.

13203 <space> If the first character of a signed conversion is not a sign or if a signed conversion results
13204 in no characters, a space shall be prefixed to the result. This means that if the space and
13205 ’+’ flags both appear, the space flag shall be ignored.

13206 # This flag specifies that the value is to be converted to an alternative form. For o
13207 conversion, it increases the precision (if necessary) to force the first digit of the result to
13208 be 0. For x or X conversions, a non-zero result shall have 0x (or 0X) prefixed to it. For e,
13209 E, f, g, or G conversions, the result shall always contain a radix character, even if no

System Interfaces, Issue 6 899

fprintf() System Interfaces

13210 digits follow the radix character. Without this flag, a radix character appears in the
13211 result of these conversions only if a digit follows it. For g and G conversions, trailing
13212 zeros shall not be removed from the result as they normally are. For other conversions,
13213 the behavior is undefined.

13214 0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any indication of
13215 sign or base) are used to pad to the field width; no space padding is performed. If the |
13216 ’0’ and ’ −’ flags both appear, the ’0’ flag is ignored. For d, i, o, u, x, and X |
13217 XSI conversions, if a precision is specified, the ’0’ flag is ignored. If the ’0’ and ’\’’ |
13218 flags both appear, the grouping characters are inserted before zero padding. For other
13219 conversions, the behavior is undefined. |

13220 The length modifiers and their meanings are: |

13221 hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char |
13222 or unsigned char argument (the argument will have been promoted according to the |
13223 integer promotions, but its value shall be converted to signed char or unsigned char |
13224 before printing); or that a following n conversion specifier applies to a pointer to a |
13225 signed char argument. |

13226 h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or |
13227 unsigned short argument (the argument will have been promoted according to the |
13228 integer promotions, but its value shall be converted to short or unsigned short before |
13229 printing); or that a following n conversion specifier applies to a pointer to a short |
13230 argument. |

13231 l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or |
13232 unsigned long argument; that a following n conversion specifier applies to a pointer to |
13233 a long argument; that a following c conversion specifier applies to a wint_t argument; |
13234 that a following s conversion specifier applies to a pointer to a wchar_t argument; or |
13235 has no effect on a following a, A, e, E, f, F, g, or G conversion specifier. |

13236 ll (ell-ell)Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long or |
13237 unsigned long long argument; or that a following n conversion specifier applies to a |
13238 pointer to a long long argument. |

13239 j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or |
13240 uintmax_t argument; or that a following n conversion specifier applies to a pointer to |
13241 an intmax_t argument. |

13242 z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the |
13243 corresponding signed integer type argument; or that a following n conversion specifier |
13244 applies to a pointer to a signed integer type corresponding to size_t argument. |

13245 t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or |
13246 the corresponding unsigned type argument; or that a following n conversion specifier |
13247 applies to a pointer to a ptrdiff_t argument. |

13248 L Specifies that a following a, A, e, E, f, F, g, orG conversion specifier applies to a long |
13249 double argument. |

13250 If a length modifier appears with any conversion specifier other than as specified above, the |
13251 behavior is undefined. |

13252 The conversion characters and their meanings are: |

13253 d, i The int argument is converted to a signed decimal in the style [−]dddd. The precision
13254 specifies the minimum number of digits to appear; if the value being converted can be
13255 represented in fewer digits, it shall be expanded with leading zeros. The default

900 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13256 precision is 1. The result of converting 0 with an explicit precision of 0 is no characters.

13257 o The unsigned argument is converted to unsigned octal format in the style dddd. The |
13258 precision specifies the minimum number of digits to appear; if the value being
13259 converted can be represented in fewer digits, it shall be expanded with leading zeros.
13260 The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
13261 characters.

13262 u The unsigned argument is converted to unsigned decimal format in the style dddd. The |
13263 precision specifies the minimum number of digits to appear; if the value being
13264 converted can be represented in fewer digits, it shall be expanded with leading zeros.
13265 The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
13266 characters.

13267 x The unsigned argument is converted to unsigned hexadecimal format in the style dddd; |
13268 the letters "abcdef" are used. The precision specifies the minimum number of digits
13269 to appear; if the value being converted can be represented in fewer digits, it shall be
13270 expanded with leading zeros. The default precision is 1. The result of converting 0 with
13271 an explicit precision of 0 is no characters.

13272 X Behaves the same as the x conversion character except that letters "ABCDEF" are used
13273 instead of "abcdef" . |

13274 f, F The double argument is converted to decimal notation in the style [−]ddd.ddd, where |
13275 the number of digits after the radix character is equal to the precision specification. If
13276 the precision is missing, it is taken as 6; if the precision is explicitly 0 and no ’#’ flag is
13277 present, no radix character appears. If a radix character appears, at least one digit
13278 appears before it. The value is rounded to the appropriate number of digits.

13279 A double argument representing an infinity is converted in one of the styles [−]inf or |
13280 [−]infinity; which style is implementation-defined. A double argument representing a |
13281 NaN is converted in one of the styles [−]nan or [−]nan(n-char-sequence); which style, and |
13282 the meaning of any n-char-sequence, is implementation-defined. The F conversion |
13283 specifier produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively. |

13284 e, E The double argument is converted in the style [−]d.ddde±dd, where there is one digit |
13285 before the radix character (which is non-zero if the argument is non-zero) and the
13286 number of digits after it is equal to the precision; if the precision is missing, it is taken
13287 as 6; if the precision is 0 and no ’#’ flag is present, no radix character appears. The
13288 value is rounded to the appropriate number of digits. The E conversion character will
13289 produce a number with E instead of e introducing the exponent. The exponent always
13290 contains at least two digits. If the value is 0, the exponent is 0.

13291 A double argument representing an infinity or NaN is converted in the style of an f or F |
13292 conversion specifier. |

13293 g, G The double argument is converted in the style f or e (or in the style E in the case of a G |
13294 conversion character), with the precision specifying the number of significant digits. If
13295 an explicit precision is 0, it is taken as 1. The style used depends on the value
13296 converted; style e (or E) shall be used only if the exponent resulting from such a
13297 conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
13298 removed from the fractional portion of the result; a radix character appears only if it is
13299 followed by a digit.

13300 A double argument representing an infinity or NaN is converted in the style of an f or F |
13301 conversion specifier. |

System Interfaces, Issue 6 901

fprintf() System Interfaces

13302 a, A A double argument representing a floating-point number is converted in the style |
13303 [−]0xh.hhhh p1d, where there is one hexadecimal digit (which is non-zero if the |
13304 argument is a normalized floating-point number and is otherwise unspecified) before |
13305 the decimal-point character 235) and the number of hexadecimal digits after it is equal |
13306 to the precision; if the precision is missing and FLT_RADIX is a power of 2, then the |
13307 precision is sufficient for an exact representation of the value; if the precision is missing |
13308 and FLT_RADIX is not a power of 2, then the precision is sufficient to distinguish 236) |
13309 values of type double, except that trailing zeros may be omitted; if the precision is zero |
13310 and the ’#’ flag is not specified, no decimal-point character appears. The letters |
13311 "abcdef" are used for a conversion and the letters "ABCDEF" for A conversion. The A |
13312 conversion specifier produces a number with ’X’ and ’P’ instead of ’x’ and ’p’ . |
13313 The exponent always contains at least one digit, and only as many more digits as |
13314 necessary to represent the decimal exponent of 2. If the value is zero, the exponent is |
13315 zero. |

13316 A double argument representing an infinity or NaN is converted in the style of an f or F |
13317 conversion specifier. |

13318 c The int argument is converted to an unsigned char, and the resulting byte is written.

13319 If an l (ell) qualifier is present, the wint_t argument is converted as if by an ls
13320 conversion specification with no precision and an argument that points to a two-
13321 element array of type wchar_t, the first element of which contains the wint_t argument
13322 to the ls conversion specification and the second element contains a null wide
13323 character.

13324 s The argument shall be a pointer to an array of char. Bytes from the array are written up
13325 to (but not including) any terminating null byte. If the precision is specified, no more
13326 than that many bytes shall be written. If the precision is not specified or is greater than
13327 the size of the array, the application shall ensure that the array contains a null byte.

13328 If an l (ell) qualifier is present, the argument shall be a pointer to an array of type
13329 wchar_t. Wide characters from the array are converted to characters (each as if by a
13330 call to the wcrtomb() function, with the conversion state described by an mbstate_t
13331 object initialized to zero before the first wide character is converted) up to and
13332 including a terminating null wide character. The resulting characters shall be written
13333 up to (but not including) the terminating null character (byte). If no precision is
13334 specified, the application shall ensure that the array contains a null wide character. If a
13335 precision is specified, no more than that many characters (bytes) shall be written
13336 (including shift sequences, if any), and the array shall contain a null wide character if,
13337 to equal the character sequence length given by the precision, the function would need
13338 to access a wide character one past the end of the array. In no case is a partial character
13339 written.

13340 p The argument shall be a pointer to void. The value of the pointer is converted to a
13341 sequence of printable characters, in an implementation-defined manner. |

13342 n The argument shall be a pointer to an integer into which is written the number of bytes
13343 written to the output so far by this call to one of the fprintf () functions. No argument is
13344 converted.

13345 XSI C Same as lc.

13346 XSI S Same as ls.

13347 % Print a ’%’ ; no argument is converted. The entire conversion specification shall be
13348 "%%".

902 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13349 If a conversion specification does not match one of the above forms, the behavior is undefined. If |
13350 any argument is not the correct type for the corresponding conversion specification, the |
13351 behavior is undefined. |

13352 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
13353 conversion is wider than the field width, the field is simply expanded to contain the conversion
13354 result. Characters generated by fprintf () and printf() are printed as if fputc() had been called.

13355 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a |
13356 hexadecimal floating number with the given precision. |

13357 If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers in |
13358 hexadecimal floating style with the given precision, with the extra stipulation that the error |
13359 should have a correct sign for the current rounding direction. |

13360 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most |
13361 DECIMAL_DIG, then the result should be correctly rounded. If the number of significant |
13362 decimal digits is more than DECIMAL_DIG but the source value is exactly representable with |
13363 DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros. |
13364 Otherwise, the source value is bounded by two adjacent decimal strings "L < U" , both having |
13365 DECIMAL_DIG significant digits; the value of the resultant decimal string "D" should satisfy "L |
13366 <= D <= U", with the extra stipulation that the error should have a correct sign for the current |
13367 rounding direction. |

13368 CX The st_ctime and st_mtime fields of the file shall be marked for update between the call to a |
13369 successful execution of fprintf () or printf() and the next successful completion of a call to fflush()
13370 or fclose() on the same stream or a call to exit() or abort().

13371 RETURN VALUE
13372 Upon successful completion, the fprintf () and printf() functions shall return the number of bytes
13373 transmitted.

13374 Upon successful completion, the sprintf() function shall return the number of bytes written to s,
13375 excluding the terminating null byte.

13376 Upon successful completion, the snprintf() function shall return the number of bytes that would |
13377 be written to s had n been sufficiently large excluding the terminating null byte. |

13378 If an output error was encountered, these functions shall return a negative value.

13379 If the value of n is zero on a call to snprintf(), nothing shall be written, the number of bytes that |
13380 would have been written had n been sufficiently large excluding the terminating null shall be |
13381 returned, and s may be a null pointer. |

13382 ERRORS
13383 For the conditions under which fprintf () and printf() fail and may fail, refer to fputc() or
13384 fputwc().

13385 In addition, all forms of fprintf () may fail if:

13386 XSI [EILSEQ] A wide-character code that does not correspond to a valid character has been |
13387 detected.

13388 XSI [EINVAL] There are insufficient arguments. |

13389 The printf() and fprintf () functions may fail if:

13390 XSI [ENOMEM] Insufficient storage space is available. |

13391 The snprintf() function shall fail if:

System Interfaces, Issue 6 903

fprintf() System Interfaces

13392 XSI [EOVERFLOW] The value of n is greater than {INT_MAX} or the number of bytes needed to
13393 hold the output excluding the terminating null is greater than {INT_MAX}.

13394 EXAMPLES

13395 Printing Language-Independent Date and Time

13396 The following statement can be used to print date and time using a language-independent
13397 format:

13398 printf(format, weekday, month, day, hour, min);

13399 For American usage, format could be a pointer to the following string:

13400 "%s, %s %d, %d:%.2d\n"

13401 This example would produce the following message:

13402 Sunday, July 3, 10:02

13403 For German usage, format could be a pointer to the following string:

13404 "%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

13405 This definition of format would produce the following message:

13406 Sonntag, 3. Juli, 10:02

13407 Printing File Information

13408 The following example prints information about the type, permissions, and number of links of a
13409 specific file in a directory.

13410 The first two calls to printf() use data decoded from a previous stat() call. The user-defined
13411 strperm() function shall return a string similar to the one at the beginning of the output for the
13412 following command:

13413 ls -l

13414 The next call to printf() outputs the owner’s name if it is found using getpwuid(); the getpwuid()
13415 function shall return a passwd structure from which the name of the user is extracted. If the user
13416 name is not found, the program instead prints out the numeric value of the user ID.

13417 The next call prints out the group name if it is found using getgrgid(); getgrgid() is very similar to
13418 getpwuid() except that it shall return group information based on the group number. Once
13419 again, if the group is not found, the program prints the numeric value of the group for the entry.

13420 The final call to printf() prints the size of the file.

13421 #include <stdio.h>
13422 #include <sys/types.h>
13423 #include <pwd.h>
13424 #include <grp.h>

13425 char *strperm (mode_t);
13426 ...
13427 struct stat statbuf;
13428 struct passwd *pwd;
13429 struct group *grp;
13430 ...
13431 printf("%10.10s", strperm (statbuf.st_mode));

904 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13432 printf("%4d", statbuf.st_nlink);

13433 if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
13434 printf(" % −8.8s", pwd->pw_name);
13435 else
13436 printf(" % −8ld", (long) statbuf.st_uid);

13437 if ((grp = getgrgid(statbuf.st_gid)) != NULL)
13438 printf(" % −8.8s", grp->gr_name);
13439 else
13440 printf(" % −8ld", (long) statbuf.st_gid);

13441 printf("%9jd", (intmax_t) statbuf.st_size);
13442 ...

13443 Printing a Localized Date String

13444 The following example gets a localized date string. The nl_langinfo () function shall return the
13445 localized date string, which specifies the order and layout of the date. The strftime() function
13446 takes this information and, using the tm structure for values, places the date and time
13447 information into datestring . The printf() function then outputs datestring and the name of the
13448 entry.

13449 #include <stdio.h>
13450 #include <time.h>
13451 #include <langinfo.h>
13452 ...
13453 struct dirent *dp;
13454 struct tm *tm;
13455 char datestring[256];
13456 ...
13457 strftime(datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);

13458 printf(" %s %s\n", datestring, dp->d_name);
13459 ...

13460 Printing Error Information

13461 The following example uses fprintf () to write error information to stadard error.

13462 In the first group of calls, the program tries to open the password lock file named LOCKFILE. If
13463 the file already exists, this is an error, as indicated by the O_EXCL flag on the open() function. If
13464 the call fails, the program assumes that someone else is updating the password file, and the
13465 program exits.

13466 The next group of calls saves a new password file as the current password file by creating a link
13467 between LOCKFILE and the new password file PASSWDFILE.

13468 #include <sys/types.h>
13469 #include <sys/stat.h>
13470 #include <fcntl.h>
13471 #include <stdio.h>
13472 #include <stdlib.h>
13473 #include <unistd.h>
13474 #include <string.h>
13475 #include <errno.h>

System Interfaces, Issue 6 905

fprintf() System Interfaces

13476 #define LOCKFILE "/etc/ptmp"
13477 #define PASSWDFILE "/etc/passwd"
13478 ...
13479 int pfd;
13480 ...
13481 if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,
13482 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
13483 {
13484 fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
13485 exit(1);
13486 }
13487 ...
13488 if (link(LOCKFILE,PASSWDFILE) == -1) {
13489 fprintf(stderr, "Link error: %s\n", strerror(errno));
13490 exit(1);
13491 }
13492 ...

13493 Printing Usage Information

13494 The following example checks to make sure the program has the necessary arguments, and uses
13495 fprintf () to print usage information if the expected number of arguments is not present.

13496 #include <stdio.h>
13497 #include <stdlib.h>
13498 ...
13499 char *Options = "hdbtl";
13500 ...
13501 if (argc < 2) {
13502 fprintf(stderr, "Usage: %s -%s <file\n", argv[0], Options); exit(1);
13503 }
13504 ...

13505 Formatting a Decimal String

13506 The following example prints a key and data pair on stdout . Note use of the ’*’ (asterisk) in the
13507 format string; this ensures the correct number of decimal places for the element based on the
13508 number of elements requested.

13509 #include <stdio.h>
13510 ...
13511 long i;
13512 char *keystr;
13513 int elementlen, len;
13514 ...
13515 while (len < elementlen) {
13516 ...
13517 printf("%s Element%0*ld\n", keystr, elementlen, i);
13518 ...
13519 }

906 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13520 Creating a File Name

13521 The following example creates a file name using information from a previous getpwnam()
13522 function that returned the HOME directory of the user.

13523 #include <stdio.h>
13524 #include <sys/types.h>
13525 #include <unistd.h>
13526 ...
13527 char filename[PATH_MAX+1];
13528 struct passwd *pw;
13529 ...
13530 sprintf(filename, "%s/%d.out", pw->pw_dir, getpid());
13531 ...

13532 Reporting an Event

13533 The following example loops until an event has timed out. The pause() function waits forever
13534 unless it receives a signal. The fprintf () statement should never occur due to the possible return
13535 values of pause().

13536 #include <stdio.h>
13537 #include <unistd.h>
13538 #include <string.h>
13539 #include <errno.h>
13540 ...
13541 while (!event_complete) {
13542 ...
13543 if (pause() != -1 || errno != EINTR)
13544 fprintf(stderr, "pause: unknown error: %s\n", strerror(errno));
13545 }
13546 ...

13547 Printing Monetary Information

13548 The following example uses strfmon() to convert a number and store it as a formatted monetary
13549 string named convbuf . If the first number is printed, the program prints the format and the
13550 description; otherwise, it just prints the number.

13551 #include <monetary.h>
13552 #include <stdio.h>
13553 ...
13554 struct tblfmt {
13555 char *format;
13556 char *description;
13557 };

13558 struct tblfmt table[] = {
13559 { "%n", "default formatting" },
13560 { "%11n", "right align within an 11 character field" },
13561 { "%#5n", "aligned columns for values up to 99,999" },
13562 { "%=*#5n", "specify a fill character" },
13563 { "%=0#5n", "fill characters do not use grouping" },
13564 { "%ˆ#5n", "disable the grouping separator" },
13565 { "%ˆ#5.0n", "round off to whole units" },

System Interfaces, Issue 6 907

fprintf() System Interfaces

13566 { "%ˆ#5.4n", "increase the precision" },
13567 { "%(#5n", "use an alternative pos/neg style" },
13568 { "%!(#5n", "disable the currency symbol" },
13569 };
13570 ...
13571 float input[3];
13572 int i, j;
13573 char convbuf[100];
13574 ...
13575 strfmon(convbuf, sizeof(convbuf), table[i].format, input[j]);

13576 if (j == 0) {
13577 printf("%s%s%s\n", table[i].format,
13578 convbuf, table[i].description);
13579 }
13580 else {
13581 printf("%s\n", convbuf);
13582 }
13583 ...

13584 APPLICATION USAGE
13585 If the application calling fprintf () has any objects of type wint_t or wchar_t, it must also include
13586 the <wchar.h> header to have these objects defined.

13587 RATIONALE
13588 None.

13589 FUTURE DIRECTIONS
13590 None.

13591 SEE ALSO
13592 fputc(), fscanf(), setlocale (), wcrtomb(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
13593 <stdio.h>, <wchar.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

13594 CHANGE HISTORY
13595 First released in Issue 1. Derived from Issue 1 of the SVID. |

13596 Issue 4
13597 In the DESCRIPTION, references to langinfo data are marked as extensions. The reference to
13598 langinfo data is removed from the description of the radix character.

13599 The ’’’ (single-quote) flag is added to the list of flag characters and marked as an extension.
13600 This flag directs that numeric conversion is formatted with the decimal grouping character.

13601 The detailed description of these functions is provided here instead of under printf().

13602 The information in the APPLICATION USAGE section is moved to the DESCRIPTION. A new
13603 APPLICATION USAGE section is added.

13604 The [EILSEQ] error is added to the ERRORS section and all errors are marked as extensions.

13605 The following changes are incorporated for alignment with the ISO C standard:

13606 • The type of the format arguments is changed from char* to const char*.

13607 • The DESCRIPTION is reworded or presented differently in a number of places for alignment
13608 with the ISO C standard, and also for clarity. There are no functional changes, except as
13609 noted elsewhere in this CHANGE HISTORY section.

908 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fprintf()

13610 The following changes are incorporated for alignment with the MSE working draft:

13611 • The C and S conversion characters are added, indicating respectively a wide character of type
13612 wchar_t and pointer to a wide-character string of type wchar_t* in the argument list.

13613 Issue 4, Version 2
13614 The [ENOMEM] error is added to the ERRORS section as an optional error.

13615 Issue 5
13616 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier can
13617 now be used with c and s conversion characters.

13618 The snprintf() function is new in Issue 5.

13619 Issue 6
13620 Extensions beyond the ISO C standard are now marked.

13621 The description of snprintf() has been aligned with The Open Group Base Resolution bwg98-006.
13622 This aligns snprintf() with historic BSD behavior.

13623 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

13624 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

13625 • The prototypes for fprintf (), printf(), snprintf(), and sprintf() are updated, and the XSI |
13626 shading is removed from snprintf(). |

13627 • The DESCRIPTION is updated. |
|

System Interfaces, Issue 6 909

fputc() System Interfaces

13628 NAME
13629 fputc — put a byte on a stream

13630 SYNOPSIS
13631 #include <stdio.h>

13632 int fputc(int c, FILE * stream);

13633 DESCRIPTION
13634 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13635 conflict between the requirements described here and the ISO C standard is unintentional. This
13636 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13637 The fputc() function shall write the byte specified by c (converted to an unsigned char) to the
13638 output stream pointed to by stream, at the position indicated by the associated file-position
13639 indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
13640 support positioning requests, or if the stream was opened with append mode, the byte shall be
13641 appended to the output stream.

13642 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
13643 execution of fputc() and the next successful completion of a call to fflush() or fclose() on the same
13644 stream or a call to exit() or abort().

13645 RETURN VALUE
13646 Upon successful completion, fputc() shall return the value it has written. Otherwise, it shall
13647 CX return EOF, the error indicator for the stream shall be set, and errno shall be set to indicate the
13648 error.

13649 ERRORS
13650 The fputc() function shall fail if either the stream is unbuffered or the stream’s buffer needs to be
13651 flushed, and:

13652 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
13653 process would be delayed in the write operation.

13654 CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for |
13655 writing.

13656 CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size. |

13657 XSI [EFBIG] An attempt was made to write to a file that exceeds the process’ file size limit. |

13658 CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the |
13659 offset maximum.

13660 CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data |
13661 was transferred.

13662 CX [EIO] A physical I/O error has occurred, or the process is a member of a |
13663 background process group attempting to write to its controlling terminal,
13664 TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
13665 process group of the process is orphaned. This error may also be returned
13666 under implementation-defined conditions. |

13667 CX [ENOSPC] There was no free space remaining on the device containing the file. |

13668 CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by |
13669 any process. A SIGPIPE signal shall also be sent to the thread.

13670 The fputc() function may fail if:

910 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fputc()

13671 CX [ENOMEM] Insufficient storage space is available. |

13672 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
13673 capabilities of the device.

13674 EXAMPLES
13675 None.

13676 APPLICATION USAGE
13677 None.

13678 RATIONALE
13679 None.

13680 FUTURE DIRECTIONS
13681 None.

13682 SEE ALSO
13683 ferror(), fopen(), getrlimit(), putc(), puts(), setbuf(), ulimit(), the Base Definitions volume of |
13684 IEEE Std. 1003.1-200x, <stdio.h> |

13685 CHANGE HISTORY
13686 First released in Issue 1. Derived from Issue 1 of the SVID. |

13687 Issue 4
13688 In the DESCRIPTION, the text is changed to make it clear that the function writes byte values,
13689 rather than (possibly multi-byte) character values.

13690 In the ERRORS section, text is added to indicate that error returns are only generated when
13691 either the stream is unbuffered, or if the stream buffer needs to be flushed.

13692 Also in the ERRORS section, in previous issues generation of the [EIO] error depended on
13693 whether or not an implementation supported Job Control. This functionality is now defined as
13694 mandatory.

13695 The [ENXIO] error is moved to the list of optional errors, and all the optional errors are marked
13696 as extensions.

13697 The description of [EINTR] is amended.

13698 The [EFBIG] error is marked to show extensions.

13699 Issue 4, Version 2
13700 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
13701 I/O error occurs.

13702 Issue 5
13703 Large File Summit extensions are added.

13704 Issue 6
13705 Extensions beyond the ISO C standard are now marked.

13706 The following new requirements on POSIX implementations derive from alignment with the
13707 Single UNIX Specification:

13708 • The [EIO] and [EFBIG] mandatory error conditions are added.

13709 • The [ENOMEM] and [ENXIO] optional error conditions are added.

System Interfaces, Issue 6 911

fputs() System Interfaces

13710 NAME
13711 fputs — put a string on a stream

13712 SYNOPSIS
13713 #include <stdio.h>

13714 int fputs(const char *restrict s, FILE *restrict stream); |

13715 DESCRIPTION |
13716 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13717 conflict between the requirements described here and the ISO C standard is unintentional. This
13718 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13719 The fputs() function shall write the null-terminated string pointed to by s to the stream pointed
13720 to by stream. The terminating null byte shall not be written.

13721 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
13722 execution of fputs() and the next successful completion of a call to fflush() or fclose() on the same
13723 stream or a call to exit() or abort().

13724 RETURN VALUE
13725 Upon successful completion, fputs() shall return a non-negative number. Otherwise, it shall
13726 CX return EOF, set an error indicator for the stream, and set errno to indicate the error.

13727 ERRORS
13728 Refer to fputc().

13729 EXAMPLES

13730 Printing to Standard Output

13731 The following example gets the current time, converts it to a string using localtime () and
13732 asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
13733 an event for which it is waiting.

13734 #include <time.h>
13735 #include <stdio.h>
13736 ...
13737 time_t now;
13738 int minutes_to_event;
13739 ...
13740 time(&now);
13741 printf("The time is ");
13742 fputs(asctime(localtime(&now)), stdout);
13743 printf("There are still %d minutes to the event.\n",
13744 minutes_to_event);
13745 ...

13746 APPLICATION USAGE
13747 The puts() function appends a <newline> character while fputs() does not.

13748 RATIONALE
13749 None.

13750 FUTURE DIRECTIONS
13751 None.

912 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fputs()

13752 SEE ALSO
13753 fopen(), putc(), puts(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

13754 CHANGE HISTORY
13755 First released in Issue 1. Derived from Issue 1 of the SVID. |

13756 Issue 4
13757 In the DESCRIPTION, the words ‘‘null character’’ are replaced by ‘‘null byte’’, to make it clear
13758 that this function deals solely in byte values.

13759 The following change is incorporated for alignment with the ISO C standard:

13760 • The type of argument s is changed from char* to const char*.

13761 Issue 6
13762 Extensions beyond the ISO C standard are now marked. |

13763 The fputs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 913

fputwc() System Interfaces

13764 NAME
13765 fputwc — put a wide-character code on a stream

13766 SYNOPSIS
13767 #include <stdio.h>
13768 #include <wchar.h>

13769 wint_t fputwc(wchar_t wc, FILE * stream);

13770 DESCRIPTION
13771 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13772 conflict between the requirements described here and the ISO C standard is unintentional. This
13773 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13774 The fputwc() function shall write the character corresponding to the wide-character code wc to
13775 the output stream pointed to by stream, at the position indicated by the associated file-position
13776 indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
13777 support positioning requests, or if the stream was opened with append mode, the character is
13778 appended to the output stream. If an error occurs while writing the character, the shift state of |
13779 the output file is left in an undefined state.

13780 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
13781 execution of fputwc() and the next successful completion of a call to fflush() or fclose() on the
13782 same stream or a call to exit() or abort().

13783 RETURN VALUE
13784 Upon successful completion, fputwc() shall return wc. Otherwise, it shall return WEOF, the error
13785 CX indicator for the stream shall be set set, and errno shall be set to indicate the error.

13786 ERRORS
13787 The fputwc() function shall fail if either the stream is unbuffered or data in the stream’s buffer
13788 needs to be written, and:

13789 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor underlying stream and the |
13790 process would be delayed in the write operation.

13791 CX [EBADF] The file descriptor underlying stream is not a valid file descriptor open for |
13792 writing.

13793 CX [EFBIG] An attempt was made to write to a file that exceeds the maximum file size or |
13794 the process’ file size limit.

13795 CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the |
13796 offset maximum associated with the corresponding stream.

13797 CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data |
13798 was transferred.

13799 CX [EIO] A physical I/O error has occurred, or the process is a member of a |
13800 background process group attempting to write to its controlling terminal,
13801 TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU, and the
13802 process group of the process is orphaned. This error may also be returned
13803 under implementation-defined conditions. |

13804 CX [ENOSPC] There was no free space remaining on the device containing the file. |

13805 CX [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by |
13806 any process. A SIGPIPE signal shall also be sent to the thread.

914 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fputwc()

13807 The fputwc() function may fail if:

13808 CX [ENOMEM] Insufficient storage space is available. |

13809 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
13810 capabilities of the device.

13811 CX [EILSEQ] The wide-character code wc does not correspond to a valid character. |

13812 EXAMPLES
13813 None.

13814 APPLICATION USAGE
13815 None.

13816 RATIONALE
13817 None.

13818 FUTURE DIRECTIONS
13819 None.

13820 SEE ALSO
13821 ferror(), fopen(), setbuf(), ulimit(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
13822 <stdio.h>, <wchar.h>

CHANGE13823 HISTORY
13824 First released in Issue 4. Derived from the MSE working draft. |

13825 Issue 4, Version 2
13826 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
13827 I/O error occurs.

13828 Issue 5
13829 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
13830 is changed from wint_t to wchar_t.

13831 The Optional Header (OH) marking is removed from <stdio.h>.

13832 Large File Summit extensions are added.

13833 Issue 6
13834 Extensions beyond the ISO C standard are now marked.

13835 The following new requirements on POSIX implementations derive from alignment with the
13836 Single UNIX Specification:

13837 • The [EFBIG] and [EIO] mandatory error conditions are added.

System Interfaces, Issue 6 915

fputws() System Interfaces

13838 NAME
13839 fputws — put a wide-character string on a stream

13840 SYNOPSIS
13841 #include <stdio.h>
13842 #include <wchar.h>

13843 int fputws(const wchar_t *restrict ws, FILE *restrict stream); |

13844 DESCRIPTION |
13845 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13846 conflict between the requirements described here and the ISO C standard is unintentional. This
13847 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13848 The fputws() function shall write a character string corresponding to the (null-terminated)
13849 wide-character string pointed to by ws to the stream pointed to by stream. No character
13850 corresponding to the terminating null wide-character code shall be written.

13851 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
13852 execution of fputws() and the next successful completion of a call to fflush() or fclose() on the
13853 same stream or a call to exit() or abort().

13854 RETURN VALUE
13855 Upon successful completion, fputws() shall return a non-negative number. Otherwise, it shall
13856 CX return −1, set an error indicator for the stream, and set errno to indicate the error.

13857 ERRORS
13858 Refer to fputwc().

13859 EXAMPLES
13860 None.

13861 APPLICATION USAGE
13862 The fputws() function does not append a <newline> character.

13863 RATIONALE
13864 None.

13865 FUTURE DIRECTIONS
13866 None.

13867 SEE ALSO
13868 fopen(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h> |

13869 CHANGE HISTORY
13870 First released in Issue 4. Derived from the MSE working draft. |

13871 Issue 5
13872 The Optional Header (OH) marking is removed from <stdio.h>.

13873 Issue 6
13874 Extensions beyond the ISO C standard are now marked. |

13875 The fputws() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

916 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fread()

13876 NAME
13877 fread — binary input

13878 SYNOPSIS
13879 #include <stdio.h>

13880 size_t fread(void *restrict ptr , size_t size , size_t nitems , |
13881 FILE *restrict stream); |

13882 DESCRIPTION |
13883 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13884 conflict between the requirements described here and the ISO C standard is unintentional. This
13885 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13886 The fread() function shall read into the array pointed to by ptr up to nitems members whose size
13887 is specified by size in bytes, from the stream pointed to by stream. For each object, size calls are |
13888 made to the fgetc() function and the results stored, in the order read, in an array of unsigned |
13889 char exactly overlaying the object. The file position indicator for the stream (if defined) is |
13890 advanced by the number of bytes successfully read. If an error occurs, the resulting value of the |
13891 file position indicator for the stream is indeterminate. If a partial member is read, its value is |
13892 indeterminate. |

13893 CX The fread() function may mark the st_atime field of the file associated with stream for update. The
13894 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
13895 fgetwc(), fgetws(), fread(), fscanf(), getc(), getchar(), gets(), or scanf() using stream that returns
13896 data not supplied by a prior call to ungetc() or ungetwc().

13897 RETURN VALUE
13898 Upon successful completion, fread() shall return the number of members successfully read
13899 which is less than nitems only if a read error or end-of-file is encountered. If size or nitems is 0,
13900 fread() shall return 0 and the contents of the array and the state of the stream remain unchanged.
13901 CX Otherwise, if a read error occurs, the error indicator for the stream shall be set, and errno shall be
13902 set to indicate the error.

13903 ERRORS
13904 Refer to fgetc().

13905 EXAMPLES

13906 Reading from a Stream

13907 The following example reads a single element from the fp stream into the array pointed to by buf.

13908 #include <stdio.h>
13909 ...
13910 size_t bytes_read;
13911 char buf[100];
13912 FILE *fp;
13913 ...
13914 bytes_read = fread(buf, sizeof(buf), 1, fp);
13915 ...

13916 APPLICATION USAGE
13917 The ferror() or feof() functions must be used to distinguish between an error condition and an
13918 end-of-file condition.

13919 Because of possible differences in member length and byte ordering, files written using fwrite()
13920 are application-dependent, and possibly cannot be read using fread() by a different application

System Interfaces, Issue 6 917

fread() System Interfaces

13921 or by the same application on a different processor.

13922 RATIONALE
13923 None.

13924 FUTURE DIRECTIONS
13925 None.

13926 SEE ALSO
13927 feof(), ferror(), fgetc(), fopen(), getc(), gets(), scanf(), the Base Definitions volume of |
13928 IEEE Std. 1003.1-200x, <stdio.h> |

13929 CHANGE HISTORY
13930 First released in Issue 1. Derived from Issue 1 of the SVID. |

13931 Issue 4
13932 The list of functions that may cause the st_atime field to be updated is revised.

13933 The following change is incorporated for alignment with the ISO C standard:

13934 • In the RETURN VALUE section, the behavior if size or nitems is 0 is defined.

13935 Issue 6
13936 Extensions beyond the ISO C standard are now marked. |

13937 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

13938 • The fread() prototype is updated. |

13939 • The DESCRIPTION is updated to describe how the bytes from a call to fgetc() are stored. |
|

918 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces free()

13940 NAME
13941 free — free allocated memory

13942 SYNOPSIS
13943 #include <stdlib.h>

13944 void free(void * ptr);

13945 DESCRIPTION
13946 CX The functionality described on this reference page is aligned with the ISO C standard. Any
13947 conflict between the requirements described here and the ISO C standard is unintentional. This
13948 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

13949 The free() function shall cause the space pointed to by ptr to be deallocated; that is, made
13950 available for further allocation. If ptr is a null pointer, no action shall occur. Otherwise, if the
13951 argument does not match a pointer earlier returned by the calloc (), malloc (), posix_memalign(), or |
13952 realloc () function, or if the space is deallocated by a call to free() or realloc (), the behavior is
13953 undefined.

13954 Any use of a pointer that refers to freed space results in undefined behavior. |

13955 RETURN VALUE
13956 The free() function shall return no value.

13957 ERRORS
13958 No errors are defined.

13959 EXAMPLES
13960 None.

13961 APPLICATION USAGE
13962 There is now no requirement for the implementation to support the inclusion of <malloc.h>.

13963 RATIONALE
13964 None.

13965 FUTURE DIRECTIONS
13966 None.

13967 SEE ALSO
13968 calloc (), malloc (), realloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

13969 CHANGE HISTORY
13970 First released in Issue 1. Derived from Issue 1 of the SVID. |

13971 Issue 4
13972 The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
13973 supported on XSI-conformant systems.

13974 The following change is incorporated for alignment with the ISO C standard:

13975 • The DESCRIPTION now states that the behavior is undefined if any use is made of a pointer
13976 that refers to freed space. This was implied but not stated explicitly in Issue 3.

13977 Issue 4, Version 2
13978 The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that the free()
13979 function can also be used to free memory allocated by valloc ().

System Interfaces, Issue 6 919

free() System Interfaces

13980 Issue 6
13981 Reference to the valloc () function is removed.

920 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces freeaddrinfo()

13982 NAME
13983 freeaddrinfo, getaddrinfo — get address information

13984 SYNOPSIS
13985 #include <sys/socket.h>
13986 #include <netdb.h>

13987 void freeaddrinfo(struct addrinfo * ai);
13988 int getaddrinfo(const char *restrict nodename, const char *restrict servname ,|
13989 const struct addrinfo *restrict hints , struct addrinfo **restrict res);|

13990 DESCRIPTION |
13991 The freeaddrinfo () function frees one or more addrinfo structures returned by getaddrinfo (), along
13992 with any additional storage associated with those structures. If the ai_next field of the structure
13993 is not null, the entire list of structures is freed. The freeaddrinfo () function shall support the
13994 freeing of arbitrary sublists of an addrinfo list originally returned by getaddrinfo ().

13995 The getaddrinfo () function shall translate the name of a service location (for example, a host
13996 name) and/or a service name and shall return a set of socket addresses and associated
13997 information to be used in creating a socket with which to address the specified service.

13998 The freeaddrinfo () and getaddrinfo () functions shall be thread-safe.

13999 The nodename and servname arguments are either null pointers or pointers to null-terminated
14000 strings. One or both of these two arguments shall be supplied by the application as a non-null
14001 pointer.

14002 The format of a valid name depends on the protocol family or families. If a specific family is not
14003 given and the name could be interpreted as valid within multiple supported families, the
14004 implementation shall attempt to resolve the name in all supported families and, in absence of |
14005 errors, one or more results shall be returned. |

14006 If the nodename argument is not null, it can be a descriptive name or can be an address string. If
14007 IP6 the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names
14008 include host names. If the specified address family is AF_INET or AF_UNSPEC, address strings
14009 using Internet standard dot notation as specified in inet_addr() are valid.

14010 IP6 If the specified address family is AF_INET6 or AF_UNSPEC, standard IPv6 text forms described
14011 in inet_ntop() are valid. |

14012 If nodename is not null, the requested service location is named by nodename; otherwise, the
14013 requested service location is local to the caller.

14014 If servname is null, the call shall return network-level addresses for the specified nodename. If
14015 servname is not null, it is a null-terminated character string identifying the requested service. This
14016 can be either a descriptive name or a numeric representation suitable for use with the address
14017 IP6 family or families. If the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, the
14018 service can be specified as a string specifying a decimal port number.

14019 If the hints argument is not null, it refers to a structure containing input values that may direct
14020 the operation by providing options and by limiting the returned information to a specific socket
14021 type, address family and/or protocol. In this hints structure every member other than ai_flags ,
14022 ai_family , ai_socktype , and ai_protocol shall be set to zero or a null pointer. A value of
14023 AF_UNSPEC for ai_family means that the caller shall accept any protocol family. A value of zero
14024 for ai_socktype means that the caller shall accept any socket type. A value of zero for ai_protocol
14025 means that the caller shall accept any protocol. If hints is a null pointer, the behavior shall be as if
14026 it referred to a structure containing the value zero for the ai_flags , ai_socktype , and ai_protocol
14027 fields, and AF_UNSPEC for the ai_family field.

System Interfaces, Issue 6 921

freeaddrinfo() System Interfaces

14028 Notes:

14029 1. If the caller handles only TCP and not UDP, for example, then the ai_protocol
14030 member of the hints structure should be set to IPPROTO_TCP when
14031 getaddrinfo () is called.

14032 2. If the caller handles only IPv4 and not IPv6, then the ai_family member of the
14033 hints structure should be set to PF_INET when getaddrinfo () is called.

14034 The ai_flags field to which the hints parameter points shall be set to zero or be the bitwise-
14035 inclusive OR of one or more of the values AI_PASSIVE, AI_CANONNAME, and
14036 AI_NUMERICHOST.

14037 If the AI_PASSIVE flag is specified, the returned address information shall be suitable for use in
14038 binding a socket for accepting incoming connections for the specified service. In this case, if the
14039 nodename argument is null, then the IP address portion of the socket address structure shall be
14040 set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address. If the
14041 AI_PASSIVE flag is not specified, the returned address information shall be suitable for a call to
14042 connect() (for a connection-mode protocol) or for a call to connect(), sendto(), or sendmsg() (for a
14043 connectionless protocol). In this case, if the nodename argument is null, then the IP address
14044 portion of the socket address structure shall be set to the loopback address.

14045 If the AI_CANONNAME flag is specified and the nodename argument is not null, the function
14046 attempts to determine the canonical name corresponding to nodename (for example, if nodename
14047 is an alias or shorthand notation for a complete name).

14048 If the AI_NUMERICHOST flag is specified, then a non-null nodename string supplied shall be a
14049 numeric host address string. Otherwise, an [EAI_NONAME] error is returned. This flag prevents
14050 any type of name resolution service (for example, the DNS) from being invoked.

14051 If the AI_NUMERICSERV flag is specified, then a non-null servname string supplied shall be a
14052 numeric port string. Otherwise, an [EAI_NONAME] error is returned. This flag prevents any
14053 type of name resolution service (for example, NIS+) from being invoked.

14054 The ai_socktype field to which argument hints points specifies the socket type for the service, as
14055 defined in socket(). If a specific socket type is not given (for example, a value of zero) and the
14056 service name could be interpreted as valid with multiple supported socket types, the
14057 implementation shall attempt to resolve the service name for all supported socket types and, in
14058 the absence of errors, all possible results shall be returned. A non-zero socket type value shall |
14059 limit the returned information to values with the specified socket type. |

14060 If the ai_family field to which hints points has the value AF_UNSPEC, addresses are returned for
14061 use with any protocol family that can be used with the specified nodename and/or servname.
14062 Otherwise, addresses are returned for use only with the specified protocol family. If ai_family is
14063 not AF_UNSPEC and ai_protocol is not zero, then addresses are returned for use only with the
14064 specified protocol family and protocol; the value of ai_protocol is interpreted as in a call to the
14065 socket() function with the corresponding values of ai_family and ai_protocol .

14066 RETURN VALUE
14067 A zero return value for getaddrinfo () indicates successful completion; a non-zero return value
14068 indicates failure. The possible values for the failures are listed in the ERRORS section.

14069 Upon successful return of getaddrinfo (), the location to which res points refers to a linked list of
14070 addrinfo structures, each of which specifies a socket address and information for use in creating
14071 a socket with which to use that socket address. The list shall include at least one addrinfo
14072 structure. The ai_next field of each structure contains a pointer to the next structure on the list, or
14073 a null pointer if it is the last structure on the list. Each structure on the list includes values for use
14074 with a call to the socket() function, and a socket address for use with the connect() function or, if

922 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces freeaddrinfo()

14075 the AI_PASSIVE flag was specified, for use with the bind() function. The fields ai_family ,
14076 ai_socktype , and ai_protocol are usable as the arguments to the socket() function to create a socket
14077 suitable for use with the returned address. The fields ai_addr and ai_addrlen are usable as the
14078 arguments to the connect() or bind() functions with such a socket, according to the AI_PASSIVE
14079 flag.

14080 If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of
14081 the first returned addrinfo structure points to a null-terminated string containing the canonical
14082 name corresponding to the input nodename; if the canonical name is not available, then
14083 ai_canonname refers to the nodename argument or a string with the same contents. The contents of
14084 the ai_flags field of the returned structures are undefined.

14085 All fields in socket address structures returned by getaddrinfo () that are not filled in through an
14086 explicit argument (for example, sin6_flowinfo and sin_zero) shall be set to zero.

14087 Note: This makes it easier to compare socket address structures.

14088 ERRORS
14089 The getaddrinfo () function shall fail and return the corresponding value if: |

14090 [EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

14091 [EAI_BADFLAGS]
14092 The flags parameter had an invalid value.

14093 [EAI_FAIL] A non-recoverable error occurred when attempting to resolve the name.

14094 [EAI_FAMILY] The address family was not recognized.

14095 [EAI_MEMORY] There was a memory allocation failure when trying to allocate storage for the
14096 return value.

14097 [EAI_NONAME] The name does not resolve for the supplied parameters.

14098 Neither nodename nor servname were supplied. At least one of these shall be
14099 supplied.

14100 [EAI_SERVICE] The service passed was not recognized for the specified socket type.

14101 [EAI_SOCKTYPE]
14102 The intended socket type was not recognized.

14103 [EAI_SYSTEM] A system error occurred; the error code can be found in errno.

14104 EXAMPLES
14105 None.

14106 APPLICATION USAGE
14107 None.

14108 RATIONALE
14109 None.

14110 FUTURE DIRECTIONS
14111 None.

14112 SEE ALSO
14113 connect(), gethostbyname(), getipnodebyname(), getnameinfo(), getservbyname(), socket(), the Base |
14114 Definitions volume of IEEE Std. 1003.1-200x, <netdb.h>, <sys/socket.h> |

System Interfaces, Issue 6 923

freeaddrinfo() System Interfaces

14115 CHANGE HISTORY
14116 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

14117 The restrict keyword is added to the getaddrinfo () prototype for alignment with the |
14118 ISO/IEC 9899: 1999 standard. |

924 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces freehostent()

14119 NAME
14120 freehostent — network host database functions

14121 SYNOPSIS
14122 #include <netdb.h>

14123 void freehostent(struct hostent * ptr);

14124 DESCRIPTION
14125 Refer to endhostent().

System Interfaces, Issue 6 925

freopen() System Interfaces

14126 NAME
14127 freopen — open a stream |

14128 SYNOPSIS
14129 #include <stdio.h>

14130 FILE *freopen(const char *restrict filename , const char *restrict mode, |
14131 FILE *restrict stream); |

14132 DESCRIPTION |
14133 CX The functionality described on this reference page is aligned with the ISO C standard. Any
14134 conflict between the requirements described here and the ISO C standard is unintentional. This
14135 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

14136 The freopen() function shall first attempt to flush the stream and close any file descriptor
14137 associated with stream. Failure to flush or close the file successfully shall be ignored. The error
14138 and end-of-file indicators for the stream shall be cleared.

14139 The freopen() function shall open the file whose path name is the string pointed to by filename
14140 and associate the stream pointed to by stream with it. The mode argument shall be used just as in
14141 fopen().

14142 The original stream shall be closed regardless of whether the subsequent open succeeds.

14143 If filename is a null pointer, the freopen() function shall attempt to change the mode of the stream |
14144 to that specified by mode, as if the name of the file currently associated with the stream had been |
14145 used. It is implementation-defined which changes of mode are permitted (if any), and under |
14146 what circumstances. |

14147 XSI After a successful call to the freopen() function, the orientation of the stream shall be cleared, the |
14148 encoding rule shall be cleared, and the associated mbstate_t object shall be set to describe an
14149 initial conversion state.

14150 CX The largest value that can be represented correctly in an object of type off_t shall be established |
14151 as the offset maximum in the open file description.

14152 RETURN VALUE
14153 Upon successful completion, freopen() shall return the value of stream. Otherwise, a null pointer
14154 CX shall be returned, and errno shall be set to indicate the error.

14155 ERRORS
14156 The freopen() function shall fail if:

14157 CX [EACCES] Search permission is denied on a component of the path prefix, or the file |
14158 exists and the permissions specified by mode are denied, or the file does not
14159 exist and write permission is denied for the parent directory of the file to be
14160 created.

14161 CX [EINTR] A signal was caught during freopen(). |

14162 CX [EISDIR] The named file is a directory and mode requires write access. |

14163 CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
14164 argument. |

14165 CX [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

14166 CX [ENAMETOOLONG] |
14167 The length of the filename argument exceeds {PATH_MAX} or a path name |
14168 component is longer than {NAME_MAX}. |

926 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces freopen()

14169 CX [ENFILE] The maximum allowable number of files is currently open in the system. |

14170 CX [ENOENT] A component of filename does not name an existing file or filename is an empty |
14171 string.

14172 CX [ENOSPC] The directory or file system that would contain the new file cannot be |
14173 expanded, the file does not exist, and it was to be created.

14174 CX [ENOTDIR] A component of the path prefix is not a directory. |

14175 CX [ENXIO] The named file is a character special or block special file, and the device |
14176 associated with this special file does not exist.

14177 CX [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented |
14178 correctly in an object of type off_t.

14179 CX [EROFS] The named file resides on a read-only file system and mode requires write |
14180 access.

14181 The freopen() function may fail if:

14182 CX [EINVAL] The value of the mode argument is not valid. |

14183 CX [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
14184 resolution of the path argument. |

14185 CX [ENAMETOOLONG] |
14186 Path name resolution of a symbolic link produced an intermediate result
14187 whose length exceeds {PATH_MAX}.

14188 CX [ENOMEM] Insufficient storage space is available. |

14189 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
14190 capabilities of the device.

14191 CX [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and mode |
14192 requires write access.

14193 EXAMPLES

14194 Directing Standard Output to a File

14195 The following example logs all standard output to the /tmp/logfile file.

14196 #include <stdio.h>
14197 ...
14198 FILE *fp;
14199 ...
14200 fp = freopen ("/tmp/logfile", "a+", stdout);
14201 ...

14202 APPLICATION USAGE
14203 The freopen() function is typically used to attach the preopened streams associated with stdin ,
14204 stdout , and stderr to other files.

14205 RATIONALE
14206 None.

System Interfaces, Issue 6 927

freopen() System Interfaces

14207 FUTURE DIRECTIONS
14208 None.

14209 SEE ALSO
14210 fclose(), fopen(), fdopen(), mbsinit(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
14211 <stdio.h>

CHANGE14212 HISTORY
14213 First released in Issue 1. Derived from Issue 1 of the SVID. |

14214 Issue 4
14215 In the DESCRIPTION, the word ‘‘name’’ is replaced by ‘‘path name’’, to make it clear that the
14216 function is not limited to accepting file names only.

14217 In the ERRORS section:

14218 • The description of the [EMFILE] error has been changed to refer to {OPEN_MAX} file
14219 descriptors rather than {FOPEN_MAX} file descriptors, directories, and message catalogs.

14220 • The errors [EINVAL], [ENOMEM], and [ETXTBSY] are marked as extensions.

14221 • The [ENXIO] error is added in the ‘‘may fail’’ section and marked as an extension.

14222 The following change is incorporated for alignment with the ISO C standard:

14223 • The type of arguments filename and mode are changed from char* to const char*.

14224 The following change is incorporated for alignment with the FIPS requirements:

14225 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
14226 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
14227 an extension.

14228 Issue 4, Version 2
14229 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

14230 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
14231 name resolution.

14232 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
14233 intermediate result of path name resolution of a symbolic link.

14234 Issue 5
14235 The DESCRIPTION is updated to indicate that the orientation of the stream is cleared and the
14236 conversion state of the stream is set to an initial conversion state by a successful call to the
14237 freopen() function.

14238 Large File Summit extensions are added.

14239 Issue 6
14240 Extensions beyond the ISO C standard are now marked.

14241 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

14242 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
14243 This is since behavior may vary from one file system to another.

14244 The following new requirements on POSIX implementations derive from alignment with the
14245 Single UNIX Specification:

14246 • In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
14247 description. This change is to support large files.

928 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces freopen()

14248 • In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
14249 large files.

14250 • The [ELOOP] mandatory error condition is added.

14251 • A second [ENAMETOOLONG] is added as an optional error condition.

14252 • The [EINVAL], [ENOMEM], [ENXIO], and [ETXTBSY] optional error conditions are added.

14253 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

14254 • The freopen() prototype is updated. |

14255 • The DESCRIPTION is updated. |

14256 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
14257 [ELOOP] error condition is added. |

System Interfaces, Issue 6 929

frexp() System Interfaces

14258 NAME
14259 frexp, frexpf, frexpl — extract mantissa and exponent from a double precision number |

14260 SYNOPSIS
14261 #include <math.h>

14262 double frexp(double num, int * exp);
14263 float frexpf(float value , int * exp); |
14264 long double frexpl(long double value , int * exp); |

14265 DESCRIPTION |
14266 CX The functionality described on this reference page is aligned with the ISO C standard. Any
14267 conflict between the requirements described here and the ISO C standard is unintentional. This
14268 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

14269 These functions breaks a floating-point number into a normalized fraction and an integral power |
14270 of 2. It stores the integer exponent in the int object pointed to by exp. |

14271 An application wishing to check for error situations should set errno to 0 before calling frexp(). If
14272 errno is non-zero on return, or the return value is NaN, an error has occurred.

14273 RETURN VALUE
14274 These functions shall return the value x , such that x has a magnitude in the interval [⁄1

2,1) or 0, |
14275 and num equals x times 2 raised to the power *exp. |

14276 If num is 0, both parts of the result shall be 0.

14277 XSI If num is NaN, NaN shall be returned, errno may be set to [EDOM], and the value of *exp shall be
14278 unspecified. |

14279 If num is ±Inf, num shall be returned, errno may be set to [EDOM], and the value of *exp shall be
14280 unspecified.

14281 ERRORS
14282 These functions may fail if: |

14283 XSI [EDOM] The value of num is NaN or ±Inf. |

14284 XSI No other errors shall occur.

14285 EXAMPLES
14286 None.

14287 APPLICATION USAGE
14288 None.

14289 RATIONALE
14290 None.

14291 FUTURE DIRECTIONS
14292 None.

14293 SEE ALSO
14294 isnan(), ldexp(), modf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

14295 CHANGE HISTORY
14296 First released in Issue 1. Derived from Issue 1 of the SVID. |

930 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces frexp()

14297 Issue 4
14298 References to matherr() are removed.

14299 The name of the first argument is changed from value to num.

14300 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
14301 ISO C standard and to rationalize error handling in the mathematics functions.

14302 The return value specified for [EDOM] is marked as an extension.

14303 Issue 5
14304 The DESCRIPTION is updated to indicate how an application should check for an error. This
14305 text was previously published in the APPLICATION USAGE section. |

14306 Issue 6 |
14307 The frexpf() and frexpl() functions are added for alignment with the ISO/IEC 9899: 1999 |
14308 standard. |

System Interfaces, Issue 6 931

fscanf() System Interfaces

14309 NAME
14310 fscanf, scanf, sscanf — convert formatted input

14311 SYNOPSIS
14312 #include <stdio.h>

14313 int fscanf(FILE *restrict stream , const char *restrict format , ...); |
14314 int scanf(const char *restrict format , ...); |
14315 int sscanf(const char *restrict s, const char *restrict format , ...); |

14316 DESCRIPTION |
14317 CX The functionality described on this reference page is aligned with the ISO C standard. Any
14318 conflict between the requirements described here and the ISO C standard is unintentional. This
14319 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

14320 The fscanf() function reads from the named input stream. The scanf() function reads from the
14321 standard input stream stdin . The sscanf() function reads from the string s. Each function reads
14322 bytes, interprets them according to a format, and stores the results in its arguments. Each
14323 expects, as arguments, a control string format described below, and a set of pointer arguments
14324 indicating where the converted input should be stored. The result is undefined if there are
14325 insufficient arguments for the format. If the format is exhausted while arguments remain, the
14326 excess arguments are evaluated but are otherwise ignored.

14327 XSI Conversions can be applied to the nth argument after the format in the argument list, rather than
14328 to the next unused argument. In this case, the conversion character ’%’ (see below) is replaced
14329 by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}]. This
14330 feature provides for the definition of format strings that select arguments in an order
14331 appropriate to specific languages. In format strings containing the "%n$" form of conversion
14332 specifications, it is unspecified whether numbered arguments in the argument list can be
14333 referenced from the format string more than once.

14334 The format can contain either form of a conversion specification—that is, ’%’ or "%n$" —but the
14335 two forms cannot normally be mixed within a single format string. The only exception to this is
14336 that "%%" or "%*" can be mixed with the "%n$" form.

14337 The fscanf() function in all its forms allows for detection of a language-dependent radix
14338 character in the input string. The radix character is defined in the program’s locale (category
14339 LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the
14340 radix character defaults to a period (’.’).

14341 The format is a character string, beginning and ending in its initial shift state, if any, composed
14342 of zero or more directives. Each directive is composed of one of the following: one or more
14343 white-space characters (<space>, <tab>, <newline>, <vertical-tab>, or <form-feed> characters);
14344 an ordinary character (neither ’%’ nor a white-space character); or a conversion specification.
14345 XSI Each conversion specification is introduced by the character ’%’ or the character sequence
14346 "%n$" , after which the following appear in sequence:

14347 • An optional assignment-suppressing character ’*’ .

14348 • An optional non-zero decimal integer that specifies the maximum field width.

14349 • An option length modifier that specifies the size of the receiving object. |

14350 • A conversion character that specifies the type of conversion to be applied. The valid
14351 conversion characters are described below.

14352 The fscanf() functions execute each directive of the format in turn. If a directive fails, as detailed
14353 below, the function shall return. Failures are described as input failures (due to the
14354 unavailability of input bytes) or matching failures (due to inappropriate input).

932 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fscanf()

14355 A directive composed of one or more white-space characters is executed by reading input until
14356 no more valid input can be read, or up to the first byte which is not a white-space character, |
14357 which remains unread. |

14358 A directive that is an ordinary character is executed as follows: the next byte is read from the |
14359 input and compared with the byte that comprises the directive; if the comparison shows that
14360 they are not equivalent, the directive fails, and the differing and subsequent bytes remain |
14361 unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from |
14362 being read, the directive fails. |

14363 A directive that is a conversion specification defines a set of matching input sequences, as
14364 described below for each conversion character. A conversion specification is executed in the
14365 following steps:

14366 Input white-space characters (as specified by isspace()) are skipped, unless the conversion
14367 specification includes a ’[’ , c, C, or n conversion character.

14368 An item is read from the input, unless the conversion specification includes an n conversion
14369 character. An input item is defined as the longest sequence of input bytes (up to any specified
14370 maximum field width, which may be measured in characters or bytes dependent on the
14371 conversion character) which is an initial subsequence of a matching sequence. The first byte, if
14372 any, after the input item remains unread. If the length of the input item is 0, the execution of the
14373 conversion specification fails; this condition is a matching failure, unless end-of-file, an encoding
14374 error, or a read error prevented input from the stream, in which case it is an input failure.

14375 Except in the case of a ’%’ conversion character, the input item (or, in the case of a %n
14376 conversion specification, the count of input bytes) is converted to a type appropriate to the
14377 conversion character. If the input item is not a matching sequence, the execution of the
14378 conversion specification fails; this condition is a matching failure. Unless assignment
14379 suppression was indicated by a ’*’ , the result of the conversion is placed in the object pointed
14380 to by the first argument following the format argument that has not already received a
14381 XSI conversion result if the conversion specification is introduced by ’%’ , or in the nth argument if
14382 introduced by the character sequence "%n$" . If this object does not have an appropriate type, or
14383 if the result of the conversion cannot be represented in the space provided, the behavior is
14384 undefined.

14385 The length modifiers and their meanings are: |

14386 hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14387 with type pointer to signed char or unsigned char. |

14388 h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14389 with type pointer to short or unsigned short. |

14390 l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14391 with type pointer to long or unsigned long; that a following a, A, e, E, f, F, g, or G |
14392 conversion specifier applies to an argument with type pointer to double; or that a |
14393 following c, s, or ’[’ conversion specifier applies to an argument with type pointer to |
14394 wchar_t. |

14395 ll (ell-ell)Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14396 with type pointer to long long or unsigned long long. |

14397 j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14398 with type pointer to intmax_t or uintmax_t. |

14399 z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14400 with type pointer to size_t or the corresponding signed integer type. |

System Interfaces, Issue 6 933

fscanf() System Interfaces

14401 t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
14402 with type pointer to ptrdiff_t or the corresponding unsigned type. |

14403 L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an |
14404 argument with type pointer to long double. |

14405 If a length modifier appears with any conversion specifier other than as specified above, the |
14406 behavior is undefined. |

14407 The following conversion characters are valid: |

14408 d Matches an optionally signed decimal integer, whose format is the same as expected for
14409 the subject sequence of strtol() with the value 10 for the base argument. In the absence
14410 of a size modifier, the application shall ensure that the corresponding argument is a
14411 pointer to int.

14412 i Matches an optionally signed integer, whose format is the same as expected for the
14413 subject sequence of strtol() with 0 for the base argument. In the absence of a size
14414 modifier, the application shall ensure that the corresponding argument is a pointer to
14415 int.

14416 o Matches an optionally signed octal integer, whose format is the same as expected for
14417 the subject sequence of strtoul() with the value 8 for the base argument. In the absence
14418 of a size modifier, the application shall ensure that the corresponding argument is a
14419 pointer to unsigned. |

14420 u Matches an optionally signed decimal integer, whose format is the same as expected for
14421 the subject sequence of strtoul() with the value 10 for the base argument. In the absence
14422 of a size modifier, the application shall ensure that the corresponding argument is a
14423 pointer to unsigned. |

14424 x Matches an optionally signed hexadecimal integer, whose format is the same as
14425 expected for the subject sequence of strtoul() with the value 16 for the base argument. In
14426 the absence of a size modifier, the application shall ensure that the corresponding
14427 argument is a pointer to unsigned. |

14428 a, e, f, g Matches an optionally signed floating-point number, infinity, or NaN, whose format is |
14429 the same as expected for the subject sequence of strtod(). In the absence of a size |
14430 modifier, the application shall ensure that the corresponding argument is a pointer to
14431 float.

14432 If the fprintf () family of functions generates character string representations for infinity |
14433 and NaN (a symbolic entity encoded in floating-point format) to support |
14434 IEEE Std. 754-1985, the fscanf() family of functions shall recognize them as input. |

14435 s Matches a sequence of bytes that are not white-space characters. The application shall
14436 ensure that the corresponding argument is a pointer to the initial byte of an array of
14437 char, signed char, or unsigned char large enough to accept the sequence and a
14438 terminating null character code, which shall be added automatically.

14439 If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
14440 initial shift state. Each character is converted to a wide character as if by a call to the
14441 mbrtowc() function, with the conversion state described by an mbstate_t object
14442 initialized to zero before the first character is converted. The application shall ensure
14443 that the corresponding argument is a pointer to an array of wchar_t large enough to
14444 accept the sequence and the terminating null wide character, which shall be added
14445 automatically.

934 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fscanf()

14446 [Matches a non-empty sequence of bytes from a set of expected bytes (the scanset). The
14447 normal skip over white-space characters is suppressed in this case. The application
14448 shall ensure that the corresponding argument is a pointer to the initial byte of an array
14449 of char, signed char, or unsigned char large enough to accept the sequence and a
14450 terminating null byte, which shall be added automatically.

14451 If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
14452 initial shift state. Each character in the sequence is converted to a wide character as if
14453 by a call to the mbrtowc() function, with the conversion state described by an mbstate_t
14454 object initialized to zero before the first character is converted. The application shall
14455 ensure that the corresponding argument is a pointer to an array of wchar_t large
14456 enough to accept the sequence and the terminating null wide character, which shall be
14457 added automatically.

14458 The conversion specification includes all subsequent bytes in the format string up to
14459 and including the matching right square bracket (’]’). The bytes between the square
14460 brackets (the scanlist) comprise the scanset, unless the byte after the left square bracket
14461 is a circumflex (’ˆ’), in which case the scanset contains all bytes that do not appear in
14462 the scanlist between the circumflex and the right square bracket. If the conversion
14463 specification begins with "[]" or "[ˆ]" , the right square bracket is included in the
14464 scanlist and the next right square bracket is the matching right square bracket that ends
14465 the conversion specification; otherwise, the first right square bracket is the one that
14466 ends the conversion specification. If a ’ −’ is in the scanlist and is not the first character,
14467 nor the second where the first character is a ’ˆ’ , nor the last character, the behavior is |
14468 implementation-defined. |

14469 c Matches a sequence of bytes of the number specified by the field width (1 if no field
14470 width is present in the conversion specification). The application shall ensure that the
14471 corresponding argument is a pointer to the initial byte of an array of char, signed char,
14472 or unsigned char large enough to accept the sequence. No null byte is added. The
14473 normal skip over white-space characters is suppressed in this case.

14474 If an l (ell) qualifier is present, the input is a sequence of characters that begins in the
14475 initial shift state. Each character in the sequence is converted to a wide character as if
14476 by a call to the mbrtowc() function, with the conversion state described by an mbstate_t
14477 object initialized to zero before the first character is converted. The application shall
14478 ensure that the corresponding argument is a pointer to an array of wchar_t large
14479 enough to accept the resulting sequence of wide characters. No null wide character is
14480 added.

14481 p Matches an implementation-defined set of sequences, which shall be the same as the set |
14482 of sequences that is produced by the %p conversion of the corresponding fprintf ()
14483 functions. The application shall ensure that the corresponding argument is a pointer to
14484 a pointer to void. The interpretation of the input item is implementation-defined. If the |
14485 input item is a value converted earlier during the same program execution, the pointer
14486 that results shall compare equal to that value; otherwise, the behavior of the %p
14487 conversion is undefined.

14488 n No input is consumed. The application shall ensure that the corresponding argument is
14489 a pointer to the integer into which is to be written the number of bytes read from the
14490 input so far by this call to the fscanf() functions. Execution of a %n conversion
14491 specification does not increment the assignment count returned at the completion of
14492 execution of the function. No argument is converted, but one is consumed. If the |
14493 conversion specification includes an assignment-suppressing character or a field width, |
14494 the behavior is undefined. |

System Interfaces, Issue 6 935

fscanf() System Interfaces

14495 XSI C Same as lc.

14496 XSI S Same as ls.

14497 % Matches a single ’%’ ; no conversion or assignment occurs. The complete conversion
14498 specification shall be "%%".

14499 If a conversion specification is invalid, the behavior is undefined.

14500 The conversion characters A, E, F, G, and X are also valid and behave the same as, respectively, a, |
14501 e, f, g, and x. |

14502 If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
14503 any bytes matching the current conversion specification (except for %n) have been read (other
14504 than leading white-space characters, where permitted), execution of the current conversion
14505 specification terminates with an input failure. Otherwise, unless execution of the current
14506 conversion specification is terminated with a matching failure, execution of the following
14507 conversion specification (if any) is terminated with an input failure.

14508 Reaching the end of the string in sscanf() is equivalent to encountering end-of-file for fscanf().

14509 If conversion terminates on a conflicting input, the offending input is left unread in the input.
14510 Any trailing white space (including newline characters) is left unread unless matched by a
14511 conversion specification. The success of literal matches and suppressed assignments is only
14512 directly determinable via the %n conversion specification.

14513 The fscanf() and scanf() functions may mark the st_atime field of the file associated with stream
14514 for update. The st_atime field shall be marked for update by the first successful execution of
14515 fgetc(), fgets(), fread(), getc(), getchar(), gets(), fscanf(), or fscanf() using stream that returns data
14516 not supplied by a prior call to ungetc().

14517 RETURN VALUE
14518 Upon successful completion, these functions shall return the number of successfully matched
14519 and assigned input items; this number can be 0 in the event of an early matching failure. If the
14520 input ends before the first matching failure or conversion, EOF shall be returned. If a read error
14521 CX occurs, the error indicator for the stream is set, EOF shall be returned, and errno shall be set to
14522 indicate the error.

14523 ERRORS
14524 For the conditions under which the fscanf() functions fail and may fail, refer to fgetc() or
14525 fgetwc().

14526 In addition, fscanf() may fail if:

14527 XSI [EILSEQ] Input byte sequence does not form a valid character. |

14528 XSI [EINVAL] There are insufficient arguments. |

14529 EXAMPLES
14530 The call:

14531 int i, n; float x; char name[50];
14532 n = scanf("%d%f%s", &i, &x, name);

14533 with the input line:

14534 25 54.32E −1 Hamster

14535 assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
14536 "Hamster" .

936 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fscanf()

14537 The call:

14538 int i; float x; char name[50];
14539 (void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

14540 with input:

14541 56789 0123 56a72

14542 assigns 56 to i , 789.0 to x , skips 0123, and places the string "56\0" in name. The next call to
14543 getchar() shall return the character ’a’ .

14544 Reading Data into an Array

14545 The following call uses fscanf() to read three floating point numbers from standard input into
14546 the input array.

14547 float input[3];
14548 fscanf (stdin, "%f %f %f", input, input+1, input+2);

14549 APPLICATION USAGE
14550 If the application calling fscanf() has any objects of type wint_t or wchar_t, it must also include
14551 the <wchar.h> header to have these objects defined.

14552 RATIONALE
14553 None.

14554 FUTURE DIRECTIONS
14555 None.

14556 SEE ALSO
14557 getc(), printf(), setlocale (), strtod(), strtol(), strtoul(), wcrtomb(), the Base Definitions volume of |
14558 IEEE Std. 1003.1-200x, <langinfo.h>, <stdio.h>, <wchar.h>, the Base Definitions volume of |
14559 IEEE Std. 1003.1-200x, Chapter 7, Locale |

14560 CHANGE HISTORY
14561 First released in Issue 1. Derived from Issue 1 of the SVID. |

14562 Issue 4
14563 Use of the terms ‘‘byte’’ and ‘‘character’’ is rationalized to make it clear when single-byte and
14564 multi-byte values can be used. Similarly, use of the terms ‘‘conversion specification’’ and
14565 ‘‘conversion character’’ is now more precise.

14566 Various errors are corrected. For example, the description of the d conversion character
14567 contained an erroneous reference to strtod() in Issue 3. This is replaced in this issue by reference
14568 to strtol().

14569 The DESCRIPTION is updated in a number of places to indicate further implications of the
14570 "%n$" form of a conversion. All references to this functionality, which is not specified in the
14571 ISO C standard, are marked as extensions.

14572 The ERRORS section is changed to refer to the entries for fgetc() and fgetwc(), the [EINVAL]
14573 error is marked as an extension, and the [EILSEQ] error is added and marked as an extension.

14574 The detailed description of this function including the CHANGE HISTORY section for scanf() is
14575 provided here instead of under scanf().

14576 The APPLICATION USAGE section is amended to record the need for <sys/types.h> or
14577 <stddef.h> if type wchar_t is required.

System Interfaces, Issue 6 937

fscanf() System Interfaces

14578 The following changes are incorporated for alignment with the ISO C standard:

14579 • The type of the argument format for all functions, and the type of argument s for sscanf(), are
14580 changed from char* to const char*.

14581 • The description is updated in various places to align more closely with the text of the ISO C
14582 standard. In particular, this issue fully defines the L conversion character, allows for the
14583 support of multi-byte coded character sets (although these are not mandated by X/Open),
14584 and fills in a number of gaps in the definition (for example, by defining termination
14585 conditions for sscanf().

14586 • Following an ANSI interpretation, the effect of conversion specifications that consume no
14587 input is better defined, and is no longer marked as an extension.

14588 The following change is incorporated for alignment with the MSE working draft.

14589 • The C and S conversion characters are added, indicating a pointer in the argument list to the
14590 initial wide-character code of an array large enough to accept the input sequence.

14591 Issue 5
14592 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the l (ell) qualifier is now
14593 defined for the c, s, and ’[’ conversion characters.

14594 The DESCRIPTION is updated to indicate that if infinity and NaN can be generated by the
14595 fprintf () family of functions, then they are recognized by the fscanf() family.

14596 Issue 6
14597 The Open Group corrigenda items U021/7 and U028/10 have been applied. These correct
14598 several occurrences of ‘‘characters’’ in the text which have been replaced with the term ‘‘bytes’’.

14599 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

14600 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

14601 • The prototypes for fscanf(), scanf(), and sscanf() are updated. |

14602 • The DESCRIPTION is updated. |
|

938 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fseek()

14603 NAME
14604 fseek, fseeko — reposition a file-position indicator in a stream

14605 SYNOPSIS
14606 #include <stdio.h>

14607 int fseek(FILE * stream , long offset , int whence); |
14608 CX int fseeko(FILE * stream , off_t offset , int whence); |
14609

14610 DESCRIPTION
14611 CX The functionality described on this reference page is aligned with the ISO C standard. Any
14612 conflict between the requirements described here and the ISO C standard is unintentional. This
14613 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

14614 The fseek() function shall set the file-position indicator for the stream pointed to by stream. If a |
14615 read or write error occurs, the error indicator for the stream shall be set and fseek() fails. |

14616 The new position, measured in bytes from the beginning of the file, shall be obtained by adding
14617 offset to the position specified by whence. The specified point is the beginning of the file for
14618 {SEEK_SET}, the current value of the file-position indicator for {SEEK_CUR}, or end-of-file for
14619 {SEEK_END}.

14620 If the stream is to be used with wide-character input/output functions, the application shall
14621 ensure that offset is either 0 or a value returned by an earlier call to ftell () on the same stream and
14622 whence is {SEEK_SET}.

14623 A successful call to fseek() shall clear the end-of-file indicator for the stream and undo any effects
14624 of ungetc() and ungetwc() on the same stream. After an fseek() call, the next operation on an
14625 update stream may be either input or output.

14626 If the most recent operation, other than ftell (), on a given stream is fflush(), the file offset in the
14627 underlying open file description shall be adjusted to reflect the location specified by fseek().

14628 The fseek() function shall allow the file-position indicator to be set beyond the end of existing
14629 data in the file. If data is later written at this point, subsequent reads of data in the gap shall
14630 return bytes with the value 0 until data is actually written into the gap.

14631 CX The behavior of fseek() on devices which are incapable of seeking is implementation-defined. |
14632 The value of the file offset associated with such a device is undefined.

14633 If the stream is writable and buffered data had not been written to the underlying file, fseek()
14634 shall cause the unwritten data to be written to the file and shall mark the st_ctime and st_mtime
14635 fields of the file for update.

14636 In a locale with state-dependent encoding, whether fseek() restores the stream’s shift state is |
14637 implementation-defined. |

14638 The fseeko() function is equivalent to the fseek() function except that the offset argument is of |
14639 type off_t.

14640 RETURN VALUE
14641 CX The fseek() and fseeko()functions shall return 0 if they succeed.

14642 CX Otherwise, they shall return −1 and set errno to indicate the error.

14643 ERRORS
14644 CX The fseek() and fseeko() functions shall fail if, either the stream is unbuffered or the stream’s
14645 CX buffer needed to be flushed, and the call to fseek() or fseeko() causes an underlying lseek() or
14646 write() to be invoked:

System Interfaces, Issue 6 939

fseek() System Interfaces

14647 CX [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be |
14648 delayed in the write operation.

14649 CX [EBADF] The file descriptor underlying the stream file is not open for writing or the |
14650 stream’s buffer needed to be flushed and the file is not open.

14651 CX [EFBIG] An attempt was made to write a file that exceeds the maximum file size. |

14652 XSI [EFBIG] An attempt was made to write a file that exceeds the process’ file size limit. |

14653 CX [EFBIG] The file is a regular file and an attempt was made to write at or beyond the |
14654 offset maximum associated with the corresponding stream.

14655 CX [EINTR] The write operation was terminated due to the receipt of a signal, and no data |
14656 was transferred.

14657 CX [EINVAL] The whence argument is invalid. The resulting file-position indicator would be |
14658 set to a negative value.

14659 CX [EIO] A physical I/O error has occurred, or the process is a member of a |
14660 background process group attempting to perform a write() to its controlling
14661 terminal, TOSTOP is set, the process is neither ignoring nor blocking
14662 SIGTTOU, and the process group of the process is orphaned. This error may
14663 also be returned under implementation-defined conditions. |

14664 CX [ENOSPC] There was no free space remaining on the device containing the file. |

14665 CX [EOVERFLOW] For fseek(), the resulting file offset would be a value which cannot be |
14666 represented correctly in an object of type long.

14667 CX [EOVERFLOW] For fseeko(), the resulting file offset would be a value which cannot be |
14668 represented correctly in an object of type off_t.

14669 CX [EPIPE] The file descriptor underlying stream is associated with a pipe or FIFO. |

14670 CX [EPIPE] An attempt was made to write to a pipe or FIFO that is not open for reading |
14671 by any process; a SIGPIPE signal shall also be sent to the thread.

14672 CX [ENXIO] A request was made of a nonexistent device, or the request was outside the |
14673 capabilities of the device.

14674 EXAMPLES
14675 None.

14676 APPLICATION USAGE
14677 None.

14678 RATIONALE
14679 None.

14680 FUTURE DIRECTIONS
14681 None.

14682 SEE ALSO
14683 fopen(), fsetpos(), ftell (), getrlimit(), rewind(), ulimit(), ungetc(), the Base Definitions volume of |
14684 IEEE Std. 1003.1-200x, <stdio.h> |

14685 CHANGE HISTORY
14686 First released in Issue 1. Derived from Issue 1 of the SVID. |

940 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fseek()

14687 Issue 4
14688 In the DESCRIPTION, the words ‘‘The seek() function does not, by itself, extend the size of a
14689 file’’ are deleted.

14690 In the RETURN VALUE section, the value −1 is marked as an extension. This is because the
14691 ISO POSIX-1 standard only requires that a non-zero value is returned.

14692 In the ERRORS section, text is added to indicate that error returns are only generated when
14693 either the stream is unbuffered, or if the stream buffer needs to be flushed.

14694 The ‘‘fail’’ and ‘‘may fail’’ parts of the ERRORS section are revised for consistency with lseek()
14695 and write().

14696 Text associated with the [EIO] error is expanded and the [ENXIO] error is added.

14697 Text is added to explain how fseek() is used with wide-character input/output; this is marked as
14698 a WP extension.

14699 The [EFBIG] error is marked to show extensions.

14700 The APPLICATION USAGE section is added.

14701 The following change is incorporated for alignment with the ISO C standard:

14702 • The type of argument offset is now defined in full as long instead of long. |

14703 The following change is incorporated for alignment with the FIPS requirements:

14704 • The [EINTR] error is no longer an indication that the implementation does not report partial
14705 transfers.

14706 Issue 4, Version 2
14707 In the ERRORS section, the description of [EIO] is updated to include the case where a physical
14708 I/O error occurs.

14709 Issue 5
14710 Normative text previously in the APPLICATION USAGE section is moved to the
14711 DESCRIPTION.

14712 Large File Summit extensions are added.

14713 Issue 6
14714 Extensions beyond the ISO C standard are now marked.

14715 The following new requirements on POSIX implementations derive from alignment with the
14716 Single UNIX Specification:

14717 • The fseeko() function is added.

14718 • The [EFBIG], [EOVERFLOW], and [ENXIO] mandatory error conditions are added.

14719 The following change is incorporated for alignment with the FIPS requirements:

14720 • The [EINTR] error is no longer an indication that the implementation does not report partial
14721 transfers.

14722 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

14723 The DESCRIPTION is updated to explicitly state that fseek() sets the file-position indicator, and |
14724 then on error the error indicator is set and fseek() fails. This is for alignment with the |
14725 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 941

fsetpos() System Interfaces

14726 NAME
14727 fsetpos — set current file position

14728 SYNOPSIS
14729 #include <stdio.h>

14730 int fsetpos(FILE * stream , const fpos_t * pos);

14731 DESCRIPTION
14732 CX The functionality described on this reference page is aligned with the ISO C standard. Any
14733 conflict between the requirements described here and the ISO C standard is unintentional. This
14734 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

14735 The fsetpos() function shall set the file position and state indicators for the stream pointed to by
14736 stream according to the value of the object pointed to by pos , which the application shall ensure
14737 is a value obtained from an earlier call to fgetpos() on the same stream. If a read or write error |
14738 occurs, the error indicator for the stream shall be set and fsetpos() fails. |

14739 A successful call to the fsetpos() function shall clear the end-of-file indicator for the stream and
14740 undo any effects of ungetc() on the same stream. After an fsetpos() call, the next operation on an
14741 update stream may be either input or output. |

14742 CX The behavior of fsetpos() on devices which are incapable of seeking is implementation-defined. |
14743 The value of the file offset associated with such a device is undefined. |

14744 RETURN VALUE
14745 The fsetpos() function shall return 0 if it succeeds; otherwise, it shall return a non-zero value and
14746 set errno to indicate the error.

14747 ERRORS
14748 The fsetpos() function may fail if:

14749 CX [EBADF] The file descriptor underlying stream is not valid. |

14750 CX [ESPIPE] The file descriptor underlying stream is associated with a pipe, FIFO, or socket. |
14751

14752 EXAMPLES
14753 None.

14754 APPLICATION USAGE
14755 None.

14756 RATIONALE
14757 None.

14758 FUTURE DIRECTIONS
14759 None.

14760 SEE ALSO
14761 fopen(), ftell (), rewind(), ungetc(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
14762 <stdio.h>

CHANGE14763 HISTORY
14764 First released in Issue 4. Derived from the ISO C standard. |

14765 Issue 6
14766 Extensions beyond the ISO C standard are now marked.

14767 An additional [ESPIPE] error condition is added for sockets.

942 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fsetpos()

14768 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

14769 The DESCRIPTION is updated to clarify that the error indicator is set for the stream on a read or |
14770 write error. This is for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 943

fstat() System Interfaces

14771 NAME
14772 fstat — get file status

14773 SYNOPSIS
14774 #include <sys/stat.h>

14775 int fstat(int fildes , struct stat * buf);

14776 DESCRIPTION
14777 The fstat() function obtains information about an open file associated with the file descriptor
14778 fildes , and writes it to the area pointed to by buf.

14779 SHM If fildes references a shared memory object, the implementation need update in the stat structure
14780 pointed to by the buf argument only the st_uid , st_gid , st_size , and st_mode fields, and only the
14781 S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
14782 valid.

14783 TYM If fildes references a typed memory object, the implementation need update in the stat structure
14784 pointed to by the buf argument only the st_uid , st_gid , st_size , and st_mode fields, and only the
14785 S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits need be
14786 valid.

14787 The buf argument is a pointer to a stat structure, as defined in <sys/stat.h>, into which
14788 information is placed concerning the file.

14789 The structure members st_mode, st_ino , st_dev , st_uid , st_gid , st_atime , st_ctime, and st_mtime
14790 shall have meaningful values for all file types defined in this volume of IEEE Std. 1003.1-200x.
14791 The value of the member st_nlink shall be set to the number of links to the file.

14792 An implementation that provides additional or alternative file access control mechanisms may, |
14793 under implementation-defined conditions, cause fstat() to fail. |

14794 The fstat() function updates any time-related fields as described in File Times Update (see the |
14795 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 6, Character Set), before writing into |
14796 the stat structure. |

14797 RETURN VALUE
14798 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
14799 indicate the error.

14800 ERRORS
14801 The fstat() function shall fail if:

14802 [EBADF] The fildes argument is not a valid file descriptor. |

14803 [EIO] An I/O error occurred while reading from the file system. |

14804 [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file |
14805 serial number cannot be represented correctly in the structure pointed to by
14806 buf. |

14807 The fstat() function may fail if:

14808 [EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf |
14809 argument. |

944 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fstat()

14810 EXAMPLES

14811 Obtaining File Status Information

14812 The following example shows how to obtain file status information for a file named
14813 /home/cnd/mod1. The structure variable buffer is defined for the stat structure. The
14814 /home/cnd/mod1 file is opened with read/write privileges and is passed to the open file
14815 descriptor fildes .

14816 #include <sys/types.h>
14817 #include <sys/stat.h>
14818 #include <fcntl.h>

14819 struct stat buffer;
14820 int status;
14821 ...
14822 fildes = open("/home/cnd/mod1", O_RDWR);
14823 status = fstat(fildes, &buffer);

14824 APPLICATION USAGE
14825 None.

14826 RATIONALE
14827 None.

14828 FUTURE DIRECTIONS
14829 None.

14830 SEE ALSO
14831 lstat(), stat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h>, <sys/types.h> |

14832 CHANGE HISTORY
14833 First released in Issue 1. Derived from Issue 1 of the SVID. |

14834 Issue 4
14835 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
14836 XSI-conformant systems.

14837 The following changes are incorporated in the DESCRIPTION for alignment with the
14838 ISO POSIX-1 standard:

14839 • A paragraph defining the contents of stat structure members is added.

14840 • The words ‘‘extended security controls’’ are replaced by ‘‘additional or alternative file access
14841 control mechanisms’’.

14842 Issue 4, Version 2
14843 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

14844 • The [EIO] error is added as a mandatory error indicated the occurrence of an I/O error.

14845 • The [EOVERFLOW] error is added as an optional error indicating that one of the values is
14846 too large to store in the area pointed to by buf.

14847 Issue 5
14848 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

14849 Large File Summit extensions are added.

System Interfaces, Issue 6 945

fstat() System Interfaces

14850 Issue 6
14851 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

14852 The following new requirements on POSIX implementations derive from alignment with the
14853 Single UNIX Specification:

14854 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
14855 required for conforming implementations of previous POSIX specifications, it was not
14856 required for UNIX applications.

14857 • The [EIO] mandatory error condition is added.

14858 • The [EOVERFLOW] mandatory error condition is added. This change is to support large
14859 files.

14860 • The [EOVERFLOW] optional error condition is added.

14861 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
14862 shared memory object semantics apply to typed memory objects.

946 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fstatvfs()

14863 NAME
14864 fstatvfs, statvfs — get file system information

14865 SYNOPSIS
14866 XSI #include <sys/statvfs.h>

14867 int fstatvfs(int fildes , struct statvfs * buf);
14868 int statvfs(const char *restrict path , struct statvfs *restrict buf); |
14869 |

14870 DESCRIPTION
14871 The fstatvfs () function obtains information about the file system containing the file referenced by
14872 fildes .

14873 The following flags can be returned in the f_flag member: |

14874 ST_RDONLY Read-only file system.

14875 ST_NOSUID Setuid/setgid bits ignored by exec.

14876 The statvfs() function obtains descriptive information about the file system containing the file
14877 named by path .

14878 For both functions, the buf argument is a pointer to a statvfs structure that shall be filled. Read,
14879 write, or execute permission of the named file is not required. |

14880 It is unspecified whether all members of the statvfs structure have meaningful values on all file
14881 systems.

14882 RETURN VALUE
14883 Upon successful completion, statvfs() shall return 0. Otherwise, it shall return −1 and set errno to
14884 indicate the error.

14885 ERRORS
14886 The fstatvfs () and statvfs() functions shall fail if:

14887 [EIO] An I/O error occurred while reading the file system. |

14888 [EINTR] A signal was caught during execution of the function. |

14889 [EOVERFLOW] One of the values to be returned cannot be represented correctly in the |
14890 structure pointed to by buf.

14891 The fstatvfs () function shall fail if:

14892 [EBADF] The fildes argument is not an open file descriptor. |

14893 The statvfs() function shall fail if:

14894 [EACCES] Search permission is denied on a component of the path prefix. |

14895 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
14896 argument. |

14897 [ENAMETOOLONG] |
14898 The length of a path name exceeds {PATH_MAX} or a path name component |
14899 is longer than {NAME_MAX}.

14900 [ENOENT] A component of path does not name an existing file or path is an empty string. |

14901 [ENOTDIR] A component of the path prefix of path is not a directory. |

14902 The statvfs() function may fail if:

System Interfaces, Issue 6 947

fstatvfs() System Interfaces

14903 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
14904 resolution of the path argument. |

14905 [ENAMETOOLONG] |
14906 Path name resolution of a symbolic link produced an intermediate result
14907 whose length exceeds {PATH_MAX}.

14908 EXAMPLES

14909 Obtaining File System Information Using fstatvfs()

14910 The following example shows how to obtain file system information for the file system upon
14911 which the file named /home/cnd/mod1 resides, using the fstatvfs () function. The
14912 /home/cnd/mod1 file is opened with read/write privileges and the open file descriptor is passed
14913 to the fstatvfs () function.

14914 #include <statvfs.h>
14915 #include <fcntl.h>

14916 struct statvfs buffer;
14917 int status;
14918 ...
14919 fildes = open("/home/cnd/mod1", O_RDWR);
14920 status = fstatvfs(fildes, &buffer);

14921 Obtaining File System Information Using statvfs()

14922 The following example shows how to obtain file system information for the file system upon
14923 which the file named /home/cnd/mod1 resides, using the statvfs() function.

14924 #include <statvfs.h>

14925 struct statvfs buffer;
14926 int status;
14927 ...
14928 status = statvfs("/home/cnd/mod1", &buffer);

14929 APPLICATION USAGE
14930 None.

14931 RATIONALE
14932 None.

14933 FUTURE DIRECTIONS
14934 None.

14935 SEE ALSO
14936 chmod(), chown(), creat(), dup(), exec, fcntl(), link (), mknod(), open(), pipe(), read(), time(),
14937 unlink(), utime(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/statvfs.h> |

14938 CHANGE HISTORY
14939 First released in Issue 4, Version 2.

14940 Issue 5
14941 Moved from X/OPEN UNIX extension to BASE.

14942 Large File Summit extensions are added.

948 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fstatvfs()

14943 Issue 6
14944 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

14945 The restrict keyword is added to the statvfs() prototype for alignment with the |
14946 ISO/IEC 9899: 1999 standard. |

14947 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
14948 [ELOOP] error condition is added. |

System Interfaces, Issue 6 949

fsync() System Interfaces

14949 NAME
14950 fsync — synchronize changes to a file

14951 SYNOPSIS
14952 FSC #include <unistd.h>

14953 int fsync(int fildes);
14954

14955 DESCRIPTION
14956 The fsync() function can be used by an application to indicate that all data for the open file
14957 description named by fildes is to be transferred to the storage device associated with the file
14958 described by fildes in an implementation-defined manner. The fsync() function shall not return |
14959 until the system has completed that action or until an error is detected.

14960 SIO If _POSIX_SYNCHRONIZED_IO is defined, the fsync() function shall force all currently queued
14961 I/O operations associated with the file indicated by file descriptor fildes to the synchronized I/O
14962 completion state. All I/O operations shall be completed as defined for synchronized I/O file
14963 integrity completion.

14964 RETURN VALUE
14965 Upon successful completion, fsync() shall return 0. Otherwise, −1 shall be returned and errno set
14966 to indicate the error. If the fsync() function fails, outstanding I/O operations are not guaranteed
14967 to have been completed.

14968 ERRORS
14969 The fsync() function shall fail if:

14970 [EBADF] The fildes argument is not a valid descriptor. |

14971 [EINTR] The fsync() function was interrupted by a signal. |

14972 [EINVAL] The fildes argument does not refer to a file on which this operation is possible. |

14973 [EIO] An I/O error occurred while reading from or writing to the file system. |

14974 In the event that any of the queued I/O operations fail, fsync() shall return the error conditions
14975 defined for read() and write().

14976 EXAMPLES
14977 None.

14978 APPLICATION USAGE
14979 The fsync() function should be used by programs which require modifications to a file to be
14980 completed before continuing; for example, a program which contains a simple transaction
14981 facility might use it to ensure that all modifications to a file or files caused by a transaction are
14982 recorded.

14983 RATIONALE
14984 The fsync() function is intended to force a physical write of data from the buffer cache, and to
14985 assure that after a system crash or other failure that all data up to the time of the fsync() call is
14986 recorded on the disk. Since the concepts of ‘‘buffer cache’’, ‘‘system crash’’, ‘‘physical write’’, and
14987 ‘‘non-volatile storage’’ are not defined here, the wording has to be more abstract.

14988 If _POSIX_SYNCHRONIZED_IO is not defined, the wording relies heavily on the conformance
14989 document to tell the user what can be expected from the system. It is explicitly intended that a
14990 null implementation is permitted. This could be valid in the case where the system cannot assure
14991 non-volatile storage under any circumstances or when the system is highly fault-tolerant and the
14992 functionality is not required. In the middle ground between these extremes, fsync() might or
14993 might not actually cause data to be written where it is safe from a power failure. The

950 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fsync()

14994 conformance document should identify at least that one configuration exists (and how to obtain
14995 that configuration) where this can be assured for at least some files that the user can select to use
14996 for critical data. It is not intended that an exhaustive list is required, but rather sufficient
14997 information is provided to let the user determine that if he or she has critical data he or she can
14998 configure her system to allow it to be written to non-volatile storage.

14999 It is reasonable to assert that the key aspects of fsync() are unreasonable to test in a test suite.
15000 That does not make the function any less valuable, just more difficult to test. A formal
15001 conformance test should probably force a system crash (power shutdown) during the test for
15002 this condition, but it needs to be done in such a way that automated testing does not require this
15003 to be done except when a formal record of the results is being made. It would also not be
15004 unreasonable to omit testing for fsync(), allowing it to be treated as a quality-of-implementation
15005 issue.

15006 FUTURE DIRECTIONS
15007 None.

15008 SEE ALSO
15009 sync(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

15010 CHANGE HISTORY
15011 First released in Issue 3.

15012 Issue 4
15013 The <unistd.h> header is added to the SYNOPSIS section.

15014 In the APPLICATION USAGE section, the words ‘‘require a file to be in a known state’’ are
15015 replaced by ‘‘require modifications to a file to be completed before continuing’’.

15016 Issue 5
15017 Aligned with fsync() in the POSIX Realtime Extension. Specifically, the DESCRIPTION and
15018 RETURN VALUE sections are much expanded, and the ERRORS section is updated to indicate
15019 that fsync() can return the error conditions defined for read() and write().

15020 Issue 6
15021 This function is marked as part of the File Synchronization option. |

15022 The following new requirements on POSIX implementations derive from alignment with the
15023 Single UNIX Specification:

15024 • The [EINVAL] and [EIO] mandatory error conditions are added.

System Interfaces, Issue 6 951

ftell() System Interfaces

15025 NAME
15026 ftell, ftello — return a file offset in a stream

15027 SYNOPSIS
15028 #include <stdio.h>

15029 long ftell(FILE * stream); |
15030 CX off_t ftello(FILE * stream); |
15031

15032 DESCRIPTION
15033 CX The functionality described on this reference page is aligned with the ISO C standard. Any
15034 conflict between the requirements described here and the ISO C standard is unintentional. This
15035 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

15036 The ftell () function shall obtain the current value of the file-position indicator for the stream
15037 pointed to by stream.

15038 CX The ftello () function is identical to ftell () except that the return value is of type off_t.

15039 RETURN VALUE
15040 CX Upon successful completion, ftell () and ftello () shall return the current value of the file-position
15041 indicator for the stream measured in bytes from the beginning of the file.

15042 CX Otherwise, ftell () and ftello () shall return −1, cast to long and off_t respectively, and set errno to
15043 indicate the error.

15044 ERRORS
15045 CX The ftell () and ftello ()functions shall fail if:

15046 CX [EBADF] The file descriptor underlying stream is not an open file descriptor. |

15047 CX [EOVERFLOW] For ftell (), the current file offset cannot be represented correctly in an object of |
15048 type long.

15049 CX [EOVERFLOW] For ftello (), the current file offset cannot be represented correctly in an object |
15050 of type off_t.

15051 CX [ESPIPE] The file descriptor underlying stream is associated with a pipe or FIFO. |

15052 The ftell () function may fail if:

15053 CX [ESPIPE] The file descriptor underlying stream is associated with a socket.

15054 EXAMPLES
15055 None.

15056 APPLICATION USAGE
15057 None.

15058 RATIONALE
15059 None.

15060 FUTURE DIRECTIONS
15061 None.

15062 SEE ALSO
15063 fgetpos(), fopen(), fseek(), lseek(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

952 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftell()

15064 CHANGE HISTORY
15065 First released in Issue 1. Derived from Issue 1 of the SVID. |

15066 Issue 4

15067 The following change is incorporated for alignment with the ISO C standard:

15068 • The function return value is now defined in full as long. It was previously defined as long. |

15069 Issue 5
15070 Large File Summit extensions are added.

15071 Issue 6
15072 Extensions beyond the ISO C standard are now marked.

15073 The following new requirements on POSIX implementations derive from alignment with the
15074 Single UNIX Specification:

15075 • The ftello () function is added.

15076 • The [EOVERFLOW] error conditions are added.

15077 An additional [ESPIPE] error condition is added for sockets.

System Interfaces, Issue 6 953

ftime() System Interfaces

15078 NAME
15079 ftime — get date and time (LEGACY)

15080 SYNOPSIS
15081 XSI #include <sys/timeb.h>

15082 int ftime(struct timeb * tp);
15083

15084 DESCRIPTION
15085 The ftime() function shall set the time and millitm members of the timeb structure pointed to by
15086 tp to contain the seconds and milliseconds portions, respectively, of the current time in seconds
15087 since the Epoch. The contents of the timezone and dstflag members of tp after a call to ftime() are
15088 unspecified.

15089 The system clock need not have millisecond granularity. Depending on any granularity
15090 (particularly a granularity of one) renders code non-portable.

15091 RETURN VALUE
15092 Upon successful completion, the ftime() function shall return 0; otherwise, −1 shall be returned.

15093 ERRORS
15094 No errors are defined.

15095 EXAMPLES

15096 Getting the Current Time and Date

15097 The following example shows how to get the current system time values using the ftime()
15098 function. The timeb structure pointed to by tp is filled with the current system time values for
15099 time and millitm .

15100 #include <sys/timeb.h>

15101 struct timeb tp;
15102 int status;
15103 ...
15104 status = ftime(&tp);

15105 APPLICATION USAGE
15106 For applications portability, the time() function should be used to determine the current time
15107 instead of ftime().

15108 RATIONALE
15109 None.

15110 FUTURE DIRECTIONS
15111 This function may be withdrawn in a future version.

15112 SEE ALSO
15113 ctime(), gettimeofday (), time(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
15114 <sys/timeb.h>

CHANGE15115 HISTORY
15116 First released in Issue 4, Version 2.

15117 Issue 5
15118 Moved from X/OPEN UNIX extension to BASE.

15119 Normative text previously in the APPLICATION USAGE section is moved to the
15120 DESCRIPTION.

954 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftime()

15121 Issue 6
15122 This function is marked LEGACY.

15123 The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
15124 00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time |
15125 functions.

System Interfaces, Issue 6 955

ftok() System Interfaces

15126 NAME
15127 ftok — generate an IPC key

15128 SYNOPSIS
15129 XSI #include <sys/ipc.h>

15130 key_t ftok(const char * path , int id);
15131

15132 DESCRIPTION
15133 The ftok () function shall return a key based on path and id that is usable in subsequent calls to
15134 msgget(), semget(), and shmget(). The application shall ensure that the path argument is the path
15135 name of an existing file that the process is able to stat().

15136 The ftok () function shall return the same key value for all paths that name the same file, when
15137 called with the same id value, and return different key values when called with different id
15138 values or with paths that name different files existing on the same file system at the same time. It
15139 is unspecified whether ftok () shall return the same key value when called again after the file
15140 named by path is removed and recreated with the same name.

15141 Only the low order 8-bits of id are significant. The behavior of ftok () is unspecified if these bits
15142 are 0.

15143 RETURN VALUE
15144 Upon successful completion, ftok () shall return a key. Otherwise, ftok () shall return (key_t)−1
15145 and set errno to indicate the error.

15146 ERRORS
15147 The ftok () function shall fail if:

15148 [EACCES] Search permission is denied for a component of the path prefix. |

15149 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
15150 argument. |

15151 [ENAMETOOLONG] |
15152 The length of the path argument exceeds {PATH_MAX} or a path name
15153 component is longer than {NAME_MAX}.

15154 [ENOENT] A component of path does not name an existing file or path is an empty string. |

15155 [ENOTDIR] A component of the path prefix is not a directory. |

15156 The ftok () function may fail if:

15157 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
15158 resolution of the path argument. |

15159 [ENAMETOOLONG] |
15160 Path name resolution of a symbolic link produced an intermediate result
15161 whose length exceeds {PATH_MAX}.

956 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftok()

15162 EXAMPLES

15163 Getting an IPC Key

15164 The following example gets a unique key that can be used by the IPC functions semget(),
15165 msgget(), and shmget(). The key returned by ftok () for this example is based on the ID value S
15166 and the path name /tmp.

15167 #include <sys/ipc.h>
15168 ...
15169 key_t key;
15170 char *path = "/tmp";
15171 int id = ’S’;

15172 key = ftok(path, id);

15173 Saving an IPC Key

15174 The following example gets a unique key based on the path name /tmp and the ID value a . It
15175 also assigns the value of the resulting key to the semkey variable so that it will be available to a
15176 later call to semget(), msgget(), or shmget().

15177 #include <sys/ipc.h>
15178 ...
15179 key_t semkey;

15180 if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {
15181 perror("IPC error: ftok"); exit(1);
15182 }

15183 APPLICATION USAGE
15184 For maximum portability, id should be a single-byte character.

15185 RATIONALE
15186 None.

15187 FUTURE DIRECTIONS
15188 None.

15189 SEE ALSO
15190 msgget(), semget(), shmget(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/ipc.h> |

15191 CHANGE HISTORY
15192 First released in Issue 4, Version 2.

15193 Issue 5
15194 Moved from X/OPEN UNIX extension to BASE.

15195 Issue 6
15196 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

15197 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
15198 [ELOOP] error condition is added. |

System Interfaces, Issue 6 957

ftruncate() System Interfaces

15199 NAME
15200 ftruncate — truncate a file to a specified length

15201 SYNOPSIS
15202 #include <unistd.h>

15203 int ftruncate(int fildes , off_t length); |

15204 DESCRIPTION |
15205 If fildes is not a valid file descriptor open for writing, the ftruncate() function shall fail.

15206 If fildes refers to a regular file, the ftruncate() function shall cause the size of the file to be
15207 truncated to length . If the size of the file previously exceeded length , the extra data shall no
15208 longer be available to reads on the file. If the file previously was smaller than this size,
15209 XSI ftruncate() shall either increase the size of the file or fail. XSI-conformant systems shall increase |
15210 the size of the file. If the file size is increased, the extended area shall appear as if it were zero- |
15211 filled. The value of the seek pointer shall not be modified by a call to ftruncate(). |

15212 Upon successful completion, if fildes refers to a regular file, the ftruncate() function shall mark
15213 for update the st_ctime and st_mtime fields of the file and the S_ISUID and S_ISGID bits of the file
15214 mode may be cleared. If the ftruncate() function is unsuccessful, the file is unaffected.

15215 XSI If the request would cause the file size to exceed the soft file size limit for the process, the
15216 request shall fail and the implementation shall generate the SIGXFSZ signal for the process.

15217 If fildes refers to a directory, ftruncate() shall fail.

15218 If fildes refers to any other file type, except a shared memory object, the result is unspecified.

15219 SHM If fildes refers to a shared memory object, ftruncate() shall set the size of the shared memory |
15220 object to length . |

15221 MF|SHM If the effect of ftruncate() is to decrease the size of a shared memory object or memory mapped |
15222 file and whole pages beyond the new end were previously mapped, then the whole pages
15223 beyond the new end shall be discarded.

15224 MPR If the Memory Protection option is supported, references to discarded pages shall result in the
15225 generation of a SIGBUS signal; otherwise, the result of such references is undefined.

15226 MF|SHM If the effect of ftruncate() is to increase the size of a shared memory object, it is unspecified if the |
15227 contents of any mapped pages between the old end-of-file and the new are flushed to the
15228 underlying object.

15229 RETURN VALUE
15230 Upon successful completion, ftruncate() shall return 0; otherwise, −1 shall be returned and errno
15231 set to indicate the error.

15232 ERRORS
15233 The ftruncate() function shall fail if:

15234 [EINTR] A signal was caught during execution. |

15235 [EINVAL] The length argument was less than 0. |

15236 [EFBIG] or [EINVAL] |
15237 The length argument was greater than the maximum file size.

15238 XSI [EFBIG] The file is a regular file and length is greater than the offset maximum
15239 established in the open file description associated with fildes .

15240 [EIO] An I/O error occurred while reading from or writing to a file system. |

958 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftruncate()

15241 [EBADF] or [EINVAL] |
15242 The fildes argument is not a file descriptor open for writing.

15243 [EINVAL] The fildes argument references a file that was opened without write |
15244 permission.

15245 [EROFS] The named file resides on a read-only file system. |

15246 EXAMPLES
15247 None.

15248 APPLICATION USAGE
15249 None.

15250 RATIONALE
15251 The ftruncate() function is part of IEEE Std. 1003.1-200x as it was deemed to be more useful than |
15252 truncate(). The truncate() function is provided as an XSI extension.

15253 FUTURE DIRECTIONS
15254 None.

15255 SEE ALSO
15256 open(), truncate(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

15257 CHANGE HISTORY
15258 First released in Issue 4, Version 2.

15259 Issue 5
15260 Moved from X/OPEN UNIX extension to BASE and aligned with ftruncate() in the POSIX
15261 Realtime Extension. Specifically, the DESCRIPTION is extensively reworded and [EROFS] is
15262 added to the list of mandatory errors that can be returned by ftruncate().

15263 Large File Summit extensions are added.

15264 Issue 6
15265 The truncate() function has been split out into a separate reference page.

15266 The following new requirements on POSIX implementations derive from alignment with the |
15267 Single UNIX Specification:

15268 • The DESCRIPTION is change to indicate that if the file size is changed, and if the file is a
15269 regular file, the S_ISUID and S_ISGID bits in the file mode may be cleared.

15270 The following changes were made to align with the IEEE P1003.1a draft standard:

15271 • The DESCRIPTION text is updated.

15272 XSI-conformant systems are required to increase the size of the file if the file was previously |
15273 smaller than the size requested. |

System Interfaces, Issue 6 959

ftrylockfile() System Interfaces

15274 NAME
15275 ftrylockfile — stdio locking functions

15276 SYNOPSIS
15277 TSF #include <stdio.h>

15278 int ftrylockfile(FILE * file);
15279

15280 DESCRIPTION
15281 Refer to flockfile ().

960 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftw()

15282 NAME
15283 ftw — traverse (walk) a file tree

15284 SYNOPSIS
15285 XSI #include <ftw.h>

15286 int ftw(const char * path , int (* fn)(const char *,
15287 const struct stat * ptr , int flag), int ndirs);
15288

15289 DESCRIPTION
15290 The ftw() function recursively descends the directory hierarchy rooted in path . For each object in
15291 the hierarchy, ftw() shall call the function pointed to by fn , passing it a pointer to a null-
15292 terminated character string containing the name of the object, a pointer to a stat structure
15293 containing information about the object, and an integer. Possible values of the integer, defined
15294 in the <ftw.h> header, are:

15295 FTW_D For a directory.

15296 FTW_DNR For a directory that cannot be read.

15297 FTW_F For a file.

15298 FTW_SL For a symbolic link (but see also FTW_NS below).

15299 FTW_NS For an object other than a symbolic link on which stat() could not successfully be
15300 executed. If the object is a symbolic link and stat() failed, it is unspecified whether
15301 ftw() passes FTW_SL or FTW_NS to the user-supplied function.

15302 If the integer is FTW_DNR, descendants of that directory shall not be processed. If the integer is
15303 FTW_NS, the stat structure contains undefined values. An example of an object that would
15304 cause FTW_NS to be passed to the function pointed to by fn would be a file in a directory with
15305 read but without execute (search) permission.

15306 The ftw() function shall visit a directory before visiting any of its descendants.

15307 The ftw() function shall use at most one file descriptor for each level in the tree.

15308 The argument ndirs should be in the range of 1 to {OPEN_MAX}.

15309 The tree traversal shall continue until the tree is exhausted, an invocation of fn returns a non-
15310 zero value, or some error, other than [EACCES], is detected within ftw().

15311 The ndirs argument shall specify the maximum number of directory streams or file descriptors
15312 or both available for use by ftw() while traversing the tree. When ftw() returns it shall close any
15313 directory streams and file descriptors it uses not counting any opened by the application-
15314 supplied fn function.

15315 RETURN VALUE
15316 If the tree is exhausted, ftw() shall return 0. If the function pointed to by fn returns a non-zero
15317 value, ftw() shall stop its tree traversal and return whatever value was returned by the function
15318 pointed to by fn . If ftw() detects an error, it shall return −1 and set errno to indicate the error.

15319 If ftw() encounters an error other than [EACCES] (see FTW_DNR and FTW_NS above), it shall
15320 return −1 and set errno to indicate the error. The external variable errno may contain any error
15321 value that is possible when a directory is opened or when one of the stat functions is executed on
15322 a directory or file.

System Interfaces, Issue 6 961

ftw() System Interfaces

15323 ERRORS
15324 The ftw() function shall fail if:

15325 [EACCES] Search permission is denied for any component of path or read permission is |
15326 denied for path .

15327 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
15328 argument. |

15329 [ENAMETOOLONG] |
15330 The length of the path argument exceeds {PATH_MAX} or a path name |
15331 component is longer than {NAME_MAX}. |

15332 [ENOENT] A component of path does not name an existing file or path is an empty string. |

15333 [ENOTDIR] A component of path is not a directory. |

15334 The ftw() function may fail if:

15335 [EINVAL] The value of the ndirs argument is invalid. |

15336 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
15337 resolution of the path argument. |

15338 [ENAMETOOLONG] |
15339 Path name resolution of a symbolic link produced an intermediate result
15340 whose length exceeds {PATH_MAX}.

15341 In addition, if the function pointed to by fn encounters system errors, errno may be set
15342 accordingly.

15343 EXAMPLES

15344 Walking a Directory Structure

15345 The following example walks the current directory structure, calling the fn function for every |
15346 directory entry, using at most 10 file descriptors: |

15347 #include <ftw.h>
15348 ...
15349 if (ftw(".", fn, 10) != 0) {
15350 perror("ftw"); exit(2);
15351 }

15352 APPLICATION USAGE
15353 The ftw() function may allocate dynamic storage during its operation. If ftw() is forcibly
15354 terminated, such as by longjmp() or siglongjmp () being executed by the function pointed to by fn
15355 or an interrupt routine, ftw() does not have a chance to free that storage, so it remains
15356 permanently allocated. A safe way to handle interrupts is to store the fact that an interrupt has
15357 occurred, and arrange to have the function pointed to by fn return a non-zero value at its next
15358 invocation.

15359 RATIONALE
15360 None.

15361 FUTURE DIRECTIONS
15362 None.

962 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ftw()

15363 SEE ALSO
15364 longjmp(), lstat(), malloc (), nftw(), opendir(), siglongjmp (), stat(), the Base Definitions volume of |
15365 IEEE Std. 1003.1-200x, <ftw.h>, <sys/stat.h> |

15366 CHANGE HISTORY
15367 First released in Issue 1. Derived from Issue 1 of the SVID. |

15368 Issue 4
15369 The type of argument path is changed from char* to const char*. The argument list for fn has
15370 also been defined.

15371 In the DESCRIPTION, the words ‘‘other than [EACCES]’’ are added to the paragraph describing
15372 termination conditions for tree traversal.

15373 The following change is incorporated for alignment with the FIPS requirements:

15374 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
15375 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
15376 an extension.

15377 Issue 4, Version 2
15378 The following changes are incorporated for X/OPEN UNIX conformance:

15379 • The DESCRIPTION is updated to describe the use of the FTW_SL and FTW_NS values for a
15380 symbolic link.

15381 • The DESCRIPTION states that ftw() uses at most one file descriptor for each level in the tree.

15382 • The DESCRIPTION constrains ndirs to the range from 1 to {OPEN_MAX}.

15383 • The RETURN VALUE section is updated to describe the case where ftw() encounters an error
15384 other than [EACCES].

15385 • In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
15386 excessive length of an intermediate result of path name resolution of a symbolic link.

15387 Issue 5
15388 UX codings in the DESCRIPTION, RETURN VALUE, and ERRORS sections have been changed
15389 to EX.

15390 Issue 6
15391 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

15392 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
15393 This is since behavior may vary from one file system to another.

15394 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
15395 [ELOOP] error condition is added. |

System Interfaces, Issue 6 963

funlockfile() System Interfaces

15396 NAME
15397 funlockfile — stdio locking functions

15398 SYNOPSIS
15399 TSF #include <stdio.h>

15400 void funlockfile(FILE * file);
15401

15402 DESCRIPTION
15403 Refer to flockfile ().

964 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwide()

15404 NAME
15405 fwide — set stream orientation

15406 SYNOPSIS
15407 #include <stdio.h>
15408 #include <wchar.h>

15409 int fwide(FILE * stream , int mode);

15410 DESCRIPTION
15411 CX The functionality described on this reference page is aligned with the ISO C standard. Any
15412 conflict between the requirements described here and the ISO C standard is unintentional. This
15413 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

15414 The fwide() function shall determine the orientation of the stream pointed to by stream. If mode is
15415 greater than zero, the function first attempts to make the stream wide-oriented. If mode is less
15416 than zero, the function first attempts to make the stream byte-oriented. Otherwise, mode is zero
15417 and the function does not alter the orientation of the stream.

15418 If the orientation of the stream has already been determined, fwide() shall not change it.

15419 Because no return value is reserved to indicate an error, an application wishing to check for error
15420 situations should set errno to 0, then call fwide(), then check errno, and if it is non-zero, assume
15421 an error has occurred.

15422 RETURN VALUE
15423 The fwide() function shall return a value greater than zero if, after the call, the stream has wide-
15424 orientation, a value less than zero if the stream has byte-orientation, or zero if the stream has no
15425 orientation.

15426 ERRORS
15427 The fwide() function may fail if:

15428 CX [EBADF] The stream argument is not a valid stream. |

15429 EXAMPLES
15430 None.

15431 APPLICATION USAGE
15432 A call to fwide() with mode set to zero can be used to determine the current orientation of a
15433 stream.

15434 RATIONALE
15435 None.

15436 FUTURE DIRECTIONS
15437 None.

15438 SEE ALSO
15439 The Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

15440 CHANGE HISTORY
15441 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
15442 (E).

15443 Issue 6
15444 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 965

fwprintf() System Interfaces

15445 NAME
15446 fwprintf, swprintf, wprintf — print formatted wide-character output

15447 SYNOPSIS
15448 #include <stdio.h>
15449 #include <wchar.h>

15450 int fwprintf(FILE *restrict stream , const wchar_t *restrict format , ...);|
15451 int swprintf(wchar_t *restrict ws, size_t n, const wchar_t *restrict format , ...);|
15452 int wprintf(const wchar_t *restrict format , ...); |

15453 DESCRIPTION |
15454 CX The functionality described on this reference page is aligned with the ISO C standard. Any
15455 conflict between the requirements described here and the ISO C standard is unintentional. This
15456 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

15457 The fwprintf() function places output on the named output stream. The wprintf() function places
15458 output on the standard output stream stdout . The swprintf() function places output followed by
15459 the null wide character in consecutive wide characters starting at *ws; no more than n wide |
15460 characters are written, including a terminating null wide character, which is always added
15461 (unless n is zero).

15462 Each of these functions converts, formats, and prints its arguments under control of the format
15463 wide-character string. The format is composed of zero or more directives: ordinary wide-
15464 characters , which are simply copied to the output stream, and conversion specifications, each of
15465 which results in the fetching of zero or more arguments. The results are undefined if there are
15466 insufficient arguments for the format . If the format is exhausted while arguments remain, the
15467 excess arguments are evaluated but are otherwise ignored.

15468 XSI Conversions can be applied to the nth argument after the format in the argument list, rather than
15469 to the next unused argument. In this case, the conversion wide character ’%’ (see below) is
15470 replaced by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}],
15471 giving the position of the argument in the argument list. This feature provides for the definition
15472 of format wide-character strings that select arguments in an order appropriate to specific
15473 languages (see the EXAMPLES section).

15474 In format wide-character strings containing the "%n$" form of conversion specifications,
15475 numbered arguments in the argument list can be referenced from the format wide-character
15476 string as many times as required.

15477 In format wide-character strings containing the ’%’ form of conversion specifications, each
15478 argument in the argument list is used exactly once.

15479 All forms of the fwprintf() function allow for the insertion of a locale-dependent radix character |
15480 in the output string, output as a wide-character value. The radix character is defined in the
15481 program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the radix
15482 character is not defined, the radix character defaults to a period (’.’).

15483 XSI Each conversion specification is introduced by the ’%’ wide character or by the wide-character
15484 sequence "%n$" ,after which the following appear in sequence:

15485 • Zero or more flags (in any order), which modify the meaning of the conversion specification.

15486 • An optional minimum field width . If the converted value has fewer wide characters than the
15487 field width, it shall be padded with spaces by default on the left; it shall be padded on the
15488 right, if the left-adjustment flag (’ −’), described below, is given to the field width. The field
15489 width takes the form of an asterisk (’*’), described below, or a decimal integer.

966 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwprintf()

15490 • An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x,
15491 and X conversions; the number of digits to appear after the radix character for the e, E, and f
15492 conversions; the maximum number of significant digits for the g and G conversions; or the
15493 maximum number of wide characters to be printed from a string in s conversions. The
15494 precision takes the form of a period (’.’) followed either by an asterisk (’*’), described
15495 below, or an optional decimal digit string, where a null digit string is treated as 0. If a
15496 precision appears with any other conversion wide character, the behavior is undefined.

15497 • An optional length modifier that specifies the size of the argument. |

15498 • A conversion wide character that indicates the type of conversion to be applied.

15499 A field width, or precision, or both, may be indicated by an asterisk (’*’). In this case an
15500 argument of type int supplies the field width or precision. The application shall ensure that
15501 arguments specifying field width, or precision, or both appear in that order before the argument,
15502 if any, to be converted. A negative field width is taken as a ’ −’ flag followed by a positive field
15503 XSI width. A negative precision is taken as if the precision were omitted. In format wide-character
15504 strings containing the "%n$" form of a conversion specification, a field width or precision may
15505 be indicated by the sequence "*m$" , where m is a decimal integer in the range
15506 [1,{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
15507 integer argument containing the field width or precision, for example:

15508 wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

15509 The format can contain either numbered argument specifications (that is, "%n$" and "*m$"), or
15510 unnumbered argument specifications (that is, ’%’ and ’*’), but normally not both. The only
15511 exception to this is that "%%" can be mixed with the "%n$" form. The results of mixing
15512 numbered and unnumbered argument specifications in a format wide-character string are
15513 undefined. When numbered argument specifications are used, specifying the Nth argument
15514 requires that all the leading arguments, from the first to the (N−1)th, are specified in the format
15515 wide-character string.

15516 The flag wide characters and their meanings are:

15517 XSI ’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g, or %G)
15518 shall be formatted with thousands’ grouping wide characters. For other conversions,
15519 the behavior is undefined. The numeric grouping wide character is used. |

15520 − The result of the conversion shall be left-justified within the field. The conversion shall
15521 be right-justified if this flag is not specified.

15522 + The result of a signed conversion shall always begin with a sign (’+’ or ’ −’). The
15523 conversion shall begin with a sign only when a negative value is converted if this flag is
15524 not specified.

15525 <space> If the first wide character of a signed conversion is not a sign, or if a signed conversion
15526 results in no wide characters, a space shall be prefixed to the result. This means that if
15527 the <space> and ’+’ flags both appear, the space flag shall be ignored.

15528 # This flag specifies that the value is to be converted to an alternative form. For o
15529 conversion, it increases the precision (if necessary) to force the first digit of the result to
15530 be 0. For x or X conversions, a non-zero result ahsll have 0x (or 0X) prefixed to it. For e,
15531 E, f, g, or G conversions, the result shall always contain a radix character, even if no
15532 digits follow it. Without this flag, a radix character appears in the result of these
15533 conversions only if a digit follows it. For g and G conversions, trailing zeros shall not be
15534 removed from the result as they normally are. For other conversions, the behavior is
15535 undefined.

System Interfaces, Issue 6 967

fwprintf() System Interfaces

15536 0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following any indication of
15537 sign or base) are used to pad to the field width; no space padding is performed. If the 0
15538 and ’ −’ flags both appear, the 0 flag shall be ignored. For d, i, o, u, x, and X
15539 conversions, if a precision is specified, the 0 flag shall be ignored. If the 0 and ’’’ flags
15540 both appear, the grouping wide characters are inserted before zero padding. For other
15541 conversions, the behavior is undefined.

15542 The length modifiers and their meanings are: |

15543 hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char |
15544 or unsigned char argument (the argument will have been promoted according to the |
15545 integer promotions, but its value shall be converted to signed char or unsigned char |
15546 before printing); or that a following n conversion specifier applies to a pointer to a |
15547 signed char argument. |

15548 h Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short or |
15549 unsigned short argument (the argument will have been promoted according to the |
15550 integer promotions, but its value shall be converted to short or unsigned short before |
15551 printing); or that a following n conversion specifier applies to a pointer to a short |
15552 argument. |

15553 l (ell) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long or |
15554 unsigned long argument; that a following n conversion specifier applies to a pointer to |
15555 a long argument; that a following c conversion specifier applies to a wint_t argument; |
15556 that a following s conversion specifier applies to a pointer to a wchar_t argument; or |
15557 has no effect on a following a, A, e, E, f, F, g, or G conversion specifier. |

15558 ll (ell-ell)Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long or |
15559 unsigned long long argument; or that a following n conversion specifier applies to a |
15560 pointer to a long long argument. |

15561 j Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t or |
15562 uintmax_t argument; or that a following n conversion specifier applies to a pointer to |
15563 an intmax_t argument. |

15564 z Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or the |
15565 corresponding signed integer type argument; or that a following n conversion specifier |
15566 applies to a pointer to a signed integer type corresponding to size_t argument. |

15567 t Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t or |
15568 the corresponding unsigned type argument; or that a following n conversion specifier |
15569 applies to a pointer to a ptrdiff_t argument. |

15570 L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long |
15571 double argument. |

15572 If a length modifier appears with any conversion specifier other than as specified above, the |
15573 behavior is undefined. |

15574 The conversion wide characters and their meanings are: |

15575 d, i The int argument is converted to a signed decimal in the style [−]dddd. The precision
15576 specifies the minimum number of digits to appear; if the value being converted can be
15577 represented in fewer digits, it shall be expanded with leading zeros. The default
15578 precision is 1. The result of converting 0 with an explicit precision of 0 is no wide
15579 characters.

15580 o The unsigned argument is converted to unsigned octal format in the style dddd. The |
15581 precision specifies the minimum number of digits to appear; if the value being

968 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwprintf()

15582 converted can be represented in fewer digits, it shall be expanded with leading zeros.
15583 The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
15584 wide characters.

15585 u The unsigned argument is converted to unsigned decimal format in the style dddd. The |
15586 precision specifies the minimum number of digits to appear; if the value being
15587 converted can be represented in fewer digits, it shall be expanded with leading zeros.
15588 The default precision is 1. The result of converting 0 with an explicit precision of 0 is no
15589 wide characters.

15590 x The unsigned argument is converted to unsigned hexadecimal format in the style dddd; |
15591 the letters "abcdef" are used. The precision specifies the minimum number of digits
15592 to appear; if the value being converted can be represented in fewer digits, it shall be
15593 expanded with leading zeros. The default precision is 1. The result of converting 0 with
15594 an explicit precision of 0 is no wide characters.

15595 X Behaves the same as the x conversion wide character except that letters "ABCDEF" are
15596 used instead of "abcdef" . |

15597 f, F The double argument is converted to decimal notation in the style [−]ddd.ddd, where |
15598 the number of digits after the radix character is equal to the precision specification. If
15599 the precision is missing, it is taken as 6; if the precision is explicitly 0 and no ’#’ flag is
15600 present, no radix character appears. If a radix character appears, at least one digit
15601 appears before it. The value is rounded to the appropriate number of digits.

15602 A double argument representing an infinity is converted in one of the styles [−]inf or |
15603 [−]infinity; which style is implementation-defined. A double argument representing a |
15604 NaN is converted in one of the styles [−]nan or [−]nan(n-char-sequence); which style, and |
15605 the meaning of any n-char-sequence, is implementation-defined. The F conversion |
15606 specifier produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively. |

15607 e, E The double argument is converted in the style [−]d.ddde±dd, where there is one digit |
15608 before the radix character (which is non-zero if the argument is non-zero) and the
15609 number of digits after it is equal to the precision; if the precision is missing, it is taken
15610 as 6; if the precision is 0 and no ’#’ flag is present, no radix character appears. The
15611 value is rounded to the appropriate number of digits. The E conversion wide character
15612 shall produce a number with E instead of e introducing the exponent. The exponent
15613 always contains at least two digits. If the value is 0, the exponent is 0.

15614 A double argument representing an infinity or NaN is converted in the style of an f or F |
15615 conversion specifier. |

15616 g, G The double argument is converted in the style f or e (or in the style E in the case of a G |
15617 conversion wide character), with the precision specifying the number of significant
15618 digits. If an explicit precision is 0, it is taken as 1. The style used depends on the value
15619 converted; style e (or E) shall be used only if the exponent resulting from such a
15620 conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
15621 removed from the fractional portion of the result; a radix character appears only if it is
15622 followed by a digit.

15623 A double argument representing an infinity or NaN is converted in the style of an f or F |
15624 conversion specifier. |

15625 a, A A double argument representing a floating-point number is converted in the style |
15626 [−]0xh.hhhh p1d, where there is one hexadecimal digit (which is non-zero if the |
15627 argument is a normalized floating-point number and is otherwise unspecified) before |
15628 the decimal-point character 235) and the number of hexadecimal digits after it is equal |

System Interfaces, Issue 6 969

fwprintf() System Interfaces

15629 to the precision; if the precision is missing and FLT_RADIX is a power of 2, then the |
15630 precision is sufficient for an exact representation of the value; if the precision is missing |
15631 and FLT_RADIX is not a power of 2, then the precision is sufficient to distinguish 236) |
15632 values of type double, except that trailing zeros may be omitted; if the precision is zero |
15633 and the ’#’ flag is not specified, no decimal-point character appears. The letters |
15634 "abcdef" are used for a conversion and the letters "ABCDEF" for A conversion. The A |
15635 conversion specifier produces a number with ’X’ and ’P’ instead of ’x’ and ’p’ . |
15636 The exponent always contains at least one digit, and only as many more digits as |
15637 necessary to represent the decimal exponent of 2. If the value is zero, the exponent is |
15638 zero. |

15639 A double argument representing an infinity or NaN is converted in the style of an f or F |
15640 conversion specifier. |

15641 c If no l (ell) qualifier is present, the int argument is converted to a wide character as if by
15642 calling the btowc() function and the resulting wide character is written. Otherwise, the
15643 wint_t argument is converted to wchar_t, and written.

15644 s If no l (ell) qualifier is present, the application shall ensure that the argument is a
15645 pointer to a character array containing a character sequence beginning in the initial
15646 shift state. Characters from the array are converted as if by repeated calls to the
15647 mbrtowc() function, with the conversion state described by an mbstate_t object
15648 initialized to zero before the first character is converted, and written up to (but not
15649 including) the terminating null wide character. If the precision is specified, no more
15650 than that many wide characters are written. If the precision is not specified, or is
15651 greater than the size of the array, the application shall ensure that the array contains a
15652 null wide character.

15653 If an l (ell) qualifier is present, the application shall ensure that the argument is a
15654 pointer to an array of type wchar_t. Wide characters from the array are written up to
15655 (but not including) a terminating null wide character. If no precision is specified, or is
15656 greater than the size of the array, the application shall ensure that the array contains a
15657 null wide character. If a precision is specified, no more than that many wide characters
15658 are written.

15659 p The application shall ensure that the argument is a pointer to void. The value of the
15660 pointer is converted to a sequence of printable wide characters, in an implementation- |
15661 defined manner. |

15662 n The application shall ensure that the argument is a pointer to an integer into which is
15663 written the number of wide characters written to the output so far by this call to one of
15664 the fwprintf() functions. No argument is converted, but one is consumed. If the |
15665 conversion specification includes any flags, a field width, or a precision, the behavior is |
15666 undefined. |

15667 XSI C Same as lc.

15668 XSI S Same as ls.

15669 % Output a ’%’ wide character; no argument is converted. The entire conversion
15670 specification shall be "%%".

15671 If a conversion specification does not match one of the above forms, the behavior is undefined.

15672 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
15673 conversion is wider than the field width, the field is simply expanded to contain the conversion
15674 result. Characters generated by fwprintf() and wprintf() are printed as if fputwc() had been
15675 called.

970 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwprintf()

15676 For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a |
15677 hexadecimal floating number with the given precision. |

15678 If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers in |
15679 hexadecimal floating style with the given precision, with the extra stipulation that the error |
15680 should have a correct sign for the current rounding direction. |

15681 For e, E, f, F, g, and G conversions, if the number of significant decimal digits is at most |
15682 DECIMAL_DIG, then the result should be correctly rounded. If the number of significant |
15683 decimal digits is more than DECIMAL_DIG but the source value is exactly representable with |
15684 DECIMAL_DIG digits, then the result should be an exact representation with trailing zeros. |
15685 Otherwise, the source value is bounded by two adjacent decimal strings "L < U" , both having |
15686 DECIMAL_DIG significant digits; the value of the resultant decimal string "D" should satisfy "L |
15687 <= D <= U", with the extra stipulation that the error should have a correct sign for the current |
15688 rounding direction. |

15689 CX The st_ctime and st_mtime fields of the file shall be marked for update between the call to a |
15690 successful execution of fwprintf() or wprintf() and the next successful completion of a call to
15691 fflush() or fclose() on the same stream, or a call to exit() or abort().

15692 RETURN VALUE
15693 Upon successful completion, these functions shall return the number of wide characters
15694 transmitted, excluding the terminating null wide character in the case of swprintf(), or a negative
15695 CX value if an output error was encountered, and set errno to indicate the error.

15696 If n or more wide characters were requested to be written, swprintf() shall return a negative
15697 CX value, and set errno to indicate the error.

15698 ERRORS
15699 For the conditions under which fwprintf() and wprintf() fail and may fail, refer to fputwc().

15700 In addition, all forms of fwprintf() may fail if:

15701 XSI [EILSEQ] A wide-character code that does not correspond to a valid character has been |
15702 detected.

15703 XSI [EINVAL] There are insufficient arguments. |

15704 In addition, wprintf() and fwprintf() may fail if:

15705 XSI [ENOMEM] Insufficient storage space is available. |

15706 EXAMPLES
15707 To print the language-independent date and time format, the following statement could be used:

15708 wprintf(format, weekday, month, day, hour, min);

15709 For American usage, format could be a pointer to the wide-character string:

15710 L"%s, %s %d, %d:%.2d\n"

15711 producing the message:

15712 Sunday, July 3, 10:02

15713 whereas for German usage, format could be a pointer to the wide-character string:

15714 L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

15715 producing the message:

15716 Sonntag, 3. Juli, 10:02

System Interfaces, Issue 6 971

fwprintf() System Interfaces

15717 APPLICATION USAGE
15718 None.

15719 RATIONALE
15720 None.

15721 FUTURE DIRECTIONS
15722 None.

15723 SEE ALSO
15724 btowc(), fputwc(), fwscanf(), mbrtowc(), setlocale (), the Base Definitions volume of |
15725 IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h>, the Base Definitions volume of |
15726 IEEE Std. 1003.1-200x, Chapter 7, Locale |

15727 CHANGE HISTORY
15728 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
15729 (E).

15730 Issue 6
15731 The Open Group corrigenda item U040/1 has been applied to the RETURN VALUE section,
15732 describing the case if n or more wide characters are requested to be written using swprintf().

15733 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

15734 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

15735 • The prototypes for fwprintf(), swprintf(), and wprintf() are updated. |

15736 • The DESCRIPTION is updated. |
|

972 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwrite()

15737 NAME
15738 fwrite — binary output

15739 SYNOPSIS
15740 #include <stdio.h>

15741 size_t fwrite(const void *restrict ptr , size_t size , size_t nitems , |
15742 FILE *restrict stream); |

15743 DESCRIPTION |
15744 CX The functionality described on this reference page is aligned with the ISO C standard. Any
15745 conflict between the requirements described here and the ISO C standard is unintentional. This
15746 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

15747 The fwrite() function shall write, from the array pointed to by ptr, up to nitems members whose
15748 size is specified by size , to the stream pointed to by stream. For each object, size calls are made to |
15749 the fputc() function, taking the values (in order) from an array of unsigned char exactly |
15750 overlaying the object. The file-position indicator for the stream (if defined) shall be advanced by |
15751 the number of bytes successfully written. If an error occurs, the resulting value of the file- |
15752 position indicator for the stream is indeterminate. |

15753 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
15754 execution of fwrite() and the next successful completion of a call to fflush() or fclose() on the
15755 same stream, or a call to exit() or abort().

15756 RETURN VALUE
15757 The fwrite() function shall return the number of members successfully written, which may be
15758 less than nitems if a write error is encountered. If size or nitems is 0, fwrite() shall return 0 and the
15759 state of the stream remains unchanged. Otherwise, if a write error occurs, the error indicator for
15760 CX the stream shall be set, and errno shall be set to indicate the error.

15761 ERRORS
15762 Refer to fputc().

15763 EXAMPLES
15764 None.

15765 APPLICATION USAGE
15766 Because of possible differences in member length and byte ordering, files written using fwrite()
15767 are application-dependent, and possibly cannot be read using fread() by a different application
15768 or by the same application on a different processor.

15769 RATIONALE
15770 None.

15771 FUTURE DIRECTIONS
15772 None.

15773 SEE ALSO
15774 ferror(), fopen(), printf(), putc(), puts(), write(), the Base Definitions volume of |
15775 IEEE Std. 1003.1-200x, <stdio.h> |

15776 CHANGE HISTORY
15777 First released in Issue 1. Derived from Issue 1 of the SVID. |

15778 Issue 4
15779 In the DESCRIPTION, the text is changed to make it clear that the function advances the file-
15780 position indicator by the number of bytes successfully written rather than the number of
15781 characters, which could include multi-byte sequences.

System Interfaces, Issue 6 973

fwrite() System Interfaces

15782 The following change is incorporated for alignment with the ISO C standard:

15783 • The type of argument ptr is changed from void* to const void*.

15784 Issue 6
15785 Extensions beyond the ISO C standard are now marked. |

15786 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

15787 • The fwrite() prototype is updated. |

15788 • The DESCRIPTION is updated to clarify how the data is written out using fputc(). |
|

974 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwscanf()

15789 NAME
15790 fwscanf, swscanf, wscanf — convert formatted wide-character input

15791 SYNOPSIS
15792 #include <stdio.h>
15793 #include <wchar.h>

15794 int fwscanf(FILE *restrict stream , const wchar_t *restrict format , ...);|
15795 int swscanf(const wchar_t *restrict ws, |
15796 const wchar_t *restrict format , ...); |
15797 int wscanf(const wchar_t * format , ...); |

15798 DESCRIPTION
15799 CX The functionality described on this reference page is aligned with the ISO C standard. Any
15800 conflict between the requirements described here and the ISO C standard is unintentional. This
15801 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

15802 The fwscanf() function reads from the named input stream. The wscanf() function reads from the
15803 standard input stream stdin . The swscanf() function reads from the wide-character string ws. |
15804 Each function reads wide characters, interprets them according to a format, and stores the
15805 results in its arguments. Each expects, as arguments, a control wide-character string format
15806 described below, and a set of pointer arguments indicating where the converted input should be
15807 stored. The result is undefined if there are insufficient arguments for the format. If the format is
15808 exhausted while arguments remain, the excess arguments are evaluated but are otherwise
15809 ignored.

15810 XSI Conversions can be applied to the nth argument after the format in the argument list, rather than
15811 to the next unused argument. In this case, the conversion wide character ’%’ (see below) is
15812 replaced by the sequence "%n$" , where n is a decimal integer in the range [1,{NL_ARGMAX}].
15813 This feature provides for the definition of format wide-character strings that select arguments in
15814 an order appropriate to specific languages. In format wide-character strings containing the
15815 "%n$" form of conversion specifications, it is unspecified whether numbered arguments in the
15816 argument list can be referenced from the format wide-character string more than once.

15817 The format can contain either form of a conversion specification—that is, ’%’ or "%n$" —but the
15818 two forms cannot normally be mixed within a single format wide-character string. The only
15819 exception to this is that "%%" or "%*" can be mixed with the "%n$" form.

15820 The fwscanf() function in all its forms allows for detection of a language-dependent radix
15821 character in the input string, encoded as a wide-character value. The radix character is defined in
15822 the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the
15823 radix character is not defined, the radix character defaults to a period (’.’).

15824 The format is a wide-character string composed of zero or more directives. Each directive is
15825 composed of one of the following: one or more white-space wide characters (<space>, <tab>,
15826 <newline>, <vertical-tab>, or <form-feed> characters); an ordinary wide character (neither ’%’
15827 nor a white-space character); or a conversion specification. Each conversion specification is
15828 XSI introduced by a ’%’ or the sequence "%n$" after which the following appear in sequence:

15829 • An optional assignment-suppressing character ’*’ .

15830 • An optional non-zero decimal integer that specifies the maximum field width.

15831 • An optional length modifier that specifies the size of the receiving object. |

15832 • A conversion wide character that specifies the type of conversion to be applied. The valid
15833 conversion wide characters are described below.

System Interfaces, Issue 6 975

fwscanf() System Interfaces

15834 The fwscanf() functions execute each directive of the format in turn. If a directive fails, as
15835 detailed below, the function shall return. Failures are described as input failures (due to the
15836 unavailability of input bytes) or matching failures (due to inappropriate input).

15837 A directive composed of one or more white-space wide characters is executed by reading input
15838 until no more valid input can be read, or up to the first wide character which is not a white-
15839 space wide character, which remains unread.

15840 A directive that is an ordinary wide character is executed as follows. The next wide character is
15841 read from the input and compared with the wide character that comprises the directive; if the
15842 comparison shows that they are not equivalent, the directive fails, and the differing and |
15843 subsequent wide characters remain unread. Similarly, if end-of-file, an encoding error, or a read |
15844 error prevents a wide character from being read, the directive fails. |

15845 A directive that is a conversion specification defines a set of matching input sequences, as
15846 described below for each conversion wide character. A conversion specification is executed in
15847 the following steps.

15848 Input white-space wide characters (as specified by iswspace()) are skipped, unless the conversion
15849 specification includes a ’[’ , c, or n conversion character.

15850 An item is read from the input, unless the conversion specification includes an n conversion
15851 wide character. An input item is defined as the longest sequence of input wide characters, not
15852 exceeding any specified field width, which is an initial subsequence of a matching sequence. The
15853 first wide character, if any, after the input item remains unread. If the length of the input item is
15854 0, the execution of the conversion specification fails; this condition is a matching failure, unless
15855 end-of-file, an encoding error, or a read error prevented input from the stream, in which case it is
15856 an input failure.

15857 Except in the case of a ’%’ conversion wide character, the input item (or, in the case of a %n
15858 conversion specification, the count of input wide characters) is converted to a type appropriate
15859 to the conversion wide character. If the input item is not a matching sequence, the execution of
15860 the conversion specification fails; this condition is a matching failure. Unless assignment
15861 suppression was indicated by a ’*’ , the result of the conversion is placed in the object pointed
15862 to by the first argument following the format argument that has not already received a
15863 XSI conversion result if the conversion specification is introduced by ’%’ , or in the nth argument if
15864 introduced by the wide-character sequence "%n$" . If this object does not have an appropriate
15865 type, or if the result of the conversion cannot be represented in the space provided, the behavior
15866 is undefined.

15867 The length modifiers and their meanings are: |

15868 hh Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15869 with type pointer to signed char or unsigned char. |

15870 h Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15871 with type pointer to short or unsigned short. |

15872 l (ell) Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15873 with type pointer to long or unsigned long; that a following a, A, e, E, f, F, g, or G |
15874 conversion specifier applies to an argument with type pointer to double; or that a |
15875 following c, s, or ’[’ conversion specifier applies to an argument with type pointer to |
15876 wchar_t. |

15877 ll (ell-ell)Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15878 with type pointer to long long or unsigned long long. |

976 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwscanf()

15879 j Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15880 with type pointer to intmax_t or uintmax_t. |

15881 z Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15882 with type pointer to size_t or the corresponding signed integer type. |

15883 t Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument |
15884 with type pointer to ptrdiff_t or the corresponding unsigned type. |

15885 L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to an |
15886 argument with type pointer to long double. |

15887 If a length modifier appears with any conversion specifier other than as specified above, the |
15888 behavior is undefined. |

15889 The following conversion wide characters are valid: |

15890 d Matches an optionally signed decimal integer, whose format is the same as expected for
15891 the subject sequence of wcstol() with the value 10 for the base argument. In the absence
15892 of a size modifier, the application shall ensure that the corresponding argument is a
15893 pointer to int.

15894 i Matches an optionally signed integer, whose format is the same as expected for the
15895 subject sequence of wcstol() with 0 for the base argument. In the absence of a size
15896 modifier, the application shall ensure that the corresponding argument is a pointer to
15897 int.

15898 o Matches an optionally signed octal integer, whose format is the same as expected for
15899 the subject sequence of wcstoul() with the value 8 for the base argument. In the absence
15900 of a size modifier, the application shall ensure that the corresponding argument is a
15901 pointer to unsigned. |

15902 u Matches an optionally signed decimal integer, whose format is the same as expected for
15903 the subject sequence of wcstoul() with the value 10 for the base argument. In the absence
15904 of a size modifier, the application shall ensure that the corresponding argument is a
15905 pointer to unsigned. |

15906 x Matches an optionally signed hexadecimal integer, whose format is the same as
15907 expected for the subject sequence of wcstoul() with the value 16 for the base argument.
15908 In the absence of a size modifier, the application shall ensure that the corresponding
15909 argument is a pointer to unsigned. |

15910 a, e, f, g Matches an optionally signed floating-point number, infinity, or NaN whose format is |
15911 the same as expected for the subject sequence of wcstod(). In the absence of a size |
15912 modifier, the application shall ensure that the corresponding argument is a pointer to
15913 float.

15914 If the fwprintf() family of functions generates character string representations for |
15915 infinity and NaN (a symbolic entity encoded in floating-point format) to support |
15916 IEEE Std. 754-1985, the fwscanf() family of functions shall recognize them as input. |

15917 s Matches a sequence of non white-space wide characters. If no l (ell) qualifier is present,
15918 characters from the input field are converted as if by repeated calls to the wcrtomb()
15919 function, with the conversion state described by an mbstate_t object initialized to zero
15920 before the first wide character is converted. The application shall ensure that the
15921 corresponding argument is a pointer to a character array large enough to accept the
15922 sequence and the terminating null character, which shall be added automatically.

System Interfaces, Issue 6 977

fwscanf() System Interfaces

15923 Otherwise, the application shall ensure that the corresponding argument is a pointer to
15924 an array of wchar_t large enough to accept the sequence and the terminating null wide
15925 character, which shall be added automatically.

15926 [Matches a non-empty sequence of wide characters from a set of expected wide
15927 characters (the scanset). If no l (ell) qualifier is present, wide characters from the input
15928 field are converted as if by repeated calls to the wcrtomb() function, with the conversion
15929 state described by an mbstate_t object initialized to zero before the first wide character
15930 is converted. The application shall ensure that the corresponding argument is a pointer
15931 to a character array large enough to accept the sequence and the terminating null
15932 character, which shall be added automatically.

15933 If an l (ell) qualifier is present, the application shall ensure that the corresponding
15934 argument is a pointer to an array of wchar_t large enough to accept the sequence and
15935 the terminating null wide character, which shall be added automatically.

15936 The conversion specification includes all subsequent wide characters in the format
15937 string up to and including the matching right square bracket (’]’). The wide
15938 characters between the square brackets (the scanlist) comprise the scanset, unless the
15939 wide character after the left square bracket is a circumflex (’ˆ’), in which case the
15940 scanset contains all wide characters that do not appear in the scanlist between the
15941 circumflex and the right square bracket. If the conversion specification begins with
15942 "[]" or "[ˆ]" , the right square bracket is included in the scanlist and the next right
15943 square bracket is the matching right square bracket that ends the conversion
15944 specification; otherwise, the first right square bracket is the one that ends the
15945 conversion specification. If a ’ −’ is in the scanlist and is not the first wide character,
15946 nor the second where the first wide character is a ’ˆ’ , nor the last wide character, the |
15947 behavior is implementation-defined. |

15948 c Matches a sequence of wide characters of exactly the number specified by the field |
15949 width (1 if no field width is present in the conversion specification). |

15950 If no l (ell) length modifier is present, characters from the input field are converted as if |
15951 by repeated calls to the wcrtomb() function, with the conversion state described by an |
15952 mbstate_t object initialized to zero before the first wide character is converted. The |
15953 corresponding argument shall be a pointer to the initial element of a character array |
15954 large enough to accept the sequence. No null character is added. |

15955 If an l (ell) length modifier is present, the corresponding argument shall be a pointer to |
15956 the initial element of an array of wchar_t large enough to accept the sequence. No null |
15957 wide character is added. |

15958 Otherwise, the application shall ensure that the corresponding argument is a pointer to |
15959 an array of wchar_t large enough to accept the sequence. No null wide character is
15960 added.

15961 p Matches an implementation-defined set of sequences, which shall be the same as the set |
15962 of sequences that is produced by the %p conversion of the corresponding fwprintf()
15963 functions. The application shall ensure that the corresponding argument is a pointer to
15964 a pointer to void. The interpretation of the input item is implementation-defined. If the |
15965 input item is a value converted earlier during the same program execution, the pointer
15966 that results shall compare equal to that value; otherwise, the behavior of the %p
15967 conversion is undefined.

15968 n No input is consumed. The application shall ensure that the corresponding argument is
15969 a pointer to the integer into which is to be written the number of wide characters read
15970 from the input so far by this call to the fwscanf() functions. Execution of a %n |

978 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces fwscanf()

15971 conversion specification does not increment the assignment count returned at the |
15972 completion of execution of the function. No argument is converted, but one is |
15973 consumed. If the conversion specification includes an assignment-suppressing wide |
15974 character or a field width, the behavior is undefined. |

15975 XSI C Same as lc.

15976 !S Same as ls.

15977 % Matches a single ’%’ ; no conversion or assignment occurs. The complete conversion
15978 specification shall be "%%".

15979 If a conversion specification is invalid, the behavior is undefined.

15980 The conversion characters A, E, F, G, and X are also valid and behave the same as, respectively, a, |
15981 e, f, g, and x. |

15982 If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
15983 any wide characters matching the current conversion specification (except for %n) have been
15984 read (other than leading white-space, where permitted), execution of the current conversion
15985 specification terminates with an input failure. Otherwise, unless execution of the current
15986 conversion specification is terminated with a matching failure, execution of the following
15987 conversion specification (if any) is terminated with an input failure.

15988 Reaching the end of the string in swscanf() is equivalent to encountering end-of-file for fwscanf().

15989 If conversion terminates on a conflicting input, the offending input is left unread in the input.
15990 Any trailing white space (including <newline>) is left unread unless matched by a conversion
15991 specification. The success of literal matches and suppressed assignments is only directly
15992 determinable via the %n conversion specification.

15993 The fwscanf() and wscanf() functions may mark the st_atime field of the file associated with
15994 stream for update. The st_atime field shall be marked for update by the first successful execution
15995 of fgetc(), fgetwc(), fgets(), fgetws(), fread(), getc(), getwc(), getchar(), getwchar(), gets(), fscanf(),
15996 or fwscanf() using stream that returns data not supplied by a prior call to ungetc().

15997 RETURN VALUE
15998 Upon successful completion, these functions shall return the number of successfully matched
15999 and assigned input items; this number can be 0 in the event of an early matching failure. If the
16000 input ends before the first matching failure or conversion, EOF shall be returned. If a read error
16001 CX occurs the error indicator for the stream is set, EOF shall be returned, and errno shall be set to
16002 indicate the error.

16003 ERRORS
16004 For the conditions under which the fwscanf() functions shall fail and may fail, refer to fgetwc().

16005 In addition, fwscanf() may fail if:

16006 XSI [EILSEQ] Input byte sequence does not form a valid character. |

16007 XSI [EINVAL] There are insufficient arguments. |

System Interfaces, Issue 6 979

fwscanf() System Interfaces

16008 EXAMPLES
16009 The call:

16010 int i, n; float x; char name[50];
16011 n = wscanf(L"%d%f%s", &i, &x, name);

16012 with the input line:

16013 25 54.32E −1 Hamster

16014 assigns to n the value 3, to i the value 25, to x the value 5.432, and name contains the string
16015 "Hamster" .

16016 The call:

16017 int i; float x; char name[50];
16018 (void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

16019 with input:

16020 56789 0123 56a72

16021 assigns 56 to i , 789.0 to x , skip 0123, and place the string "56\0" in name. The next call to
16022 getchar() shall return the character ’a’ .

16023 APPLICATION USAGE
16024 In format strings containing the ’%’ form of conversion specifications, each argument in the
16025 argument list is used exactly once.

16026 RATIONALE
16027 None.

16028 FUTURE DIRECTIONS
16029 None.

16030 SEE ALSO
16031 getwc(), fwprintf(), setlocale (), wcstod(), wcstol(), wcstoul(), wcrtomb(), the Base Definitions |
16032 volume of IEEE Std. 1003.1-200x, <langinfo.h>, <stdio.h>, <wchar.h>, the Base Definitions |
16033 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

16034 CHANGE HISTORY
16035 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
16036 (E).

16037 Issue 6
16038 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

16039 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

16040 • The prototypes for fwscanf() and swscanf() are updated. |

16041 • The DESCRIPTION is updated. |
|

980 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gai_strerror()

16042 NAME
16043 gai_strerror — address and name information error description

16044 SYNOPSIS
16045 #include <netdb.h>

16046 char *gai_strerror(int ecode);

16047 DESCRIPTION
16048 The gai_strerror() function shall return a text string describing an error that is listed in the
16049 <netdb.h> header.

16050 When the ecode argument is one of the values listed in the <netdb.h> header, the function return
16051 value points to a string describing the error. If the argument is not one of those values, the
16052 function shall return a pointer to a string whose contents indicate an unknown error.

16053 RETURN VALUE
16054 Upon successful completion, gai_strerror() shall return a pointer to an implementation-defined |
16055 string. |

16056 ERRORS
16057 No errors are defined.

16058 EXAMPLES
16059 None.

16060 APPLICATION USAGE
16061 None.

16062 RATIONALE
16063 None.

16064 FUTURE DIRECTIONS
16065 None.

16066 SEE ALSO
16067 getaddrinfo (), the Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h> |

16068 CHANGE HISTORY
16069 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 981

gcvt() System Interfaces

16070 NAME
16071 gcvt — convert a floating-point number to a string (LEGACY)

16072 SYNOPSIS
16073 XSI #include <stdlib.h>

16074 char *gcvt(double value , int ndigit , char * buf);
16075

16076 DESCRIPTION
16077 Refer to ecvt().

982 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getaddrinfo()

16078 NAME
16079 getaddrinfo — get address information

16080 SYNOPSIS
16081 #include <sys/socket.h>
16082 #include <netdb.h>

16083 int getaddrinfo(const char *restrict nodename, |
16084 const char *restrict servname , |
16085 const struct addrinfo *restrict hints , |
16086 struct addrinfo **restrict res); |

16087 DESCRIPTION |
16088 Refer to freeaddrinfo ().

System Interfaces, Issue 6 983

getc() System Interfaces

16089 NAME
16090 getc — get a byte from a stream

16091 SYNOPSIS
16092 #include <stdio.h>

16093 int getc(FILE * stream);

16094 DESCRIPTION
16095 CX The functionality described on this reference page is aligned with the ISO C standard. Any
16096 conflict between the requirements described here and the ISO C standard is unintentional. This
16097 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

16098 The getc() function shall be equivalent to fgetc(), except that if it is implemented as a macro it
16099 may evaluate stream more than once, so the argument should never be an expression with side
16100 effects.

16101 RETURN VALUE
16102 Refer to fgetc().

16103 ERRORS
16104 Refer to fgetc().

16105 EXAMPLES
16106 None.

16107 APPLICATION USAGE
16108 If the integer value returned by getc() is stored into a variable of type char and then compared
16109 against the integer constant EOF, the comparison may never succeed, because sign-extension of
16110 a variable of type char on widening to integer is implementation-defined. |

16111 Because it may be implemented as a macro, getc() may treat incorrectly a stream argument with
16112 side effects. In particular, getc(*f++) does not necessarily work as expected. Therefore, use of this
16113 function should be preceded by "#undef getc" in such situations; fgetc() could also be used.

16114 RATIONALE
16115 None.

16116 FUTURE DIRECTIONS
16117 None.

16118 SEE ALSO
16119 fgetc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

16120 CHANGE HISTORY
16121 First released in Issue 1. Derived from Issue 1 of the SVID. |

16122 Issue 4
16123 The words ‘‘a character variable’’ are replaced by ‘‘a variable of type char’’, to emphasize the fact
16124 that this function deals with byte values.

16125 The APPLICATION USAGE section now states that the use of this function is not recommended.

984 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getc_unlocked()

16126 NAME
16127 getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked — stdio with explicit client
16128 locking

16129 SYNOPSIS
16130 TSF #include <stdio.h>

16131 int getc_unlocked(FILE * stream);
16132 int getchar_unlocked(void);
16133 int putc_unlocked(int c, FILE * stream);
16134 int putchar_unlocked(int c);
16135

16136 DESCRIPTION
16137 Versions of the functions getc(), getchar(), putc(), and putchar() respectively named
16138 getc_unlocked (), getchar_unlocked(), putc_unlocked(), and putchar_unlocked() shall be provided
16139 which are functionally identical to the original versions, with the exception that they are not
16140 required to be implemented in a thread-safe manner. They may only safely be used within a
16141 scope protected by flockfile () (or ftrylockfile ()) and funlockfile (). These functions may safely be
16142 used in a multi-threaded program if and only if they are called while the invoking thread owns
16143 the (FILE*) object, as is the case after a successful call of the flockfile () or ftrylockfile () functions.

16144 RETURN VALUE
16145 See getc(), getchar(), putc(), and putchar().

16146 ERRORS
16147 No errors are defined.

16148 EXAMPLES
16149 None.

16150 APPLICATION USAGE
16151 Because they may be implemented as macros, getc_unlocked() and putc_unlocked() may treat
16152 incorrectly a stream argument with side effects. In particular, getc_unlocked(*f++) and
16153 putc_unlocked(*f++) do not necessarily work as expected. Therefore, use of these functions in
16154 such situations should be preceded by the following statement as appropriate:

16155 #undef getc_unlocked
16156 #undef putc_unlocked

16157 RATIONALE
16158 Some I/O functions are typically implemented as macros for performance reasons (for example,
16159 putc() and getc()). For safety, they need to be synchronized, but it is often too expensive to
16160 synchronize on every character. Nevertheless, it was felt that the safety concerns were more
16161 important; consequently, the getc(), getchar(), putc(), and putchar() functions are required to be
16162 thread-safe. However, unlocked versions are also provided with names that clearly indicate the
16163 unsafe nature of their operation but can be used to exploit their higher performance. These
16164 unlocked versions can be safely used only within explicitly locked program regions, using
16165 exported locking primitives. In particular, a sequence such as:

16166 flockfile(fileptr);
16167 putc_unlocked(’1’, fileptr);
16168 putc_unlocked(’\n’, fileptr);
16169 fprintf(fileptr, "Line 2\n");
16170 funlockfile(fileptr);

16171 is permissible, and results in the text sequence:

System Interfaces, Issue 6 985

getc_unlocked() System Interfaces

16172 1
16173 Line 2

16174 being printed without being interspersed with output from other threads.

16175 It would be wrong to have the standard names such as getc(), putc(), and so on, map to the
16176 ‘‘faster, but unsafe’’ rather than the ‘‘slower, but safe’’ versions. In either case, you would still
16177 want to inspect all uses of getc(), putc(), and so on, by hand when converting existing code.
16178 Choosing the safe bindings as the default, at least, results in correct code and maintains the
16179 ‘‘atomicity at the function’’ invariant. To do otherwise would introduce gratuitous
16180 synchronization errors into converted code. Other routines that modify the stdio (FILE*)
16181 structures or buffers are also safely synchronized.

16182 Note that there is no need for functions of the form getc_locked (), putc_locked (), and so on, since
16183 this is the functionality of getc(), putc(), et al . It would be inappropriate to use a feature test
16184 macro to switch a macro definition of getc() between getc_locked () and getc_unlocked(), since the
16185 ISO C standard requires an actual function to exist, a function whose behavior could not be
16186 changed by the feature test macro. Also, providing both the xxx_locked () and xxx_unlocked ()
16187 forms leads to the confusion of whether the suffix describes the behavior of the function or the
16188 circumstances under which it should be used.

16189 Three additional routines, flockfile (), ftrylockfile (), and funlockfile () (which may be macros), are
16190 provided to allow the user to delineate a sequence of I/O statements that are executed
16191 synchronously.

16192 The ungetc() function is infrequently called relative to the other functions/macros so no
16193 unlocked variation is needed.

16194 FUTURE DIRECTIONS
16195 None.

16196 SEE ALSO
16197 getc(), getchar(), putc(), putchar(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
16198 <stdio.h>

CHANGE16199 HISTORY
16200 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

16201 Issue 6
16202 These functions are marked as part of the Thread-Safe Functions option. |

16203 The Open Group corrigenda item U030/2 has been applied adding APPLICATION USAGE
16204 describing how applications should be written to avoid the case when the functions are
16205 implemented as macros.

986 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getchar()

16206 NAME
16207 getchar — get a byte from a stdin stream

16208 SYNOPSIS
16209 #include <stdio.h>

16210 int getchar(void);

16211 DESCRIPTION
16212 CX The functionality described on this reference page is aligned with the ISO C standard. Any
16213 conflict between the requirements described here and the ISO C standard is unintentional. This
16214 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

16215 The getchar() function shall be equivalent to getc(stdin).

16216 RETURN VALUE
16217 Refer to fgetc().

16218 ERRORS
16219 Refer to fgetc().

16220 EXAMPLES
16221 None.

16222 APPLICATION USAGE
16223 If the integer value returned by getchar() is stored into a variable of type char and then
16224 compared against the integer constant EOF, the comparison may never succeed, because sign-
16225 extension of a variable of type char on widening to integer is implementation-defined. |

16226 RATIONALE
16227 None.

16228 FUTURE DIRECTIONS
16229 None.

16230 SEE ALSO
16231 getc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

16232 CHANGE HISTORY
16233 First released in Issue 1. Derived from Issue 1 of the SVID. |

16234 Issue 4
16235 The words ‘‘a character variable’’ are replaced by ‘‘a variable of type char’’, to emphasize the fact
16236 that this function deals in byte values.

16237 The following change is incorporated for alignment with the ISO C standard:

16238 • The argument list is explicitly defined as void.

System Interfaces, Issue 6 987

getcontext() System Interfaces

16239 NAME
16240 getcontext, setcontext — get and set current user context

16241 SYNOPSIS
16242 XSI #include <ucontext.h>

16243 int getcontext(ucontext_t * ucp);
16244 int setcontext(const ucontext_t * ucp);
16245

16246 DESCRIPTION
16247 The getcontext() function shall initialize the structure pointed to by ucp to the current user
16248 context of the calling thread. The ucontext_t type that ucp points to defines the user context and
16249 includes the contents of the calling thread’s machine registers, the signal mask, and the current
16250 execution stack.

16251 The setcontext() function shall restore the user context pointed to by ucp. A successful call to
16252 setcontext() shall not return; program execution resumes at the point specified by the ucp
16253 argument passed to setcontext(). The ucp argument should be created either by a prior call to
16254 getcontext() or makecontext(), or by being passed as an argument to a signal handler. If the ucp
16255 argument was created with getcontext(), program execution continues as if the corresponding
16256 call of getcontext() had just returned. If the ucp argument was created with makecontext(),
16257 program execution continues with the function passed to makecontext(). When that function
16258 returns, the thread shall continue as if after a call to setcontext() with the ucp argument that was
16259 input to makecontext(). If the uc_link member of the ucontext_t structure pointed to by the ucp
16260 argument is equal to 0, then this context is the main context, and the thread shall exit when this
16261 context returns. The effects of passing a ucp argument obtained from any other source are
16262 unspecified.

16263 RETURN VALUE
16264 Upon successful completion, setcontext() shall not return and getcontext() shall return 0;
16265 otherwise, a value of −1 shall be returned.

16266 ERRORS
16267 No errors are defined.

16268 EXAMPLES
16269 None.

16270 APPLICATION USAGE
16271 When a signal handler is executed, the current user context is saved and a new context is
16272 created. If the thread leaves the signal handler via longjmp(), then it is unspecified whether the
16273 context at the time of the corresponding setjmp() call is restored and thus whether future calls to
16274 getcontext() provide an accurate representation of the current context, since the context restored
16275 by longjmp() does not necessarily contain all the information that setcontext() requires. Signal
16276 handlers should use siglongjmp () or setcontext() instead.

16277 Portable applications should not modify or access the uc_mcontext member of ucontext_t. A
16278 portable application cannot assume that context includes any process-wide static data, possibly
16279 including errno. Users manipulating contexts should take care to handle these explicitly when
16280 required.

16281 Use of contexts to create alternate stacks is not defined by this volume of IEEE Std. 1003.1-200x.

988 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getcontext()

16282 RATIONALE
16283 None.

16284 FUTURE DIRECTIONS
16285 None.

16286 SEE ALSO
16287 bsd_signal(), makecontext(), setjmp(), sigaction (), sigaltstack (), sigprocmask (), sigsetjmp(), the Base |
16288 Definitions volume of IEEE Std. 1003.1-200x, <ucontext.h> |

16289 CHANGE HISTORY
16290 First released in Issue 4, Version 2.

16291 Issue 5
16292 Moved from X/OPEN UNIX extension to BASE.

16293 The following sentence was removed from the DESCRIPTION: ‘‘If the ucp argument was passed
16294 to a signal handler, program execution continues with the program instruction following the
16295 instruction interrupted by the signal.’’

System Interfaces, Issue 6 989

getcwd() System Interfaces

16296 NAME
16297 getcwd — get the path name of the current working directory

16298 SYNOPSIS
16299 #include <unistd.h>

16300 char *getcwd(char * buf , size_t size);

16301 DESCRIPTION
16302 The getcwd() function shall place an absolute path name of the current working directory in the
16303 array pointed to by buf, and return buf. The path name copied to the array shall contain no
16304 components that are symbolic links. The size argument is the size in bytes of the character array
16305 pointed to by the buf argument. If buf is a null pointer, the behavior of getcwd() is unspecified. |

16306 RETURN VALUE
16307 Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall
16308 return a null pointer and set errno to indicate the error. The contents of the array pointed to by
16309 buf are then undefined.

16310 ERRORS
16311 The getcwd() function shall fail if:

16312 [EINVAL] The size argument is 0. |

16313 [ERANGE] The size argument is greater than 0, but is smaller than the length of the path |
16314 name +1.

16315 The getcwd() function may fail if:

16316 [EACCES] Read or search permission was denied for a component of the path name. |

16317 [ENOMEM] Insufficient storage space is available. |

16318 EXAMPLES

16319 Determining the Absolute Path Name of the Current Working Directory

16320 The following example returns a pointer to an array that holds the absolute path name of the
16321 current working directory. The pointer is returned in the ptr variable, which points to the buf
16322 array where the path name is stored.

16323 #include <stdlib.h>
16324 #include <unistd.h>
16325 ...
16326 long size;
16327 char *buf;
16328 char *ptr;

16329 size = pathconf(".", _PC_PATH_MAX);

16330 if ((buf = (char *)malloc((size_t)size)) != NULL)
16331 ptr = getcwd(buf, (size_t)size);
16332 ...

16333 APPLICATION USAGE
16334 None. |

990 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getcwd()

16335 RATIONALE
16336 Since the maximum path name length is arbitrary unless {PATH_MAX} is defined, an
16337 application generally cannot supply a buf with size {{PATH_MAX} +1}.

16338 Having getcwd() take no arguments and instead use the malloc () function to produce space for
16339 the returned argument was considered. The advantage is that getcwd() knows how big the
16340 working directory path name is and can allocate an appropriate amount of space. But the
16341 programmer would have to use the free() function to free the resulting object, or each use of
16342 getcwd() would further reduce the available memory. Also, malloc () and free() are used nowhere
16343 else in this volume of IEEE Std. 1003.1-200x. Finally, getcwd() is taken from the SVID where it
16344 has the two arguments used in this volume of IEEE Std. 1003.1-200x.

16345 The older function getwd() was rejected for use in this context because it had only a buffer
16346 argument and no size argument, and thus had no way to prevent overwriting the buffer, except
16347 to depend on the programmer to provide a large enough buffer.

16348 On some implementations, if buf is a null pointer, getcwd() may obtain size bytes of memory |
16349 using malloc (). In this case, the pointer returned by getcwd() may be used as the argument in a |
16350 subsequent call to free(). Invoking getcwd() with buf as a null pointer is not recommended in |
16351 portable applications. |

16352 If a program is operating in a directory where some (grand)parent directory does not permit
16353 reading, getcwd() may fail, as in most implementations it must read the directory to determine
16354 the name of the file. This can occur if search, but not read, permission is granted in an
16355 intermediate directory, or if the program is placed in that directory by some more privileged
16356 process (for example, login). Including the [EACCES] error condition makes the reporting of the |
16357 error consistent and warns the application writer that getcwd() can fail for reasons beyond the
16358 control of the application writer or user. Some implementations can avoid this occurrence (for
16359 example, by implementing getcwd() using pwd, where pwd is a set-user-root process), thus the
16360 error was made optional.

16361 Because this volume of IEEE Std. 1003.1-200x permits the addition of other errors, this would be
16362 a common addition and yet one that applications could not be expected to deal with without
16363 this addition.

16364 FUTURE DIRECTIONS
16365 None.

16366 SEE ALSO
16367 malloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

16368 CHANGE HISTORY
16369 First released in Issue 1. Derived from Issue 1 of the SVID. |

16370 Issue 4
16371 The <unistd.h> header is added to the SYNOPSIS section.

16372 The [ENOMEM] error is marked as an extension.

16373 The words ‘‘as this functionality may be subject to withdrawal’’ have been deleted from the end
16374 of the last sentence in the APPLICATION USAGE section.

16375 The following change is incorporated for alignment with the ISO POSIX-1 standard:

16376 • The DESCRIPTION is changed to indicate that the effects of passing a null pointer in buf are
16377 undefined.

System Interfaces, Issue 6 991

getcwd() System Interfaces

16378 Issue 6
16379 The following new requirements on POSIX implementations derive from alignment with the
16380 Single UNIX Specification:

16381 • The [ENOMEM] optional error condition is added.

992 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getdate()

16382 NAME
16383 getdate — convert user format date and time

16384 SYNOPSIS
16385 XSI #include <time.h>

16386 struct tm *getdate(const char * string);
16387

16388 DESCRIPTION
16389 The getdate() function shall convert a string representation of a date or time into a broken-down
16390 time.

16391 The external variable or macro getdate_err is used by getdate() to return error values.

16392 Templates are used to parse and interpret the input string. The templates are contained in a text
16393 file identified by the environment variable DATEMSK. The DATEMSK variable should be set to
16394 indicate the full path name of the file that contains the templates. The first line in the template
16395 that matches the input specification is used for interpretation and conversion into the internal
16396 time format.

16397 The following field descriptors are supported:

16398 %% Same as ’%’ .

16399 %a Abbreviated weekday name.

16400 %A Full weekday name.

16401 %b Abbreviated month name.

16402 %B Full month name.

16403 %c Locale’s appropriate date and time representation.

16404 %C Century number (00-99; leading zeros are permitted but not required).

16405 %d Day of month (01-31; the leading 0 is optional).

16406 %D Date as %m/%d/%y.

16407 %e Same as %d.

16408 %h Abbreviated month name.

16409 %H Hour (00-23).

16410 %I Hour (01-12).

16411 %m Month number (01-12).

16412 %M Minute (00-59).

16413 %n Same as <newline>.

16414 %p Locale’s equivalent of either AM or PM.

16415 %r The locale’s appropriate representation of time in AM and PM notation. In the POSIX
16416 locale, this is equivalent to %I:%M:%S %p.

16417 %R Time as %H:%M.

16418 %S Seconds (00-61). Leap seconds are allowed but are not predictable through use of
16419 algorithms.

System Interfaces, Issue 6 993

getdate() System Interfaces

16420 %t Same as <tab>.

16421 %T Time as %H:%M:%S.

16422 %w Weekday number (Sunday = 0-6).

16423 %x Locale’s appropriate date representation.

16424 %X Locale’s appropriate time representation.

16425 %y Year within century. When a century is not otherwise specified, values in the range
16426 69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the range
16427 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive).

16428 %Y Year as ccyy (for example, 1994).

16429 %Z Timezone name or no characters if no timezone exists. If the timezone supplied by %Z
16430 is not the timezone that getdate() expects, an invalid input specification error shall
16431 result. The getdate() function calculates an expected timezone based on information
16432 supplied to the function (such as the hour, day, and month).

16433 The match between the template and input specification performed by getdate() is case-
16434 insensitive.

16435 The month and weekday names can consist of any combination of upper and lowercase letters.
16436 The process can request that the input date or time specification be in a specific language by
16437 setting the LC_TIME category (see setlocale ()).

16438 Leading 0s are not necessary for the descriptors that allow leading 0s. However, at most two
16439 digits are allowed for those descriptors, including leading 0s. Extra whitespace in either the
16440 template file or in string is ignored.

16441 The field descriptors %c, %x, and %X shall not be supported if they include unsupported field
16442 descriptors.

16443 The following rules apply for converting the input specification into the internal format:

16444 • If %Z is being scanned, then getdate() initializes the broken-down time to be the current time
16445 in the scanned timezone. Otherwise, it initializes the broken-down time based on the current
16446 local time as if localtime () had been called.

16447 • If only the weekday is given, today is assumed if the given day is equal to the current day
16448 and next week if it is less,

16449 • If only the month is given, the current month is assumed if the given month is equal to the
16450 current month and next year if it is less, and no year is given (the first day of month is
16451 assumed if no day is given),

16452 • If no hour, minute, and second are given the current hour, minute, and second are assumed,

16453 • If no date is given, today is assumed if the given hour is greater than the current hour and
16454 tomorrow is assumed if it is less.

16455 If a field descriptor specification in the DATEMSK file does not correspond to one of the field
16456 descriptors above, the behavior is unspecified.

16457 The getdate() function need not be reentrant. A function that is not required to be reentrant is not
16458 required to be thread-safe.

994 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getdate()

16459 RETURN VALUE
16460 Upon successful completion, getdate() shall return a pointer to a struct tm. Otherwise, it shall
16461 return a null pointer and set getdate_err to indicate the error.

16462 ERRORS
16463 The getdate() function shall fail in the following cases, setting getdate_err to the value shown in
16464 the list below. Any changes to errno are unspecified.

16465 1. The DATEMSK environment variable is null or undefined.

16466 2. The template file cannot be opened for reading.

16467 3. Failed to get file status information.

16468 4. The template file is not a regular file.

16469 5. An I/O error is encountered while reading the template file.

16470 6. Memory allocation failed (not enough memory available).

16471 7. There is no line in the template that matches the input.

16472 8. Invalid input specification. For example, February 31; or a time is specified that cannot be
16473 represented in a time_t (representing the time in seconds since the Epoch).

16474 EXAMPLES

16475 1. The following example shows the possible contents of a template:

16476 %m
16477 %A %B %d, %Y, %H:%M:%S
16478 %A
16479 %B
16480 %m/%d/%y %I %p
16481 %d,%m,%Y %H:%M
16482 at %A the %dst of %B in %Y
16483 run job at %I %p,%B %dnd
16484 %A den %d. %B %Y %H.%M Uhr

16485 2. The following are examples of valid input specifications for the template in Example 1:

16486 getdate("10/1/87 4 PM");
16487 getdate("Friday");
16488 getdate("Friday September 18, 1987, 10:30:30");
16489 getdate("24,9,1986 10:30");
16490 getdate("at monday the 1st of december in 1986");
16491 getdate("run job at 3 PM, december 2nd");

16492 If the LC_TIME category is set to a German locale that includes freitag as a weekday name
16493 and oktober as a month name, the following would be valid:

16494 getdate("freitag den 10. oktober 1986 10.30 Uhr");

16495 3. The following example shows how local date and time specification can be defined in the
16496 template:

System Interfaces, Issue 6 995

getdate() System Interfaces

16497 __
16498 Invocation Line in Template__
16499 getdate("11/27/86") %m/%d/%y
16500 getdate("27.11.86") %d.%m.%y
16501 getdate("86-11-27") %y-%m-%d
16502 getdate("Friday 12:00:00") %A %H:%M:%S__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

16503 4. The following examples help to illustrate the above rules assuming that the current date is
16504 Mon Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to the default C locale:
16505 ___
16506 Input Line in Template Date___
16507 Mon %a Mon Sep 22 12:19:47 EDT 1986
16508 Sun %a Sun Sep 28 12:19:47 EDT 1986
16509 Fri %a Fri Sep 26 12:19:47 EDT 1986
16510 September %B Mon Sep 1 12:19:47 EDT 1986
16511 January %B Thu Jan 1 12:19:47 EST 1987
16512 December %B Mon Dec 1 12:19:47 EST 1986
16513 Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986
16514 Jan Fri %b %a Fri Jan 2 12:19:47 EST 1987
16515 Dec Mon %b %a Mon Dec 1 12:19:47 EST 1986
16516 Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EST 1989
16517 Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
16518 Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
16519 10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986
16520 13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

16521 APPLICATION USAGE
16522 Although historical versions of getdate() did not require that <time.h> declare the external
16523 variable getdate_err , this volume of IEEE Std. 1003.1-200x does require it. The Open Group
16524 encourages applications to remove declarations of getdate_err and instead incorporate the
16525 declaration by including <time.h>.

16526 Applications should use %Y (4-digit years) in preference to %y (2-digit years).

16527 RATIONALE
16528 None.

16529 FUTURE DIRECTIONS
16530 None.

16531 SEE ALSO
16532 ctime(), localtime (), setlocale (), strftime(), times(), the Base Definitions volume of |
16533 IEEE Std. 1003.1-200x, <time.h> |

16534 CHANGE HISTORY
16535 First released in Issue 4, Version 2.

16536 Issue 5
16537 Moved from X/OPEN UNIX extension to BASE.

16538 The last paragraph of the DESCRIPTION is added.

16539 The %C specifier is added, and the exact meaning of the %y specifier is clarified in the
16540 DESCRIPTION.

16541 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

996 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getdate()

16542 The %R specifier is changed to follow historical practice.

16543 Issue 6
16544 The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
16545 00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time |
16546 functions.

System Interfaces, Issue 6 997

getegid() System Interfaces

16547 NAME
16548 getegid — get the effective group ID

16549 SYNOPSIS
16550 #include <unistd.h>

16551 gid_t getegid(void);

16552 DESCRIPTION
16553 The getegid() function shall return the effective group ID of the calling process.

16554 RETURN VALUE
16555 The getegid() function is always successful and no return value is reserved to indicate an error.

16556 ERRORS
16557 No errors are defined.

16558 EXAMPLES
16559 None.

16560 APPLICATION USAGE
16561 None.

16562 RATIONALE
16563 None.

16564 FUTURE DIRECTIONS
16565 None.

16566 SEE ALSO
16567 geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base |
16568 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

16569 CHANGE HISTORY
16570 First released in Issue 1. Derived from Issue 1 of the SVID. |

16571 Issue 4
16572 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
16573 XSI-conformant systems.

16574 The <unistd.h> header is added to the SYNOPSIS section.

16575 The following change is incorporated for alignment with the ISO POSIX-1 standard:

16576 • The argument list is explicitly defined as void.

16577 Issue 6
16578 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

16579 The following new requirements on POSIX implementations derive from alignment with the
16580 Single UNIX Specification:

16581 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
16582 required for conforming implementations of previous POSIX specifications, it was not
16583 required for UNIX applications.

998 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getenv()

16584 NAME
16585 getenv — get value of an environment variable

16586 SYNOPSIS
16587 #include <stdlib.h>

16588 char *getenv(const char * name);

16589 DESCRIPTION
16590 CX The functionality described on this reference page is aligned with the ISO C standard. Any
16591 conflict between the requirements described here and the ISO C standard is unintentional. This
16592 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

16593 The getenv() function shall search the environment of the calling process (see the Base |
16594 Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables) for the |
16595 environment variable name if it exists and return a pointer to the value of the environment |
16596 variable. If the specified environment variable cannot be found, a null pointer shall be returned.
16597 The application shall ensure that it does not modify the string pointed to by the getenv()
16598 function. The string pointed to may be overwritten by a subsequent call to getenv(), setenv(),
16599 XSI unsetenv(), or putenv()but shall not be overwritten by a call to any other function in this volume
16600 of IEEE Std. 1003.1-200x.

16601 If the application modifies environ or the pointers to which it points, the behavior of getenv() is
16602 undefined.

16603 CX The getenv() function need not be reentrant. A function that is not required to be reentrant is not
16604 required to be thread-safe.

16605 RETURN VALUE
16606 Upon successful completion, getenv() shall return a pointer to a string containing the value for
16607 the specified name. If the specified name cannot be found in the environment of the calling
16608 process, a null pointer shall be returned.

16609 The return value from getenv() may point to static data which may be overwritten by
16610 XSI subsequent calls to getenv(), setenv(), unsetenv(), or putenv().

16611 ERRORS
16612 No errors are defined.

16613 EXAMPLES

16614 Getting the Value of an Environment Variable

16615 The following example gets the value of the HOME environment variable.

16616 #include <stdlib.h>
16617 ...
16618 const char *name = "HOME";
16619 char *value;

16620 value = getenv(name);

16621 APPLICATION USAGE
16622 None.

16623 RATIONALE
16624 The clearenv() function was considered but rejected. The putenv() function has now been |
16625 included for alignment with the Single UNIX Specification.

System Interfaces, Issue 6 999

getenv() System Interfaces

16626 The getenv() function is inherently not reentrant because it returns a value pointing to static
16627 data.

16628 Conforming applications are required not to modify environ directly, but to use only the
16629 functions described here to manipulate the process environment as an abstract object. Thus, the
16630 implementation of the environment access functions has complete control over the data
16631 structure used to represent the environment (subject to the requirement that environ be
16632 maintained as a list of strings with embedded equal signs for applications that wish to scan the
16633 environment). This constraint allows the implementation to properly manage the memory it
16634 allocates, either by using allocated storage for all variables (copying them on the first invocation
16635 of setenv() or unsetenv()), or keeping track of which strings are currently in allocated space and
16636 which are not, via a separate table or some other means. This enables the implementation to free
16637 any allocated space used by strings (and perhaps the pointers to them) stored in environ when
16638 unsetenv() is called. A C runtime start-up procedure (that which invokes main() and perhaps
16639 initializes environ) can also initialize a flag indicating that none of the environment has yet been
16640 copied to allocated storage, or that the separate table has not yet been initialized.

16641 In fact, for higher performance of getenv(), the implementation could also maintain a separate
16642 copy of the environment in a data structure that could be searched much more quickly (such as
16643 an indexed hash table, or a binary tree), and update both it and the linear list at environ when
16644 setenv() or unsetenv() is invoked.

16645 Performance of getenv() can be important for applications which have large numbers of
16646 environment variables. Typically, applications like this use the environment as a resource
16647 database of user-configurable parameters. The fact that these variables are in the user’s shell
16648 environment usually means that any other program that uses environment variables (such as ls,
16649 which attempts to use COLUMNS, or really almost any utility (LANG, LC_ALL, and so on) is
16650 similarly slowed down by the linear search through the variables.

16651 An implementation that maintains separate data structures, or even one that manages the
16652 memory it consumes, is not currently required as it was thought it would reduce consensus
16653 among implementors who do not want to change their historical implementations.

16654 The POSIX Threads Extension states that multi-threaded applications must not modify environ
16655 directly, and that IEEE Std. 1003.1-200x is providing functions which such applications can use
16656 in the future to manipulate the environment in a thread-safe manner. Thus, moving away from
16657 application use of environ is desirable from that standpoint as well.

16658 FUTURE DIRECTIONS
16659 None.

16660 SEE ALSO
16661 exec, putenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, the Base |
16662 Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables |

16663 CHANGE HISTORY
16664 First released in Issue 1. Derived from Issue 1 of the SVID. |

16665 Issue 4
16666 The DESCRIPTION is updated to indicate that the return string must not be modified by an
16667 application, may be overwritten by subsequent calls to getenv() or putenv(), and is not
16668 overwritten by calls to other XSI system interfaces.

16669 A reference to putenv() has also been added to the APPLICATION USAGE section.

16670 The following change is incorporated for alignment with the ISO POSIX-1 standard:

1000 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getenv()

16671 • The type of argument name is changed from char* to const char*.

16672 Issue 5
16673 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
16674 VALUE section.

16675 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

16676 Issue 6
16677 The following changes were made to align with the IEEE P1003.1a draft standard:

16678 • References added to the new setenv() and unsetenv() functions.

16679 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1001

geteuid() System Interfaces

16680 NAME
16681 geteuid — get the effective user ID

16682 SYNOPSIS
16683 #include <unistd.h>

16684 uid_t geteuid(void);

16685 DESCRIPTION
16686 The geteuid() function shall return the effective user ID of the calling process.

16687 RETURN VALUE
16688 The geteuid() function is always successful and no return value is reserved to indicate an error.

16689 ERRORS
16690 No errors are defined.

16691 EXAMPLES
16692 None.

16693 APPLICATION USAGE
16694 None.

16695 RATIONALE
16696 None.

16697 FUTURE DIRECTIONS
16698 None.

16699 SEE ALSO
16700 getegid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base |
16701 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

16702 CHANGE HISTORY
16703 First released in Issue 1. Derived from Issue 1 of the SVID. |

16704 Issue 4
16705 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
16706 XSI-conformant systems.

16707 The <unistd.h> header is added to the SYNOPSIS section.

16708 The following change is incorporated for alignment with the ISO POSIX-1 standard:

16709 • The argument list is explicitly defined as void.

16710 Issue 6
16711 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

16712 The following new requirements on POSIX implementations derive from alignment with the
16713 Single UNIX Specification:

16714 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
16715 required for conforming implementations of previous POSIX specifications, it was not
16716 required for UNIX applications.

1002 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getgid()

16717 NAME
16718 getgid — get the real group ID

16719 SYNOPSIS
16720 #include <unistd.h>

16721 gid_t getgid(void);

16722 DESCRIPTION
16723 The getgid() function shall return the real group ID of the calling process.

16724 RETURN VALUE
16725 The getgid() function is always successful and no return value is reserved to indicate an error.

16726 ERRORS
16727 No errors are defined.

16728 EXAMPLES
16729 None.

16730 APPLICATION USAGE
16731 None.

16732 RATIONALE
16733 None.

16734 FUTURE DIRECTIONS
16735 None.

16736 SEE ALSO
16737 getegid(), geteuid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base |
16738 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

16739 CHANGE HISTORY
16740 First released in Issue 1. Derived from Issue 1 of the SVID. |

16741 Issue 4
16742 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
16743 XSI-conformant systems.

16744 The <unistd.h> header is added to the SYNOPSIS section.

16745 The following change is incorporated for alignment with the ISO POSIX-1 standard:

16746 • The argument list is explicitly defined as void.

16747 Issue 6
16748 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

16749 The following new requirements on POSIX implementations derive from alignment with the
16750 Single UNIX Specification:

16751 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
16752 required for conforming implementations of previous POSIX specifications, it was not
16753 required for UNIX applications.

System Interfaces, Issue 6 1003

getgrent() System Interfaces

16754 NAME
16755 getgrent — get the group database entry

16756 SYNOPSIS
16757 XSI #include <grp.h>

16758 struct group *getgrent(void);
16759

16760 DESCRIPTION
16761 Refer to endgrent().

1004 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getgrgid()

16762 NAME
16763 getgrgid, getgrgid_r — get group database entry for a group ID

16764 SYNOPSIS
16765 #include <grp.h>

16766 struct group *getgrgid(gid_t gid);
16767 TSF int getgrgid_r(gid_t gid , struct group * grp , char * buffer ,
16768 size_t bufsize , struct group ** result);
16769

16770 DESCRIPTION
16771 The getgrgid() function shall search the group database for an entry with a matching gid .

16772 The getgrgid() function need not be reentrant. A function that is not required to be reentrant is
16773 not required to be thread-safe.

16774 TSF The getgrgid_r() function updates the group structure pointed to by grp and stores a pointer to
16775 that structure at the location pointed to by result. The structure contains an entry from the
16776 group database with a matching gid . Storage referenced by the group structure is allocated from
16777 the memory provided with the buffer parameter, which is bufsize characters in size. The
16778 maximum size needed for this buffer can be determined with the {_SC_GETGR_R_SIZE_MAX}
16779 sysconf() parameter. A NULL pointer is returned at the location pointed to by result on error or if
16780 the requested entry is not found.

16781 RETURN VALUE
16782 Upon successful completion, getgrgid() shall return a pointer to a struct group with the structure
16783 defined in <grp.h> with a matching entry if one is found. The getgrgid() function shall return a
16784 null pointer if either the requested entry was not found, or an error occurred. On error, errno |
16785 shall be set to indicate the error. |

16786 The return value may point to a static area which is overwritten by a subsequent call to
16787 getgrent(), getgrgid(), or getgrnam().

16788 TSF If successful, the getgrgid_r() function shall return zero; otherwise, an error number shall be
16789 returned to indicate the error.

16790 ERRORS
16791 The getgrgid() and getgrgid_r() functions may fail if: |

16792 [EIO] An I/O error has occurred. |

16793 [EINTR] A signal was caught during getgrgid(). |

16794 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

16795 [ENFILE] The maximum allowable number of files is currently open in the system. |

16796 TSF The getgrgid_r() function may fail if:

16797 TSF [ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to |
16798 be referenced by the resulting group structure.

System Interfaces, Issue 6 1005

getgrgid() System Interfaces

16799 EXAMPLES

16800 Finding an Entry in the Group Database

16801 The following example uses getgrgid() to search the group database for a group ID that was
16802 previously stored in a stat structure, then prints out the group name if it is found. If the group is
16803 not found, the program prints the numeric value of the group for the entry.

16804 #include <sys/types.h>
16805 #include <grp.h>
16806 #include <stdio.h>
16807 ...
16808 struct stat statbuf;
16809 struct group *grp;
16810 ...
16811 if ((grp = getgrgid(statbuf.st_gid)) != NULL)
16812 printf(" %-8.8s", grp->gr_name);
16813 else
16814 printf(" %-8d", statbuf.st_gid);
16815 ...

16816 APPLICATION USAGE
16817 Applications wishing to check for error situations should set errno to 0 before calling getgrgid().
16818 If errno is set on return, an error occurred.

16819 The getgrgid_r() function is thread-safe and shall return values in a user-supplied buffer instead
16820 of possibly using a static data area that may be overwritten by each call.

16821 RATIONALE
16822 None.

16823 FUTURE DIRECTIONS
16824 None.

16825 SEE ALSO
16826 endgrent(), getgrnam(), the Base Definitions volume of IEEE Std. 1003.1-200x, <grp.h>, |
16827 <limits.h>, <sys/types.h>

CHANGE16828 HISTORY
16829 First released in Issue 1. Derived from System V Release 2.0. |

16830 Issue 4
16831 The DESCRIPTION is clarified.

16832 In the RETURN VALUE section, the reference to the setting of errno is marked as an extension.

16833 The errors [EIO], [EINTR], [EMFILE], and [ENFILE] are marked as extensions.

16834 A note is added to the APPLICATION USAGE section advising how applications should check
16835 for errors.

16836 The <sys/types.h> header is added as optional (OH); this header need not be included on XSI-
16837 conformant systems.

16838 Issue 5
16839 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
16840 VALUE section.

16841 The getgrgid_r() function is included for alignment with the POSIX Threads Extension.

1006 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getgrgid()

16842 A note indicating that the getgrgid() function need not be reentrant is added to the
16843 DESCRIPTION.

16844 Issue 6
16845 The getgrgid_r() function is marked as part of the Thread-Safe Functions option. |

16846 The Open Group corrigenda item U028/3 has been applied correcting text in the DESCRIPTION
16847 describing matching the gid .

16848 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

16849 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

16850 The following new requirements on POSIX implementations derive from alignment with the
16851 Single UNIX Specification:

16852 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
16853 required for conforming implementations of previous POSIX specifications, it was not
16854 required for UNIX applications.

16855 • In the RETURN VALUE section, the requirement to set errno on error is added.

16856 • The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

16857 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
16858 its avoidance of possibly using a static data area.

System Interfaces, Issue 6 1007

getgrnam() System Interfaces

16859 NAME
16860 getgrnam, getgrnam_r — search group database for a name

16861 SYNOPSIS
16862 #include <grp.h>

16863 struct group *getgrnam(const char * name);
16864 TSF int getgrnam_r(const char * name, struct group * grp , char * buffer ,
16865 size_t bufsize , struct group ** result);
16866

16867 DESCRIPTION
16868 The getgrnam() function shall search the group database for an entry with a matching name.

16869 The getgrnam() function need not be reentrant. A function that is not required to be reentrant is
16870 not required to be thread-safe.

16871 TSF The getgrnam_r() function updates the group structure pointed to by grp and stores a pointer to
16872 that structure at the location pointed to by result. The structure contains an entry from the
16873 group database with a matching gid or name. Storage referenced by the group structure is
16874 allocated from the memory provided with the buffer parameter, which is bufsize characters in
16875 size. The maximum size needed for this buffer can be determined with the
16876 {_SC_GETGR_R_SIZE_MAX} sysconf() parameter. A NULL pointer is returned at the location
16877 pointed to by result on error or if the requested entry is not found.

16878 RETURN VALUE
16879 The getgrnam() function shall return a pointer to a struct group with the structure defined in
16880 <grp.h> with a matching entry if one is found. The getgrnam() function shall return a null
16881 pointer if either the requested entry was not found, or an error occurred. On error, errno shall be |
16882 set to indicate the error. |

16883 The return value may point to a static area which is overwritten by a subsequent call to
16884 getgrent(), getgrgid(), or getgrnam().

16885 TSF If successful, the getgrnam_r() function shall return zero; otherwise, an error number shall be
16886 returned to indicate the error.

16887 ERRORS
16888 The getgrnam() and getgrnam_r() functions may fail if: |

16889 [EIO] An I/O error has occurred. |

16890 [EINTR] A signal was caught during getgrnam(). |

16891 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

16892 [ENFILE] The maximum allowable number of files is currently open in the system. |

16893 The getgrnam_r() function may fail if:

16894 TSF [ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to |
16895 be referenced by the resulting group structure.

1008 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getgrnam()

16896 EXAMPLES
16897 None.

16898 APPLICATION USAGE
16899 Applications wishing to check for error situations should set errno to 0 before calling getgrnam().
16900 If errno is set on return, an error occurred.

16901 The getgrnam_r() function is thread-safe and shall return values in a user-supplied buffer instead
16902 of possibly using a static data area that may be overwritten by each call.

16903 RATIONALE
16904 None.

16905 FUTURE DIRECTIONS
16906 None.

16907 SEE ALSO
16908 endgrent(), getgrgid(), the Base Definitions volume of IEEE Std. 1003.1-200x, <grp.h>, <limits.h>, |
16909 <sys/types.h>

CHANGE16910 HISTORY
16911 First released in Issue 1. Derived from System V Release 2.0. |

16912 Issue 4
16913 The DESCRIPTION is clarified.

16914 The <sys/types.h> header is added as optional (OH); this header need not be included on XSI-
16915 conformant systems.

16916 In the RETURN VALUE section, reference to the setting of errno is marked as an extension.

16917 The errors [EIO], [EINTR], [EMFILE], and [ENFILE] are marked as extensions.

16918 A note is added to the APPLICATION USAGE section advising how applications should check
16919 for errors.

16920 The following change is incorporated for alignment with the ISO POSIX-1 standard:

16921 • The type of argument name is changed from char* to const char*.

16922 Issue 5
16923 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
16924 VALUE section.

16925 The getgrnam_r() function is included for alignment with the POSIX Threads Extension.

16926 A note indicating that the getgrnam() function need not be reentrant is added to the
16927 DESCRIPTION.

16928 Issue 6
16929 The getgrnam_r() function is marked as part of the Thread-Safe Functions option. |

16930 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

16931 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

16932 The following new requirements on POSIX implementations derive from alignment with the
16933 Single UNIX Specification:

16934 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
16935 required for conforming implementations of previous POSIX specifications, it was not
16936 required for UNIX applications.

System Interfaces, Issue 6 1009

getgrnam() System Interfaces

16937 • In the RETURN VALUE section, the requirement to set errno on error is added.

16938 • The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

16939 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
16940 its avoidance of possibly using a static data area.

1010 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getgroups()

16941 NAME
16942 getgroups — get supplementary group IDs

16943 SYNOPSIS
16944 #include <unistd.h>

16945 int getgroups(int gidsetsize , gid_t grouplist []);

16946 DESCRIPTION
16947 The getgroups() function fills in the array grouplist with the current supplementary group IDs of
16948 the calling process. It is implementation-defined whether getgroups() also returns the effective |
16949 group ID in the grouplist array.

16950 The gidsetsize argument specifies the number of elements in the array grouplist . The actual
16951 number of group IDs stored in the array is returned. The values of array entries with indices
16952 greater than or equal to the value returned are undefined.

16953 If gidsetsize is 0, getgroups() shall return the number of group IDs that it would otherwise return
16954 without modifying the array pointed to by grouplist .

16955 If the effective group ID of the process is returned with the supplementary group IDs, the value
16956 returned shall always be greater than or equal to one and less than or equal to the value of
16957 {NGROUPS_MAX}+1. |

16958 RETURN VALUE
16959 Upon successful completion, the number of supplementary group IDs shall be returned. A
16960 return value of −1 indicates failure and errno shall be set to indicate the error.

16961 ERRORS
16962 The getgroups() function shall fail if:

16963 [EINVAL] The gidsetsize argument is non-zero and less than the number of group IDs |
16964 that would have been returned. |

16965 EXAMPLES

16966 Getting the Supplementary Group IDs of the Calling Process

16967 The following example places the current supplementary group IDs of the calling process into
16968 the group array.

16969 #include <sys/types.h>
16970 #include <unistd.h>
16971 ...
16972 gid_t *group;
16973 int nogroups;
16974 long ngroups_max;

16975 ngroups_max = sysconf(_SC_NGROUPS_MAX);
16976 group = (gid_t *)malloc(ngroups_max *sizeof(gid_t));

16977 ngroups = getgroups(ngroups_max, group);

16978 APPLICATION USAGE
16979 None.

16980 RATIONALE
16981 The related function setgroups() is a privileged operation and therefore is not covered by this
16982 volume of IEEE Std. 1003.1-200x.

System Interfaces, Issue 6 1011

getgroups() System Interfaces

16983 As implied by the definition of supplementary groups, the effective group ID may appear in the
16984 array returned by getgroups() or it may be returned only by getegid(). Duplication may exist, but
16985 the application needs to call getegid() to be sure of getting all of the information. Various
16986 implementation variations and administrative sequences cause the set of groups appearing in
16987 the result of getgroups() to vary in order and as to whether the effective group ID is included,
16988 even when the set of groups is the same (in the mathematical sense of ‘‘set’’). (The history of a
16989 process and its parents could affect the details of result.)

16990 Applications writers should note that {NGROUPS_MAX} is not necessarily a constant on all
16991 implementations.

16992 FUTURE DIRECTIONS
16993 None.

16994 SEE ALSO
16995 getegid(), setgid(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
16996 <unistd.h>

CHANGE16997 HISTORY
16998 First released in Issue 3.

16999 Entry included for alignment with the POSIX.1-1988 standard.

17000 Issue 4
17001 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
17002 XSI-conformant systems.

17003 The <unistd.h> header is added to the SYNOPSIS section.

17004 The following change is incorporated for alignment with the FIPS requirements:

17005 • A return value of 0 is no longer permitted, because {NGROUPS_MAX} cannot be 0.

17006 Issue 5
17007 Normative text previously in the APPLICATION USAGE section is moved to the
17008 DESCRIPTION.

17009 Issue 6
17010 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

17011 The following new requirements on POSIX implementations derive from alignment with the
17012 Single UNIX Specification:

17013 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
17014 required for conforming implementations of previous POSIX specifications, it was not
17015 required for UNIX applications.

17016 • A return value of 0 is not permitted, because {NGROUPS_MAX} cannot be 0. This is a FIPS
17017 requirement.

17018 The following changes were made to align with the IEEE P1003.1a draft standard:

17019 • Explanation added that the effective group ID may be included in the supplementary group
17020 list.

1012 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gethostbyaddr()

17021 NAME
17022 gethostbyaddr (LEGACY), gethostbyname (LEGACY), getipnodebyaddr, getipnodebyname, —
17023 network host database functions

17024 SYNOPSIS
17025 #include <netdb.h>

17026 struct hostent *gethostbyaddr(const void * addr , socklen_t len ,
17027 int type);
17028 struct hostent *gethostbyname(const char * name);
17029 struct hostent *getipnodebyaddr(const void *restrict addr , socklen_t len ,|
17030 int type , int *restrict error_num); |
17031 struct hostent *getipnodebyname(const char * name, int type , int flags , |
17032 int * error_num);

17033 DESCRIPTION
17034 These functions enable applications to retrieve information about hosts. This information is
17035 considered to be stored in a database that can be accessed sequentially or randomly.
17036 Implementation of this database is unspecified.

17037 Note: In many cases it is implemented by the Domain Name System, as documented in
17038 RFC 1034, RFC 1035, and RFC 1886.

17039 Entries are returned in hostent structures.

17040 The gethostbyaddr() function shall return an entry containing addresses of address family type for
17041 the host with address addr. len contains the length of the address pointed to by addr. The
17042 gethostbyaddr () function need not be reentrant. A function that is not required to be reentrant is
17043 not required to be thread-safe.

17044 The gethostbyname() function shall return an entry containing addresses of address family
17045 AF_INET for the host with name name. The gethostbyname() function need not be reentrant. A
17046 function that is not required to be reentrant is not required to be thread-safe.

17047 The getipnodebyaddr() function shall return the entry containing addresses of address family type
17048 for the host with address addr, opening a connection to the database if necessary. The len
17049 argument contains the length of the address pointed to by addr. If an error occurs, the
17050 appropriate error code is returned in error_num. The getipnodebyaddr() function is thread-safe.

17051 The getipnodebyname() function shall return the entry containing addresses of address family
17052 type for the host with name name, opening a connection to the database if necessary. The flags
17053 argument affects what information is returned. If an error occurs, the appropriate error code is
17054 returned in error_num. The getipnodebyname() function is thread-safe.

17055 The addr argument of gethostbyaddr() or getipnodebyaddr() shall be an in_addr structure when
17056 IP6 type is AF_INET, and shall be an in6_addr structure when type is AF_INET6. It contains a binary
17057 format (that is, not null-terminated) address in network byte order. The gethostbyaddr() function
17058 is not guaranteed to return addresses of address families other than AF_INET, even when such
17059 addresses exist in the database.

17060 If gethostbyaddr() or getipnodebyaddr() returns a record, then its h_addrtype field is the same as the
17061 type argument that was passed to the function, and its h_addr_list field lists a single address that
17062 IP6 is a copy of the addr argument that was passed to the function. If type is AF_INET6 and addr is
17063 an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, then the h_name and h_aliases
17064 fields are those that would have been returned for address family AF_INET and address equal to
17065 the last four bytes of addr.

System Interfaces, Issue 6 1013

gethostbyaddr() System Interfaces

17066 If gethostbyaddr() or getipnodebyaddr() are called with addr containing the IPv6 unspecified
17067 address (all bytes zero), then no query is performed and the function fails with
17068 [HOST_NOT_FOUND].

17069 The name argument of getipnodebyname() shall be either a node name or a numeric address
17070 string. For IPv4, a numeric address string shall be in the dotted-decimal notation described in
17071 IP6 inet_addr(). For IPv6, a numeric address string shall be in one of the standard IPv6 text forms
17072 described in inet_ntop() The name argument of gethostbyname() shall be a node name; the |
17073 behavior of gethostbyname() when passed a numeric address string is unspecified.

17074 IP6 If name is a dotted-decimal IPv4 address and af equals AF_INET, or name is an IPv6 hex address
17075 and af equals AF_INET6,the members of the returned hostent structure are as follows:

17076 h_name Points to a copy of the name argument.

17077 h_aliases A NULL pointer.

17078 h_addrtype A copy of the type argument.

17079 IP6 h_length Either 4 (for AF_INET) or 16 (for AF_INET6).

17080 IP6 h_addr_list[0] A pointer to the 4-byte or 16-byte binary address.

17081 h_addr_list[1] A NULL pointer.

17082 IP6 If name is a dotted-decimal IPv4 address and af equals AF_INET6 and AI_V4MAPPED is set in
17083 flags , an IPv4-mapped IPv6 address is returned, and the members are as follows:

17084 h_name Points to an IPv6 hex address containing the IPv4-mapped IPv6 address.

17085 h_aliases A NULL pointer.

17086 h_addrtype AF_INET6.

17087 h_length 16.

17088 h_addr_list[0] A pointer to the 16-byte binary address.

17089 h_addr_list[1] A NULL pointer.

17090 If name is a dotted-decimal IPv4 address and af equals AF_INET6 and AI_V4MAPPED is not set,
17091 then NULL is returned with [HOST_NOT_FOUND].

17092 It is an error when name is an IPv6 hex address and af equals AF_INET. The function’s return
17093 value is a NULL pointer with the [HOST_NOT_FOUND] error.

17094 If name is not a numeric address string and is an alias for a valid host name, then gethostbyname()
17095 or getipnodebyname() return information about the host name to which the alias refers, and name
17096 is included in the list of aliases returned.

17097 If name is a node name, then operation of the getipnodebyname() function is modified by the value
17098 of the flags argument, as follows:

17099 • If flags is 0 and type is AF_INET, then a query is made for IPv4 addresses. If it is successful,
17100 the IPv4 addresses are returned and the h_length member of the hostent structure shall have
17101 IP6 a value of 4. Otherwise, the function shall return a NULL pointer.

17102 • If flags is 0 and if type is AF_INET6, then a query is made for IPv6 addresses. If it is successful,
17103 the IPv6 addresses are returned and the h_length member of the hostent structure shall have
17104 a value of 16. If unsuccessful, the function shall return a NULL pointer.

17105 • If the AI_V4MAPPED flag is set and type is AF_INET6, then a query is made for IPv6
17106 addresses. If it is successful, the IPv6 addresses are returned, and no query is made for IPv4

1014 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gethostbyaddr()

17107 addresses. If it is not successful, a query is made for IPv4 addresses and any found are
17108 returned as IPv4-mapped IPv6 addresses. h_length shall have a value of 16 in either case of
17109 addresses being returned. The AI_V4MAPPED flag is ignored unless type is AF_INET6.

17110 • If the AI_ALL and AI_V4MAPPED flags are both set and type is AF_INET6, then a query is
17111 made for IPv6 addresses, and any found are returned. Another query is then made for IPv4
17112 addresses, and any found are returned as IPv4-mapped IPv6 addresses, and h_length is 16.
17113 Only if both queries fail does the function return a NULL pointer. This flag is ignored unless
17114 type is AF_INET6.

17115 • The AI_ADDRCONFIG flag specifies that a query for IPv6 addresses should be made only if
17116 the node has at least one IPv6 source address configured, and that a query for IPv4 addresses
17117 should be made only if the node has at least one IPv4 source address configured.

17118 • If the AI_V4MAPPED and AI_ADDRCONFIG flags are both set and type is AF_INET6, then:

17119 — If the node has at least one IPv6 source address configured, a query is made for IPv6
17120 addresses.

17121 — If it is successful, the IPv6 addresses are returned and no query is made for IPv4
17122 addresses.

17123 — If the node has no IPv6 source address configured, or if the query for IPv6 addresses is not
17124 successful, then if the node has at least one IPv4 source address configured, a query is
17125 made for IPv4 addresses and any found are returned as IPv4-mapped IPv6 addresses.

17126 h_length shall have a value of 16 in either case of addresses being returned.

17127 • Macro AI_DEFAULT is defined as the logical OR of AI_V4MAPPED and AI_ADDRCONFIG.

17128 Note: It is intended that setting flags to AI_DEFAULT be appropriate for most
17129 applications.

17130 RETURN VALUE
17131 Upon successful completion, these functions shall return a pointer to a hostent structure if the
17132 requested entry was found, and a null pointer if the end of the database was reached or the
17133 requested entry was not found.

17134 Upon unsuccessful completion, getipnodebyaddr() and getipnodebyname() shall set their error_num
17135 argument to indicate the error, while gethostbyaddr() and gethostbyname() shall set h_errno to
17136 indicate it.

17137 ERRORS
17138 These functions shall fail in the following cases. The getipnodebyaddr() and getipnodebyname()
17139 functions shall return the value shown in the list below in error_num; the gethostbyaddr() and
17140 gethostbyname() functions shall set h_errno to that value. Any changes to errno are unspecified.

17141 [HOST_NOT_FOUND]
17142 No such host is known.

17143 [NO_DATA] The server recognized the request and the name, but no address is available.
17144 Another type of request to the name server for the domain might return an
17145 answer.

17146 [NO_RECOVERY]
17147 An unexpected server failure occurred which cannot be recovered.

17148 [TRY_AGAIN] A temporary and possibly transient error occurred, such as a failure of a
17149 server to respond.

System Interfaces, Issue 6 1015

gethostbyaddr() System Interfaces

17150 EXAMPLES
17151 None.

17152 APPLICATION USAGE
17153 The hostent structure returned by getipnodebyaddr() and getipnodebyname(), and any structures
17154 pointed to from those structures, are dynamically allocated. Applications should call
17155 freehostent() to free the memory used by these structures.

17156 The gethostbyaddr(), and gethostbyname() functions may return pointers to static data, which may
17157 be overwritten by subsequent calls to any of these functions. Applications shall not call
17158 freehostent() for this area.

17159 The getipnodebyaddr() function is preferred over the gethostbyaddr() function.

17160 The getipnodebyname() function is preferred over the gethostbyname() function.

17161 RATIONALE
17162 None.

17163 FUTURE DIRECTIONS
17164 The gethostbyaddr() and gethostbyname() functions may be withdrawn in a future version.

17165 SEE ALSO
17166 endhostent(), freehostent(), endservent(), inet_addr(), the Base Definitions volume of |
17167 IEEE Std. 1003.1-200x, <netdb.h> |

17168 CHANGE HISTORY
17169 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

17170 The restrict keyword is added to the getipnodebyaddr() prototype for alignment with the |
17171 ISO/IEC 9899: 1999 standard. |

1016 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gethostbyname()

17172 NAME
17173 gethostbyname — network host database functions

17174 SYNOPSIS
17175 #include <netdb.h>

17176 struct hostent *gethostbyname(const char * name);

17177 DESCRIPTION
17178 Refer to gethostbyaddr().

System Interfaces, Issue 6 1017

gethostent() System Interfaces

17179 NAME
17180 gethostent — network host database functions

17181 SYNOPSIS
17182 #include <netdb.h>

17183 struct hostent *gethostent(void);

17184 DESCRIPTION
17185 Refer to endhostent().

1018 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gethostid()

17186 NAME
17187 gethostid — get an identifier for the current host

17188 SYNOPSIS
17189 XSI #include <unistd.h>

17190 long gethostid(void);
17191

17192 DESCRIPTION
17193 The gethostid () function retrieves a 32-bit identifier for the current host.

17194 RETURN VALUE
17195 Upon successful completion, gethostid () shall return an identifier for the current host.

17196 ERRORS
17197 No errors are defined.

17198 EXAMPLES
17199 None.

17200 APPLICATION USAGE
17201 This volume of IEEE Std. 1003.1-200x does not define the domain in which the return value is
17202 unique.

17203 RATIONALE
17204 None.

17205 FUTURE DIRECTIONS
17206 None.

17207 SEE ALSO
17208 random(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

17209 CHANGE HISTORY
17210 First released in Issue 4, Version 2.

17211 Issue 5
17212 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1019

gethostname() System Interfaces

17213 NAME
17214 gethostname — get name of current host

17215 SYNOPSIS
17216 #include <unistd.h>

17217 int gethostname(char * name, socklen_t namelen);

17218 DESCRIPTION
17219 The gethostname() function shall return the standard host name for the current machine. The
17220 namelen argument shall specify the size of the array pointed to by the name argument. The
17221 returned name shall be null-terminated, except that if namelen is an insufficient length to hold
17222 the host name, then the returned name shall be truncated and it is unspecified whether the
17223 returned name is null-terminated.

17224 Host names are limited to 255 bytes.

17225 RETURN VALUE
17226 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned.

17227 ERRORS
17228 No errors are defined.

17229 EXAMPLES
17230 None.

17231 APPLICATION USAGE
17232 None.

17233 RATIONALE
17234 None.

17235 FUTURE DIRECTIONS
17236 None.

17237 SEE ALSO
17238 gethostid (), uname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

17239 CHANGE HISTORY
17240 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1020 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getipnodebyaddr()

17241 NAME
17242 getipnodebyaddr — network host database functions

17243 SYNOPSIS
17244 #include <netdb.h>

17245 struct hostent *getipnodebyaddr(const void *restrict addr , socklen_t len ,|
17246 int type , int *restrict error_num); |

17247 DESCRIPTION |
17248 Refer to gethostbyaddr().

System Interfaces, Issue 6 1021

getipnodebyname() System Interfaces

17249 NAME
17250 getipnodebyname — network host database functions

17251 SYNOPSIS
17252 #include <netdb.h>

17253 struct hostent *getipnodebyname(const char * name, int type , int flags ,
17254 int * error_num);

17255 DESCRIPTION
17256 Refer to gethostbyaddr().

1022 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getitimer()

17257 NAME
17258 getitimer, setitimer — get or set value of interval timer

17259 SYNOPSIS
17260 XSI #include <sys/time.h>

17261 int getitimer(int which , struct itimerval * value);
17262 int setitimer(int which , const struct itimerval *restrict value , |
17263 struct itimerval *restrict ovalue); |
17264 |

17265 DESCRIPTION
17266 The getitimer() function shall store the current value of the timer specified by which into the
17267 structure pointed to by value . The setitimer() function shall set the timer specified by which to
17268 the value specified in the structure pointed to by value , and if ovalue is not a null pointer, stores
17269 the previous value of the timer in the structure pointed to by ovalue .

17270 A timer value is defined by the itimerval structure, specified in <sys/time.h>. If it_value is non-
17271 zero, it shall indicate the time to the next timer expiration. If it_interval is non-zero, it shall
17272 specify a value to be used in reloading it_value when the timer expires. Setting it_value to 0 shall
17273 disable a timer, regardless of the value of it_interval . Setting it_interval to 0 shall disable a timer
17274 after its next expiration (assuming it_value is non-zero).

17275 Implementations may place limitations on the granularity of timer values. For each interval
17276 timer, if the requested timer value requires a finer granularity than the implementation supports,
17277 the actual timer value shall be rounded up to the next supported value.

17278 An XSI-conforming implementation provides each process with at least three interval timers,
17279 which are indicated by the which argument:

17280 ITIMER_REAL Decrements in real time. A SIGALRM signal is delivered when this timer
17281 expires.

17282 ITIMER_VIRTUAL Decrements in process virtual time. It runs only when the process is
17283 executing. A SIGVTALRM signal is delivered when it expires.

17284 ITIMER_PROF Decrements both in process virtual time and when the system is running
17285 on behalf of the process. It is designed to be used by interpreters in
17286 statistically profiling the execution of interpreted programs. Each time the
17287 ITIMER_PROF timer expires, the SIGPROF signal is delivered.

17288 The interaction between setitimer() and any of alarm(), sleep(), or usleep() is unspecified.

17289 RETURN VALUE
17290 Upon successful completion, getitimer() or setitimer() shall return 0; otherwise, −1 shall be
17291 returned and errno set to indicate the error.

17292 ERRORS
17293 The setitimer() function shall fail if:

17294 [EINVAL] The value argument is not in canonical form. (In canonical form, the number of |
17295 microseconds is a non-negative integer less than 1,000,000 and the number of
17296 seconds is a non-negative integer.)

17297 The getitimer() and setitimer() functions may fail if:

17298 [EINVAL] The which argument is not recognized. |

System Interfaces, Issue 6 1023

getitimer() System Interfaces

17299 EXAMPLES
17300 None.

17301 APPLICATION USAGE
17302 None.

17303 RATIONALE
17304 None.

17305 FUTURE DIRECTIONS
17306 None.

17307 SEE ALSO
17308 alarm(), sleep(), timer_getoverrun(), ualarm(), usleep(), the Base Definitions volume of |
17309 IEEE Std. 1003.1-200x, <signal.h>, <sys/time.h> |

17310 CHANGE HISTORY
17311 First released in Issue 4, Version 2.

17312 Issue 5
17313 Moved from X/OPEN UNIX extension to BASE. |

17314 Issue 6 |
17315 The restrict keyword is added to the setitimer() prototype for alignment with the |
17316 ISO/IEC 9899: 1999 standard. |

1024 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getlogin()

17317 NAME
17318 getlogin, getlogin_r — get login name

17319 SYNOPSIS
17320 #include <unistd.h>

17321 char *getlogin(void);
17322 TSF int getlogin_r(char * name, size_t namesize);
17323

17324 DESCRIPTION
17325 The getlogin () function shall return a pointer to a string containing the user name associated by |
17326 the login activity with the controlling terminal of the current process. If getlogin () returns a non- |
17327 null pointer, then that pointer points to the name that the user logged in under, even if there are
17328 several login names with the same user ID.

17329 The getlogin () function need not be reentrant. A function that is not required to be reentrant is
17330 not required to be thread-safe.

17331 TSF The getlogin_r () function puts the name associated by the login activity with the controlling |
17332 terminal of the current process in the character array pointed to by name. The array is namesize |
17333 characters long and should have space for the name and the terminating null character. The
17334 maximum size of the login name is {LOGIN_NAME_MAX}.

17335 If getlogin_r () is successful, name points to the name the user used at login, even if there are
17336 several login names with the same user ID.

17337 RETURN VALUE
17338 Upon successful completion, getlogin () shall return a pointer to the login name or a null pointer
17339 if the user’s login name cannot be found. Otherwise, it shall return a null pointer and set errno to |
17340 indicate the error. |

17341 The return value from getlogin () may point to static data whose content is overwritten by each
17342 call.

17343 TSF If successful, the getlogin_r () function shall return zero; otherwise, an error number shall be
17344 returned to indicate the error.

17345 ERRORS
17346 The getlogin () and getlogin_r () functions may fail if: |

17347 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

17348 [ENFILE] The maximum allowable number of files is currently open in the system. |

17349 [ENXIO] The calling process has no controlling terminal. |

17350 The getlogin_r () function may fail if:

17351 TSF [ERANGE] The value of namesize is smaller than the length of the string to be returned |
17352 including the terminating null character.

System Interfaces, Issue 6 1025

getlogin() System Interfaces

17353 EXAMPLES

17354 Getting the User Login Name

17355 The following example calls the getlogin () function to obtain the name of the user associated
17356 with the calling process, and passes this information to the getpwnam() function to get the
17357 associated user database information.

17358 #include <unistd.h>
17359 #include <sys/types.h>
17360 #include <pwd.h>
17361 #include <stdio.h>
17362 ...
17363 char *lgn;
17364 struct passwd *pw;
17365 ...
17366 if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {
17367 fprintf(stderr, "Get of user information failed.\n"); exit(1);
17368 }

17369 APPLICATION USAGE
17370 Three names associated with the current process can be determined: getpwuid(geteuid()) shall
17371 return the name associated with the effective user ID of the process; getlogin () shall return the
17372 name associated with the current login activity; and getpwuid(getuid()) shall return the name
17373 associated with the real user ID of the process.

17374 The getlogin_r () function is thread-safe and shall return values in a user-supplied buffer instead
17375 of possibly using a static data area that may be overwritten by each call.

17376 RATIONALE
17377 The getlogin () function returns a pointer to the user’s login name. The same user ID may be
17378 shared by several login names. If it is desired to get the user database entry that is used during
17379 login, the result of getlogin () should be used to provide the argument to the getpwnam()
17380 function. (This might be used to determine the user’s login shell, particularly where a single user
17381 has multiple login shells with distinct login names, but the same user ID.)

17382 The information provided by the cuserid() function, which was originally defined in the
17383 POSIX.1-1988 standard and subsequently removed, can be obtained by the following:

17384 getpwuid(geteuid())

17385 while the information provided by historical implementations of cuserid() can be obtained by:

17386 getpwuid(getuid())

17387 The thread-safe version of this function places the user name in a user-supplied buffer and
17388 returns a non-zero value if it fails. The non-thread-safe version may return the name in a static
17389 data area that may be overwritten by each call.

17390 FUTURE DIRECTIONS
17391 None.

17392 SEE ALSO
17393 getpwnam(), getpwuid(), geteuid(), getuid(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
17394 <limits.h>, <unistd.h>

1026 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getlogin()

17395 CHANGE HISTORY
17396 First released in Issue 1. Derived from System V Release 2.0. |

17397 Issue 4
17398 The <unistd.h> header is added to the SYNOPSIS section.

17399 In the RETURN VALUE section, reference to the setting of errno is marked as an extension.

17400 The behavior of the function when the login name cannot be found is included in the RETURN
17401 VALUE section instead of the DESCRIPTION.

17402 The errors [EMFILE], [ENFILE], and [ENXIO] are marked as extensions.

17403 The APPLICATION USAGE section is changed to refer to getpwuid() rather than cuserid(), which
17404 may be withdrawn in a future version.

17405 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

17406 • The argument list is explicitly defined as void.

17407 • The DESCRIPTION is updated to state explicitly that the return value is a pointer to a string
17408 giving the user name, rather than simply a pointer to the user name as stated in previous
17409 issues.

17410 Issue 5
17411 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
17412 VALUE section.

17413 The getlogin_r () function is included for alignment with the POSIX Threads Extension.

17414 A note indicating that the getlogin () function need not be reentrant is added to the
17415 DESCRIPTION.

17416 Issue 6
17417 The getlogin_r () function is marked as part of the Thread-Safe Functions option. |

17418 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

17419 The following new requirements on POSIX implementations derive from alignment with the
17420 Single UNIX Specification:

17421 • In the RETURN VALUE section, the requirement to set errno on error is added.

17422 • The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

17423 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
17424 its avoidance of possibly using a static data area.

System Interfaces, Issue 6 1027

getmsg() System Interfaces

17425 NAME
17426 getmsg, getpmsg — receive next message from a STREAMS file (STREAMS)

17427 SYNOPSIS
17428 XSR #include <stropts.h>

17429 int getmsg(int fildes , struct strbuf *restrict ctlptr , |
17430 struct strbuf *restrict dataptr , int *restrict flagsp); |
17431 int getpmsg(int fildes , struct strbuf *restrict ctlptr , |
17432 struct strbuf *restrict dataptr , int *restrict bandp , |
17433 int *restrict flagsp); |
17434 |

17435 DESCRIPTION
17436 The getmsg() function shall retrieve the contents of a message located at the head of the
17437 STREAM head read queue associated with a STREAMS file and place the contents into one or
17438 more buffers. The message contains either a data part, a control part, or both. The data and
17439 control parts of the message are placed into separate buffers, as described below. The semantics
17440 of each part are defined by the originator of the message.

17441 The getpmsg() function does the same thing as getmsg(), but provides finer control over the
17442 priority of the messages received. Except where noted, all requirements on getmsg() also pertain
17443 to getpmsg().

17444 The fildes argument specifies a file descriptor referencing a STREAMS-based file.

17445 The ctlptr and dataptr arguments each point to a strbuf structure, in which the buf member points
17446 to a buffer in which the data or control information is to be placed, and the maxlen member
17447 indicates the maximum number of bytes this buffer can hold. On return, the len member
17448 contains the number of bytes of data or control information actually received. The len member is
17449 set to 0 if there is a zero-length control or data part and len is set to −1 if no data or control
17450 information is present in the message.

17451 When getmsg() is called, flagsp should point to an integer that indicates the type of message the
17452 process is able to receive. This is described further below.

17453 The ctlptr argument is used to hold the control part of the message, and dataptr is used to hold
17454 the data part of the message. If ctlptr (or dataptr) is a null pointer or the maxlen member is −1, the
17455 control (or data) part of the message is not processed and is left on the STREAM head read
17456 queue, and if the ctlptr (or dataptr) is not a null pointer, len is set to −1. If the maxlen member is
17457 set to 0 and there is a zero-length control (or data) part, that zero-length part is removed from
17458 the read queue and len is set to 0. If the maxlen member is set to 0 and there are more than 0 bytes
17459 of control (or data) information, that information is left on the read queue and len is set to 0. If
17460 the maxlen member in ctlptr (or dataptr) is less than the control (or data) part of the message,
17461 maxlen bytes are retrieved. In this case, the remainder of the message is left on the STREAM head
17462 read queue and a non-zero return value is provided.

17463 By default, getmsg() processes the first available message on the STREAM head read queue.
17464 However, a process may choose to retrieve only high-priority messages by setting the integer
17465 pointed to by flagsp to RS_HIPRI. In this case, getmsg() shall only process the next message if it is
17466 a high-priority message. When the integer pointed to by flagsp is 0, any message shall be
17467 retrieved. In this case, on return, the integer pointed to by flagsp is set to RS_HIPRI if a high-
17468 priority message was retrieved, or 0 otherwise.

17469 For getpmsg(), the flags are different. The flagsp argument points to a bitmask with the following
17470 mutually-exclusive flags defined: MSG_HIPRI, MSG_BAND, and MSG_ANY. Like getmsg(),
17471 getpmsg() processes the first available message on the STREAM head read queue. A process may

1028 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getmsg()

17472 choose to retrieve only high-priority messages by setting the integer pointed to by flagsp to
17473 MSG_HIPRI and the integer pointed to by bandp to 0. In this case, getpmsg() shall only process
17474 the next message if it is a high-priority message. In a similar manner, a process may choose to
17475 retrieve a message from a particular priority band by setting the integer pointed to by flagsp to
17476 MSG_BAND and the integer pointed to by bandp to the priority band of interest. In this case,
17477 getpmsg() shall only process the next message if it is in a priority band equal to, or greater than,
17478 the integer pointed to by bandp , or if it is a high-priority message. If a process just wants to get
17479 the first message off the queue, the integer pointed to by flagsp should be set to MSG_ANY and
17480 the integer pointed to by bandp should be set to 0. On return, if the message retrieved was a
17481 high-priority message, the integer pointed to by flagsp is set to MSG_HIPRI and the integer
17482 pointed to by bandp shall be set to 0. Otherwise, the integer pointed to by flagsp shall be set to
17483 MSG_BAND and the integer pointed to by bandp shall be set to the priority band of the message.

17484 If O_NONBLOCK is not set, getmsg() and getpmsg() shall block until a message of the type
17485 specified by flagsp is available at the front of the STREAM head read queue. If O_NONBLOCK is
17486 set and a message of the specified type is not present at the front of the read queue, getmsg() and
17487 getpmsg() shall fail and set errno to [EAGAIN].

17488 If a hangup occurs on the STREAM from which messages are retrieved, getmsg() and getpmsg()
17489 continue to operate normally, as described above, until the STREAM head read queue is empty.
17490 Thereafter, they return 0 in the len members of ctlptr and dataptr .

17491 RETURN VALUE
17492 Upon successful completion, getmsg() and getpmsg() shall return a non-negative value. A value
17493 of 0 indicates that a full message was read successfully. A return value of MORECTL indicates
17494 that more control information is waiting for retrieval. A return value of MOREDATA indicates
17495 that more data is waiting for retrieval. A return value of the bitwise-logical OR of MORECTL
17496 and MOREDATA indicates that both types of information remain. Subsequent getmsg() and
17497 getpmsg() calls shall retrieve the remainder of the message. However, if a message of higher
17498 priority has come in on the STREAM head read queue, the next call to getmsg() or getpmsg()
17499 shall retrieve that higher-priority message before retrieving the remainder of the previous
17500 message.

17501 If the high priority control part of the message is consumed, the message shall be placed back on
17502 the queue as a normal message of band 0. Subsequent getmsg() and getpmsg() calls shall retrieve
17503 the remainder of the message. If, however, a priority message arrives or already exists on the
17504 STREAM head, the subsequent call to getmsg() or getpmsg() retrieves the higher-priority
17505 message before retrieving the remainder of the message that was put back.

17506 Upon failure, getmsg() and getpmsg() shall return −1 and set errno to indicate the error.

17507 ERRORS
17508 The getmsg() and getpmsg() functions shall fail if:

17509 [EAGAIN] The O_NONBLOCK flag is set and no messages are available. |

17510 [EBADF] The fildes argument is not a valid file descriptor open for reading. |

17511 [EBADMSG] The queued message to be read is not valid for getmsg() or getpmsg() or a |
17512 pending file descriptor is at the STREAM head.

17513 [EINTR] A signal was caught during getmsg() or getpmsg(). |

17514 [EINVAL] An illegal value was specified by flagsp , or the STREAM or multiplexer |
17515 referenced by fildes is linked (directly or indirectly) downstream from a
17516 multiplexer.

System Interfaces, Issue 6 1029

getmsg() System Interfaces

17517 [ENOSTR] A STREAM is not associated with fildes . |

17518 In addition, getmsg() and getpmsg() shall fail if the STREAM head had processed an
17519 asynchronous error before the call. In this case, the value of errno does not reflect the result of
17520 getmsg() or getpmsg() but reflects the prior error.

17521 EXAMPLES

17522 Getting Any Message

17523 In the following example, the value of fd is assumed to refer to an open STREAMS file. The call
17524 to getmsg() retrieves any available message on the associated STREAM-head read queue,
17525 returning control and data information to the buffers pointed to by ctrlbuf and databuf ,
17526 respectively.

17527 #include <stropts.h>
17528 ...
17529 int fd;
17530 char ctrlbuf[128];
17531 char databuf[512];
17532 struct strbuf ctrl;
17533 struct strbuf data;
17534 int flags = 0;
17535 int ret;

17536 ctrl.buf = ctrlbuf;
17537 ctrl.maxlen = sizeof(ctrlbuf);

17538 data.buf = databuf;
17539 data.maxlen = sizeof(databuf);

17540 ret = getmsg (fd, &ctrl, &data, &flags);

17541 Getting the First Message off the Queue

17542 In the following example, the call to getpmsg() retrieves the first available message on the
17543 associated STREAM-head read queue.

17544 #include <stropts.h>
17545 ...

17546 int fd;
17547 char ctrlbuf[128];
17548 char databuf[512];
17549 struct strbuf ctrl;
17550 struct strbuf data;
17551 int band = 0;
17552 int flags = MSG_ANY;
17553 int ret;

17554 ctrl.buf = ctrlbuf;
17555 ctrl.maxlen = sizeof(ctrlbuf);

17556 data.buf = databuf;
17557 data.maxlen = sizeof(databuf);

17558 ret = getpmsg (fd, &ctrl, &data, &band, &flags);

1030 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getmsg()

17559 APPLICATION USAGE
17560 None.

17561 RATIONALE
17562 None.

17563 FUTURE DIRECTIONS
17564 None.

17565 SEE ALSO
17566 poll (), putmsg(), read(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
17567 <stropts.h>, Section 2.6 (on page 539)

17568 CHANGE HISTORY
17569 First released in Issue 4, Version 2.

17570 Issue 5
17571 Moved from X/OPEN UNIX extension to BASE.

17572 A paragraph regarding ‘‘high-priority control parts of messages’’ is added to the RETURN
17573 VALUE section.

17574 Issue 6
17575 This function is marked as part of the XSI STREAMS Option Group. |

17576 The restrict keyword is added to the getmsg() and getpmsg() prototypes for alignment with the |
17577 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1031

getnameinfo() System Interfaces

17578 NAME
17579 getnameinfo — get name information

17580 Notes to Reviewers
17581 This section with side shading will not appear in the final copy. - Ed.

17582 The IPv6 developers believe that getnameinfo() should not truncate the result if the user buffer is
17583 too small, but return an error status.

17584 SYNOPSIS
17585 #include <sys/socket.h>
17586 #include <netdb.h>

17587 int getnameinfo(const struct sockaddr *restrict sa , socklen_t salen , |
17588 char *restrict node , socklen_t nodelen , char *restrict service , |
17589 socklen_t servicelen , unsigned flags); |

17590 DESCRIPTION |
17591 The getnameinfo() function translates a socket address to a node name and service location, all of
17592 which are defined as in getaddrinfo ().

17593 The sa argument points to a socket address structure to be translated.

17594 If the node argument is non-NULL and the nodelen argument is non-zero, then the node argument
17595 points to a buffer able to contain up to nodelen characters that receives the node name as a null-
17596 terminated string. If the node argument is NULL or the nodelen argument is zero, the node name
17597 shall not be returned. If the node’s name cannot be located, the numeric form of the node’s
17598 address is returned instead of its name.

17599 If the service argument is non-NULL and the servicelen argument is non-zero, then the service
17600 argument points to a buffer able to contain up to servicelen characters that receives the service
17601 name as a null-terminated string. If the service argument is NULL or the servicelen argument is
17602 zero, the service name shall not be returned. If the service’s name cannot be located, the numeric
17603 form of the service address (for example, its port number) is returned instead of its name.

17604 The node and service arguments cannot both be NULL.

17605 The flags argument is a flag that changes the default actions of the function. By default the fully-
17606 qualified domain name (FQDN) for the host is returned, but:

17607 • If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN shall be returned
17608 for local hosts.

17609 • If the flag bit NI_NUMERICHOST is set, the numeric form of the host’s address shall be
17610 returned instead of its name, under all circumstances.

17611 • If the flag bit NI_NAMEREQD is set, an error shall be returned if the host’s name cannot be
17612 located.

17613 • If the flag bit NI_NUMERICSERV is set, the numeric form of the service address shall be
17614 returned (for example, its port number) instead of its name, under all circumstances.

17615 • If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
17616 (SOCK_DGRAM). The default behavior shall assume that the service is a stream service
17617 (SOCK_STREAM).

17618 Notes:

17619 1. The two NI_NUMERICxxx flags are required to support the −n flag that many
17620 commands provide.

1032 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getnameinfo()

17621 2. The NI_DGRAM flag is required for the few AF_INET and AF_INET6 port
17622 numbers (for example, 512-514) that represent different services for UDP and
17623 TCP.

17624 The getnameinfo() function shall be thread-safe.

17625 RETURN VALUE
17626 A zero return value for getnameinfo() indicates successful completion; a non-zero return value
17627 indicates failure. The possible values for the failures are listed in the ERRORS section. |

17628 Upon successful completion, getnameinfo() shall return the node and service names, if requested,
17629 in the buffers provided. The returned names are always null-terminated strings, and may be
17630 truncated if the actual values are longer than can be stored in the buffers provided.

17631 ERRORS
17632 The getnameinfo() function shall fail and return the corresponding value if:

17633 [EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.

17634 [EAI_BADFLAGS]
17635 The flags had an invalid value.

17636 [EAI_FAIL] A non-recoverable error occurred.

17637 [EAI_FAMILY] The address family was not recognized or the address length was invalid for
17638 the specified family.

17639 [EAI_MEMORY] There was a memory allocation failure.

17640 [EAI_NONAME] The name does not resolve for the supplied parameters.

17641 NI_NAMEREQD is set and the host’s name cannot be located, or both
17642 nodename and servname were null.

17643 [EAI_SYSTEM] A system error occurred. The error code can be found in errno.

17644 EXAMPLES
17645 None.

17646 APPLICATION USAGE
17647 If the returned values are to be used as part of any further name resolution (for example, passed
17648 to getaddrinfo ()), applications shall either provide buffers large enough to store any result
17649 possible on the system or shall check for truncation and handle that case appropriately.

17650 RATIONALE
17651 None.

17652 FUTURE DIRECTIONS
17653 None.

17654 SEE ALSO
17655 getaddrinfo (), getservbyname(), getservbyport(), inet_ntop(), socket(), the Base Definitions volume |
17656 of IEEE Std. 1003.1-200x, <netdb.h>, <sys/socket.h> |

17657 CHANGE HISTORY
17658 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

17659 The restrict keyword is added to the getnameinfo() prototype for alignment with the |
17660 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1033

getnetbyaddr() System Interfaces

17661 NAME
17662 getnetbyaddr — network database functions

17663 SYNOPSIS
17664 #include <netdb.h>

17665 struct netent *getnetbyaddr(uint32_t net , int type);

17666 DESCRIPTION
17667 Refer to endnetent().

1034 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getnetbyname()

17668 NAME
17669 getnetbyname — network database functions

17670 SYNOPSIS
17671 #include <netdb.h>

17672 struct netent *getnetbyname(const char * name);

17673 DESCRIPTION
17674 Refer to endnetent().

System Interfaces, Issue 6 1035

getnetent() System Interfaces

17675 NAME
17676 getnetent — network database functions

17677 SYNOPSIS
17678 #include <netdb.h>

17679 struct netent *getnetent(void);

17680 DESCRIPTION
17681 Refer to endnetent().

1036 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getopt()

17682 NAME
17683 getopt, optarg, opterr, optind, optopt — command option parsing

17684 SYNOPSIS
17685 #include <unistd.h>

17686 int getopt(int argc , char * const argv [], const char * optstring);
17687 extern char *optarg;
17688 extern int optind, opterr, optopt;

17689 DESCRIPTION
17690 The getopt() function is a command-line parser that can be used by applications that follow
17691 Utility Syntax Guidelines 3, 4, 5, 6, 7, 9, and 10 in the Base Definitions volume of |
17692 IEEE Std. 1003.1-200x, Section 12.2, Utility Syntax Guidelines. The remaining guidelines are not |
17693 addressed by getopt() and are the responsibility of the application. |

17694 The parameters argc and argv are the argument count and argument array as passed to main()
17695 (see exec). The argument optstring is a string of recognized option characters; if a character is
17696 followed by a colon, the option takes an argument. All option characters allowed by Utility
17697 Syntax Guideline 3 are allowed in optstring. The implementation may accept other characters as
17698 an extension.

17699 The variable optind is the index of the next element of the argv[] vector to be processed. It is
17700 initialized to 1 by the system, and getopt() updates it when it finishes with each element of
17701 argv[]. When an element of argv[] contains multiple option characters, it is unspecified how
17702 getopt() determines which options have already been processed.

17703 The getopt() function shall return the next option character (if one is found) from argv that
17704 matches a character in optstring, if there is one that matches. If the option takes an argument,
17705 getopt() shall set the variable optarg to point to the option-argument as follows:

17706 1. If the option was the last character in the string pointed to by an element of argv, then
17707 optarg contains the next element of argv, and optind is incremented by 2. If the resulting
17708 value of optind is greater than argc, this indicates a missing option-argument, and getopt()
17709 shall return an error indication.

17710 2. Otherwise, optarg points to the string following the option character in that element of
17711 argv, and optind is incremented by 1.

17712 If, when getopt() is called:

17713 argv [optind] is a null pointer
17714 * argv [optind] is not the character −
17715 argv [optind] points to the string " −"

17716 getopt() shall return −1 without changing optind. If:

17717 argv [optind] points to the string " −−"

17718 getopt() shall return −1 after incrementing optind.

17719 If getopt() encounters an option character that is not contained in optstring, it shall return the
17720 question-mark (’?’) character. If it detects a missing option-argument, it shall return the colon
17721 character (’:’) if the first character of optstring was a colon, or a question-mark character (’?’)
17722 otherwise. In either case, getopt() shall set the variable optopt to the option character that caused
17723 the error. If the application has not set the variable opterr to 0 and the first character of optstring
17724 is not a colon, getopt() shall also print a diagnostic message to stderr in the format specified for
17725 the getopts utility.

System Interfaces, Issue 6 1037

getopt() System Interfaces

17726 The getopt() function need not be reentrant. A function that is not required to be reentrant is not
17727 required to be thread-safe.

17728 RETURN VALUE
17729 The getopt() function shall return the next option character specified on the command line.

17730 A colon (’:’) shall be returned if getopt() detects a missing argument and the first character of
17731 optstring was a colon (’:’).

17732 A question mark (’?’) shall be returned if getopt() encounters an option character not in
17733 optstring or detects a missing argument and the first character of optstring was not a colon (’:’).

17734 Otherwise, getopt() shall return −1 when all command line options are parsed.

17735 ERRORS
17736 No errors are defined.

17737 EXAMPLES

17738 Parsing Command Line Options

17739 The following code fragment shows how you might process the arguments for a utility that can
17740 take the mutually-exclusive options a and b and the options f and o , both of which require
17741 arguments:

17742 #include <unistd.h>

17743 int
17744 main(int argc, char *argv[])
17745 {
17746 int c;
17747 int bflg, aflg, errflg;
17748 char *ifile;
17749 char *ofile;
17750 extern char *optarg;
17751 extern int optind, optopt;
17752 . . .
17753 while ((c = getopt(argc, argv, ":abf:o:")) != -1) {
17754 switch(c) {
17755 case ’a’:
17756 if (bflg)
17757 errflg++;
17758 else
17759 aflg++;
17760 break;
17761 case ’b’:
17762 if (aflg)
17763 errflg++;
17764 else {
17765 bflg++;
17766 bproc();
17767 }
17768 break;
17769 case ’f’:
17770 ifile = optarg;
17771 break;
17772 case ’o’:

1038 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getopt()

17773 ofile = optarg;
17774 break;
17775 case ’:’: /* -f or -o without operand */
17776 fprintf(stderr,
17777 "Option -%c requires an operand\n", optopt);
17778 errflg++;
17779 break;
17780 case ’?’:
17781 fprintf(stderr,
17782 "Unrecognized option: -%c\n", optopt);
17783 errflg++;
17784 }
17785 }
17786 if (errflg) {
17787 fprintf(stderr, "usage : . . . ");
17788 exit(2);
17789 }
17790 for (; optind < argc; optind++) {
17791 if (access(argv[optind], R_OK)) {
17792 . . .
17793 }

17794 This code accepts any of the following as equivalent:

17795 cmd −ao arg path path
17796 cmd −a −o arg path path
17797 cmd −o arg −a path path
17798 cmd −a −o arg −− path path
17799 cmd −a −oarg path path
17800 cmd −aoarg path path

17801 Checking Options and Arguments

17802 The following example parses a set of command line options and prints messages to standard
17803 output for each option and argument that it encounters.

17804 #include <unistd.h>
17805 #include <stdio.h>
17806 ...
17807 int c;
17808 char *filename;
17809 extern char *optarg;
17810 extern int optind, optopt, opterr;
17811 ...
17812 while ((c = getopt(argc, argv, ":abf:")) != -1) {
17813 switch(c) {
17814 case ’a’:
17815 printf("a is set\n");
17816 break;
17817 case ’b’:
17818 printf("b is set\n");
17819 break;
17820 case ’f’:
17821 filename = optarg;

System Interfaces, Issue 6 1039

getopt() System Interfaces

17822 printf("filename is %s\n", filename);
17823 break;
17824 case ’:’:
17825 printf("-%c without filename\n", optopt);
17826 break;
17827 case ’?’:
17828 printf("unknown arg %c\n", optopt);
17829 break;
17830 }
17831 }

17832 Selecting Options from the Command Line

17833 The following example selects the type of database routines the user wants to use based on the
17834 Options argument.

17835 #include <unistd.h>
17836 #include <string.h>
17837 ...
17838 char *Options = "hdbtl";
17839 ...
17840 int dbtype, i;
17841 char c;
17842 char *st;
17843 ...
17844 dbtype = 0;
17845 while ((c = getopt(argc, argv, Options)) != −1) {
17846 if ((st = strchr(Options, c)) != NULL) {
17847 dbtype = st - Options;
17848 break;
17849 }
17850 }

17851 APPLICATION USAGE
17852 The getopt() function is only required to support option characters included in Utility Syntax
17853 Guideline 3. Many historical implementations of getopt() support other characters as options.
17854 This is an allowed extension, but applications that use extensions are not maximally portable.
17855 Note that support for multi-byte option characters is only possible when such characters can be
17856 represented as type int.

17857 RATIONALE
17858 The optopt variable represents historical practice and allows the application to obtain the identity
17859 of the invalid option.

17860 The description has been written to make it clear that getopt(), like the getopts utility, deals with
17861 option-arguments whether separated from the option by <blank> characters or not. Note that
17862 the requirements on getopt() and getopts are more stringent than the Utility Syntax Guidelines.

17863 The getopt() function shall return −1, rather than EOF, so that <stdio.h> is not required.

17864 The special significance of a colon as the first character of optstring makes getopt() consistent
17865 with the getopts utility. It allows an application to make a distinction between a missing
17866 argument and an incorrect option letter without having to examine the option letter. It is true
17867 that a missing argument can only be detected in one case, but that is a case that has to be
17868 considered.

1040 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getopt()

17869 FUTURE DIRECTIONS
17870 None.

17871 SEE ALSO
17872 exec, the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h>, the Shell and Utilities |
17873 volume of IEEE Std. 1003.1-200x |

17874 CHANGE HISTORY
17875 First released in Issue 1. Derived from Issue 1 of the SVID. |

17876 Issue 4
17877 The following changes are incorporated for alignment with the ISO POSIX-2 standard:

17878 • The <unistd.h> header is added to the SYNOPSIS section and <stdio.h> is deleted.

17879 • The type of argument argv is changed from char** to char*const[].

17880 • The integer optopt is added to the list of external data items.

17881 • The DESCRIPTION is largely rewritten, without functional change, for alignment with the
17882 ISO POSIX-2 standard, although the following differences should be noted:

17883 — If the function detects a missing option-argument, it returns a colon (’:’) and sets optopt
17884 to the option character.

17885 — The termination conditions under which getopt() returns −1 are extended. Also note that
17886 the termination condition is explicitly −1, rather than the value of EOF.

17887 • The EXAMPLES section is changed to illustrate the new functionality.

17888 Issue 5
17889 A note indicating that the getopt() function need not be reentrant is added to the DESCRIPTION.

17890 Issue 6
17891 IEEE PASC Interpretation 1003.2 #150 is applied. |

System Interfaces, Issue 6 1041

getpeername() System Interfaces

17892 NAME
17893 getpeername — get the name of the peer socket

17894 SYNOPSIS
17895 #include <sys/socket.h>

17896 int getpeername(int socket , struct sockaddr *restrict address , |
17897 socklen_t * address_len); |

17898 DESCRIPTION
17899 The getpeername() function shall retrieve the peer address of the specified socket, store this
17900 address in the sockaddr structure pointed to by the address argument, and store the length of this
17901 address in the object pointed to by the address_len argument.

17902 If the actual length of the address is greater than the length of the supplied sockaddr structure,
17903 the stored address shall be truncated.

17904 If the protocol permits connections by unbound clients, and the peer is not bound, then the value
17905 stored in the object pointed to by address is unspecified.

17906 RETURN VALUE
17907 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
17908 indicate the error.

17909 ERRORS
17910 The getpeername() function shall fail if:

17911 [EBADF] The socket argument is not a valid file descriptor. |

17912 [EINVAL] The socket has been shut down.

17913 [ENOTCONN] The socket is not connected or otherwise has not had the peer prespecified.

17914 [ENOTSOCK] The socket argument does not refer to a socket.

17915 [EOPNOTSUPP] The operation is not supported for the socket protocol.

17916 The getpeername() function may fail if:

17917 [ENOBUFS] Insufficient resources were available in the system to complete the call. |

17918 EXAMPLES
17919 None.

17920 APPLICATION USAGE
17921 None.

17922 RATIONALE
17923 None.

17924 FUTURE DIRECTIONS
17925 None.

17926 SEE ALSO
17927 accept(), bind(), getsockname(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
17928 <sys/socket.h>

CHANGE17929 HISTORY
17930 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

17931 The restrict keyword is added to the getpeername() prototype for alignment with the |
17932 ISO/IEC 9899: 1999 standard. |

1042 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpgid()

17933 NAME
17934 getpgid — get the process group ID for a process |

17935 SYNOPSIS
17936 XSI #include <unistd.h>

17937 pid_t getpgid(pid_t pid);
17938

17939 DESCRIPTION
17940 The getpgid() function shall return the process group ID of the process whose process ID is equal
17941 to pid . If pid is equal to 0, getpgid() shall return the process group ID of the calling process.

17942 RETURN VALUE
17943 Upon successful completion, getpgid() shall return a process group ID. Otherwise, it shall return
17944 (pid_t)−1 and set errno to indicate the error.

17945 ERRORS
17946 The getpgid() function shall fail if:

17947 [EPERM] The process whose process ID is equal to pid is not in the same session as the |
17948 calling process, and the implementation does not allow access to the process
17949 group ID of that process from the calling process.

17950 [ESRCH] There is no process with a process ID equal to pid . |

17951 The getpgid() function may fail if:

17952 [EINVAL] The value of the pid argument is invalid. |

17953 EXAMPLES
17954 None.

17955 APPLICATION USAGE
17956 None.

17957 RATIONALE
17958 None.

17959 FUTURE DIRECTIONS
17960 None.

17961 SEE ALSO
17962 exec, fork (), getpgrp(), getpid(), getsid(), setpgid(), setsid(), the Base Definitions volume of |
17963 IEEE Std. 1003.1-200x, <unistd.h> |

17964 CHANGE HISTORY
17965 First released in Issue 4, Version 2.

17966 Issue 5
17967 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1043

getpgrp() System Interfaces

17968 NAME
17969 getpgrp — get the process group ID of the calling process

17970 SYNOPSIS
17971 #include <unistd.h>

17972 pid_t getpgrp(void);

17973 DESCRIPTION
17974 The getpgrp() function shall return the process group ID of the calling process.

17975 RETURN VALUE
17976 The getpgrp() function is always successful and no return value is reserved to indicate an error.

17977 ERRORS
17978 No errors are defined.

17979 EXAMPLES
17980 None.

17981 APPLICATION USAGE
17982 None.

17983 RATIONALE
17984 4.3 BSD provides a getpgrp() function that returns the process group ID for a specified process.
17985 Although this function is used to support job control, all known job control shells always specify
17986 the calling process with this function. Thus, the simpler System V getpgrp() suffices, and the
17987 added complexity of the 4.3 BSD getpgrp() has been omitted from this volume of
17988 IEEE Std. 1003.1-200x.

17989 FUTURE DIRECTIONS
17990 None.

17991 SEE ALSO
17992 exec, fork (), getpgid(), getpid(), getppid(), kill (), setpgid(), setsid(), the Base Definitions volume of |
17993 IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

17994 CHANGE HISTORY
17995 First released in Issue 1. Derived from Issue 1 of the SVID. |

17996 Issue 4
17997 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
17998 XSI-conformant systems.

17999 The <unistd.h> header is added to the SYNOPSIS section.

18000 The following change is incorporated for alignment with the ISO POSIX-1 standard:

18001 • The argument list is explicitly defined as void.

18002 Issue 6
18003 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

18004 The following new requirements on POSIX implementations derive from alignment with the
18005 Single UNIX Specification:

18006 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
18007 required for conforming implementations of previous POSIX specifications, it was not
18008 required for UNIX applications.

1044 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpid()

18009 NAME
18010 getpid — get the process ID

18011 SYNOPSIS
18012 #include <unistd.h>

18013 pid_t getpid(void);

18014 DESCRIPTION
18015 The getpid() function shall return the process ID of the calling process.

18016 RETURN VALUE
18017 The getpid() function is always successful and no return value is reserved to indicate an error.

18018 ERRORS
18019 No errors are defined.

18020 EXAMPLES
18021 None.

18022 APPLICATION USAGE
18023 None.

18024 RATIONALE
18025 None.

18026 FUTURE DIRECTIONS
18027 None.

18028 SEE ALSO
18029 exec, fork (), getpgrp(), getppid(), kill (), setpgid(), setsid(), the Base Definitions volume of |
18030 IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

18031 CHANGE HISTORY
18032 First released in Issue 1. Derived from Issue 1 of the SVID. |

18033 Issue 4
18034 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
18035 XSI-conformant systems.

18036 The <unistd.h> header is added to the SYNOPSIS section.

18037 The following change is incorporated for alignment with the ISO POSIX-1 standard:

18038 • The argument list is explicitly defined as void.

18039 Issue 6
18040 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

18041 The following new requirements on POSIX implementations derive from alignment with the
18042 Single UNIX Specification:

18043 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
18044 required for conforming implementations of previous POSIX specifications, it was not
18045 required for UNIX applications.

System Interfaces, Issue 6 1045

getpmsg() System Interfaces

18046 NAME
18047 getpmsg — receive next message from a STREAMS file

18048 SYNOPSIS
18049 XSI #include <stropts.h>

18050 int getpmsg(int fildes , struct strbuf *restrict ctlptr , |
18051 struct strbuf *restrict dataptr , int *restrict bandp , |
18052 int *restrict flagsp); |
18053 |

18054 DESCRIPTION
18055 Refer to getmsg().

1046 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getppid()

18056 NAME
18057 getppid — get the parent process ID

18058 SYNOPSIS
18059 #include <unistd.h>

18060 pid_t getppid(void);

18061 DESCRIPTION
18062 The getppid() function shall return the parent process ID of the calling process.

18063 RETURN VALUE
18064 The getppid() function is always successful and no return value is reserved to indicate an error.

18065 ERRORS
18066 No errors are defined.

18067 EXAMPLES
18068 None.

18069 APPLICATION USAGE
18070 None.

18071 RATIONALE
18072 None.

18073 FUTURE DIRECTIONS
18074 None.

18075 SEE ALSO
18076 exec, fork (), getpgid(), getpgrp(), getpid(), kill (), setpgid(), setsid(), the Base Definitions volume of |
18077 IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

18078 CHANGE HISTORY
18079 First released in Issue 1. Derived from Issue 1 of the SVID. |

18080 Issue 4
18081 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
18082 XSI-conformant systems.

18083 The <unistd.h> header is added to the SYNOPSIS section.

18084 The following change is incorporated for alignment with the ISO POSIX-1 standard:

18085 • The argument list is explicitly defined as void.

18086 Issue 6
18087 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

18088 The following new requirements on POSIX implementations derive from alignment with the
18089 Single UNIX Specification:

18090 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
18091 required for conforming implementations of previous POSIX specifications, it was not
18092 required for UNIX applications.

System Interfaces, Issue 6 1047

getpriority() System Interfaces

18093 NAME
18094 getpriority, setpriority — get or set the nice value

18095 SYNOPSIS
18096 XSI #include <sys/resource.h>

18097 int getpriority(int which , id_t who);
18098 int setpriority(int which , id_t who, int value);
18099

18100 DESCRIPTION
18101 The getpriority () function obtains the nice value of a process, process group, or user. The
18102 setpriority() function sets the nice value of a process, process group, or user to value+ {NZERO}.

18103 Target processes are specified by the values of the which and who arguments. The which
18104 argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP, or PRIO_USER,
18105 indicating that the who argument is to be interpreted as a process ID, a process group ID, or an
18106 effective user ID, respectively. A 0 value for the who argument specifies the current process,
18107 process group, or user.

18108 The nice value set with setpriority() shall be applied to the process. If the process is multi-
18109 threaded, the nice value shall affect all system scope threads in the process.

18110 If more than one process is specified, getpriority () shall return value {NZERO} less than the
18111 lowest nice value pertaining to any of the specified processes, and setpriority() sets the nice
18112 values of all of the specified processes to value+ {NZERO}.

18113 The default nice value is {NZERO}; lower nice values cause more favorable scheduling. While
18114 the range of valid nice values is [0,{NZERO}*2 −1], implementations may enforce more
18115 restrictive limits. If value+ {NZERO} is less than the system’s lowest supported nice value,
18116 setpriority() sets the nice value to the lowest supported value; if value+ {NZERO} is greater than
18117 the system’s highest supported nice value, setpriority() sets the nice value to the highest
18118 supported value.

18119 Only a process with appropriate privileges can lower its nice value.

18120 PS|TPS Any processes or threads using SCHED_FIFO or SCHED_RR are unaffected by a call to
18121 setpriority(). This is not considered an error.

18122 The effect of changing the nice value may vary depending on the process-scheduling algorithm
18123 in effect.

18124 Because getpriority () can return the value −1 on successful completion, it is necessary to set errno
18125 to 0 prior to a call to getpriority (). If getpriority () returns the value −1, then errno can be checked
18126 to see if an error occurred or if the value is a legitimate nice value.

18127 RETURN VALUE
18128 Upon successful completion, getpriority () shall return an integer in the range from −{NZERO} to
18129 {NZERO}−1. Otherwise, −1 shall be returned and errno set to indicate the error.

18130 Upon successful completion, setpriority() shall return 0; otherwise, −1 shall be returned and errno
18131 set to indicate the error.

18132 ERRORS
18133 The getpriority () and setpriority() functions shall fail if:

18134 [ESRCH] No process could be located using the which and who argument values |
18135 specified.

1048 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpriority()

18136 [EINVAL] The value of the which argument was not recognized, or the value of the who |
18137 argument is not a valid process ID, process group ID, or user ID.

18138 In addition, setpriority() may fail if:

18139 [EPERM] A process was located, but neither the real nor effective user ID of the |
18140 executing process match the effective user ID of the process whose nice value
18141 is being changed.

18142 [EACCES] A request was made to change the nice value to a lower numeric value and |
18143 the current process does not have appropriate privileges.

18144 EXAMPLES

18145 Using getpriority()

18146 The following example returns the current scheduling priority for the process ID returned by the
18147 call to getpid().

18148 #include <sys/resource.h>
18149 ...
18150 int which = PRIO_PROCESS;
18151 id_t pid;
18152 int ret;

18153 pid = getpid();
18154 ret = getpriority(which, pid);

18155 Using setpriority()

18156 The following example sets the priority for the current process ID to −20.

18157 #include <sys/resource.h>
18158 ...
18159 int which = PRIO_PROCESS;
18160 id_t pid;
18161 int priority = -20;
18162 int ret;

18163 pid = getpid();
18164 ret = setpriority(which, pid, priority);

18165 APPLICATION USAGE
18166 The getpriority () and setpriority() functions work with an offset nice value (nice value
18167 −{NZERO}). The nice value is in the range [0,2*{NZERO} −1], while the return value for
18168 getpriority () and the third parameter for setpriority() are in the range [−{NZERO},{NZERO} −1].

18169 RATIONALE
18170 None.

18171 FUTURE DIRECTIONS
18172 None.

18173 SEE ALSO
18174 nice(), sched_get_priority_max(), sched_setscheduler(), the Base Definitions volume of |
18175 IEEE Std. 1003.1-200x, <sys/resource.h> |

System Interfaces, Issue 6 1049

getpriority() System Interfaces

18176 CHANGE HISTORY
18177 First released in Issue 4, Version 2.

18178 Issue 5
18179 Moved from X/OPEN UNIX extension to BASE.

18180 The DESCRIPTION is reworded in terms of the nice value rather than priority to avoid confusion
18181 with functionality in the POSIX Realtime Extension.

1050 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getprotobyname()

18182 NAME
18183 getprotobyname — network protocol database functions

18184 SYNOPSIS
18185 #include <netdb.h>

18186 struct protoent *getprotobyname(const char * name);

18187 DESCRIPTION
18188 Refer to endprotoent().

System Interfaces, Issue 6 1051

getprotobynumber() System Interfaces

18189 NAME
18190 getprotobynumber — network protocol database functions

18191 SYNOPSIS
18192 #include <netdb.h>

18193 struct protoent *getprotobynumber(int proto);

18194 DESCRIPTION
18195 Refer to endprotoent().

1052 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getprotoent()

18196 NAME
18197 getprotoent — network protocol database functions

18198 SYNOPSIS
18199 #include <netdb.h>

18200 struct protoent *getprotoent(void);

18201 DESCRIPTION
18202 Refer to endprotoent().

System Interfaces, Issue 6 1053

getpwent() System Interfaces

18203 NAME
18204 getpwent — get user database entry

18205 SYNOPSIS
18206 XSI #include <pwd.h>

18207 struct passwd *getpwent(void);
18208

18209 DESCRIPTION
18210 Refer to endpwent().

1054 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpwnam()

18211 NAME
18212 getpwnam, getpwnam_r — search user database for a name

18213 SYNOPSIS
18214 #include <pwd.h>

18215 struct passwd *getpwnam(const char * name);
18216 TSF int getpwnam_r(const char * name, struct passwd * pwd, char * buffer , |
18217 size_t bufsize , struct passwd ** result); |
18218

18219 DESCRIPTION
18220 The getpwnam() function shall search the user database for an entry with a matching name.

18221 The getpwnam() function need not be reentrant. A function that is not required to be reentrant is
18222 not required to be thread-safe.

18223 Applications wishing to check for error situations should set errno to 0 before calling |
18224 getpwnam(). If getpwnam() returns a null pointer and errno is non-zero, an error occurred. |

18225 TSF The getpwnam_r() function updates the passwd structure pointed to by pwd and stores a pointer |
18226 to that structure at the location pointed to by result. The structure shall contain an entry from
18227 the user database with a matching name. Storage referenced by the structure is allocated from
18228 the memory provided with the buffer parameter, which is bufsize characters in size. |

18229 Notes to Reviewers |
18230 This section with side shading will not appear in the final copy. - Ed. |

18231 D3, XSH, ERN 301 says that the size above is in bytes, not characters, and proposes changing |
18232 "characters" to "bytes". |
18233 The maximum size needed for this buffer can be determined with the |
18234 {_SC_GETPW_R_SIZE_MAX} sysconf() parameter. A NULL pointer shall be returned at the
18235 location pointed to by result on error or if the requested entry is not found. |

18236 RETURN VALUE
18237 The getpwnam() function shall return a pointer to a struct passwd with the structure as defined
18238 in <pwd.h> with a matching entry if found. A null pointer shall be returned if the requested |
18239 entry is not found, or an error occurs. On error, errno shall be set to indicate the error. |

18240 The return value may point to a static area which is overwritten by a subsequent call to
18241 getpwent(), getpwnam(), or getpwuid().

18242 TSF If successful, the getpwnam_r() function shall return zero; otherwise, an error number shall be
18243 returned to indicate the error.

18244 ERRORS
18245 The getpwnam() and getpwnam_r() functions may fail if: |

18246 [EIO] An I/O error has occurred. |

18247 [EINTR] A signal was caught during getpwnam(). |

18248 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

18249 [ENFILE] The maximum allowable number of files is currently open in the system. |

18250 TSF The getpwnam_r() function may fail if:

18251 TSF [ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to |
18252 be referenced by the resulting passwd structure.

System Interfaces, Issue 6 1055

getpwnam() System Interfaces

18253 EXAMPLES

18254 Getting an Entry for the Login Name

18255 The following example uses the getlogin () function to return the name of the user who logged in;
18256 this information is passed to the getpwnam() function to get the user database entry for that user.

18257 #include <sys/types.h>
18258 #include <pwd.h>
18259 #include <unistd.h>
18260 #include <stdio.h>
18261 #include <stdlib.h>
18262 ...
18263 char *lgn;
18264 struct passwd *pw;
18265 ...
18266 if ((lgn = getlogin()) == NULL || (pw = getpwnam(lgn)) == NULL) {
18267 fprintf(stderr, "Get of user information failed.\n"); exit(1);
18268 }
18269 ...

18270 APPLICATION USAGE
18271 Three names associated with the current process can be determined: getpwuid(geteuid()) returns
18272 the name associated with the effective user ID of the process; getlogin () returns the name
18273 associated with the current login activity; and getpwuid(getuid()) returns the name associated
18274 with the real user ID of the process.

18275 The getpwnam_r() function is thread-safe and shall return values in a user-supplied buffer
18276 instead of possibly using a static data area that may be overwritten by each call.

18277 RATIONALE
18278 None.

18279 FUTURE DIRECTIONS
18280 None.

18281 SEE ALSO
18282 getpwuid(), the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <pwd.h>, |
18283 <sys/types.h>

CHANGE18284 HISTORY
18285 First released in Issue 1. Derived from System V Release 2.0. |

18286 Issue 4
18287 The DESCRIPTION is clarified.

18288 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
18289 XSI-conformant systems.

18290 The last sentence in the RETURN VALUE section, indicating that errno is set on error, is marked
18291 as an extension.

18292 The errors [EIO], [EINTR], [EMFILE], and [ENFILE] are marked as extensions.

18293 The APPLICATION USAGE section is expanded to warn about possible reuses of the area used
18294 to pass the return value, and to indicate how applications should check for errors.

18295 The following change is incorporated for alignment with the ISO POSIX-1 standard:

1056 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpwnam()

18296 • The type of argument name is changed from char* to const char*.

18297 Issue 5
18298 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
18299 VALUE section.

18300 The getpwnam_r() function is included for alignment with the POSIX Threads Extension.

18301 A note indicating that the getpwnam() function need not be reentrant is added to the
18302 DESCRIPTION.

18303 Issue 6
18304 The getpwnam_r() function is marked as part of the Thread-Safe Functions option. |

18305 The Open Group corrigenda item U028/3 has been applied correcting text in the DESCRIPTION
18306 describing matching the name.

18307 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

18308 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

18309 The following new requirements on POSIX implementations derive from alignment with the
18310 Single UNIX Specification:

18311 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
18312 required for conforming implementations of previous POSIX specifications, it was not
18313 required for UNIX applications.

18314 • In the RETURN VALUE section, the requirement to set errno on error is added.

18315 • The [EMFILE], [ENFILE], and [ENXIO] optional error conditions are added.

18316 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
18317 its avoidance of possibly using a static data area.

System Interfaces, Issue 6 1057

getpwuid() System Interfaces

18318 NAME
18319 getpwuid, getpwuid_r — search user database for a user ID

18320 SYNOPSIS
18321 #include <pwd.h>

18322 struct passwd *getpwuid(uid_t uid);
18323 TSF int getpwuid_r(uid_t uid , struct passwd * pwd, char * buffer ,
18324 size_t bufsize , struct passwd ** result);
18325

18326 DESCRIPTION
18327 The getpwuid() function shall search the user database for an entry with a matching uid .

18328 The getpwuid() function need not be reentrant. A function that is not required to be reentrant is
18329 not required to be thread-safe.

18330 Applications wishing to check for error situations should set errno to 0 before calling getpwuid(). |
18331 If getpwuid() returns a null pointer and errno is set to non-zero, an error occurred. |

18332 TSF The getpwuid_r() function updates the passwd structure pointed to by pwd and stores a pointer |
18333 to that structure at the location pointed to by result. The structure shall contain an entry from
18334 the user database with a matching uid . Storage referenced by the structure is allocated from the
18335 memory provided with the buffer parameter, which is bufsize characters in size. The maximum
18336 size needed for this buffer can be determined with the {_SC_GETPW_R_SIZE_MAX} sysconf()
18337 parameter. A NULL pointer shall be returned at the location pointed to by result on error or if the
18338 requested entry is not found. |

18339 RETURN VALUE
18340 The getpwuid() function shall return a pointer to a struct passwd with the structure as defined in
18341 <pwd.h> with a matching entry if found. A null pointer shall be returned if the requested entry |
18342 is not found, or an error occurs. On error, errno shall be set to indicate the error. |

18343 The return value may point to a static area which is overwritten by a subsequent call to
18344 getpwent(), getpwnam(), or getpwuid().

18345 TSF If successful, the getpwuid_r() function shall return zero; otherwise, an error number shall be
18346 returned to indicate the error.

18347 ERRORS
18348 The getpwuid() and getpwuid_r() functions may fail if: |

18349 [EIO] An I/O error has occurred. |

18350 [EINTR] A signal was caught during getpwuid(). |

18351 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

18352 [ENFILE] The maximum allowable number of files is currently open in the system. |

18353 TSF The getpwuid_r() function may fail if:

18354 TSF [ERANGE] Insufficient storage was supplied via buffer and bufsize to contain the data to |
18355 be referenced by the resulting passwd structure.

1058 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getpwuid()

18356 EXAMPLES

18357 Getting an Entry for the Root User

18358 The following example gets the user database entry for the user with user ID 0 (root).

18359 #include <sys/types.h>
18360 #include <pwd.h>
18361 ...
18362 uid_t id = 0;
18363 struct passwd *pwd;

18364 pwd = getpwuid(id);

18365 Finding the Name for the Effective User ID

18366 The following example defines pws as a pointer to a structure of type passwd, which is used to
18367 store the structure pointer returned by the call to the getpwuid() function. The geteuid() function
18368 shall return the effective user ID of the calling process; this is used as the search criteria for the
18369 getpwuid() function. The call to getpwuid() shall return a pointer to the structure containing that
18370 user ID value.

18371 #include <unistd.h>
18372 #include <sys/types.h>
18373 #include <pwd.h>
18374 ...
18375 struct passwd *pws;
18376 pws = getpwuid(geteuid());

18377 Finding an Entry in the User Database

18378 The following example uses getpwuid() to search the user database for a user ID that was
18379 previously stored in a stat structure, then prints out the user name if it is found. If the user is not
18380 found, the program prints the numeric value of the user ID for the entry.

18381 #include <sys/types.h>
18382 #include <pwd.h>
18383 #include <stdio.h>
18384 ...
18385 struct stat statbuf;
18386 struct passwd *pwd;
18387 ...
18388 if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
18389 printf(" %-8.8s", pwd->pw_name);
18390 else
18391 printf(" %-8d", statbuf.st_uid);

18392 APPLICATION USAGE
18393 Three names associated with the current process can be determined: getpwuid(geteuid()) returns
18394 the name associated with the effective user ID of the process; getlogin () returns the name
18395 associated with the current login activity; and getpwuid(getuid()) returns the name associated
18396 with the real user ID of the process.

18397 The getpwuid_r() function is thread-safe and shall return values in a user-supplied buffer instead
18398 of possibly using a static data area that may be overwritten by each call.

System Interfaces, Issue 6 1059

getpwuid() System Interfaces

18399 RATIONALE
18400 None.

18401 FUTURE DIRECTIONS
18402 None.

18403 SEE ALSO
18404 getpwnam(), geteuid(), getuid(), getlogin (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
18405 <limits.h>, <pwd.h>, <sys/types.h>

CHANGE18406 HISTORY
18407 First released in Issue 1. Derived from System V Release 2.0. |

18408 Issue 4
18409 The DESCRIPTION is clarified.

18410 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
18411 XSI-conformant systems.

18412 The last sentence in the RETURN VALUE section, indicating that errno is set on error, is marked
18413 as an extension.

18414 The errors [EIO], [EINTR], [EMFILE], and [ENFILE] are marked as extensions.

18415 A note is added to the APPLICATION USAGE section indicating how an application should
18416 check for errors.

18417 Issue 5
18418 Normative text previously in the APPLICATION USAGE section is moved to the RETURN
18419 VALUE section.

18420 The getpwuid_r() function is included for alignment with the POSIX Threads Extension.

18421 A note indicating that the getpwuid() function need not be reentrant is added to the
18422 DESCRIPTION.

18423 Issue 6
18424 The getpwuid_r() function is marked as part of the Thread-Safe Functions option. |

18425 The Open Group corrigenda item U028/3 has been applied correcting text in the DESCRIPTION
18426 describing matching the uid .

18427 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

18428 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

18429 The following new requirements on POSIX implementations derive from alignment with the
18430 Single UNIX Specification:

18431 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
18432 required for conforming implementations of previous POSIX specifications, it was not
18433 required for UNIX applications.

18434 • In the RETURN VALUE section, the requirement to set errno on error is added.

18435 • The [EIO], [EINTR], [EMFILE], and [ENFILE] optional error conditions are added.

18436 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
18437 its avoidance of possibly using a static data area.

1060 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getrlimit()

18438 NAME
18439 getrlimit, setrlimit — control maximum resource consumption

18440 SYNOPSIS
18441 XSI #include <sys/resource.h>

18442 int getrlimit(int resource , struct rlimit * rlp);
18443 int setrlimit(int resource , const struct rlimit * rlp);
18444

18445 DESCRIPTION
18446 Limits on the consumption of a variety of resources by the calling process may be obtained with
18447 getrlimit() and set with setrlimit().

18448 Each call to either getrlimit() or setrlimit() identifies a specific resource to be operated upon as
18449 well as a resource limit. A resource limit is represented by an rlimit structure. The rlim_cur
18450 member specifies the current or soft limit and the rlim_max member specifies the maximum or
18451 hard limit. Soft limits may be changed by a process to any value that is less than or equal to the
18452 hard limit. A process may (irreversibly) lower its hard limit to any value that is greater than or
18453 equal to the soft limit. Only a process with appropriate privileges can raise a hard limit. Both
18454 hard and soft limits can be changed in a single call to setrlimit() subject to the constraints
18455 described above.

18456 The value RLIM_INFINITY, defined in <sys/resource.h>, shall be considered to be larger than
18457 any other limit value. If a call to getrlimit() returns RLIM_INFINITY for a resource, it means the
18458 implementation shall not enforce limits on that resource. Specifying RLIM_INFINITY as any
18459 resource limit value on a successful call to setrlimit() inhibits enforcement of that resource limit.

18460 The following resources are defined:

18461 RLIMIT_CORE This is the maximum size of a core file in bytes that may be created by a
18462 process. A limit of 0 shall prevent the creation of a core file. If this limit is
18463 exceeded, the writing of a core file shall terminate at this size.

18464 RLIMIT_CPU This is the maximum amount of CPU time in seconds used by a process.
18465 If this limit is exceeded, SIGXCPU shall be generated for the process. If
18466 the process is catching or ignoring SIGXCPU, or all threads belonging to
18467 that process are blocking SIGXCPU, the behavior is unspecified.

18468 RLIMIT_DATA This is the maximum size of a process’ data segment in bytes. If this limit
18469 is exceeded, the malloc () function shall fail with errno set to [ENOMEM]. |

18470 RLIMIT_FSIZE This is the maximum size of a file in bytes that may be created by a
18471 process. If a write or truncate operation would cause this limit to be
18472 exceeded, SIGXFSZ shall be generated for the thread. If the thread is
18473 blocking, or the process is catching or ignoring SIGXFSZ, continued
18474 attempts to increase the size of a file from end-of-file to beyond the limit
18475 shall fail with errno set to [EFBIG]. |

18476 RLIMIT_NOFILE This is a number one greater than the maximum value that the system
18477 may assign to a newly-created descriptor. If this limit is exceeded,
18478 functions that allocate new file descriptors may fail with errno set to
18479 [EMFILE]. This limit constrains the number of file descriptors that a |
18480 process may allocate.

18481 RLIMIT_STACK This is the maximum size of a process’ stack in bytes. The
18482 implementation does not automatically grow the stack beyond this limit.
18483 If this limit is exceeded, SIGSEGV shall be generated for the thread. If the

System Interfaces, Issue 6 1061

getrlimit() System Interfaces

18484 thread is blocking SIGSEGV, or the process is ignoring or catching
18485 SIGSEGV and has not made arrangements to use an alternate stack, the
18486 disposition of SIGSEGV shall be set to SIG_DFL before it is generated.

18487 RLIMIT_AS This is the maximum size of a process’ total available memory, in bytes. If
18488 this limit is exceeded, the malloc () and mmap() functions shall fail with
18489 errno set to [ENOMEM]. In addition, the automatic stack growth fails |
18490 with the effects outlined above.

18491 When using the getrlimit() function, if a resource limit can be represented correctly in an object
18492 of type rlim_t, then its representation is returned; otherwise, if the value of the resource limit is
18493 equal to that of the corresponding saved hard limit, the value returned shall be
18494 RLIM_SAVED_MAX; otherwise, the value returned shall be RLIM_SAVED_CUR.

18495 When using the setrlimit() function, if the requested new limit is RLIM_INFINITY, the new limit
18496 shall be ‘‘no limit’’; otherwise, if the requested new limit is RLIM_SAVED_MAX, the new limit
18497 shall be the corresponding saved hard limit; otherwise, if the requested new limit is
18498 RLIM_SAVED_CUR, the new limit shall be the corresponding saved soft limit; otherwise, the
18499 new limit shall be the requested value. In addition, if the corresponding saved limit can be
18500 represented correctly in an object of type rlim_t then it shall be overwritten with the new limit.

18501 The result of setting a limit to RLIM_SAVED_MAX or RLIM_SAVED_CUR is unspecified unless
18502 a previous call to getrlimit() returned that value as the soft or hard limit for the corresponding
18503 resource limit.

18504 The determination of whether a limit can be correctly represented in an object of type rlim_t is |
18505 implementation-defined. For example, some implementations permit a limit whose value is |
18506 greater than RLIM_INFINITY and others do not.

18507 The exec family of functions also cause resource limits to be saved.

18508 RETURN VALUE
18509 Upon successful completion, getrlimit() and setrlimit() shall return 0. Otherwise, these functions
18510 shall return −1 and set errno to indicate the error.

18511 ERRORS
18512 The getrlimit() and setrlimit() functions shall fail if:

18513 [EINVAL] An invalid resource was specified; or in a setrlimit() call, the new rlim_cur |
18514 exceeds the new rlim_max .

18515 [EPERM] The limit specified to setrlimit() would have raised the maximum limit value, |
18516 and the calling process does not have appropriate privileges.

18517 The setrlimit() function may fail if:

18518 [EINVAL] The limit specified cannot be lowered because current usage is already higher |
18519 than the limit.

18520 EXAMPLES
18521 None.

18522 APPLICATION USAGE
18523 If a process attempts to set the hard limit or soft limit for RLIMIT_NOFILE to less than the value
18524 of {_POSIX_OPEN_MAX} from <limits.h>, unexpected behavior may occur.

1062 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getrlimit()

18525 RATIONALE
18526 None.

18527 FUTURE DIRECTIONS
18528 None.

18529 SEE ALSO
18530 exec, fork (), malloc (), open(), sigaltstack (), sysconf(), ulimit(), the Base Definitions volume of |
18531 IEEE Std. 1003.1-200x, <stropts.h>, <sys/resource.h> |

18532 CHANGE HISTORY
18533 First released in Issue 4, Version 2.

18534 Issue 5
18535 Moved from X/OPEN UNIX extension to BASE and an APPLICATION USAGE section is added.

18536 Large File Summit extensions are added.

System Interfaces, Issue 6 1063

getrusage() System Interfaces

18537 NAME
18538 getrusage — get information about resource utilization

18539 SYNOPSIS
18540 XSI #include <sys/resource.h>

18541 int getrusage(int who, struct rusage * r_usage);
18542

18543 DESCRIPTION
18544 The getrusage() function provides measures of the resources used by the current process or its
18545 terminated and waited-for child processes. If the value of the who argument is RUSAGE_SELF,
18546 information shall be returned about resources used by the current process. If the value of the who
18547 argument is RUSAGE_CHILDREN, information shall be returned about resources used by the
18548 terminated and waited-for children of the current process. If the child is never waited for (for
18549 example, if the parent has SA_NOCLDWAIT set or sets SIGCHLD to SIG_IGN), the resource
18550 information for the child process is discarded and not included in the resource information
18551 provided by getrusage().

18552 The r_usage argument is a pointer to an object of type struct rusage in which the returned
18553 information is stored.

18554 RETURN VALUE
18555 Upon successful completion, getrusage() shall return 0; otherwise, −1 shall be returned and errno
18556 set to indicate the error.

18557 ERRORS
18558 The getrusage() function shall fail if:

18559 [EINVAL] The value of the who argument is not valid. |

18560 EXAMPLES

18561 Using getrusage()

18562 The following example returns information about the resources used by the current process.

18563 #include <sys/resource.h>
18564 ...
18565 int who = RUSAGE_SELF;
18566 struct rusage usage;
18567 int ret;

18568 ret = getrusage(who, &usage);

18569 APPLICATION USAGE
18570 None.

18571 RATIONALE
18572 None.

18573 FUTURE DIRECTIONS
18574 None.

18575 SEE ALSO
18576 exit(), sigaction (), time(), times(), wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
18577 <sys/resource.h>

1064 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getrusage()

18578 CHANGE HISTORY
18579 First released in Issue 4, Version 2.

18580 Issue 5
18581 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1065

gets() System Interfaces

18582 NAME
18583 gets — get a string from a stdin stream

18584 SYNOPSIS
18585 #include <stdio.h>

18586 char *gets(char * s);

18587 DESCRIPTION
18588 CX The functionality described on this reference page is aligned with the ISO C standard. Any
18589 conflict between the requirements described here and the ISO C standard is unintentional. This
18590 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

18591 The gets() function shall read bytes from the standard input stream, stdin , into the array pointed
18592 to by s, until a newline is read or an end-of-file condition is encountered. Any newline is
18593 discarded and a null byte is placed immediately after the last byte read into the array.

18594 CX The gets() function may mark the st_atime field of the file associated with stream for update. The
18595 st_atime field shall be marked for update by the first successful execution of fgetc(), fgets(),
18596 fread(), getc(), getchar(), gets(), fscanf(), or scanf() using stream that returns data not supplied by
18597 a prior call to ungetc().

18598 RETURN VALUE
18599 Upon successful completion, gets() shall return s. If the stream is at end-of-file, the end-of-file
18600 indicator for the stream shall be set and gets() shall return a null pointer. If a read error occurs,
18601 CX the error indicator for the stream shall be set, gets() shall return a null pointer and set errno to
18602 indicate the error.

18603 ERRORS
18604 Refer to fgetc().

18605 EXAMPLES
18606 None. |

18607 APPLICATION USAGE
18608 Reading a line that overflows the array pointed to by s results in undefined behavior. The use of |
18609 fgets() is recommended. |

18610 Since the user cannot specify the length of the buffer passed to gets(), use of this function is |
18611 discouraged. The length of the string read is unlimited. It is possible to overflow this buffer in |
18612 such a way as to cause applications to fail, or possible system security violations. |

18613 It is recommended that the fgets() function should be used to read input lines. |

18614 RATIONALE
18615 None.

18616 FUTURE DIRECTIONS
18617 None.

18618 SEE ALSO
18619 feof(), ferror(), fgets(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

18620 CHANGE HISTORY
18621 First released in Issue 1. Derived from Issue 1 of the SVID. |

18622 Issue 4
18623 In the DESCRIPTION:

18624 • The text is changed to make it clear that the function reads bytes rather than (possibly multi-
18625 byte) characters.

1066 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gets()

18626 • The list of functions that may cause the st_atime field to be updated is revised.

18627 Issue 6
18628 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1067

getservbyname() System Interfaces

18629 NAME
18630 getservbyname — network services database functions

18631 SYNOPSIS
18632 #include <netdb.h>

18633 struct servent *getservbyname(const char * name, const char * proto);

18634 DESCRIPTION
18635 Refer to endservent().

1068 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getservbyport()

18636 NAME
18637 getservbyport — network services database functions

18638 SYNOPSIS
18639 #include <netdb.h>

18640 struct servent *getservbyport(int port , const char * proto);

18641 DESCRIPTION
18642 Refer to endservent().

System Interfaces, Issue 6 1069

getservent() System Interfaces

18643 NAME
18644 getservent — network services database functions

18645 SYNOPSIS
18646 #include <netdb.h>

18647 struct servent *getservent(void);

18648 DESCRIPTION
18649 Refer to endservent().

1070 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getsid()

18650 NAME
18651 getsid — get the process group ID of a session leader

18652 SYNOPSIS
18653 XSI #include <unistd.h>

18654 pid_t getsid(pid_t pid);
18655

18656 DESCRIPTION
18657 The getsid() function obtains the process group ID of the process that is the session leader of the
18658 process specified by pid . If pid is (pid_t)0, it specifies the calling process.

18659 RETURN VALUE
18660 Upon successful completion, getsid() shall return the process group ID of the session leader of
18661 the specified process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

18662 ERRORS
18663 The getsid() function shall fail if:

18664 [EPERM] The process specified by pid is not in the same session as the calling process, |
18665 and the implementation does not allow access to the process group ID of the
18666 session leader of that process from the calling process.

18667 [ESRCH] There is no process with a process ID equal to pid . |

18668 EXAMPLES
18669 None.

18670 APPLICATION USAGE
18671 None.

18672 RATIONALE
18673 None.

18674 FUTURE DIRECTIONS
18675 None.

18676 SEE ALSO
18677 exec, fork (), getpid(), getpgid(), setpgid(), setsid(), the Base Definitions volume of |
18678 IEEE Std. 1003.1-200x, <unistd.h> |

18679 CHANGE HISTORY
18680 First released in Issue 4, Version 2.

18681 Issue 5
18682 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1071

getsockname() System Interfaces

18683 NAME
18684 getsockname — get the socket name

18685 SYNOPSIS
18686 #include <sys/socket.h>

18687 int getsockname(int socket , struct sockaddr *restrict address , |
18688 socklen_t * address_len); |

18689 DESCRIPTION
18690 The getsockname() function shall retrieve the locally-bound name of the specified socket, store
18691 this address in the sockaddr structure pointed to by the address argument, and store the length of
18692 this address in the object pointed to by the address_len argument.

18693 If the actual length of the address is greater than the length of the supplied sockaddr structure,
18694 the stored address shall be truncated.

18695 If the socket has not been bound to a local name, the value stored in the object pointed to by
18696 address is unspecified.

18697 RETURN VALUE
18698 Upon successful completion, 0 shall be returned, the address argument shall point to the address
18699 of the socket, and the address_len argument shall point to the length of the address. Otherwise, −1
18700 shall be returned and errno set to indicate the error.

18701 ERRORS
18702 The getsockname() function shall fail if:

18703 [EBADF] The socket argument is not a valid file descriptor. |

18704 [ENOTSOCK] The socket argument does not refer to a socket.

18705 [EOPNOTSUPP] The operation is not supported for this socket’s protocol.

18706 The getsockname() function may fail if:

18707 [EINVAL] The socket has been shut down.

18708 [ENOBUFS] Insufficient resources were available in the system to complete the function. |

18709 EXAMPLES
18710 None.

18711 APPLICATION USAGE
18712 None.

18713 RATIONALE
18714 None.

18715 FUTURE DIRECTIONS
18716 None.

18717 SEE ALSO
18718 accept(), bind(), getpeername(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
18719 <sys/socket.h>

CHANGE18720 HISTORY
18721 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

18722 The restrict keyword is added to the getsockname() prototype for alignment with the |
18723 ISO/IEC 9899: 1999 standard. |

1072 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getsockopt()

18724 NAME
18725 getsockopt — get the socket options

18726 SYNOPSIS
18727 #include <sys/socket.h>

18728 int getsockopt(int socket , int level , int option_name,
18729 void *restrict option_value , socklen_t *restrict option_len); |

18730 DESCRIPTION |
18731 The getsockopt () function manipulates options associated with a socket.

18732 The getsockopt () function shall retrieve the value for the option specified by the option_name
18733 argument for the socket specified by the socket argument. If the size of the option value is greater
18734 than option_len, the value stored in the object pointed to by the option_value argument shall be
18735 silently truncated. Otherwise, the object pointed to by the option_len argument shall be modified
18736 to indicate the actual length of the value.

18737 The level argument specifies the protocol level at which the option resides. To retrieve options at
18738 the socket level, specify the level argument as SOL_SOCKET. To retrieve options at other levels,
18739 supply the appropriate level identifier for the protocol controlling the option. For example, to
18740 indicate that an option is interpreted by the TCP (Transmission Control Protocol), set level to
18741 IPPROTO_TCP as defined in the <netinet/in.h> header.

18742 The socket in use may require the process to have appropriate privileges to use the getsockopt ()
18743 function.

18744 The option_name argument specifies a single option to be retrieved. It can be one of the following
18745 values defined in <sys/socket.h>:

18746 SO_DEBUG Reports whether debugging information is being recorded. This option
18747 stores an int value. This is a Boolean option.

18748 SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int
18749 value. This is a Boolean option.

18750 SO_BROADCAST Reports whether transmission of broadcast messages is supported, if this
18751 is supported by the protocol. This option stores an int value. This is a
18752 Boolean option.

18753 SO_REUSEADDR Reports whether the rules used in validating addresses supplied to bind()
18754 should allow reuse of local addresses, if this is supported by the protocol.
18755 This option stores an int value. This is a Boolean option.

18756 SO_KEEPALIVE Reports whether connections are kept active with periodic transmission
18757 of messages, if this is supported by the protocol.

18758 If the connected socket fails to respond to these messages, the connection |
18759 is broken and threads writing to that socket are notified with a SIGPIPE |
18760 signal. This option stores an int value.

18761 This is a Boolean option.

18762 SO_LINGER Reports whether the socket lingers on close() if data is present. If
18763 SO_LINGER is set, the system blocks the process during close() until it
18764 can transmit the data or until the end of the interval indicated by the
18765 l_linger member, whichever comes first. If SO_LINGER is not specified,
18766 and close() is issued, the system handles the call in a way that allows the
18767 process to continue as quickly as possible. This option stores a linger
18768 structure.

System Interfaces, Issue 6 1073

getsockopt() System Interfaces

18769 SO_OOBINLINE Reports whether the socket leaves received out-of-band data (data
18770 marked urgent) inline. This option stores an int value. This is a Boolean
18771 option.

18772 SO_SNDBUF Reports send buffer size information. This option stores an int value.

18773 SO_RCVBUF Reports receive buffer size information. This option stores an int value.

18774 SO_ERROR Reports information about error status and clears it. This option stores an
18775 int value.

18776 SO_TYPE Reports the socket type. This option stores an int value.

18777 SO_DONTROUTE Reports whether outgoing messages bypass the standard routing
18778 facilities. The destination shall be on a directly-connected network, and
18779 messages are directed to the appropriate network interface according to
18780 the destination address. The effect, if any, of this option depends on what
18781 protocol is in use. This option stores an int value. This is a Boolean
18782 option.

18783 SO_RCVLOWAT Reports the minimum number of bytes to process for socket input
18784 operations. The default value for SO_RCVLOWAT is 1. If
18785 SO_RCVLOWAT is set to a larger value, blocking receive calls normally
18786 wait until they have received the smaller of the low water mark value or
18787 the requested amount. (They may return less than the low water mark if
18788 an error occurs, a signal is caught, or the type of data next in the receive
18789 queue is different than that returned; for example, out-of-band data.)
18790 This option stores an int value. Note that not all implementations allow
18791 this option to be retrieved.

18792 SO_RCVTIMEO Reports the timeout value for input operations. This option stores a
18793 timeval structure with the number of seconds and microseconds
18794 specifying the limit on how long to wait for an input operation to
18795 complete. If a receive operation has blocked for this much time without
18796 receiving additional data, it shall return with a partial count or errno set to
18797 [EAGAIN] or [EWOULDBLOCK] if no data was received. The default for
18798 this option is zero, which indicates that a receive operation shall not time
18799 out. Note that not all implementations allow this option to be retrieved.

18800 SO_SNDLOWAT Reports the minimum number of bytes to process for socket output
18801 operations. Non-blocking output operations shall process no data if flow
18802 control does not allow the smaller of the send low water mark value or
18803 the entire request to be processed. This option stores an int value. Note
18804 that not all implementations allow this option to be retrieved.

18805 SO_SNDTIMEO Reports the timeout value specifying the amount of time that an output
18806 function blocks because flow control prevents data from being sent. If a
18807 send operation has blocked for this time, it shall return with a partial
18808 count or with errno set to [EAGAIN] or [EWOULDBLOCK] if no data
18809 were sent. The default for this option is zero, which indicates that a send
18810 operation shall not time out. The option stores a timeval structure. Note
18811 that not all implementations allow this option to be retrieved.

18812 For Boolean options, a zero value indicates that the option is disabled and a non-zero value
18813 indicates that the option is enabled.

18814 Options at other protocol levels vary in format and name.

1074 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getsockopt()

18815 The socket in use may require the process to have appropriate privileges to use the getsockopt ()
18816 function.

18817 RETURN VALUE
18818 Upon successful completion, getsockopt () shall return 0; otherwise, −1 shall be returned and errno
18819 set to indicate the error.

18820 ERRORS
18821 The getsockopt () function shall fail if:

18822 [EBADF] The socket argument is not a valid file descriptor. |

18823 [EINVAL] The specified option is invalid at the specified socket level.

18824 [ENOPROTOOPT]
18825 The option is not supported by the protocol.

18826 [ENOTSOCK] The socket argument does not refer to a socket.

18827 The getsockopt () function may fail if:

18828 [EACCES] The calling process does not have the appropriate privileges.

18829 [EINVAL] The socket has been shut down.

18830 [ENOBUFS] Insufficient resources are available in the system to complete the function. |

18831 EXAMPLES
18832 None.

18833 APPLICATION USAGE
18834 None.

18835 RATIONALE
18836 None.

18837 FUTURE DIRECTIONS
18838 None.

18839 SEE ALSO
18840 bind(), close(), endprotoent(), setsockopt (), socket(), the Base Definitions volume of |
18841 IEEE Std. 1003.1-200x, <sys/socket.h>, <netinet/in.h> |

18842 CHANGE HISTORY
18843 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

18844 The restrict keyword is added to the getsockopt () prototype for alignment with the |
18845 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1075

getsubopt() System Interfaces

18846 NAME
18847 getsubopt — parse suboption arguments from a string

18848 SYNOPSIS
18849 XSI #include <stdlib.h>

18850 int getsubopt(char ** optionp , char * const * tokens , char ** valuep);
18851

18852 DESCRIPTION
18853 The getsubopt() function parses suboption arguments in a flag argument that was initially parsed
18854 by getopt(). The application shall ensure that these suboption arguments are separated by
18855 commas and may consist of either a single token, or a token-value pair separated by an equal
18856 sign. Because commas delimit suboption arguments in the option string, they are not allowed to
18857 be part of the suboption arguments or the value of a suboption argument. Similarly, because the |
18858 equal sign separates a token from its value, undefined behavior will result if the application |
18859 passes a token that contains an equal sign. |

18860 The getsubopt() function takes the address of a pointer to the option argument string, a vector of
18861 possible tokens, and the address of a value string pointer. If the option argument string at
18862 *optionp contains only one suboption argument, getsubopt() updates *optionp to point to the null
18863 at the end of the string. Otherwise, it isolates the suboption argument by replacing the comma
18864 separator with a null, and updates *optionp to point to the start of the next suboption argument.
18865 If the suboption argument has an associated value, getsubopt() updates *valuep to point to the
18866 value’s first character. Otherwise, it sets *valuep to a null pointer.

18867 The token vector is organized as a series of pointers to strings. The end of the token vector is
18868 identified by a null pointer.

18869 When getsubopt() returns, if *valuep is not a null pointer, then the suboption argument processed
18870 included a value. The calling program may use this information to determine whether the
18871 presence or lack of a value for this suboption is an error.

18872 Additionally, when getsubopt() fails to match the suboption argument with the tokens in the
18873 tokens array, the calling program should decide if this is an error, or if the unrecognized option
18874 should be passed on to another program.

18875 RETURN VALUE
18876 The getsubopt() function shall return the index of the matched token string, or −1 if no token
18877 strings were matched.

18878 ERRORS
18879 No errors are defined.

18880 EXAMPLES

18881 #include <stdio.h>
18882 #include <stdlib.h>

18883 int do_all;
18884 const char *type;
18885 int read_size;
18886 int write_size;
18887 int read_only;

18888 enum
18889 {
18890 RO_OPTION = 0,
18891 RW_OPTION,

1076 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getsubopt()

18892 READ_SIZE_OPTION,
18893 WRITE_SIZE_OPTION
18894 };
18895 const char *mount_opts[] =
18896 {
18897 [RO_OPTION] = "ro",
18898 [RW_OPTION] = "rw",
18899 [READ_SIZE_OPTION] = "rsize",
18900 [WRITE_SIZE_OPTION] = "wsize",
18901 NULL
18902 };

18903 int
18904 main(int argc, char *argv[])
18905 {
18906 char *subopts, *value;
18907 int opt;

18908 while ((opt = getopt(argc, argv, "at:o:")) != -1)
18909 switch(opt)
18910 {
18911 case ’a’:
18912 do_all = 1;
18913 break;
18914 case ’t’:
18915 type = optarg;
18916 break;
18917 case ’o’:
18918 subopts = optarg;
18919 while (*subopts != ’ ’)
18920 switch(getsubopt(&subopts, mount_opts, &value))
18921 {
18922 case RO_OPTION:
18923 read_only = 1;
18924 break;
18925 case RW_OPTION:
18926 read_only = 0;
18927 break;
18928 case READ_SIZE_OPTION:
18929 if (value == NULL)
18930 abort();
18931 read_size = atoi(value);
18932 break;
18933 case WRITE_SIZE_OPTION:
18934 if (value == NULL)
18935 abort();
18936 write_size = atoi(value);
18937 break;
18938 default:
18939 /* Unknown suboption. */
18940 printf("Unknown suboption ‘%s’0, value);
18941 break;
18942 }

System Interfaces, Issue 6 1077

getsubopt() System Interfaces

18943 break;
18944 default:
18945 abort();
18946 }

18947 /* Do the real work. */

18948 return 0;
18949 }

18950 Parsing Suboptions

18951 The following example uses the getsubopt() function to parse a value argument in the optarg
18952 external variable returned by a call to getopt().

18953 #include <stdlib.h>
18954 ...
18955 char *tokens[] = {"HOME", "PATH", "LOGNAME", (char *) NULL };
18956 char *value;
18957 int opt, index;

18958 while ((opt = getopt(argc, argv, "e:")) != -1) {
18959 switch(opt) {
18960 case ’e’ :
18961 while ((index = getsubopt(&optarg, tokens, &value)) != -1) {
18962 switch(index) {
18963 ...
18964 }
18965 break;
18966 ...
18967 }
18968 }
18969 ...

18970 APPLICATION USAGE
18971 None.

18972 RATIONALE
18973 None.

18974 FUTURE DIRECTIONS
18975 None.

18976 SEE ALSO
18977 getopt(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

18978 CHANGE HISTORY
18979 First released in Issue 4, Version 2.

18980 Issue 5
18981 Moved from X/OPEN UNIX extension to BASE.

1078 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gettimeofday()

18982 NAME
18983 gettimeofday — get the date and time

18984 SYNOPSIS
18985 XSI #include <sys/time.h>

18986 int gettimeofday(struct timeval *restrict tp , void * tzp); |
18987 |

18988 DESCRIPTION
18989 The gettimeofday () function obtains the current time, expressed as seconds and microseconds
18990 since the Epoch, and stores it in the timeval structure pointed to by tp . The resolution of the
18991 system clock is unspecified.

18992 If tzp is not a null pointer, the behavior is unspecified.

18993 RETURN VALUE
18994 The gettimeofday () function shall return 0 and no value shall be reserved to indicate an error.

18995 ERRORS
18996 No errors are defined.

18997 EXAMPLES
18998 None.

18999 APPLICATION USAGE
19000 None.

19001 RATIONALE
19002 None.

19003 FUTURE DIRECTIONS
19004 None.

19005 SEE ALSO
19006 ctime(), ftime(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/time.h> |

19007 CHANGE HISTORY
19008 First released in Issue 4, Version 2.

19009 Issue 5
19010 Moved from X/OPEN UNIX extension to BASE.

19011 Issue 6
19012 The DESCRIPTION is updated to refer to ‘‘seconds since the Epoch’’ rather than ‘‘seconds since
19013 00:00:00 UTC (Coordinated Universal Time), January 1 1970’’ for consistency with other time |
19014 functions.

System Interfaces, Issue 6 1079

getuid() System Interfaces

19015 NAME
19016 getuid — get a real user ID

19017 SYNOPSIS
19018 #include <unistd.h>

19019 uid_t getuid(void); |

19020 DESCRIPTION |
19021 The getuid() function shall return the real user ID of the calling process.

19022 RETURN VALUE
19023 The getuid() function is always successful and no return value is reserved to indicate the error.

19024 ERRORS
19025 No errors are defined.

19026 EXAMPLES

19027 Setting the Effective User ID to the Real User ID

19028 The following example sets the effective user ID and the real user ID of the current process to the
19029 real user ID of the caller.

19030 #include <unistd.h>
19031 #include <sys/types.h>
19032 ...
19033 setreuid(getuid(), getuid());
19034 ...

19035 APPLICATION USAGE
19036 None.

19037 RATIONALE
19038 None.

19039 FUTURE DIRECTIONS
19040 None.

19041 SEE ALSO
19042 getegid(), geteuid(), getgid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the Base |
19043 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

19044 CHANGE HISTORY
19045 First released in Issue 1. Derived from Issue 1 of the SVID. |

19046 Issue 4
19047 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
19048 XSI-conformant systems.

19049 The <unistd.h> header is added to the SYNOPSIS section.

19050 The following change is incorporated for alignment with the ISO POSIX-1 standard:

19051 • The argument list is explicitly defined as void.

19052 Issue 6
19053 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

19054 The following new requirements on POSIX implementations derive from alignment with the
19055 Single UNIX Specification:

1080 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getuid()

19056 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
19057 required for conforming implementations of previous POSIX specifications, it was not
19058 required for UNIX applications.

System Interfaces, Issue 6 1081

getutxent() System Interfaces

19059 NAME
19060 getutxent, getutxid, getutxline — get user accounting database entries

19061 SYNOPSIS
19062 XSI #include <utmpx.h>

19063 struct utmpx *getutxent(void);
19064 struct utmpx *getutxid(const struct utmpx * id);
19065 struct utmpx *getutxline(const struct utmpx * line);
19066

19067 DESCRIPTION
19068 Refer to endutxent().

1082 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getwc()

19069 NAME
19070 getwc — get a wide character from a stream

19071 SYNOPSIS
19072 #include <stdio.h>
19073 #include <wchar.h>

19074 wint_t getwc(FILE * stream);

19075 DESCRIPTION
19076 CX The functionality described on this reference page is aligned with the ISO C standard. Any
19077 conflict between the requirements described here and the ISO C standard is unintentional. This
19078 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

19079 The getwc() function is equivalent to fgetwc(), except that if it is implemented as a macro it may
19080 evaluate stream more than once, so the argument should never be an expression with side effects.

19081 RETURN VALUE
19082 Refer to fgetwc().

19083 ERRORS
19084 Refer to fgetwc().

19085 EXAMPLES
19086 None.

19087 APPLICATION USAGE
19088 Because it may be implemented as a macro, getwc() may treat incorrectly a stream argument with
19089 side effects. In particular, getwc(*f++) does not necessarily work as expected. Therefore, use of
19090 this function is not recommended; fgetwc() should be used instead.

19091 RATIONALE
19092 None.

19093 FUTURE DIRECTIONS
19094 None.

19095 SEE ALSO
19096 fgetwc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h> |

19097 CHANGE HISTORY
19098 First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working |
19099 draft.

19100 Issue 5
19101 The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces, Issue 6 1083

getwchar() System Interfaces

19102 NAME
19103 getwchar — get a wide character from a stdin stream

19104 SYNOPSIS
19105 #include <wchar.h>

19106 wint_t getwchar(void);

19107 DESCRIPTION
19108 CX The functionality described on this reference page is aligned with the ISO C standard. Any
19109 conflict between the requirements described here and the ISO C standard is unintentional. This
19110 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

19111 The getwchar() function is equivalent to getwc(stdin).

19112 RETURN VALUE
19113 Refer to fgetwc().

19114 ERRORS
19115 Refer to fgetwc().

19116 EXAMPLES
19117 None.

19118 APPLICATION USAGE
19119 If the wint_t value returned by getwchar() is stored into a variable of type wchar_t and then
19120 compared against the wint_t macro WEOF, the result may be incorrect. Only the wint_t type is |
19121 guaranteed to be able to represent any wide character and WEOF. |

19122 RATIONALE
19123 None.

19124 FUTURE DIRECTIONS
19125 None.

19126 SEE ALSO
19127 fgetwc(), getwc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

19128 CHANGE HISTORY
19129 First released as a World-wide Portability Interface in Issue 4. Derived from the MSE working |
19130 draft.

1084 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces getwd()

19131 NAME
19132 getwd — get the current working directory path name (LEGACY)

19133 SYNOPSIS
19134 XSI #include <unistd.h>

19135 char *getwd(char * path_name);
19136

19137 DESCRIPTION
19138 The getwd() function determines an absolute path name of the current working directory of the
19139 calling process, and copies that path name into the array pointed to by the path_name argument.

19140 If the length of the path name of the current working directory is greater than ({PATH_MAX}+1)
19141 including the null byte, getwd() shall fail and return a null pointer.

19142 RETURN VALUE
19143 Upon successful completion, a pointer to the string containing the absolute path name of the
19144 current working directory shall be returned. Otherwise, getwd() shall return a null pointer and
19145 the contents of the array pointed to by path_name are undefined.

19146 ERRORS
19147 No errors are defined.

19148 EXAMPLES
19149 None.

19150 APPLICATION USAGE
19151 For applications portability, the getcwd() function should be used to determine the current
19152 working directory instead of getwd().

19153 RATIONALE
19154 Since the user cannot specifyy the length of the buffer passed to getwd(), use of this function is |
19155 discouraged. The length of a path name described in {PATH_MAX} is file system-dependent and |
19156 may vary from one mount point to another, or might even be unlimited. It is possible to |
19157 overflow this buffer in such a way as to cause applications to fail, or possible system security |
19158 violations. |

19159 It is recommended that the getcwd() function should be used to determine the current working |
19160 directory. |

19161 FUTURE DIRECTIONS
19162 This function may be withdrawn in a future version.

19163 SEE ALSO
19164 getcwd(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

19165 CHANGE HISTORY
19166 First released in Issue 4, Version 2.

19167 Issue 5
19168 Moved from X/OPEN UNIX extension to BASE.

19169 Issue 6
19170 This function is marked LEGACY.

System Interfaces, Issue 6 1085

glob() System Interfaces

19171 NAME
19172 glob, globfree — generate path names matching a pattern |

19173 SYNOPSIS
19174 #include <glob.h>

19175 int glob(const char *restrict pattern , int flags , |
19176 int(*retrict errfunc)(const char *retrict epath , int eerrno), |
19177 glob_t *restrict pglob); |
19178 void globfree(glob_t * pglob); |

19179 DESCRIPTION
19180 The glob() function is a path name generator that implements the rules defined in the Shell and |
19181 Utilities volume of IEEE Std. 1003.1-200x, Section 2.14, Pattern Matching Notation, with optional |
19182 support for rule 3 in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.14.3, |
19183 Patterns Used for File Name Expansion. |

19184 The structure type glob_t is defined in <glob.h> and includes at least the following members:
19185 ___
19186 Member Type Member Name Description___
19187 size_t gl_pathc Count of paths matched by pattern.
19188 char ** gl_pathv Pointer to a list of matched path names.
19189 size_t gl_offs Slots to reserve at the beginning of gl_pathv.___LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

19190 The argument pattern is a pointer to a path name pattern to be expanded. The glob() function
19191 matches all accessible path names against this pattern and develops a list of all path names that
19192 match. In order to have access to a path name, glob() requires search permission on every
19193 component of a path except the last, and read permission on each directory of any file name
19194 component of pattern that contains any of the following special characters: ’*’ , ’?’ , and ’[’ .

19195 The glob() function stores the number of matched path names into pglob->gl_pathc and a pointer |
19196 to a list of pointers to path names into pglob->gl_pathv. The path names are in sort order as |
19197 defined by the current setting of the LC_COLLATE category; see the Base Definitions volume of |
19198 IEEE Std. 1003.1-200x, Section 7.3.2, LC_COLLATE . The first pointer after the last path name is a |
19199 null pointer. If the pattern does not match any path names, the returned number of matched
19200 paths is set to 0, and the contents of pglob->gl_pathv are implementation-defined. |

19201 It is the caller’s responsibility to create the structure pointed to by pglob. The glob() function
19202 allocates other space as needed, including the memory pointed to by gl_pathv . The globfree()
19203 function frees any space associated with pglob from a previous call to glob().

19204 The flags argument is used to control the behavior of glob(). The value of flags is a bitwise-
19205 inclusive OR of zero or more of the following constants, which are defined in <glob.h>:

19206 GLOB_APPEND Append path names generated to the ones from a previous call to glob().

19207 GLOB_DOOFFS Make use of pglob->gl_offs. If this flag is set, pglob->gl_offs is used to |
19208 specify how many null pointers to add to the beginning of pglob- |
19209 >gl_pathv. In other words, pglob->gl_pathv shall point to pglob->gl_offs null |
19210 pointers, followed by pglob->gl_pathc path name pointers, followed by a |
19211 null pointer. |

19212 GLOB_ERR Causes glob() to return when it encounters a directory that it cannot open
19213 or read. Ordinarily, glob() continues to find matches.

19214 GLOB_MARK Each path name that is a directory that matches pattern has a slash
19215 appended.

1086 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces glob()

19216 GLOB_NOCHECK Supports rule 3 in the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
19217 Section 2.14.3, Patterns Used for File Name Expansion. If pattern does not |
19218 match any path name, then glob() shall return a list consisting of only
19219 pattern, and the number of matched path names is 1.

19220 GLOB_NOESCAPE Disable backslash escaping.

19221 GLOB_NOSORT Ordinarily, glob() sorts the matching path names according to the current
19222 setting of the LC_COLLATE category, see the Base Definitions volume of |
19223 IEEE Std. 1003.1-200x, Section 7.3.2, LC_COLLATE . When this flag is |
19224 used, the order of path names returned is unspecified. |

19225 The GLOB_APPEND flag can be used to append a new set of path names to those found in a
19226 previous call to glob(). The following rules apply to applications when two or more calls to
19227 glob() are made with the same value of pglob and without intervening calls to globfree():

19228 1. The first such call shall not set GLOB_APPEND. All subsequent calls shall set it.

19229 2. All the calls shall set GLOB_DOOFFS, or all shall not set it.

19230 3. After the second call, pglob->gl_pathv points to a list containing the following: |

19231 a. Zero or more null pointers, as specified by GLOB_DOOFFS and pglob->gl_offs. |

19232 b. Pointers to the path names that were in the pglob->gl_pathv list before the call, in the |
19233 same order as before. |

19234 c. Pointers to the new path names generated by the second call, in the specified order.

19235 4. The count returned in pglob->gl_pathc shall be the total number of path names from the |
19236 two calls.

19237 5. The application can change any of the fields after a call to glob(). If it does, the application
19238 shall reset them to the original value before a subsequent call, using the same pglob value,
19239 to globfree() or glob() with the GLOB_APPEND flag.

19240 If, during the search, a directory is encountered that cannot be opened or read and errfunc is not
19241 a null pointer, glob() calls (*errfunc()) with two arguments:

19242 1. The epath argument is a pointer to the path that failed.

19243 2. The eerrno argument is the value of errno from the failure, as set by opendir(), readdir(), or
19244 stat(). (Other values may be used to report other errors not explicitly documented for
19245 those functions.)

19246 The following constants are defined as error return values for glob():

19247 GLOB_ABORTED The scan was stopped because GLOB_ERR was set or (*errfunc())
19248 returned non-zero.

19249 GLOB_NOMATCH The pattern does not match any existing path name, and
19250 GLOB_NOCHECK was not set in flags.

19251 GLOB_NOSPACE An attempt to allocate memory failed.

19252 If (*errfunc()) is called and returns non-zero, or if the GLOB_ERR flag is set in flags, glob() shall
19253 stop the scan and return GLOB_ABORTED after setting gl_pathc and gl_pathv in pglob to reflect
19254 the paths already scanned. If GLOB_ERR is not set and either errfunc is a null pointer or
19255 (*errfunc()) returns 0, the error shall be ignored.

System Interfaces, Issue 6 1087

glob() System Interfaces

19256 RETURN VALUE
19257 Upon successful completion, glob() shall return 0. The argument pglob->gl_pathc shall return the |
19258 number of matched path names and the argument pglob->gl_pathv shall contain a pointer to a |
19259 null-terminated list of matched and sorted path names. However, if pglob->gl_pathc is 0, the |
19260 content of pglob->gl_pathv is undefined. |

19261 The globfree() function shall return no value.

19262 If glob() terminates due to an error, it shall return one of the non-zero constants defined in
19263 <glob.h>. The arguments pglob->gl_pathc and pglob->gl_pathv are still set as defined above. |

19264 ERRORS
19265 No errors are defined.

19266 EXAMPLES
19267 One use of the GLOB_DOOFFS flag is by applications that build an argument list for use with
19268 execv(), execve(), or execvp(). Suppose, for example, that an application wants to do the
19269 equivalent of:

19270 ls -l *.c

19271 but for some reason:

19272 system("ls -l *.c")

19273 is not acceptable. The application could obtain approximately the same result using the
19274 sequence:

19275 globbuf.gl_offs = 2;
19276 glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
19277 globbuf.gl_pathv[0] = "ls";
19278 globbuf.gl_pathv[1] = "-l";
19279 execvp("ls", &globbuf.gl_pathv[0]);

19280 Using the same example:

19281 ls -l *.c *.h

19282 could be approximately simulated using GLOB_APPEND as follows:

19283 globbuf.gl_offs = 2;
19284 glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
19285 glob("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
19286 ...

19287 APPLICATION USAGE
19288 This function is not provided for the purpose of enabling utilities to perform path name
19289 expansion on their arguments, as this operation is performed by the shell, and utilities are
19290 explicitly not expected to redo this. Instead, it is provided for applications that need to do path
19291 name expansion on strings obtained from other sources, such as a pattern typed by a user or
19292 read from a file.

19293 If a utility needs to see if a path name matches a given pattern, it can use fnmatch().

19294 Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows glob() to report
19295 partial results in the event of an error. However, if gl_pathc is 0, gl_pathv is unspecified even if
19296 glob() did not return an error.

19297 The GLOB_NOCHECK option could be used when an application wants to expand a path name
19298 if wildcards are specified, but wants to treat the pattern as just a string otherwise. The sh utility
19299 might use this for option-arguments, for example.

1088 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces glob()

19300 The new path names generated by a subsequent call with GLOB_APPEND are not sorted
19301 together with the previous path names. This mirrors the way that the shell handles path name
19302 expansion when multiple expansions are done on a command line.

19303 Applications that need tilde and parameter expansion should use wordexp().

19304 RATIONALE
19305 It was claimed that the GLOB_DOOFFS flag is unnecessary because it could be simulated using:

19306 new = (char **)malloc((n + pglob->gl_pathc + 1)
19307 * sizeof(char *));
19308 (void) memcpy(new+n, pglob->gl_pathv,
19309 pglob->gl_pathc * sizeof(char *));
19310 (void) memset(new, 0 , n * sizeof(char *));
19311 free(pglob->gl_pathv);
19312 pglob->gl_pathv = new;

19313 However, this assumes that the memory pointed to by gl_pathv is a block that was separately
19314 created using malloc (). This is not necessarily the case. An application should make no
19315 assumptions about how the memory referenced by fields in pglob was allocated. It might have
19316 been obtained from malloc () in a large chunk and then carved up within glob(), or it might have
19317 been created using a different memory allocator. It is not the intent of the standard developers to
19318 specify or imply how the memory used by glob() is managed.

19319 The GLOB_APPEND flag would be used when an application wants to expand several different
19320 patterns into a single list.

19321 FUTURE DIRECTIONS
19322 None.

19323 SEE ALSO
19324 exec, fnmatch(), opendir(), readdir(), stat(), wordexp(), the Base Definitions volume of |
19325 IEEE Std. 1003.1-200x, <glob.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x |

19326 CHANGE HISTORY
19327 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

19328 Issue 5
19329 Moved from POSIX2 C-language Binding to BASE.

19330 Issue 6
19331 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

19332 The restrict keyword is added to the glob() prototype for alignment with the ISO/IEC 9899: 1999 |
19333 standard. |

System Interfaces, Issue 6 1089

gmtime() System Interfaces

19334 NAME
19335 gmtime, gmtime_r — convert a time value to a broken-down UTC time

19336 SYNOPSIS
19337 #include <time.h>

19338 struct tm *gmtime(const time_t * timer);
19339 TSF struct tm *gmtime_r(const time_t *restrict timer , struct tm *restrict result);|
19340 |

19341 DESCRIPTION
19342 CX For gmtime(): The functionality described on this reference page is aligned with the ISO C
19343 standard. Any conflict between the requirements described here and the ISO C standard is
19344 unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

19345 The gmtime() function shall convert the time in seconds since the Epoch pointed to by timer into
19346 a broken-down time, expressed as Coordinated Universal Time (UTC).

19347 CX The gmtime() funtion need not be reentrant. A function that is not required to be reentrant is not
19348 required to be thread-safe.

19349 TSF The gmtime_r() function shall convert the time in seconds since the Epoch pointed to by timer |
19350 into a broken-down time expressed as Coordinated Universal Time (UTC). The broken-down
19351 time is stored in the structure referred to by result. The gmtime_r() function shall also return the
19352 address of the same structure.

19353 RETURN VALUE
19354 The gmtime() function shall return a pointer to a struct tm.

19355 TSF Upon successful completion, gmtime_r() shall return the address of the structure pointed to by
19356 the argument result. If an error is detected, or UTC is not available, gmtime_r() shall return a null
19357 pointer.

19358 ERRORS
19359 No errors are defined.

19360 EXAMPLES
19361 None.

19362 APPLICATION USAGE
19363 The asctime(), ctime(), gmtime(), and localtime () functions return values in one of two static
19364 objects: a broken-down time structure and an array of char. Execution of any of the functions
19365 may overwrite the information returned in either of these objects by any of the other functions.

19366 The gmtime_r() function is thread-safe and shall return values in a user-supplied buffer instead
19367 of possibly using a static data area that may be overwritten by each call.

19368 RATIONALE
19369 None.

19370 FUTURE DIRECTIONS
19371 None.

19372 SEE ALSO
19373 asctime(), clock (), ctime(), difftime (), localtime (), mktime(), strftime(), strptime(), time(), utime(), |
19374 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

1090 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces gmtime()

19375 CHANGE HISTORY
19376 First released in Issue 1. Derived from Issue 1 of the SVID. |

19377 Issue 4
19378 In the APPLICATION USAGE section, the list of functions with which this function may interact
19379 is revised and the wording clarified.

19380 The following change is incorporated for alignment with the ISO C standard:

19381 • The type of argument timer is changed from time_t* to const time_t*.

19382 Issue 5
19383 A note indicating that the gmtime() function need not be reentrant is added to the
19384 DESCRIPTION.

19385 The gmtime_r() function is included for alignment with the POSIX Threads Extension.

19386 Issue 6
19387 The gmtime_r() function is marked as part of the Thread-Safe Functions option. |

19388 Extensions beyond the ISO C standard are now marked.

19389 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
19390 its avoidance of possibly using a static data area. |

19391 The restrict keyword is added to the gmtime_r() prototype for alignment with the |
19392 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1091

grantpt() System Interfaces

19393 NAME
19394 grantpt — grant access to the slave pseudo-terminal device

19395 SYNOPSIS
19396 XSI #include <stdlib.h>

19397 int grantpt(int fildes);
19398

19399 DESCRIPTION
19400 The grantpt() function shall change the mode and ownership of the slave pseudo-terminal
19401 device associated with its master pseudo-terminal counterpart. The fildes argument is a file
19402 descriptor that refers to a master pseudo-terminal device. The user ID of the slave shall be set to
19403 the real UID of the calling process and the group ID shall be set to an unspecified group ID. The
19404 permission mode of the slave pseudo-terminal shall be set to readable and writable by the
19405 owner, and writable by the group.

19406 The behavior of the grantpt() function is unspecified if the application has installed a signal
19407 handler to catch SIGCHLD signals.

19408 RETURN VALUE
19409 Upon successful completion, grantpt() shall return 0; otherwise, it shall return −1 and set errno to
19410 indicate the error.

19411 ERRORS
19412 The grantpt() function may fail if:

19413 [EBADF] The fildes argument is not a valid open file descriptor. |

19414 [EINVAL] The fildes argument is not associated with a master pseudo-terminal device. |

19415 [EACCES] The corresponding slave pseudo-terminal device could not be accessed. |

19416 EXAMPLES
19417 None.

19418 APPLICATION USAGE
19419 None.

19420 RATIONALE
19421 None.

19422 FUTURE DIRECTIONS
19423 None.

19424 SEE ALSO
19425 open(), ptsname(), unlockpt (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

19426 CHANGE HISTORY
19427 First released in Issue 4, Version 2.

19428 Issue 5
19429 Moved from X/OPEN UNIX extension to BASE.

19430 The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section in
19431 previous issues.

1092 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces h_errno

19432 NAME
19433 h_errno — error return value for network database operations (LEGACY)

19434 SYNOPSIS
19435 #include <netdb.h>

19436 DESCRIPTION
19437 Note that this method of returning errors is used only in connection with legacy functions.

19438 The <netdb.h> header provides a declaration of h_errno as a modifiable l-value of type int.

19439 It is unspecified whether h_errno is a macro or an identifier declared with external linkage. If a
19440 macro definition is suppressed in order to access an actual object, or a program defines an
19441 identifier with the name h_errno, the behavior is undefined.

19442 RETURN VALUE
19443 None.

19444 ERRORS
19445 No errors are defined.

19446 EXAMPLES
19447 None.

19448 APPLICATION USAGE
19449 Applications should obtain the definition of h_errno by the inclusion of the <netdb.h> header.
19450 The practice of defining h_errno in a program as an extern int h_errno is obsolescent.

19451 RATIONALE
19452 None.

19453 FUTURE DIRECTIONS
19454 h_errno may be withdrawn in a future version.

19455 SEE ALSO
19456 endhostent(), errno, the Base Definitions volume of IEEE Std. 1003.1-200x, <netdb.h> |

19457 CHANGE HISTORY
19458 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1093

hcreate() System Interfaces

19459 NAME
19460 hcreate, hdestroy, hsearch — manage hash search table

19461 SYNOPSIS
19462 XSI #include <search.h>

19463 int hcreate(size_t nel);
19464 void hdestroy(void);
19465 ENTRY *hsearch(ENTRY item , ACTION action); |
19466 |

19467 DESCRIPTION
19468 The hcreate(), hdestroy(), and hsearch() functions manage hash search tables.

19469 The hcreate() function allocates sufficient space for the table, and the application shall ensure it is
19470 called before hsearch() is used. The nel argument is an estimate of the maximum number of
19471 entries that the table shall contain. This number may be adjusted upward by the algorithm in
19472 order to obtain certain mathematically favorable circumstances.

19473 The hdestroy() function disposes of the search table, and may be followed by another call to
19474 hcreate(). After the call to hdestroy(), the data can no longer be considered accessible.

19475 The hsearch() function is a hash-table search routine. It shall return a pointer into a hash table
19476 indicating the location at which an entry can be found. The item argument is a structure of type
19477 ENTRY (defined in the <search.h> header) containing two pointers: item.key points to the
19478 comparison key (a char*), and item.data (a void*) points to any other data to be associated with
19479 that key. The comparison function used by hsearch() is strcmp(). The action argument is a
19480 member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
19481 found in the table. ENTER indicates that the item should be inserted in the table at an
19482 appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is
19483 indicated by the return of a null pointer.

19484 These functions need not be reentrant. A function that is not required to be reentrant is not
19485 required to be thread-safe.

19486 RETURN VALUE
19487 The hcreate() function shall return 0 if it cannot allocate sufficient space for the table; otherwise,
19488 it shall return non-zero.

19489 The hdestroy() function shall return no value.

19490 The hsearch() function shall return a null pointer if either the action is FIND and the item could
19491 not be found or the action is ENTER and the table is full.

19492 ERRORS
19493 The hcreate() and hsearch() functions may fail if:

19494 [ENOMEM] Insufficient storage space is available. |

19495 EXAMPLES
19496 The following example reads in strings followed by two numbers and stores them in a hash
19497 table, discarding duplicates. It then reads in strings and finds the matching entry in the hash
19498 table and prints it out.

19499 #include <stdio.h>
19500 #include <search.h>
19501 #include <string.h>

19502 struct info { /* This is the info stored in the table */
19503 int age, room; /* other than the key. */

1094 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces hcreate()

19504 };

19505 #define NUM_EMPL 5000 /* # of elements in search table. */

19506 int main(void)
19507 {
19508 char string_space[NUM_EMPL*20]; /* Space to store strings. */
19509 struct info info_space[NUM_EMPL]; /* Space to store employee info. */
19510 char *str_ptr = string_space; /* Next space in string_space. */
19511 struct info *info_ptr = info_space;
19512 /* Next space in info_space. */
19513 ENTRY item;
19514 ENTRY *found_item; /* Name to look for in table. */
19515 char name_to_find[30];

19516 int i = 0;

19517 /* Create table; no error checking is performed. */
19518 (void) hcreate(NUM_EMPL);
19519 while (scanf("%s%d%d", str_ptr, &info_ptr −>age,
19520 &info_ptr −>room) != EOF && i++ < NUM_EMPL) {

19521 /* Put information in structure, and structure in item. */
19522 item.key = str_ptr;
19523 item.data = info_ptr;
19524 str_ptr += strlen(str_ptr) + 1;
19525 info_ptr++;

19526 /* Put item into table. */
19527 (void) hsearch(item, ENTER);
19528 }

19529 /* Access table. */
19530 item.key = name_to_find;
19531 while (scanf("%s", item.key) != EOF) {
19532 if ((found_item = hsearch(item, FIND)) != NULL) {

19533 /* If item is in the table. */
19534 (void)printf("found %s, age = %d, room = %d\n",
19535 found_item −>key,
19536 ((struct info *)found_item −>data) −>age,
19537 ((struct info *)found_item −>data) −>room);
19538 } else
19539 (void)printf("no such employee %s\n", name_to_find);
19540 }
19541 return 0;
19542 }

19543 APPLICATION USAGE
19544 The hcreate() and hsearch() functions may use malloc () to allocate space.

19545 RATIONALE
19546 None.

System Interfaces, Issue 6 1095

hcreate() System Interfaces

19547 FUTURE DIRECTIONS
19548 None.

19549 SEE ALSO
19550 bsearch(), lsearch(), malloc (), strcmp(), tsearch(), the Base Definitions volume of |
19551 IEEE Std. 1003.1-200x, <search.h> |

19552 CHANGE HISTORY
19553 First released in Issue 1. Derived from Issue 1 of the SVID. |

19554 Issue 4
19555 In the SYNOPSIS section, the type of argument nel in the declaration of hcreate() is changed from
19556 unsigned to size_t, and the argument list is explicitly defined as void in the declaration of
19557 hdestroy().

19558 In the DESCRIPTION, the type of the comparison key is explicitly defined as char*, the type of
19559 item.data is explicitly defined as void*, and a statement is added indicating that hsearch() uses
19560 strcmp() as the comparison function.

19561 In the EXAMPLES section, the sample code is updated to use ISO C standard syntax.

19562 An ERRORS section is added and [ENOMEM] is defined as an error that may be returned by
19563 hsearch() and hcreate().

19564 Issue 6
19565 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1096 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces htonl()

19566 NAME
19567 htonl, htons, ntohl, ntohs — convert values between host and network byte order

19568 SYNOPSIS
19569 #include <arpa/inet.h>

19570 uint32_t htonl(uint32_t hostlong);
19571 uint16_t htons(uint16_t hostshort);
19572 uint32_t ntohl(uint32_t netlong);
19573 uint16_t ntohs(uint16_t netshort);

19574 DESCRIPTION
19575 These functions shall convert 16-bit and 32-bit quantities between network byte order and host
19576 byte order.

19577 On some implementations, these functions are defined as macros. |

19578 The uint32_t and uint16_t types shall be defined as described in <inttypes.h>. |

19579 RETURN VALUE
19580 The htonl() and htons() functions shall return the argument value converted from host to
19581 network byte order.

19582 The ntohl() and ntohs() functions shall return the argument value converted from network to
19583 host byte order.

19584 ERRORS
19585 No errors are defined.

19586 EXAMPLES
19587 None.

19588 APPLICATION USAGE
19589 These functions are most often used in conjunction with IPv4 addresses and ports as returned by
19590 gethostent() and getservent().

19591 RATIONALE
19592 None.

19593 FUTURE DIRECTIONS
19594 None.

19595 SEE ALSO
19596 endhostent(), endservent(), the Base Definitions volume of IEEE Std. 1003.1-200x, <inttypes.h>, |
19597 <arpa/inet.h>

CHANGE19598 HISTORY
19599 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1097

htons() System Interfaces

19600 NAME
19601 htons — convert values between host and network byte order

19602 SYNOPSIS
19603 #include <arpa/inet.h>

19604 uint16_t htons(uint16_t hostshort);

19605 DESCRIPTION
19606 Refer to htonl().

1098 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces hypot()

19607 NAME
19608 hypot, hypotf, hypotl — Euclidean distance function |

19609 SYNOPSIS
19610 XSI #include <math.h>

19611 double hypot(double x, double y);
19612 float hypotf(float x, float y); |
19613 long double hypotl(long double x, long double y); |
19614 |

19615 DESCRIPTION
19616 These functions shall compute the value of the square root of x2+y2. |

19617 An application wishing to check for error situations should set errno to 0 before calling hypot().
19618 If errno is non-zero on return, or the return value is HUGE_VAL or NaN, an error has occurred.

19619 RETURN VALUE
19620 Upon successful completion, these functions shall return the length of the hypotenuse of a |
19621 right-angled triangle with sides of length x and y . |

19622 If the result would cause overflow, HUGE_VAL shall be returned and errno may be set to
19623 [ERANGE]. |

19624 If x or y is NaN, NaN shall be returned. and errno may be set to [EDOM]. |

19625 If the correct result would cause underflow, 0 shall be returned and errno may be set to
19626 [ERANGE].

19627 ERRORS
19628 These functions may fail if: |

19629 [EDOM] The value of x or y is NaN. |

19630 [ERANGE] The result overflows or underflows. |

19631 No other errors shall occur.

19632 EXAMPLES
19633 None.

19634 APPLICATION USAGE
19635 The hypot() function takes precautions against overflow during intermediate steps of the
19636 computation. If the calculated result would still overflow a double, then hypot() shall return
19637 HUGE_VAL.

19638 RATIONALE
19639 None.

19640 FUTURE DIRECTIONS
19641 None.

19642 SEE ALSO
19643 isnan(), sqrt(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

19644 CHANGE HISTORY
19645 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 1099

hypot() System Interfaces

19646 Issue 4
19647 References to matherr() are removed.

19648 The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
19649 handling in the mathematics functions.

19650 Issue 5
19651 The DESCRIPTION is updated to indicate how an application should check for an error. This
19652 text was previously published in the APPLICATION USAGE section. |

19653 Issue 6 |
19654 The hypotf () and hypotl () functions are added for alignment with the ISO/IEC 9899: 1999 |
19655 standard. |

1100 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iconv()

19656 NAME
19657 iconv — codeset conversion function

19658 SYNOPSIS
19659 XSI #include <iconv.h>

19660 size_t iconv(iconv_t cd , char **restrict inbuf , |
19661 size_t *restrict inbytesleft , char **restrict outbuf , |
19662 size_t *restrict outbytesleft); |
19663 |

19664 DESCRIPTION
19665 The iconv() function shall convert the sequence of characters from one codeset, in the array
19666 specified by inbuf , into a sequence of corresponding characters in another codeset, in the array
19667 specified by outbuf . The codesets are those specified in the iconv_open () call that returned the
19668 conversion descriptor, cd . The inbuf argument points to a variable that points to the first
19669 character in the input buffer and inbytesleft indicates the number of bytes to the end of the buffer
19670 to be converted. The outbuf argument points to a variable that points to the first available byte in
19671 the output buffer and outbytesleft indicates the number of the available bytes to the end of the
19672 buffer.

19673 For state-dependent encodings, the conversion descriptor cd is placed into its initial shift state by
19674 a call for which inbuf is a null pointer, or for which inbuf points to a null pointer. When iconv() is
19675 called in this way, and if outbuf is not a null pointer or a pointer to a null pointer, and outbytesleft
19676 points to a positive value, iconv() shall place, into the output buffer, the byte sequence to change
19677 the output buffer to its initial shift state. If the output buffer is not large enough to hold the
19678 entire reset sequence, iconv() shall fail and set errno to [E2BIG]. Subsequent calls with inbuf as |
19679 other than a null pointer or a pointer to a null pointer cause the conversion to take place from
19680 the current state of the conversion descriptor.

19681 If a sequence of input bytes does not form a valid character in the specified codeset, conversion
19682 stops after the previous successfully converted character. If the input buffer ends with an
19683 incomplete character or shift sequence, conversion stops after the previous successfully
19684 converted bytes. If the output buffer is not large enough to hold the entire converted input,
19685 conversion stops just prior to the input bytes that would cause the output buffer to overflow.
19686 The variable pointed to by inbuf is updated to point to the byte following the last byte
19687 successfully used in the conversion. The value pointed to by inbytesleft is decremented to reflect
19688 the number of bytes still not converted in the input buffer. The variable pointed to by outbuf is
19689 updated to point to the byte following the last byte of converted output data. The value pointed
19690 to by outbytesleft is decremented to reflect the number of bytes still available in the output buffer.
19691 For state-dependent encodings, the conversion descriptor is updated to reflect the shift state in
19692 effect at the end of the last successfully converted byte sequence.

19693 If iconv() encounters a character in the input buffer that is valid, but for which an identical
19694 character does not exist in the target codeset, iconv() performs an implementation-defined |
19695 conversion on this character. |

19696 RETURN VALUE
19697 The iconv() function shall update the variables pointed to by the arguments to reflect the extent
19698 of the conversion and return the number of non-identical conversions performed. If the entire
19699 string in the input buffer is converted, the value pointed to by inbytesleft shall be 0. If the input
19700 conversion is stopped due to any conditions mentioned above, the value pointed to by inbytesleft
19701 shall be non-zero and errno shall be set to indicate the condition. If an error occurs iconv() shall
19702 return (size_t)−1 and set errno to indicate the error.

System Interfaces, Issue 6 1101

iconv() System Interfaces

19703 ERRORS
19704 The iconv() function shall fail if:

19705 [EILSEQ] Input conversion stopped due to an input byte that does not belong to the |
19706 input codeset.

19707 [E2BIG] Input conversion stopped due to lack of space in the output buffer. |

19708 [EINVAL] Input conversion stopped due to an incomplete character or shift sequence at |
19709 the end of the input buffer.

19710 The iconv() function may fail if:

19711 [EBADF] The cd argument is not a valid open conversion descriptor. |

19712 EXAMPLES
19713 None.

19714 APPLICATION USAGE
19715 The inbuf argument indirectly points to the memory area which contains the conversion input
19716 data. The outbuf argument indirectly points to the memory area which is to contain the result of
19717 the conversion. The objects indirectly pointed to by inbuf and outbuf are not restricted to
19718 containing data that is directly representable in the ISO C standard language char data type. The
19719 type of inbuf and outbuf , char**, does not imply that the objects pointed to are interpreted as
19720 null-terminated C strings or arrays of characters. Any interpretation of a byte sequence that
19721 represents a character in a given character set encoding scheme is done internally within the
19722 codeset converters. For example, the area pointed to indirectly by inbuf and/or outbuf can
19723 contain all zero octets that are not interpreted as string terminators but as coded character data
19724 according to the respective codeset encoding scheme. The type of the data (char, short, long, and |
19725 so on) read or stored in the objects is not specified, but may be inferred for both the input and
19726 output data by the converters determined by the fromcode and tocode arguments of iconv_open ().

19727 Regardless of the data type inferred by the converter, the size of the remaining space in both
19728 input and output objects (the intbytesleft and outbytesleft arguments) is always measured in bytes.

19729 For implementations that support the conversion of state-dependent encodings, the conversion
19730 descriptor must be able to accurately reflect the shift-state in effect at the end of the last
19731 successful conversion. It is not required that the conversion descriptor itself be updated, which
19732 would require it to be a pointer type. Thus, implementations are free to implement the
19733 descriptor as a handle (other than a pointer type) by which the conversion information can be
19734 accessed and updated.

19735 RATIONALE
19736 None.

19737 FUTURE DIRECTIONS
19738 None.

19739 SEE ALSO
19740 iconv_open (), iconv_close (), the Base Definitions volume of IEEE Std. 1003.1-200x, <iconv.h> |

19741 CHANGE HISTORY
19742 First released in Issue 4. Derived from the HP-UX Manual. |

19743 Issue 6
19744 The SYNOPSIS has been corrected to align with the <iconv.h> reference page. |

19745 The restrict keyword is added to the iconv() prototype for alignment with the |
19746 ISO/IEC 9899: 1999 standard. |

1102 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iconv_close()

19747 NAME
19748 iconv_close — codeset conversion deallocation function

19749 SYNOPSIS
19750 XSI #include <iconv.h>

19751 int iconv_close(iconv_t cd);
19752

19753 DESCRIPTION
19754 The iconv_close () function deallocates the conversion descriptor cd and all other associated
19755 resources allocated by iconv_open ().

19756 If a file descriptor is used to implement the type iconv_t, that file descriptor is closed.

19757 RETURN VALUE
19758 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
19759 indicate the error.

19760 ERRORS
19761 The iconv_close () function may fail if:

19762 [EBADF] The conversion descriptor is invalid. |

19763 EXAMPLES
19764 None.

19765 APPLICATION USAGE
19766 None.

19767 RATIONALE
19768 None.

19769 FUTURE DIRECTIONS
19770 None.

19771 SEE ALSO
19772 iconv(), iconv_open (), the Base Definitions volume of IEEE Std. 1003.1-200x, <iconv.h> |

19773 CHANGE HISTORY
19774 First released in Issue 4. Derived from the HP-UX Manual. |

System Interfaces, Issue 6 1103

iconv_open() System Interfaces

19775 NAME
19776 iconv_open — codeset conversion allocation function

19777 SYNOPSIS
19778 XSI #include <iconv.h>

19779 iconv_t iconv_open(const char * tocode , const char * fromcode);
19780

19781 DESCRIPTION
19782 The iconv_open () function shall return a conversion descriptor that describes a conversion from
19783 the codeset specified by the string pointed to by the fromcode argument to the codeset specified
19784 by the string pointed to by the tocode argument. For state-dependent encodings, the conversion
19785 descriptor is in a codeset-dependent initial shift state, ready for immediate use with iconv().

19786 Settings of fromcode and tocode and their permitted combinations are implementation-defined. |

19787 A conversion descriptor remains valid until it is closed by iconv_close () or an implicit close. |

19788 If a file descriptor is used to implement conversion descriptors, the FD_CLOEXEC flag shall be
19789 set; see <fcntl.h>.

19790 RETURN VALUE
19791 Upon successful completion, iconv_open () shall return a conversion descriptor for use on
19792 subsequent calls to iconv(). Otherwise, iconv_open () shall return (iconv_t)−1 and set errno to
19793 indicate the error.

19794 ERRORS
19795 The iconv_open () function may fail if:

19796 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

19797 [ENFILE] Too many files are currently open in the system. |

19798 [ENOMEM] Insufficient storage space is available. |

19799 [EINVAL] The conversion specified by fromcode and tocode is not supported by the |
19800 implementation.

19801 EXAMPLES
19802 None.

19803 APPLICATION USAGE
19804 Some implementations of iconv_open () use malloc () to allocate space for internal buffer areas.
19805 The iconv_open () function may fail if there is insufficient storage space to accommodate these
19806 buffers.

19807 Portable applications must assume that conversion descriptors are not valid after a call to one of
19808 the exec functions.

19809 RATIONALE
19810 None.

19811 FUTURE DIRECTIONS
19812 None.

19813 SEE ALSO
19814 iconv(), iconv_close (), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, <iconv.h> |

1104 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iconv_open()

19815 CHANGE HISTORY
19816 First released in Issue 4. Derived from the HP-UX Manual. |

System Interfaces, Issue 6 1105

if_freenameindex() System Interfaces

19817 NAME
19818 if_freenameindex — free memory allocated by ifnameindex()

19819 SYNOPSIS
19820 #include <net/if.h>

19821 void if_freenameindex(struct if_nameindex * ptr);

19822 DESCRIPTION
19823 The if_freenameindex() function shall free the memory allocated by if_nameindex. The ptr |
19824 argument shall be a pointer that was returned by if_nameindex. After if_freenameindex() has been |
19825 called, the application should not use the array of which ptr is the address.

19826 RETURN VALUE
19827 None.

19828 ERRORS
19829 No errors are defined. |

19830 EXAMPLES
19831 None.

19832 APPLICATION USAGE
19833 None.

19834 RATIONALE
19835 None.

19836 FUTURE DIRECTIONS
19837 None.

19838 SEE ALSO
19839 getsockopt (), if_indextoname(), if_nameindex(), if_nametoindex(), setsockopt (), the Base Definitions |
19840 volume of IEEE Std. 1003.1-200x, <net/if.h> |

19841 CHANGE HISTORY
19842 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1106 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces if_indextoname()

19843 NAME
19844 if_indextoname — map a network interface index to its corresponding name |

19845 SYNOPSIS
19846 #include <net/if.h>

19847 char *if_indextoname(unsigned ifindex , char * ifname); |

19848 DESCRIPTION |
19849 The if_indextoname() function shall map an interface index to its corresponding name. |

19850 When this function is called, ifname shall point to a buffer of at least {IFNAMSIZ} bytes. The |
19851 function shall place in this buffer the name of the interface with index ifindex. |

19852 RETURN VALUE
19853 If ifindex is an interface index, then the function shall return the value supplied in ifname, which |
19854 points to a buffer now containing the interface name. Otherwise, the function shall return a |
19855 NULL pointer and set errno to indicate the error. |

19856 ERRORS
19857 The if_indextoname() function shall fail if:

19858 [ENXIO] The interface does not exist. |

19859 EXAMPLES
19860 None.

19861 APPLICATION USAGE
19862 None.

19863 RATIONALE
19864 None.

19865 FUTURE DIRECTIONS
19866 None.

19867 SEE ALSO
19868 getsockopt (), if_freenameindex(), if_nameindex(), if_nametoindex(), setsockopt (), the Base |
19869 Definitions volume of IEEE Std. 1003.1-200x, <net/if.h> |

19870 CHANGE HISTORY
19871 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1107

if_nameindex() System Interfaces

19872 NAME
19873 if_nameindex — return all network interface names and indexes |

19874 SYNOPSIS
19875 #include <net/if.h>

19876 struct if_nameindex * if_nameindex (void);

19877 DESCRIPTION
19878 The if_nameindex() function shall return an array of if_nameindex structures, one structure per |
19879 interface. The end of the array is indicated by a structure with an if_index field of zero and an |
19880 if_name field of NULL.

19881 Applications should call if_freenameindex() to release the memory that may be dynamically
19882 allocated by this function, after they have finished using it.

19883 RETURN VALUE
19884 Array of structures identifying local interfaces. A NULL pointer is returned upon an error, with |
19885 errno set to indicate the error. |

19886 ERRORS
19887 The if_nameindex() function may fail if:

19888 [ENOBUFS] Insufficient resources are available to complete the function.

19889 EXAMPLES
19890 None.

19891 APPLICATION USAGE
19892 None.

19893 RATIONALE
19894 None.

19895 FUTURE DIRECTIONS
19896 None.

19897 SEE ALSO
19898 getsockopt (), if_freenameindex(), if_indextoname(), if_nametoindex(), setsockopt (), the Base |
19899 Definitions volume of IEEE Std. 1003.1-200x, <net/if.h> |

19900 CHANGE HISTORY
19901 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1108 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces if_nametoindex()

19902 NAME
19903 if_nametoindex — map a network interface name to its corresponding index |

19904 SYNOPSIS
19905 #include <net/if.h>

19906 unsigned if_nametoindex(const char * ifname); |

19907 DESCRIPTION |
19908 The if_nametoindex() function shall return the interface index corresponding to name ifname. |

19909 RETURN VALUE
19910 The corresponding index if ifname is the name of an interface; otherwise, zero. |

19911 ERRORS
19912 No errors are defined. |

19913 EXAMPLES
19914 None.

19915 APPLICATION USAGE
19916 None.

19917 RATIONALE
19918 None.

19919 FUTURE DIRECTIONS
19920 None.

19921 SEE ALSO
19922 getsockopt (), if_freenameindex(), if_indextoname(), if_nameindex(), setsockopt (), the Base |
19923 Definitions volume of IEEE Std. 1003.1-200x, <net/if.h> |

19924 CHANGE HISTORY
19925 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1109

ilogb() System Interfaces

19926 NAME
19927 ilogb, ilogbf, ilogbl — return an unbiased exponent |

19928 SYNOPSIS
19929 #include <math.h> |

19930 int ilogb(double x); |
19931 int ilogbf(float x); |
19932 int ilogbl(long double x); |

19933 DESCRIPTION |
19934 These functions shall return the exponent part of x . Formally, the return value is the integral |
19935 part of logr | x | as a signed integral value, for non-zero x , where r is the radix of the machine’s |
19936 floating point arithmetic, which is the value of FLT_RADIX defined in <float.h>. |

19937 RETURN VALUE
19938 Upon successful completion, these functions shall return the exponent part of x as a signed |
19939 integer value. |

19940 If x is zero, these functions shall return the value FP_ILOGB0; if x is infinite, they shall return the |
19941 value {INT_MAX}; if x is a NaN, they shall return the value FP_ILOGBNAN; otherwise, they |
19942 shall be equivalent to calling the corresponding logb() function and casting the returned value to |
19943 type int. |

19944 ERRORS
19945 These functions may fail if: |

19946 [ERANGE] The value of x is 0. |

19947 EXAMPLES |
19948 None.

19949 APPLICATION USAGE
19950 None.

19951 RATIONALE
19952 None.

19953 FUTURE DIRECTIONS
19954 None.

19955 SEE ALSO
19956 logb(), scalb(), the Base Definitions volume of IEEE Std. 1003.1-200x, <float.h>, <math.h> |

19957 CHANGE HISTORY
19958 First released in Issue 4, Version 2.

19959 Issue 5
19960 Moved from X/OPEN UNIX extension to BASE. |

19961 Issue 6 |
19962 The ilogbf () and ilogbl () functions are added for alignment with the ISO/IEC 9899: 1999 |
19963 standard. |

|

1110 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces imaxabs()

19964 NAME |
19965 imaxabs — return absolute value |

19966 SYNOPSIS |
19967 #include <inttypes.h> |

19968 intmax_t imaxabs(intmax_t j); |

19969 DESCRIPTION |
19970 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
19971 conflict between the requirements described here and the ISO C standard is unintentional. This |
19972 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

19973 The imaxabs() function shall compute the absolute value of an integer j . If the result cannot be |
19974 represented, the behavior is undefined. |

19975 RETURN VALUE |
19976 The imaxabs() function shall return the absolute value. |

19977 ERRORS |
19978 No errors are defined. |

19979 EXAMPLES |
19980 None. |

19981 APPLICATION USAGE |
19982 The absolute value of the most negative number cannot be represented in two’s complement. |

19983 RATIONALE |
19984 None. |

19985 FUTURE DIRECTIONS |
19986 None. |

19987 SEE ALSO |
19988 imaxdiv (), the Base Definitions volume of IEEE Std. 1003.1-200x, <inttypes.h> |

19989 CHANGE HISTORY |
19990 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1111

imaxdiv() System Interfaces

19991 NAME |
19992 imaxdiv — return quotient and remainder |

19993 SYNOPSIS |
19994 #include <inttypes.h> |

19995 imaxdiv_t imaxdiv(intmax_t numer , intmax_t denom); |

19996 DESCRIPTION |
19997 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
19998 conflict between the requirements described here and the ISO C standard is unintentional. This |
19999 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

20000 The imaxdiv () function shall compute numer / denom and numer % denom in a single operation. |

20001 RETURN VALUE |
20002 The imaxdiv () function shall return a structure of type imaxdiv_t, comprising both the quotient |
20003 and the remainder. The structure shall contain (in either order) the members quot (the quotient) |
20004 and rem (the remainder), each of which has type intmax_t. |

20005 If either part of the result cannot be represented, the behavior is undefined. |

20006 ERRORS |
20007 No errors are defined. |

20008 EXAMPLES |
20009 None. |

20010 APPLICATION USAGE |
20011 None. |

20012 RATIONALE |
20013 None. |

20014 FUTURE DIRECTIONS |
20015 None. |

20016 SEE ALSO |
20017 imaxabs(), the Base Definitions volume of IEEE Std. 1003.1-200x, <inttypes.h> |

20018 CHANGE HISTORY |
20019 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1112 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces index()

20020 NAME
20021 index — character string operations (LEGACY)

20022 SYNOPSIS
20023 XSI #include <strings.h>

20024 char *index(const char * s, int c);
20025

20026 DESCRIPTION
20027 The index() function is identical to strchr().

20028 RETURN VALUE
20029 See strchr().

20030 ERRORS
20031 See strchr().

20032 EXAMPLES
20033 None.

20034 APPLICATION USAGE
20035 strchr() is preferred over this function.

20036 For maximum portability, it is recommended to replace the function call to index() as follows:

20037 #define index(a,b) strchr((a),(b))

20038 RATIONALE
20039 None.

20040 FUTURE DIRECTIONS
20041 This function may be withdrawn in a future version.

20042 SEE ALSO
20043 strchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

20044 CHANGE HISTORY
20045 First released in Issue 4, Version 2.

20046 Issue 5
20047 Moved from X/OPEN UNIX extension to BASE.

20048 Issue 6
20049 This function is marked LEGACY.

System Interfaces, Issue 6 1113

inet_addr() System Interfaces

20050 NAME
20051 inet_addr, inet_lnaof (LEGACY), inet_makeaddr (LEGACY), inet_netof (LEGACY),
20052 inet_network (LEGACY), inet_ntoa — IPv4 address manipulation

20053 SYNOPSIS
20054 #include <arpa/inet.h>

20055 in_addr_t inet_addr(const char * cp);
20056 in_addr_t inet_lnaof(struct in_addr in);
20057 struct in_addr inet_makeaddr(in_addr_t net , in_addr_t lna);
20058 in_addr_t inet_netof(struct in_addr in);
20059 in_addr_t inet_network(const char * cp);
20060 char *inet_ntoa(struct in_addr in);

20061 DESCRIPTION
20062 The inet_addr() function shall convert the string pointed to by cp, in the standard IPv4 dotted
20063 decimal notation, to an integer value suitable for use as an Internet address.

20064 The inet_lnaof () function shall take an Internet host address specified by in and extract the local
20065 network address part, in host byte order.

20066 The inet_makeaddr() function shall take the Internet network number specified by net and the
20067 local network address specified by lna, both in host byte order, and construct an Internet address
20068 from them.

20069 The inet_netof() function shall take an Internet host address specified by in and extract the
20070 network number part, in host byte order.

20071 The inet_network() function shall convert the string pointed to by cp, in the standard IPv4 dotted
20072 decimal notation, to an integer value suitable for use as an Internet network number.

20073 The inet_ntoa () function shall convert the Internet host address specified by in to a string in the
20074 Internet standard dot notation.

20075 All Internet addresses shall be returned in network order (bytes ordered from left to right).

20076 Values specified using IPv4 dotted decimal notation take one of the following forms:

20077 a.b.c.d When four parts are specified, each is interpreted as a byte of data and assigned,
20078 from left to right, to the four bytes of an Internet address.

20079 a.b.c When a three-part address is specified, the last part is interpreted as a 16-bit
20080 quantity and placed in the rightmost two bytes of the network address. This makes
20081 the three-part address format convenient for specifying Class B network addresses
20082 as 128.net.host.

20083 a.b When a two-part address is supplied, the last part is interpreted as a 24-bit
20084 quantity and placed in the rightmost three bytes of the network address. This
20085 makes the two-part address format convenient for specifying Class A network
20086 addresses as net.host.

20087 a When only one part is given, the value is stored directly in the network address
20088 without any byte rearrangement.

20089 All numbers supplied as parts in IPv4 dotted decimal notation may be decimal, octal, or
20090 hexadecimal, as specified in the ISO C standard (that is, a leading "0x" or "0X" implies
20091 hexadecimal; otherwise, a leading ’0’ implies octal; otherwise, the number is interpreted as
20092 decimal).

1114 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces inet_addr()

20093 RETURN VALUE
20094 Upon successful completion, inet_addr() shall return the Internet address. Otherwise, it shall
20095 return (in_addr_t)(−1).

20096 The inet_lnaof () function shall return the local network address part.

20097 The inet_makeaddr() function shall return the constructed Internet address.

20098 The inet_netof() function shall return the network number.

20099 Upon successful completion, inet_network() shall return the converted Internet network number.
20100 Otherwise, it shall return (in_addr_t)(−1).

20101 The inet_ntoa () function shall return a pointer to the network address in Internet standard dot
20102 notation.

20103 ERRORS
20104 No errors are defined.

20105 EXAMPLES
20106 None.

20107 APPLICATION USAGE
20108 The inet_lnaof (), inet_makeaddr(), inet_netof(), and inet_network() functions are marked LEGACY
20109 and should not be used by new applications.

20110 The return value of inet_ntoa () may point to static data that may be overwritten by subsequent
20111 calls to inet_ntoa ().

20112 RATIONALE
20113 None.

20114 FUTURE DIRECTIONS
20115 The inet_lnaof (), inet_makeaddr(), inet_netof(), and inet_network() functions may be withdrawn in |
20116 a future version. |

20117 SEE ALSO
20118 endhostent(), endnetent(), the Base Definitions volume of IEEE Std. 1003.1-200x, <arpa/inet.h> |

20119 CHANGE HISTORY
20120 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1115

inet_lnaof() System Interfaces

20121 NAME
20122 inet_lnaof — IPv4 address manipulation

20123 SYNOPSIS
20124 #include <arpa/inet.h>

20125 in_addr_t inet_lnaof(struct in_addr in);

20126 DESCRIPTION
20127 Refer to inet_addr().

1116 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces inet_makeaddr()

20128 NAME
20129 inet_makeaddr — IPv4 address manipulation

20130 SYNOPSIS
20131 #include <arpa/inet.h>

20132 struct in_addr inet_makeaddr(in_addr_t net , in_addr_t lna);

20133 DESCRIPTION
20134 Refer to inet_addr().

System Interfaces, Issue 6 1117

inet_netof() System Interfaces

20135 NAME
20136 inet_netof — IPv4 address manipulation

20137 SYNOPSIS
20138 #include <arpa/inet.h>

20139 in_addr_t inet_netof(struct in_addr in);

20140 DESCRIPTION
20141 Refer to inet_addr().

1118 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces inet_network()

20142 NAME
20143 inet_network — IPv4 address manipulation

20144 SYNOPSIS
20145 #include <arpa/inet.h>

20146 in_addr_t inet_network(const char * cp);

20147 DESCRIPTION
20148 Refer to inet_addr().

System Interfaces, Issue 6 1119

inet_ntoa() System Interfaces

20149 NAME
20150 inet_ntoa — IPv4 address manipulation

20151 SYNOPSIS
20152 #include <arpa/inet.h>

20153 char *inet_ntoa(struct in_addr in);

20154 DESCRIPTION
20155 Refer to inet_addr().

1120 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces inet_ntop()

20156 NAME
20157 inet_ntop, inet_pton — convert IPv4 and IPv6 addresses between binary and text form

20158 SYNOPSIS
20159 IP6 #include <arpa/inet.h>

20160 const char *inet_ntop(int af , const void *restrict src , |
20161 char *restrict dst , socklen_t size); |
20162 int inet_pton(int af , const char *restrict src , void *restrict dst); |
20163 |

20164 Notes to Reviewers |
20165 This section with side shading will not appear in the final copy. - Ed. |

20166 D3, XSH, ERN 330 (AI 2000-05-024) To supply editing instructions regarding making these |
20167 functions mandatory and shading IPv6-specific information. |

20168 DESCRIPTION |
20169 The inet_ntop() function converts a numeric address into a text string suitable for presentation.
20170 The af argument specifies the family of the address. This can be AF_INET or AF_INET6. The src
20171 argument points to a buffer holding an IPv4 address if the af argument is AF_INET, or an IPv6
20172 address if the af argument is AF_INET6. The dst argument points to a buffer where the function
20173 stores the resulting text string; it shall not be NULL. The size argument specifies the size of this
20174 buffer, which shall be large enough to hold the text string (INET_ADDRSTRLEN characters for
20175 IPv4, INET6_ADDRSTRLEN characters for IPv6).

20176 The inet_pton() function converts an address in its standard text presentation form into its
20177 numeric binary form. The af argument specifies the family of the address. The AF_INET and
20178 AF_INET6 address families are supported. The src argument points to the string being passed in.
20179 The dst argument points to a buffer into which the function stores the numeric address; this shall
20180 be large enough to hold the numeric address (32 bits for AF_INET, 128 bits for AF_INET6).

20181 If the af argument of inet_pton() is AF_INET, the src string shall be in the standard IPv4 dotted-
20182 decimal form:

20183 ddd.ddd.ddd.ddd

20184 where "ddd" is a one to three digit decimal number between 0 and 255 (see inet_addr()). The
20185 inet_pton() function does not accept other formats (such as the octal numbers, hexadecimal
20186 numbers, and fewer than four numbers that inet_addr() accepts).

20187 If the af argument of inet_pton() is AF_INET6, the src string shall be in one of the following
20188 standard IPv6 text forms:

20189 1. The preferred form is "x:x:x:x:x:x:x:x" , where the ’x’ s are the hexadecimal values
20190 of the eight 16-bit pieces of the address. Leading zeros in individual fields can be omitted,
20191 but there shall be at least one numeral in every field.

20192 2. A string of contiguous zero fields in the preferred form can be shown as "::" . The "::"
20193 can only appear once in an address. Unspecified addresses ("0:0:0:0:0:0:0:0") may
20194 be represented simply as "::" .

20195 3. A third form that is sometimes more convenient when dealing with a mixed environment
20196 of IPv4 and IPv6 nodes is "x:x:x:x:x:x:d.d.d.d" , where the ’x’ s are the
20197 hexadecimal values of the six high-order 16-bit pieces of the address, and the ’d’ s are the
20198 decimal values of the four low-order 8-bit pieces of the address (standard IPv4
20199 representation).

System Interfaces, Issue 6 1121

inet_ntop() System Interfaces

20200 Note: A more extensive description of the standard representations of IPv6 addresses can
20201 be found in RFC 2373.

20202 RETURN VALUE
20203 The inet_ntop() function shall return a pointer to the buffer containing the text string if the |
20204 conversion succeeds, and NULL otherwise, and set errno to indicate the error. |

20205 The inet_pton() function shall return 1 if the conversion succeeds, with the address pointed to by
20206 dst in network byte order. It shall return 0 if the input is not a valid IPv4 dotted-decimal string or
20207 a valid IPv6 address string, or −1 with errno set to [EAFNOSUPPORT] if the af argument is
20208 unknown.

20209 ERRORS
20210 The inet_ntop() and inet_pton() functions shall fail if:

20211 [EAFNOSUPPORT]
20212 The af argument is invalid.

20213 [ENOSPC] The size of the inet_ntop() result buffer is inadequate.

20214 EXAMPLES
20215 None.

20216 APPLICATION USAGE
20217 None.

20218 RATIONALE
20219 None.

20220 FUTURE DIRECTIONS
20221 None.

20222 SEE ALSO
20223 The Base Definitions volume of IEEE Std. 1003.1-200x, <arpa/inet.h> |

20224 CHANGE HISTORY
20225 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

20226 Marked as part of the IPv6 option. |

20227 The restrict keyword is added to the inet_ntop() and inet_pton() prototypes for alignment with |
20228 the ISO/IEC 9899: 1999 standard. |

1122 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces initstate()

20229 NAME
20230 initstate, random, setstate, srandom — pseudorandom number functions

20231 SYNOPSIS
20232 XSI #include <stdlib.h>

20233 char *initstate(unsigned seed , char * state , size_t size); |
20234 long random(void); |
20235 char *setstate(const char * state);
20236 void srandom(unsigned seed); |
20237 |

20238 DESCRIPTION
20239 The random() function uses a non-linear additive feedback random-number generator |
20240 employing a default state array size of 31 long integers to return successive pseudo-random |
20241 numbers in the range from 0 to 231−1. The period of this random-number generator is |
20242 approximately 16 x (231−1). The size of the state array determines the period of the random-
20243 number generator. Increasing the state array size increases the period.

20244 With 256 bytes of state information, the period of the random-number generator is greater than
20245 269.

20246 Like rand(), random() produces by default a sequence of numbers that can be duplicated by
20247 calling srandom() with 1 as the seed.

20248 The srandom() function initializes the current state array using the value of seed.

20249 The initstate() and setstate() functions handle restarting and changing random-number
20250 generators. The initstate() function allows a state array, pointed to by the state argument, to be
20251 initialized for future use. The size argument, which specifies the size in bytes of the state array, is
20252 used by initstate() to decide what type of random-number generator to use; the larger the state
20253 array, the more random the numbers. Values for the amount of state information are 8, 32, 64,
20254 128, and 256 bytes. Other values greater than 8 bytes are rounded down to the nearest one of
20255 these values. If initstate() is called with 8≤size<32, then random() uses a simple linear
20256 congruential random number generator. The seed argument specifies a starting point for the
20257 random-number sequence and provides for restarting at the same point. The initstate() function
20258 shall return a pointer to the previous state information array.

20259 If initstate() has not been called, then random() behaves as though initstate() had been called
20260 with seed=1 and size=128.

20261 Once a state has been initialized, setstate() allows switching between state arrays. The array
20262 defined by the state argument is used for further random-number generation until initstate() is
20263 called or setstate() is called again. The setstate() function shall return a pointer to the previous
20264 state array.

20265 RETURN VALUE
20266 If initstate() is called with size less than 8, it shall return NULL.

20267 The random() function shall return the generated pseudo-random number.

20268 The srandom() function shall return no value.

20269 Upon successful completion, initstate() and setstate() shall return a pointer to the previous state
20270 array; otherwise, a null pointer shall be returned.

System Interfaces, Issue 6 1123

initstate() System Interfaces

20271 ERRORS
20272 No errors are defined.

20273 EXAMPLES
20274 None.

20275 APPLICATION USAGE
20276 After initialization, a state array can be restarted at a different point in one of two ways:

20277 1. The initstate() function can be used, with the desired seed, state array, and size of the
20278 array.

20279 2. The setstate() function, with the desired state, can be used, followed by srandom() with the
20280 desired seed. The advantage of using both of these functions is that the size of the state
20281 array does not have to be saved once it is initialized.

20282 Although some implementations of random() have written messages to standard error, such
20283 implementations do not conform to this volume of IEEE Std. 1003.1-200x.

20284 Issue 5 restores the historical behavior of this function.

20285 Threaded applications should use rand_r(), erand48(), nrand48(), or jrand48() instead of
20286 random() when an independent random number sequence in multiple threads is required.

20287 RATIONALE
20288 None.

20289 FUTURE DIRECTIONS
20290 None.

20291 SEE ALSO
20292 drand48(), rand(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

20293 CHANGE HISTORY
20294 First released in Issue 4, Version 2.

20295 Issue 5
20296 Moved from X/OPEN UNIX extension to BASE.

20297 In the DESCRIPTION, the phrase ‘‘values smaller than 8’’ is replaced with ‘‘values greater than
20298 or equal to 8, or less than 32’’, ‘‘size<8’’ is replaced with ‘‘8≤size <32’’, and a new first paragraph
20299 is added to the RETURN VALUE section. A note is added to the APPLICATION USAGE
20300 indicating that these changes restore the historical behavior of the function.

20301 Issue 6
20302 In the DESCRIPTION, duplicate text ‘‘For values greater than or equal to 8 . . .’’ is removed.

1124 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces insque()

20303 NAME
20304 insque, remque — insert or remove an element in a queue

20305 SYNOPSIS
20306 XSI #include <search.h>

20307 void insque(void * element , void * pred);
20308 void remque(void * element);
20309

20310 DESCRIPTION
20311 The insque() and remque() functions manipulate queues built from doubly-linked lists. The
20312 queue can be either circular or linear. An application using insque() or remque() shall ensure it
20313 defines a structure in which the first two members of the structure are pointers to the same type
20314 of structure, and any further members are application-specific. The first member of the structure
20315 is a forward pointer to the next entry in the queue. The second member is a backward pointer to
20316 the previous entry in the queue. If the queue is linear, the queue is terminated with null
20317 pointers. The names of the structure and of the pointer members are not subject to any special
20318 restriction.

20319 The insque() function inserts the element pointed to by element into a queue immediately after
20320 the element pointed to by pred.

20321 The remque() function removes the element pointed to by element from a queue.

20322 If the queue is to be used as a linear list, invoking insque(&element, NULL), where element is the
20323 initial element of the queue, shall initialize the forward and backward pointers of element to null
20324 pointers.

20325 If the queue is to be used as a circular list, the application shall ensure it initializes the forward
20326 pointer and the backward pointer of the initial element of the queue to the element’s own
20327 address.

20328 RETURN VALUE
20329 The insque() and remque() functions do not return a value.

20330 ERRORS
20331 No errors are defined.

20332 EXAMPLES

20333 Creating a Linear Linked List

20334 The following example creates a linear linked list.

20335 #include <search.h>
20336 ...
20337 struct myque element1;
20338 struct myque element2;

20339 char *data1 = "DATA1";
20340 char *data2 = "DATA2";
20341 ...
20342 element1.data = data1;
20343 element2.data = data2;

20344 insque (&element1, NULL);
20345 insque (&element2, &element1);

System Interfaces, Issue 6 1125

insque() System Interfaces

20346 Creating a Circular Linked List

20347 The following example creates a circular linked list.

20348 #include <search.h>
20349 ...
20350 struct myque element1;
20351 struct myque element2;

20352 char *data1 = "DATA1";
20353 char *data2 = "DATA2";
20354 ...
20355 element1.data = data1;
20356 element2.data = data2;

20357 element1.fwd = &element1;
20358 element1.bck = &element1;

20359 insque (&element2, &element1);

20360 Removing an Element

20361 The following example removes the element pointed to by element1.

20362 #include <search.h>
20363 ...
20364 struct myque element1;
20365 ...
20366 remque (&element1);

20367 APPLICATION USAGE
20368 The historical implementations of these functions described the arguments as being of type
20369 struct qelem* rather than as being of type void* as defined here. In those implementations,
20370 struct qelem was commonly defined in <search.h> as:

20371 struct qelem {
20372 struct qelem *q_forw;
20373 struct qelem *q_back;
20374 };

20375 Applications using these functions, however, were never able to use this structure directly since
20376 it provided no room for the actual data contained in the elements. Most applications defined
20377 structures that contained the two pointers as the initial elements and also provided space for, or
20378 pointers to, the object’s data. Applications that used these functions to update more than one
20379 type of table also had the problem of specifying two or more different structures with the same
20380 name, if they literally used struct qelem as specified.

20381 As described here, the implementations were actually expecting a structure type where the first
20382 two members were forward and backward pointers to structures. With C compilers that didn’t
20383 provide function prototypes, applications used structures as specified in the DESCRIPTION
20384 above and the compiler did what the application expected.

20385 If this method had been carried forward with an ISO C standard compiler and the historical
20386 function prototype, most applications would have to be modified to cast pointers to the
20387 structures actually used to be pointers to struct qelem to avoid compilation warnings. By
20388 specifying void* as the argument type, applications do not need to change (unless they
20389 specifically referenced struct qelem and depended on it being defined in <search.h>).

1126 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces insque()

20390 RATIONALE
20391 None.

20392 FUTURE DIRECTIONS
20393 None.

20394 SEE ALSO
20395 The Base Definitions volume of IEEE Std. 1003.1-200x, <search.h> |

20396 CHANGE HISTORY
20397 First released in Issue 4, Version 2.

20398 Issue 5
20399 Moved from X/OPEN UNIX extension to BASE.

20400 Issue 6
20401 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1127

ioctl() System Interfaces

20402 NAME
20403 ioctl — control a STREAMS device (STREAMS)

20404 SYNOPSIS
20405 XSR #include <stropts.h>

20406 int ioctl(int fildes , int request , ... /* arg */);
20407

20408 DESCRIPTION
20409 The ioctl () function performs a variety of control functions on STREAMS devices. For non-
20410 STREAMS devices, the functions performed by this call are unspecified. The request argument
20411 and an optional third argument (with varying type) are passed to and interpreted by the
20412 appropriate part of the STREAM associated with fildes .

20413 The fildes argument is an open file descriptor that refers to a device.

20414 The request argument selects the control function to be performed and shall depend on the
20415 STREAMS device being addressed.

20416 The arg argument represents additional information that is needed by this specific STREAMS
20417 device to perform the requested function. The type of arg depends upon the particular control
20418 request, but it is either an integer or a pointer to a device-specific data structure.

20419 The ioctl () commands applicable to STREAMS, their arguments, and error conditions that apply
20420 to each individual command are described below.

20421 The following ioctl () commands, with error values indicated, are applicable to all STREAMS
20422 files:

20423 I_PUSH Pushes the module whose name is pointed to by arg onto the top of the
20424 current STREAM, just below the STREAM head. It then calls the open()
20425 function of the newly-pushed module.

20426 The ioctl () function with the I_PUSH command shall fail if:

20427 [EINVAL] Invalid module name. |

20428 [ENXIO] Open function of new module failed. |

20429 [ENXIO] Hangup received on fildes . |

20430 I_POP Removes the module just below the STREAM head of the STREAM pointed to
20431 by fildes . The arg argument should be 0 in an I_POP request.

20432 The ioctl () function with the I_POP command shall fail if:

20433 [EINVAL] No module present in the STREAM. |

20434 [ENXIO] Hangup received on fildes . |

20435 I_LOOK Retrieves the name of the module just below the STREAM head of the
20436 STREAM pointed to by fildes , and places it in a character string pointed to by
20437 arg . The buffer pointed to by arg should be at least FMNAMESZ+1 bytes long,
20438 where FMNAMESZ is defined in <stropts.h>.

20439 The ioctl () function with the I_LOOK command shall fail if:

20440 [EINVAL] No module present in the STREAM. |

20441 I_FLUSH This request flushes read and/or write queues, depending on the value of arg .
20442 Valid arg values are:

1128 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20443 FLUSHR Flush all read queues.

20444 FLUSHW Flush all write queues.

20445 FLUSHRW Flush all read and all write queues.

20446 The ioctl () function with the I_FLUSH command shall fail if:

20447 [EINVAL] Invalid arg value. |

20448 [EAGAIN] or [ENOSR] |
20449 Unable to allocate buffers for flush message.

20450 [ENXIO] Hangup received on fildes . |

20451 I_FLUSHBAND Flushes a particular band of messages. The arg argument points to a bandinfo
20452 structure. The bi_flag member may be one of FLUSHR, FLUSHW, or
20453 FLUSHRW as described above. The bi_pri member determines the priority
20454 band to be flushed.

20455 I_SETSIG Requests that the STREAMS implementation send the SIGPOLL signal to the
20456 calling process when a particular event has occurred on the STREAM
20457 associated with fildes . I_SETSIG supports an asynchronous processing
20458 capability in STREAMS. The value of arg is a bitmask that specifies the events
20459 for which the process should be signaled. It is the bitwise-inclusive OR of any
20460 combination of the following constants:

20461 S_RDNORM A normal (priority band set to 0) message has arrived at the
20462 head of a STREAM head read queue. A signal shall be
20463 generated even if the message is of zero length.

20464 S_RDBAND A message with a non-zero priority band has arrived at the
20465 head of a STREAM head read queue. A signal shall be
20466 generated even if the message is of zero length.

20467 S_INPUT A message, other than a high-priority message, has arrived
20468 at the head of a STREAM head read queue. A signal shall be
20469 generated even if the message is of zero length.

20470 S_HIPRI A high-priority message is present on a STREAM head read
20471 queue. A signal shall be generated even if the message is of
20472 zero length.

20473 S_OUTPUT The write queue for normal data (priority band 0) just
20474 below the STREAM head is no longer full. This notifies the
20475 process that there is room on the queue for sending (or
20476 writing) normal data downstream.

20477 S_WRNORM Same as S_OUTPUT.

20478 S_WRBAND The write queue for a non-zero priority band just below the
20479 STREAM head is no longer full. This notifies the process
20480 that there is room on the queue for sending (or writing)
20481 priority data downstream.

20482 S_MSG A STREAMS signal message that contains the SIGPOLL
20483 signal has reached the front of the STREAM head read
20484 queue.

20485 S_ERROR Notification of an error condition has reached the STREAM
20486 head.

System Interfaces, Issue 6 1129

ioctl() System Interfaces

20487 S_HANGUP Notification of a hangup has reached the STREAM head.

20488 S_BANDURG When used in conjunction with S_RDBAND, SIGURG is
20489 generated instead of SIGPOLL when a priority message
20490 reaches the front of the STREAM head read queue.

20491 If arg is 0, the calling process shall be unregistered and shall not receive
20492 further SIGPOLL signals for the stream associated with fildes .

20493 Processes that wish to receive SIGPOLL signals shall ensure that they
20494 explicitly register to receive them using I_SETSIG. If several processes register
20495 to receive this signal for the same event on the same STREAM, each process
20496 shall be signaled when the event occurs.

20497 The ioctl () function with the I_SETSIG command shall fail if:

20498 [EINVAL] The value of arg is invalid. |

20499 [EINVAL] The value of arg is 0 and the calling process is not registered |
20500 to receive the SIGPOLL signal.

20501 [EAGAIN] There were insufficient resources to store the signal request. |

20502 I_GETSIG Returns the events for which the calling process is currently registered to be
20503 sent a SIGPOLL signal. The events are returned as a bitmask in an int pointed
20504 to by arg , where the events are those specified in the description of I_SETSIG
20505 above.

20506 The ioctl () function with the I_GETSIG command shall fail if:

20507 [EINVAL] Process is not registered to receive the SIGPOLL signal. |

20508 I_FIND This request compares the names of all modules currently present in the
20509 STREAM to the name pointed to by arg , and returns 1 if the named module is
20510 present in the STREAM, or returns 0 if the named module is not present.

20511 The ioctl () function with the I_FIND command shall fail if:

20512 [EINVAL] arg does not contain a valid module name. |

20513 I_PEEK This request allows a process to retrieve the information in the first message
20514 on the STREAM head read queue without taking the message off the queue. It
20515 is analogous to getmsg() except that this command does not remove the
20516 message from the queue. The arg argument points to a strpeek structure.

20517 The application shall ensure that the maxlen member in the ctlbuf and databuf
20518 strbuf structures is set to the number of bytes of control information and/or
20519 data information, respectively, to retrieve. The flags member may be marked
20520 RS_HIPRI or 0, as described by getmsg(). If the process sets flags to RS_HIPRI,
20521 for example, I_PEEK shall only look for a high-priority message on the
20522 STREAM head read queue.

20523 I_PEEK returns 1 if a message was retrieved, and returns 0 if no message was
20524 found on the STREAM head read queue, or if the RS_HIPRI flag was set in
20525 flags and a high-priority message was not present on the STREAM head read
20526 queue. It does not wait for a message to arrive. On return, ctlbuf specifies
20527 information in the control buffer, databuf specifies information in the data
20528 buffer, and flags contains the value RS_HIPRI or 0.

20529 I_SRDOPT Sets the read mode using the value of the argument arg. Read modes are
20530 described in read(). Valid arg flags are:

1130 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20531 RNORM Byte-stream mode, the default.

20532 RMSGD Message-discard mode.

20533 RMSGN Message-nondiscard mode.

20534 The bitwise-inclusive OR of RMSGD and RMSGN shall return [EINVAL]. The |
20535 bitwise-inclusive OR of RNORM and either RMSGD or RMSGN shall result in
20536 the other flag overriding RNORM which is the default.

20537 In addition, treatment of control messages by the STREAM head may be
20538 changed by setting any of the following flags in arg:

20539 RPROTNORM Fail read() with [EBADMSG] if a message containing a
20540 control part is at the front of the STREAM head read queue. |

20541 RPROTDAT Deliver the control part of a message as data when a
20542 process issues a read().

20543 RPROTDIS Discard the control part of a message, delivering any data
20544 portion, when a process issues a read().

20545 The ioctl () function with the I_SRDOPT command shall fail if:

20546 [EINVAL] The arg argument is not valid. |

20547 I_GRDOPT Returns the current read mode setting as, described above, in an int pointed to
20548 by the argument arg. Read modes are described in read().

20549 I_NREAD Counts the number of data bytes in the data part of the first message on the
20550 STREAM head read queue and places this value in the int pointed to by arg.
20551 The return value for the command is the number of messages on the STREAM
20552 head read queue. For example, if 0 is returned in arg, but the ioctl () return
20553 value is greater than 0, this indicates that a zero-length message is next on the
20554 queue.

20555 I_FDINSERT Creates a message from specified buffer(s), adds information about another
20556 STREAM, and sends the message downstream. The message contains a
20557 control part and an optional data part. The data and control parts to be sent
20558 are distinguished by placement in separate buffers, as described below. The
20559 arg argument points to a strfdinsert structure.

20560 The application shall ensure that the len member in the ctlbuf strbuf structure
20561 is set to the size of a t_uscalar_t plus the number of bytes of control
20562 information to be sent with the message. The fildes member specifies the file
20563 descriptor of the other STREAM, and the offset member, which must be
20564 suitably aligned for use as a t_uscalar_t, specifies the offset from the start of
20565 the control buffer where I_FDINSERT shall store a t_uscalar_t whose
20566 interpretation is specific to the STREAM end. The application shall ensure that
20567 the len member in the databuf strbuf structure is set to the number of bytes of
20568 data information to be sent with the message, or to 0 if no data part is to be
20569 sent.

20570 The flags member specifies the type of message to be created. A normal
20571 message is created if flags is set to 0, and a high-priority message is created if
20572 flags is set to RS_HIPRI. For non-priority messages, I_FDINSERT shall block if
20573 the STREAM write queue is full due to internal flow control conditions. For
20574 priority messages, I_FDINSERT does not block on this condition. For non-
20575 priority messages, I_FDINSERT does not block when the write queue is full

System Interfaces, Issue 6 1131

ioctl() System Interfaces

20576 and O_NONBLOCK is set. Instead, it fails and sets errno to [EAGAIN]. |

20577 I_FDINSERT also blocks, unless prevented by lack of internal resources,
20578 waiting for the availability of message blocks in the STREAM, regardless of
20579 priority or whether O_NONBLOCK has been specified. No partial message is
20580 sent.

20581 The ioctl () function with the I_FDINSERT command shall fail if:

20582 [EAGAIN] A non-priority message is specified, the O_NONBLOCK |
20583 flag is set, and the STREAM write queue is full due to
20584 internal flow control conditions.

20585 [EAGAIN] or [ENOSR] |
20586 Buffers cannot be allocated for the message that is to be
20587 created.

20588 [EINVAL] One of the following: |

20589 — The fildes member of the strfdinsert structure is not a
20590 valid, open STREAM file descriptor.

20591 — The size of a t_uscalar_t plus offset is greater than the len
20592 member for the buffer specified through ctlbuf.

20593 — The offset member does not specify a properly-aligned
20594 location in the data buffer.

20595 — An undefined value is stored in flags .

20596 [ENXIO] Hangup received on the STREAM identified by either the |
20597 fildes argument or the fildes member of the strfdinsert
20598 structure.

20599 [ERANGE] The len member for the buffer specified through databuf |
20600 does not fall within the range specified by the maximum
20601 and minimum packet sizes of the topmost STREAM module
20602 or the len member for the buffer specified through databuf
20603 is larger than the maximum configured size of the data part
20604 of a message; or the len member for the buffer specified
20605 through ctlbuf is larger than the maximum configured size
20606 of the control part of a message.

20607 I_STR Constructs an internal STREAMS ioctl () message from the data pointed to by
20608 arg , and sends that message downstream.

20609 This mechanism is provided to send ioctl () requests to downstream modules
20610 and drivers. It allows information to be sent with ioctl (), and returns to the
20611 process any information sent upstream by the downstream recipient. I_STR
20612 blocks until the system responds with either a positive or negative
20613 acknowledgement message, or until the request times out after some period of
20614 time. If the request times out, it fails with errno set to [ETIME]. |

20615 At most, one I_STR can be active on a STREAM. Further I_STR calls shall
20616 block until the active I_STR completes at the STREAM head. The default
20617 timeout interval for these requests is 15 seconds. The O_NONBLOCK flag has
20618 no effect on this call.

20619 To send requests downstream, the application shall ensure that arg points to a
20620 strioctl structure.

1132 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20621 The ic_cmd member is the internal ioctl () command intended for a
20622 downstream module or driver and ic_timout is the number of seconds
20623 (−1=infinite, 0=use implementation-defined timeout interval, >0=as specified) |
20624 an I_STR request shall wait for acknowledgement before timing out. ic_len is |
20625 the number of bytes in the data argument, and ic_dp is a pointer to the data
20626 argument. The ic_len member has two uses: on input, it contains the length of
20627 the data argument passed in, and on return from the command, it contains the
20628 number of bytes being returned to the process (the buffer pointed to by ic_dp
20629 should be large enough to contain the maximum amount of data that any
20630 module or the driver in the STREAM can return).

20631 The STREAM head shall convert the information pointed to by the strioctl
20632 structure to an internal ioctl () command message and sends it downstream.

20633 The ioctl () function with the I_STR command shall fail if:

20634 [EAGAIN] or [ENOSR] |
20635 Unable to allocate buffers for the ioctl () message.

20636 [EINVAL] The ic_len member is less than 0 or larger than the |
20637 maximum configured size of the data part of a message, or
20638 ic_timout is less than −1.

20639 [ENXIO] Hangup received on fildes . |

20640 [ETIME] A downstream ioctl () timed out before acknowledgement |
20641 was received.

20642 An I_STR can also fail while waiting for an acknowledgement if a message
20643 indicating an error or a hangup is received at the STREAM head. In addition,
20644 an error code can be returned in the positive or negative acknowledgement
20645 message, in the event the ioctl () command sent downstream fails. For these
20646 cases, I_STR fails with errno set to the value in the message.

20647 I_SWROPT Sets the write mode using the value of the argument arg. Valid bit settings for
20648 arg are:

20649 SNDZERO Send a zero-length message downstream when a write() of
20650 0 bytes occurs. To not send a zero-length message when a
20651 write() of 0 bytes occurs, the application shall ensure that
20652 this bit is not set in arg (for example, arg would be set to 0).

20653 The ioctl () function with the I_SWROPT command shall fail if:

20654 [EINVAL] arg is not the above value. |

20655 I_GWROPT Returns the current write mode setting, as described above, in the int that is
20656 pointed to by the argument arg.

20657 I_SENDFD I_SENDFD creates a new reference to the open file description associated with
20658 the file descriptor arg , and writes a message on the STREAMS-based pipe
20659 fildes containing this reference, together with the user ID and group ID of the
20660 calling process.

20661 The ioctl () function with the I_SENDFD command shall fail if:

20662 [EAGAIN] The sending STREAM is unable to allocate a message block |
20663 to contain the file pointer; or the read queue of the receiving
20664 STREAM head is full and cannot accept the message sent by
20665 I_SENDFD.

System Interfaces, Issue 6 1133

ioctl() System Interfaces

20666 [EBADF] The arg argument is not a valid, open file descriptor. |

20667 [EINVAL] The fildes argument is not connected to a STREAM pipe. |

20668 [ENXIO] Hangup received on fildes . |

20669 I_RECVFD Retrieves the reference to an open file description from a message written to a
20670 STREAMS-based pipe using the I_SENDFD command, and allocates a new
20671 file descriptor in the calling process that refers to this open file description.
20672 The arg argument is a pointer to a strrecvfd data structure as defined in
20673 <stropts.h>.

20674 The fd member is a file descriptor. The uid and gid members are the effective
20675 user ID and effective group ID, respectively, of the sending process.

20676 If O_NONBLOCK is not set, I_RECVFD blocks until a message is present at
20677 the STREAM head. If O_NONBLOCK is set, I_RECVFD fails with errno set to
20678 [EAGAIN] if no message is present at the STREAM head. |

20679 If the message at the STREAM head is a message sent by an I_SENDFD, a new
20680 file descriptor is allocated for the open file descriptor referenced in the
20681 message. The new file descriptor is placed in the fd member of the strrecvfd
20682 structure pointed to by arg.

20683 The ioctl () function with the I_RECVFD command shall fail if:

20684 [EAGAIN] A message is not present at the STREAM head read queue |
20685 and the O_NONBLOCK flag is set.

20686 [EBADMSG] The message at the STREAM head read queue is not a |
20687 message containing a passed file descriptor.

20688 [EMFILE] The process has the maximum number of file descriptors |
20689 currently open that it is allowed.

20690 [ENXIO] Hangup received on fildes . |

20691 I_LIST This request allows the process to list all the module names on the STREAM,
20692 up to and including the topmost driver name. If arg is a null pointer, the
20693 return value is the number of modules, including the driver, that are on the
20694 STREAM pointed to by fildes . This lets the process allocate enough space for
20695 the module names. Otherwise, it should point to a str_list structure.

20696 The sl_nmods member indicates the number of entries the process has
20697 allocated in the array. Upon return, the sl_modlist member of the str_list
20698 structure contains the list of module names, and the number of entries that
20699 have been filled into the sl_modlist array is found in the sl_nmods member (the
20700 number includes the number of modules including the driver). The return
20701 value from ioctl () is 0. The entries are filled in starting at the top of the
20702 STREAM and continuing downstream until either the end of the STREAM is
20703 reached, or the number of requested modules (sl_nmods) is satisfied.

20704 The ioctl () function with the I_LIST command shall fail if:

20705 [EINVAL] The sl_nmods member is less than 1. |

20706 [EAGAIN] or [ENOSR] |
20707 Unable to allocate buffers.

20708 I_ATMARK This request allows the process to see if the message at the head of the
20709 STREAM head read queue is marked by some module downstream. The arg

1134 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20710 argument determines how the checking is done when there may be multiple
20711 marked messages on the STREAM head read queue. It may take on the
20712 following values:

20713 ANYMARK Check if the message is marked.

20714 LASTMARK Check if the message is the last one marked on the queue.

20715 The bitwise-inclusive OR of the flags ANYMARK and LASTMARK is
20716 permitted.

20717 The return value is 1 if the mark condition is satisfied; otherwise, the value is
20718 0.

20719 The ioctl () function with the I_ATMARK command shall fail if:

20720 [EINVAL] Invalid arg value. |

20721 I_CKBAND Check if the message of a given priority band exists on the STREAM head
20722 read queue. This returns 1 if a message of the given priority exists, 0 if no such
20723 message exists, or −1 on error. arg should be of type int.

20724 The ioctl () function with the I_CKBAND command shall fail if:

20725 [EINVAL] Invalid arg value. |

20726 I_GETBAND Return the priority band of the first message on the STREAM head read queue
20727 in the integer referenced by arg.

20728 The ioctl () function with the I_GETBAND command shall fail if:

20729 [ENODATA] No message on the STREAM head read queue. |

20730 I_CANPUT Check if a certain band is writable. arg is set to the priority band in question.
20731 The return value is 0 if the band is flow-controlled, 1 if the band is writable, or
20732 −1 on error.

20733 The ioctl () function with the I_CANPUT command shall fail if:

20734 [EINVAL] Invalid arg value. |

20735 I_SETCLTIME This request allows the process to set the time the STREAM head shall delay
20736 when a STREAM is closing and there is data on the write queues. Before
20737 closing each module or driver, if there is data on its write queue, the STREAM
20738 head shall delay for the specified amount of time to allow the data to drain. If,
20739 after the delay, data is still present, it shall be flushed. The arg argument is a
20740 pointer to an integer specifying the number of milliseconds to delay, rounded
20741 up to the nearest valid value. If I_SETCLTIME is not performed on a STREAM, |
20742 an implementation-defined default timeout interval is used. |

20743 The ioctl () function with the I_SETCLTIME command shall fail if:

20744 [EINVAL] Invalid arg value. |

20745 I_GETCLTIME This request returns the close time delay in the integer pointed to by arg.

System Interfaces, Issue 6 1135

ioctl() System Interfaces

20746 Multiplexed STREAMS Configurations

20747 The following commands are used for connecting and disconnecting multiplexed STREAMS
20748 configurations. These commands use an implementation-defined default timeout interval. |

20749 I_LINK Connects two STREAMs, where fildes is the file descriptor of the STREAM
20750 connected to the multiplexing driver, and arg is the file descriptor of the
20751 STREAM connected to another driver. The STREAM designated by arg is
20752 connected below the multiplexing driver. I_LINK requires the multiplexing
20753 driver to send an acknowledgement message to the STREAM head regarding
20754 the connection. This call returns a multiplexer ID number (an identifier used
20755 to disconnect the multiplexer; see I_UNLINK) on success, and −1 on failure.

20756 The ioctl () function with the I_LINK command shall fail if:

20757 [ENXIO] Hangup received on fildes . |

20758 [ETIME] Timeout before acknowledgement message was received at |
20759 STREAM head.

20760 [EAGAIN] or [ENOSR] |
20761 Unable to allocate STREAMS storage to perform the
20762 I_LINK.

20763 [EBADF] The arg argument is not a valid, open file descriptor. |

20764 [EINVAL] The fildes argument does not support multiplexing; or arg is |
20765 not a STREAM or is already connected downstream from a
20766 multiplexer; or the specified I_LINK operation would
20767 connect the STREAM head in more than one place in the
20768 multiplexed STREAM.

20769 An I_LINK can also fail while waiting for the multiplexing driver to
20770 acknowledge the request, if a message indicating an error or a hangup is
20771 received at the STREAM head of fildes . In addition, an error code can be
20772 returned in the positive or negative acknowledgement message. For these
20773 cases, I_LINK fails with errno set to the value in the message.

20774 I_UNLINK Disconnects the two STREAMs specified by fildes and arg . fildes is the file
20775 descriptor of the STREAM connected to the multiplexing driver. The arg
20776 argument is the multiplexer ID number that was returned by the I_LINK
20777 ioctl () command when a STREAM was connected downstream from the
20778 multiplexing driver. If arg is MUXID_ALL, then all STREAMs that were
20779 connected to fildes are disconnected. As in I_LINK, this command requires
20780 acknowledgement.

20781 The ioctl () function with the I_UNLINK command shall fail if:

20782 [ENXIO] Hangup received on fildes . |

20783 [ETIME] Timeout before acknowledgement message was received at |
20784 STREAM head.

20785 [EAGAIN] or [ENOSR] |
20786 Unable to allocate buffers for the acknowledgement
20787 message.

20788 [EINVAL] Invalid multiplexer ID number. |

1136 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20789 An I_UNLINK can also fail while waiting for the multiplexing driver to
20790 acknowledge the request if a message indicating an error or a hangup is
20791 received at the STREAM head of fildes . In addition, an error code can be
20792 returned in the positive or negative acknowledgement message. For these
20793 cases, I_UNLINK fails with errno set to the value in the message.

20794 I_PLINK Creates a persistent connection between two STREAMs, where fildes is the file
20795 descriptor of the STREAM connected to the multiplexing driver, and arg is the
20796 file descriptor of the STREAM connected to another driver. This call creates a
20797 persistent connection which can exist even if the file descriptor fildes
20798 associated with the upper STREAM to the multiplexing driver is closed. The
20799 STREAM designated by arg gets connected via a persistent connection below
20800 the multiplexing driver. I_PLINK requires the multiplexing driver to send an
20801 acknowledgement message to the STREAM head. This call returns a
20802 multiplexer ID number (an identifier that may be used to disconnect the
20803 multiplexer; see I_PUNLINK) on success, and −1 on failure.

20804 The ioctl () function with the I_PLINK command shall fail if:

20805 [ENXIO] Hangup received on fildes . |

20806 [ETIME] Timeout before acknowledgement message was received at |
20807 STREAM head.

20808 [EAGAIN] or [ENOSR] |
20809 Unable to allocate STREAMS storage to perform the
20810 I_PLINK.

20811 [EBADF] The arg argument is not a valid, open file descriptor. |

20812 [EINVAL] The fildes argument does not support multiplexing; or arg is |
20813 not a STREAM or is already connected downstream from a
20814 multiplexer; or the specified I_PLINK operation would
20815 connect the STREAM head in more than one place in the
20816 multiplexed STREAM.

20817 An I_PLINK can also fail while waiting for the multiplexing driver to
20818 acknowledge the request, if a message indicating an error or a hangup is
20819 received at the STREAM head of fildes . In addition, an error code can be
20820 returned in the positive or negative acknowledgement message. For these
20821 cases, I_PLINK fails with errno set to the value in the message.

20822 I_PUNLINK Disconnects the two STREAMs specified by fildes and arg from a persistent
20823 connection. The fildes argument is the file descriptor of the STREAM
20824 connected to the multiplexing driver. The arg argument is the multiplexer ID
20825 number that was returned by the I_PLINK ioctl () command when a STREAM
20826 was connected downstream from the multiplexing driver. If arg is
20827 MUXID_ALL, then all STREAMs which are persistent connections to fildes are
20828 disconnected. As in I_PLINK, this command requires the multiplexing driver
20829 to acknowledge the request.

20830 The ioctl () function with the I_PUNLINK command shall fail if:

20831 [ENXIO] Hangup received on fildes . |

20832 [ETIME] Timeout before acknowledgement message was received at |
20833 STREAM head.

System Interfaces, Issue 6 1137

ioctl() System Interfaces

20834 [EAGAIN] or [ENOSR] |
20835 Unable to allocate buffers for the acknowledgement
20836 message.

20837 [EINVAL] Invalid multiplexer ID number. |

20838 An I_PUNLINK can also fail while waiting for the multiplexing driver to
20839 acknowledge the request if a message indicating an error or a hangup is
20840 received at the STREAM head of fildes . In addition, an error code can be
20841 returned in the positive or negative acknowledgement message. For these
20842 cases, I_PUNLINK fails with errno set to the value in the message.

20843 RETURN VALUE
20844 Upon successful completion, ioctl () shall return a value other than −1 that depends upon the
20845 STREAMS device control function. Otherwise, it shall return −1 and set errno to indicate the
20846 error.

20847 ERRORS
20848 Under the following general conditions, ioctl () shall fail if:

20849 [EBADF] The fildes argument is not a valid open file descriptor. |

20850 [EINTR] A signal was caught during the ioctl () operation. |

20851 [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or |
20852 indirectly) downstream from a multiplexer.

20853 If an underlying device driver detects an error, then ioctl () shall fail if:

20854 [EINVAL] The request or arg argument is not valid for this device. |

20855 [EIO] Some physical I/O error has occurred. |

20856 [ENOTTY] The fildes argument is not associated with a STREAMS device that accepts |
20857 control functions.

20858 [ENXIO] The request and arg arguments are valid for this device driver, but the service |
20859 requested cannot be performed on this particular sub-device.

20860 [ENODEV] The fildes argument refers to a valid STREAMS device, but the corresponding |
20861 device driver does not support the ioctl () function.

20862 If a STREAM is connected downstream from a multiplexer, any ioctl () command except
20863 I_UNLINK and I_PUNLINK shall set errno to [EINVAL].

20864 EXAMPLES
20865 None.

20866 APPLICATION USAGE
20867 The implementation-defined timeout interval for STREAMS has historically been 15 seconds. |

20868 RATIONALE
20869 None.

20870 FUTURE DIRECTIONS
20871 None.

20872 SEE ALSO
20873 close(), fcntl(), getmsg(), open(), pipe(), poll (), putmsg(), read(), sigaction (), write(), the Base |
20874 Definitions volume of IEEE Std. 1003.1-200x, <stropts.h>, Section 2.6 (on page 539) |

1138 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ioctl()

20875 CHANGE HISTORY
20876 First released in Issue 4, Version 2.

20877 Issue 5
20878 Moved from X/OPEN UNIX extension to BASE.

20879 Issue 6
20880 The Open Group corrigenda item U028/4 has been applied, correcting text in the I_FDINSERT,
20881 [EINVAL] case to refer to ctlbuf .

20882 This function is marked as part of the XSI STREAMS Option Group.

20883 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1139

isalnum() System Interfaces

20884 NAME
20885 isalnum — test for an alphanumeric character

20886 SYNOPSIS
20887 #include <ctype.h>

20888 int isalnum(int c);

20889 DESCRIPTION
20890 CX The functionality described on this reference page is aligned with the ISO C standard. Any
20891 conflict between the requirements described here and the ISO C standard is unintentional. This
20892 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

20893 The isalnum() function tests whether c is a character of class alpha or digit in the program’s |
20894 current locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

20895 In all cases c is an int, the value of which the application shall ensure is representable as an
20896 unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
20897 behavior is undefined.

20898 RETURN VALUE
20899 The isalnum() function shall return non-zero if c is an alphanumeric character; otherwise, it shall
20900 return 0.

20901 ERRORS
20902 No errors are defined.

20903 EXAMPLES
20904 None.

20905 APPLICATION USAGE
20906 To ensure applications portability, especially across natural languages, only this function and
20907 those listed in the SEE ALSO section should be used for character classification.

20908 RATIONALE
20909 None.

20910 FUTURE DIRECTIONS
20911 None.

20912 SEE ALSO
20913 isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (),
20914 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, <stdio.h>, the Base |
20915 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

20916 CHANGE HISTORY
20917 First released in Issue 1. Derived from Issue 1 of the SVID. |

20918 Issue 4
20919 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
20920 functional differences between this issue and Issue 3. Operation in the C locale is no longer
20921 described explicitly on this reference page.

20922 Issue 6
20923 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1140 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isalpha()

20924 NAME
20925 isalpha — test for an alphabetic character

20926 SYNOPSIS
20927 #include <ctype.h>

20928 int isalpha(int c);

20929 DESCRIPTION
20930 CX The functionality described on this reference page is aligned with the ISO C standard. Any
20931 conflict between the requirements described here and the ISO C standard is unintentional. This
20932 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

20933 The isalpha () function shall test whether c is a character of class alpha in the program’s current |
20934 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

20935 In all cases c is an int, the value of which the application shall ensure is representable as an
20936 unsigned char or equal to the value of the macro EOF. If the argument has any other value, the
20937 behavior is undefined.

20938 RETURN VALUE
20939 The isalpha () function shall return non-zero if c is an alphabetic character; otherwise, it shall
20940 return 0.

20941 ERRORS
20942 No errors are defined.

20943 EXAMPLES
20944 None.

20945 APPLICATION USAGE
20946 To ensure applications portability, especially across natural languages, only this function and
20947 those listed in the SEE ALSO section should be used for character classification.

20948 RATIONALE
20949 None.

20950 FUTURE DIRECTIONS
20951 None.

20952 SEE ALSO
20953 isalnum(), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
20954 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, <stdio.h>, |
20955 the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

20956 CHANGE HISTORY
20957 First released in Issue 1. Derived from Issue 1 of the SVID. |

20958 Issue 4
20959 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
20960 functional differences between this issue and Issue 3. Operation in the C locale is no longer
20961 described explicitly on this reference page.

20962 Issue 6
20963 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1141

isascii() System Interfaces

20964 NAME
20965 isascii — test for a 7-bit US-ASCII character

20966 SYNOPSIS
20967 XSI #include <ctype.h>

20968 int isascii(int c);
20969

20970 DESCRIPTION
20971 The isascii () function tests whether c is a 7-bit US-ASCII character code.

20972 The isascii () function is defined on all integer values.

20973 RETURN VALUE
20974 The isascii () function shall return non-zero if c is a 7-bit US-ASCII character code between 0 and
20975 octal 0177 inclusive; otherwise, it shall return 0.

20976 ERRORS
20977 No errors are defined.

20978 EXAMPLES
20979 None.

20980 APPLICATION USAGE
20981 None.

20982 RATIONALE
20983 None.

20984 FUTURE DIRECTIONS
20985 None.

20986 SEE ALSO
20987 The Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h> |

20988 CHANGE HISTORY
20989 First released in Issue 1. Derived from Issue 1 of the SVID. |

1142 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isastream()

20990 NAME
20991 isastream — test a file descriptor (STREAMS)

20992 SYNOPSIS
20993 XSR #include <stropts.h>

20994 int isastream(int fildes);
20995

20996 DESCRIPTION
20997 The isastream() function shall test whether fildes , an open file descriptor, is associated with a
20998 STREAMS-based file.

20999 RETURN VALUE
21000 Upon successful completion, isastream() shall return 1 if fildes refers to a STREAMS-based file
21001 and 0 if not. Otherwise, isastream() shall return −1 and set errno to indicate the error.

21002 ERRORS
21003 The isastream() function shall fail if:

21004 [EBADF] The fildes argument is not a valid open file descriptor. |

21005 EXAMPLES
21006 None.

21007 APPLICATION USAGE
21008 None.

21009 RATIONALE
21010 None.

21011 FUTURE DIRECTIONS
21012 None.

21013 SEE ALSO
21014 The Base Definitions volume of IEEE Std. 1003.1-200x, <stropts.h> |

21015 CHANGE HISTORY
21016 First released in Issue 4, Version 2.

21017 Issue 5
21018 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1143

isatty() System Interfaces

21019 NAME
21020 isatty — test for a terminal device

21021 SYNOPSIS
21022 #include <unistd.h>

21023 int isatty(int fildes);

21024 DESCRIPTION
21025 The isatty() function shall test whether fildes , an open file descriptor, is associated with a
21026 terminal device.

21027 RETURN VALUE
21028 The isatty() function shall return 1 if fildes is associated with a terminal; otherwise, it shall return |
21029 0 and may set errno to indicate the error. |

21030 ERRORS
21031 The isatty() function may fail if:

21032 [EBADF] The fildes argument is not a valid open file descriptor. |

21033 [ENOTTY] The fildes argument is not associated with a terminal. |

21034 EXAMPLES
21035 None.

21036 APPLICATION USAGE
21037 The isatty() function does not necessarily indicate that a human being is available for interaction
21038 via fildes . It is quite possible that non-terminal devices are connected to the communications
21039 line.

21040 RATIONALE
21041 None.

21042 FUTURE DIRECTIONS
21043 None.

21044 SEE ALSO
21045 The Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

21046 CHANGE HISTORY
21047 First released in Issue 1. Derived from Issue 1 of the SVID. |

21048 Issue 4
21049 The <unistd.h> header is added to the SYNOPSIS section.

21050 In the RETURN VALUE section, the sentence indicating that this function may set errno is
21051 marked as an extension.

21052 The errors [EBADF] and [ENOTTY] are marked as extensions.

21053 Issue 6
21054 The following new requirements on POSIX implementations derive from alignment with the
21055 Single UNIX Specification:

21056 • The optional setting of errno to indicate an error is added.

21057 • The [EBADF] and [ENOTTY] optional error conditions are added.
|

1144 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isblank()

21058 NAME |
21059 isblank — test for a blank character |

21060 SYNOPSIS |
21061 #include <ctype.h> |

21062 int isblank(int c); |

21063 DESCRIPTION |
21064 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21065 conflict between the requirements described here and the ISO C standard is unintentional. This |
21066 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21067 The isblank () function shall test whether c is a character of class blank in the program’s current |
21068 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. In all cases c |
21069 is a type int, the value of which the application shall ensure is a character representable as an |
21070 unsigned char or equal to the value of the macro EOF. If the argument has any other value, the |
21071 behavior is undefined. |

21072 RETURN VALUE |
21073 The isblank () function shall return non-zero if c is a <blank> character; otherwise, it shall return |
21074 0. |

21075 ERRORS |
21076 No errors are defined. |

21077 EXAMPLES |
21078 None. |

21079 APPLICATION USAGE |
21080 To ensure applications portability, especially across natural languages, only this function and |
21081 those listed in the SEE ALSO section should be used for character classification. |

21082 RATIONALE |
21083 None. |

21084 FUTURE DIRECTIONS |
21085 None. |

21086 SEE ALSO |
21087 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), |
21088 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h> |

21089 CHANGE HISTORY |
21090 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1145

iscntrl() System Interfaces

21091 NAME
21092 iscntrl — test for a control character

21093 SYNOPSIS
21094 #include <ctype.h>

21095 int iscntrl(int c);

21096 DESCRIPTION
21097 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21098 conflict between the requirements described here and the ISO C standard is unintentional. This
21099 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21100 The iscntrl() function shall test whether c is a character of class cntrl in the program’s current |
21101 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21102 In all cases c is a type int, the value of which the application shall ensure is a character
21103 representable as an unsigned char or equal to the value of the macro EOF. If the argument has
21104 any other value, the behavior is undefined.

21105 RETURN VALUE
21106 The iscntrl() function shall return non-zero if c is a control character; otherwise, it shall return 0.

21107 ERRORS
21108 No errors are defined.

21109 EXAMPLES
21110 None.

21111 APPLICATION USAGE
21112 To ensure applications portability, especially across natural languages, only this function and
21113 those listed in the SEE ALSO section should be used for character classification.

21114 RATIONALE
21115 None.

21116 FUTURE DIRECTIONS
21117 None.

21118 SEE ALSO
21119 isalnum(), isalpha (), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
21120 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
21121 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21122 CHANGE HISTORY
21123 First released in Issue 1. Derived from Issue 1 of the SVID. |

21124 Issue 4
21125 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21126 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21127 described explicitly on this reference page.

21128 Issue 6
21129 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1146 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isdigit()

21130 NAME
21131 isdigit — test for a decimal digit

21132 SYNOPSIS
21133 #include <ctype.h>

21134 int isdigit(int c);

21135 DESCRIPTION
21136 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21137 conflict between the requirements described here and the ISO C standard is unintentional. This
21138 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21139 The isdigit () function shall test whether c is a character of class digit in the program’s current |
21140 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21141 In all cases c is an int, the value of which the application shall ensure is a character representable
21142 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21143 the behavior is undefined.

21144 RETURN VALUE
21145 The isdigit () function shall return non-zero if c is a decimal digit; otherwise, it shall return 0.

21146 ERRORS
21147 No errors are defined.

21148 EXAMPLES
21149 None.

21150 APPLICATION USAGE
21151 To ensure applications portability, especially across natural languages, only this function and
21152 those listed in the SEE ALSO section should be used for character classification.

21153 RATIONALE
21154 None.

21155 FUTURE DIRECTIONS
21156 None.

21157 SEE ALSO
21158 isalnum(), isalpha (), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
21159 isxdigit (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h> |

21160 CHANGE HISTORY
21161 First released in Issue 1. Derived from Issue 1 of the SVID. |

21162 Issue 4
21163 The text of the DESCRIPTION is revised, although there are no functional differences between
21164 this issue and Issue 3.

21165 Issue 6
21166 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1147

isfdtype() System Interfaces

21167 NAME
21168 isfdtype — determine whether a file descriptor refers to a socket

21169 SYNOPSIS
21170 #include <sys/stat.h>

21171 int isfdtype(int fildes , int fdtype);

21172 DESCRIPTION
21173 The isfdtype() function shall determine whether the descriptor fildes has the properties identified
21174 by the value of fdtype , returning 1 if so, and 0 if not.

21175 If fdtype has the value S_IFSOCK:

21176 • The isfdtype() function shall return 1 if the descriptor refers to a socket.

21177 • It is implementation-defined whether isfdtype() shall return 1 if the descriptor refers to a |
21178 pipe.

21179 • The function shall return 0 for descriptors that refer neither to a socket nor to a pipe.

21180 RETURN VALUE
21181 Upon successful completion, the isfdtype() function shall return a value of 1 or 0 indicating
21182 whether the descriptor is of the indicated type. Otherwise, it shall return a value of −1 and set
21183 errno to indicate the error.

21184 ERRORS
21185 If any of the following conditions occur, the isfdtype() function shall return −1 and set errno to
21186 the corresponding value:

21187 [EBADF] The fildes argument is not a valid file descriptor.

21188 EXAMPLES
21189 None.

21190 APPLICATION USAGE
21191 None.

21192 RATIONALE
21193 None.

21194 FUTURE DIRECTIONS
21195 None.

21196 SEE ALSO
21197 isatty(), socket(), stat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h> |

21198 CHANGE HISTORY
21199 First released in Issue 6. Derived from IEEE Std. 1003.1g-2000. |

|

1148 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isfinite()

21200 NAME |
21201 isfinite — test for finite value |

21202 SYNOPSIS |
21203 #include <math.h> |

21204 int isfinite(real-floating x); |

21205 DESCRIPTION |
21206 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21207 conflict between the requirements described here and the ISO C standard is unintentional. This |
21208 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21209 The isfinite () macro shall determine whether its argument has a finite value (zero, subnormal, or |
21210 normal, and not infinite or NaN). First, an argument represented in a format wider than its |
21211 semantic type is converted to its semantic type. Then determination is based on the type of the |
21212 argument. |

21213 RETURN VALUE |
21214 The isfinite () macro shall return a non-zero value if and only if its argument has a finite value. |

21215 ERRORS |
21216 No errors are defined. |

21217 EXAMPLES |
21218 None. |

21219 APPLICATION USAGE |
21220 None. |

21221 RATIONALE |
21222 None. |

21223 FUTURE DIRECTIONS |
21224 None. |

21225 SEE ALSO |
21226 fpclassify (), isinf(), isnan(), isnormal(), signbit(), the Base Definitions volume of |
21227 IEEE Std. 1003.1-200x <math.h> |

21228 CHANGE HISTORY |
21229 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1149

isgraph() System Interfaces

21230 NAME
21231 isgraph — test for a visible character

21232 SYNOPSIS
21233 #include <ctype.h>

21234 int isgraph(int c);

21235 DESCRIPTION
21236 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21237 conflict between the requirements described here and the ISO C standard is unintentional. This
21238 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21239 The isgraph() function shall test whether c is a character of class graph in the program’s current |
21240 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21241 In all cases c is an int, the value of which the application shall ensure is a character representable
21242 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21243 the behavior is undefined.

21244 RETURN VALUE
21245 The isgraph() function shall return non-zero if c is a character with a visible representation;
21246 otherwise, it shall return 0.

21247 ERRORS
21248 No errors are defined.

21249 EXAMPLES
21250 None.

21251 APPLICATION USAGE
21252 To ensure applications portability, especially across natural languages, only this function and
21253 those listed in the SEE ALSO section should be used for character classification.

21254 RATIONALE
21255 None.

21256 FUTURE DIRECTIONS
21257 None.

21258 SEE ALSO
21259 isalnum(), isalpha (), iscntrl(), isdigit (), islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit (),
21260 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base Definitions |
21261 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21262 CHANGE HISTORY
21263 First released in Issue 1. Derived from Issue 1 of the SVID. |

21264 Issue 4
21265 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21266 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21267 described explicitly on this reference page.

21268 Issue 6
21269 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

|

1150 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isgreater()

21270 NAME |
21271 isgreater — test if x greater than y |

21272 SYNOPSIS |
21273 #include <math.h> |

21274 int isgreater(real-floating x, real-floating y); |

21275 DESCRIPTION |
21276 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21277 conflict between the requirements described here and the ISO C standard is unintentional. This |
21278 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21279 The isgreater() macro shall determine whether its first argument is greater than its second |
21280 argument. The value of isgreater(x , y) shall be equal to (x) > (y); however, unlike (x) > (y), |
21281 isgreater(x , y) shall not raise the invalid floating-point exception when x and y are unordered. |

21282 RETURN VALUE |
21283 Upon successful completion, the isgreater() macro shall return the value of (x) > (y). |

21284 If x or y is NaN, 0 shall be returned. |

21285 ERRORS |
21286 No errors are defined. |

21287 EXAMPLES |
21288 None. |

21289 APPLICATION USAGE |
21290 The relational and equality operators support the usual mathematical relationships between |
21291 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21292 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21293 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21294 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21295 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21296 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21297 indicates that the argument shall be an expression of real-floating type. |

21298 RATIONALE |
21299 None. |

21300 FUTURE DIRECTIONS |
21301 None. |

21302 SEE ALSO |
21303 isgreaterequal(), isless(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume of |
21304 IEEE Std. 1003.1-200x <math.h> |

21305 CHANGE HISTORY |
21306 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1151

isgreaterequal() System Interfaces

21307 NAME |
21308 isgreaterequal — test if x greater than or equal to y |

21309 SYNOPSIS |
21310 #include <math.h> |

21311 int isgreaterequal(real-floating x, real-floating y); |

21312 DESCRIPTION |
21313 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21314 conflict between the requirements described here and the ISO C standard is unintentional. This |
21315 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21316 The isgreaterequal() macro shall determine whether its first argument is greater than or equal to |
21317 its second argument. The value of isgreaterequal(x , y) shall be equal to (x) >= (y); however, unlike |
21318 (x) >= (y), isgreaterequal(x , y) shall not raise the invalid floating-point exception when x and y are |
21319 unordered. |

21320 RETURN VALUE |
21321 Upon successful completion, the isgreaterequal() macro shall return the value of (x) >= (y). |

21322 If x or y is NaN, 0 shall be returned. |

21323 ERRORS |
21324 No errors are defined. |

21325 EXAMPLES |
21326 None. |

21327 APPLICATION USAGE |
21328 The relational and equality operators support the usual mathematical relationships between |
21329 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21330 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21331 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21332 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21333 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21334 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21335 indicates that the argument shall be an expression of real-floating type. |

21336 RATIONALE |
21337 None. |

21338 FUTURE DIRECTIONS |
21339 None. |

21340 SEE ALSO |
21341 isgreater(), isless(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume of |
21342 IEEE Std. 1003.1-200x <math.h> |

21343 CHANGE HISTORY |
21344 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1152 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isinf()

21345 NAME |
21346 isinf — test for infinity |

21347 SYNOPSIS |
21348 #include <math.h> |

21349 int isinf(real-floating x); |

21350 DESCRIPTION |
21351 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21352 conflict between the requirements described here and the ISO C standard is unintentional. This |
21353 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21354 The isinf() macro shall determine whether its argument value is an infinity (positive or |
21355 negative). First, an argument represented in a format wider than its semantic type is converted |
21356 to its semantic type. Then determination is based on the type of the argument. |

21357 RETURN VALUE |
21358 The isinf() macro shall return a non-zero value if and only if its argument has an infinite value. |

21359 ERRORS |
21360 No errors are defined. |

21361 EXAMPLES |
21362 None. |

21363 APPLICATION USAGE |
21364 None. |

21365 RATIONALE |
21366 None. |

21367 FUTURE DIRECTIONS |
21368 None. |

21369 SEE ALSO |
21370 fpclassify (), isfinite (), isnan(), isnormal(), signbit(), the Base Definitions volume of |
21371 IEEE Std. 1003.1-200x <math.h> |

21372 CHANGE HISTORY |
21373 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1153

isless() System Interfaces

21374 NAME |
21375 isless — test if x is less than y |

21376 SYNOPSIS |
21377 #include <math.h> |

21378 int isless(real-floating x, real-floating y); |

21379 DESCRIPTION |
21380 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21381 conflict between the requirements described here and the ISO C standard is unintentional. This |
21382 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21383 The isless() macro shall determine whether its first argument is less than its second argument. |
21384 The value of isless(x , y) shall be equal to (x) < (y); however, unlike (x) < (y), isless(x , y) shall not |
21385 raise the invalid floating-point exception when x and y are unordered. |

21386 RETURN VALUE |
21387 Upon successful completion, the isless() macro shall return the value of (x) < (y). |

21388 If x or y is NaN, 0 shall be returned. |

21389 ERRORS |
21390 No errors are defined. |

21391 EXAMPLES |
21392 None. |

21393 APPLICATION USAGE |
21394 The relational and equality operators support the usual mathematical relationships between |
21395 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21396 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21397 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21398 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21399 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21400 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21401 indicates that the argument shall be an expression of real-floating type. |

21402 RATIONALE |
21403 None. |

21404 FUTURE DIRECTIONS |
21405 None. |

21406 SEE ALSO |
21407 isgreater(), isgreaterequal(), islessequal(), islessgreater(), isunordered(), the Base Definitions volume |
21408 of IEEE Std. 1003.1-200x, <math.h> |

21409 CHANGE HISTORY |
21410 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1154 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces islessequal()

21411 NAME |
21412 islessequal — test if x is less than or equal to y |

21413 SYNOPSIS |
21414 #include <math.h> |

21415 int islessequal(real-floating x, real-floating y); |

21416 DESCRIPTION |
21417 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21418 conflict between the requirements described here and the ISO C standard is unintentional. This |
21419 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21420 The islessequal() macro shall determine whether its first argument is less than or equal to its |
21421 second argument. The value of islessequal(x , y) shall be equal to (x) <= (y); however, unlike |
21422 (x) <= (y), islessequal(x , y) shall not raise the invalid floating-point exception when x and y are |
21423 unordered. |

21424 RETURN VALUE |
21425 Upon successful completion, the islessequal() macro shall return the value of (x) <= (y). |

21426 If x or y is NaN, 0 shall be returned. |

21427 ERRORS |
21428 No errors are defined. |

21429 EXAMPLES |
21430 None. |

21431 APPLICATION USAGE |
21432 The relational and equality operators support the usual mathematical relationships between |
21433 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21434 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21435 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21436 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21437 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21438 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21439 indicates that the argument shall be an expression of real-floating type. |

21440 RATIONALE |
21441 None. |

21442 FUTURE DIRECTIONS |
21443 None. |

21444 SEE ALSO |
21445 isgreater(), isgreaterequal(), isless(), islessgreater(), isunordered(), the Base Definitions volume of |
21446 IEEE Std. 1003.1-200x <math.h> |

21447 CHANGE HISTORY |
21448 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1155

islessgreater() System Interfaces

21449 NAME |
21450 islessgreater — test if x is less than or greater than y |

21451 SYNOPSIS |
21452 #include <math.h> |

21453 int islessgreater(real-floating x, real-floating y); |

21454 DESCRIPTION |
21455 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21456 conflict between the requirements described here and the ISO C standard is unintentional. This |
21457 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21458 The islessgreater() macro shall determine whether its first argument is less than or greater than |
21459 its second argument. The islessgreater(x , y) macro is similar to (x) < (y) || (x) > (y); however, |
21460 islessgreater(x , y) shall not raise the invalid floating-point exception when x and y are unordered |
21461 (nor shall it evaluate x and y twice). |

21462 RETURN VALUE |
21463 Upon successful completion, the islessgreater() macro shall return the value of |
21464 (x) < (y) || (x) > (y). |

21465 If x or y is NaN, 0 shall be returned. |

21466 ERRORS |
21467 No errors are defined. |

21468 EXAMPLES |
21469 None. |

21470 APPLICATION USAGE |
21471 The relational and equality operators support the usual mathematical relationships between |
21472 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21473 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21474 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21475 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21476 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21477 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21478 indicates that the argument shall be an expression of real-floating type. |

21479 RATIONALE |
21480 None. |

21481 FUTURE DIRECTIONS |
21482 None. |

21483 SEE ALSO |
21484 isgreater(), isgreaterequal(), isless(), islessequal(), isunordered(), the Base Definitions volume of |
21485 IEEE Std. 1003.1-200x <math.h> |

21486 CHANGE HISTORY |
21487 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1156 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces islower()

21488 NAME
21489 islower — test for a lowercase letter

21490 SYNOPSIS
21491 #include <ctype.h>

21492 int islower(int c);

21493 DESCRIPTION
21494 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21495 conflict between the requirements described here and the ISO C standard is unintentional. This
21496 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21497 The islower() function shall test whether c is a character of class lower in the program’s current |
21498 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21499 In all cases c is an int, the value of which the application shall ensure is a character representable
21500 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21501 the behavior is undefined.

21502 RETURN VALUE
21503 The islower() function shall return non-zero if c is a lowercase letter; otherwise, it shall return 0.

21504 ERRORS
21505 No errors are defined.

21506 EXAMPLES

21507 Testing for a Lowercase Letter

21508 The following example tests whether the value is a lowercase letter, based on the locale of the
21509 user, then uses it as part of a key value.

21510 #include <ctype.h>
21511 #include <stdlib.h>
21512 #include <locale.h>
21513 ...
21514 char *keystr;
21515 int elementlen, len;
21516 char c;
21517 ...
21518 setlocale(LC_ALL, "");
21519 ...
21520 len = 0;
21521 while (len < elementlen) {
21522 c = (char) (rand() % 256);
21523 ...
21524 if (islower(c))
21525 keystr[len++] = c;
21526 }
21527 ...

21528 APPLICATION USAGE
21529 To ensure applications portability, especially across natural languages, only this function and
21530 those listed in the SEE ALSO section should be used for character classification.

System Interfaces, Issue 6 1157

islower() System Interfaces

21531 RATIONALE
21532 None.

21533 FUTURE DIRECTIONS
21534 None.

21535 SEE ALSO
21536 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), isprint(), ispunct(), isspace(), isupper(),
21537 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
21538 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21539 CHANGE HISTORY
21540 First released in Issue 1. Derived from Issue 1 of the SVID. |

21541 Issue 4
21542 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21543 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21544 described explicitly on this reference page.

21545 Issue 6
21546 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1158 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isnan()

21547 NAME
21548 isnan — test for a NaN

21549 SYNOPSIS
21550 #include <math.h> |

21551 int isnan(real-floating x); |

21552 DESCRIPTION |
21553 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21554 conflict between the requirements described here and the ISO C standard is unintentional. This |
21555 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21556 The isnan() macro shall determine whether its argument value is a NaN. First, an argument |
21557 represented in a format wider than its semantic type is converted to its semantic type. Then |
21558 determination is based on the type of the argument. |

21559 RETURN VALUE
21560 The isnan() macro shall return a non-zero value if and only if its argument has a NaN value. |

21561 ERRORS
21562 No errors are defined.

21563 EXAMPLES
21564 None.

21565 APPLICATION USAGE
21566 None.

21567 RATIONALE
21568 None.

21569 FUTURE DIRECTIONS
21570 None.

21571 SEE ALSO
21572 fpclassify (), isfinite (), isinf(), isnormal(), signbit(), the Base Definitions volume of |
21573 IEEE Std. 1003.1-200x, <math.h> |

21574 CHANGE HISTORY
21575 First released in Issue 3.

21576 Issue 4
21577 The words ‘‘not supporting NaN’’ are added to the APPLICATION USAGE section.

21578 Issue 5
21579 The DESCRIPTION is updated to indicate the return value when NaN is not supported. This |
21580 text was previously published in the APPLICATION USAGE section. |

21581 Issue 6 |
21582 Entry re-written for alignment with the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1159

isnormal() System Interfaces

21583 NAME |
21584 isnormal — test for a normal value |

21585 SYNOPSIS |
21586 #include <math.h> |

21587 int isnormal(real-floating x); |

21588 DESCRIPTION |
21589 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21590 conflict between the requirements described here and the ISO C standard is unintentional. This |
21591 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21592 The isnormal() macro shall determine whether its argument value is normal (neither zero, |
21593 subnormal, infinite, nor NaN). First, an argument represented in a format wider than its |
21594 semantic type is converted to its semantic type. Then determination is based on the type of the |
21595 argument. |

21596 RETURN VALUE |
21597 The isnormal() macro shall return a non-zero value if and only if its argument has a normal |
21598 value. |

21599 ERRORS |
21600 No errors are defined. |

21601 EXAMPLES |
21602 None. |

21603 APPLICATION USAGE |
21604 None. |

21605 RATIONALE |
21606 None. |

21607 FUTURE DIRECTIONS |
21608 None. |

21609 SEE ALSO |
21610 fpclassify (), isfinite (), isinf(), isnan(), signbit(), the Base Definitions volume of |
21611 IEEE Std. 1003.1-200x, <math.h> |

21612 CHANGE HISTORY |
21613 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1160 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isprint()

21614 NAME
21615 isprint — test for a printing character

21616 SYNOPSIS
21617 #include <ctype.h>

21618 int isprint(int c);

21619 DESCRIPTION
21620 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21621 conflict between the requirements described here and the ISO C standard is unintentional. This
21622 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21623 The isprint() function shall test whether c is a character of class print in the program’s current |
21624 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21625 In all cases c is an int, the value of which the application shall ensure is a character representable
21626 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21627 the behavior is undefined.

21628 RETURN VALUE
21629 The isprint() function shall return non-zero if c is a printing character; otherwise, it shall return 0.

21630 ERRORS
21631 No errors are defined.

21632 EXAMPLES
21633 None.

21634 APPLICATION USAGE
21635 To ensure applications portability, especially across natural languages, only this function and
21636 those listed in the SEE ALSO section should be used for character classification.

21637 RATIONALE
21638 None.

21639 FUTURE DIRECTIONS
21640 None.

21641 SEE ALSO
21642 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), ispunct(), isspace(), isupper(),
21643 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
21644 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21645 CHANGE HISTORY
21646 First released in Issue 1. Derived from Issue 1 of the SVID. |

21647 Issue 4
21648 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21649 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21650 described explicitly on this reference page.

21651 Issue 6
21652 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1161

ispunct() System Interfaces

21653 NAME
21654 ispunct — test for a punctuation character

21655 SYNOPSIS
21656 #include <ctype.h>

21657 int ispunct(int c);

21658 DESCRIPTION
21659 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21660 conflict between the requirements described here and the ISO C standard is unintentional. This
21661 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21662 The ispunct() function shall test whether c is a character of class punct in the program’s current |
21663 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21664 In all cases c is an int, the value of which the application shall ensure is a character representable
21665 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21666 the behavior is undefined.

21667 RETURN VALUE
21668 The ispunct() function shall return non-zero if c is a punctuation character; otherwise, it shall
21669 return 0.

21670 ERRORS
21671 No errors are defined.

21672 EXAMPLES
21673 None.

21674 APPLICATION USAGE
21675 To ensure applications portability, especially across natural languages, only this function and
21676 those listed in the SEE ALSO section should be used for character classification.

21677 RATIONALE
21678 None.

21679 FUTURE DIRECTIONS
21680 None.

21681 SEE ALSO
21682 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), isspace(), isupper(), isxdigit (),
21683 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base Definitions |
21684 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21685 CHANGE HISTORY
21686 First released in Issue 1. Derived from Issue 1 of the SVID. |

21687 Issue 4
21688 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21689 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21690 described explicitly on this reference page.

21691 Issue 6
21692 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1162 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isspace()

21693 NAME
21694 isspace — test for a white-space character

21695 SYNOPSIS
21696 #include <ctype.h>

21697 int isspace(int c);

21698 DESCRIPTION
21699 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21700 conflict between the requirements described here and the ISO C standard is unintentional. This
21701 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21702 The isspace() function shall test whether c is a character of class space in the program’s current |
21703 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21704 In all cases c is an int, the value of which the application shall ensure is a character representable
21705 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21706 the behavior is undefined.

21707 RETURN VALUE
21708 The isspace() function shall return non-zero if c is a white-space character; otherwise, it shall
21709 return 0.

21710 ERRORS
21711 No errors are defined.

21712 EXAMPLES
21713 None.

21714 APPLICATION USAGE
21715 To ensure applications portability, especially across natural languages, only this function and
21716 those listed in the SEE ALSO section should be used for character classification.

21717 RATIONALE
21718 None.

21719 FUTURE DIRECTIONS
21720 None.

21721 SEE ALSO
21722 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isupper(),
21723 isxdigit (), setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base |
21724 Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21725 CHANGE HISTORY
21726 First released in Issue 1. Derived from Issue 1 of the SVID. |

21727 Issue 4
21728 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21729 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21730 described explicitly on this reference page.

21731 Issue 6
21732 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

|

System Interfaces, Issue 6 1163

isunordered() System Interfaces

21733 NAME |
21734 isunordered — test if arguments are unordered |

21735 SYNOPSIS |
21736 #include <math.h> |

21737 int isunordered(real-floating x, real-floating y); |

21738 DESCRIPTION |
21739 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21740 conflict between the requirements described here and the ISO C standard is unintentional. This |
21741 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21742 The isunordered() macro shall determine whether its arguments are unordered. |

21743 RETURN VALUE |
21744 Upon successful completion, the isunordered() macro shall return 1 if its arguments are |
21745 unordered, and 0 otherwise. |

21746 If x or y is NaN, 0 shall be returned. |

21747 ERRORS |
21748 No errors are defined. |

21749 EXAMPLES |
21750 None. |

21751 APPLICATION USAGE |
21752 The relational and equality operators support the usual mathematical relationships between |
21753 numeric values. For any ordered pair of numeric values, exactly one of the relationships (less, |
21754 greater, and equal) is true. Relational operators may raise the invalid floating-point exception |
21755 when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the |
21756 unordered relationship is true. This macro is a quiet (non-floating-point exception raising) |
21757 version of a relational operator. It facilitates writing efficient code that accounts for NaNs |
21758 without suffering the invalid floating-point exception. In the SYNOPSIS section, real-floating |
21759 indicates that the argument shall be an expression of real-floating type. |

21760 RATIONALE |
21761 None. |

21762 FUTURE DIRECTIONS |
21763 None. |

21764 SEE ALSO |
21765 isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater(), the Base Definitions volume of |
21766 IEEE Std. 1003.1-200x, <math.h> |

21767 CHANGE HISTORY |
21768 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1164 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isupper()

21769 NAME
21770 isupper — test for an uppercase letter

21771 SYNOPSIS
21772 #include <ctype.h>

21773 int isupper(int c);

21774 DESCRIPTION
21775 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21776 conflict between the requirements described here and the ISO C standard is unintentional. This
21777 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21778 The isupper() function shall test whether c is a character of class upper in the program’s current |
21779 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21780 In all cases c is an int, the value of which the application shall ensure is a character representable
21781 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
21782 the behavior is undefined.

21783 RETURN VALUE
21784 The isupper() function shall return non-zero if c is an uppercase letter; otherwise, it shall return 0.

21785 ERRORS
21786 No errors are defined.

21787 EXAMPLES
21788 None.

21789 APPLICATION USAGE
21790 To ensure applications portability, especially across natural languages, only this function and
21791 those listed in the SEE ALSO section should be used for character classification.

21792 RATIONALE
21793 None.

21794 FUTURE DIRECTIONS
21795 None.

21796 SEE ALSO
21797 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isxdigit (),
21798 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base Definitions |
21799 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

21800 CHANGE HISTORY
21801 First released in Issue 1. Derived from Issue 1 of the SVID. |

21802 Issue 4
21803 The text of the DESCRIPTION and RETURN VALUE sections is revised, although there are no
21804 functional differences between this issue and Issue 3. Operation in the C locale is no longer
21805 described explicitly on this reference page.

21806 Issue 6
21807 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1165

iswalnum() System Interfaces

21808 NAME
21809 iswalnum — test for an alphanumeric wide-character code

21810 SYNOPSIS
21811 #include <wctype.h>

21812 int iswalnum(wint_t wc);

21813 DESCRIPTION
21814 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21815 conflict between the requirements described here and the ISO C standard is unintentional. This
21816 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21817 The iswalnum() function shall test whether wc is a wide-character code representing a character
21818 of class alpha or digit in the program’s current locale; see the Base Definitions volume of |
21819 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21820 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
21821 code corresponding to a valid character in the current locale, or equal to the value of the macro
21822 WEOF. If the argument has any other value, the behavior is undefined.

21823 RETURN VALUE
21824 The iswalnum() function shall return non-zero if wc is an alphanumeric wide-character code;
21825 otherwise, it shall return 0.

21826 ERRORS
21827 No errors are defined.

21828 EXAMPLES
21829 None.

21830 APPLICATION USAGE
21831 To ensure applications portability, especially across natural languages, only this function and
21832 those listed in the SEE ALSO section should be used for classification of wide-character codes.

21833 RATIONALE
21834 None.

21835 FUTURE DIRECTIONS
21836 None.

21837 SEE ALSO
21838 iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
21839 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
21840 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, <stdio.h>, the Base Definitions volume of |
21841 IEEE Std. 1003.1-200x, Chapter 7, Locale |

21842 CHANGE HISTORY
21843 First released as a World-wide Portability Interface in Issue 4.

21844 Issue 5
21845 The following change has been made in this issue for alignment with
21846 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

21847 • The SYNOPSIS has been changed to indicate that this function and associated data types are
21848 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1166 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswalnum()

21849 Issue 6
21850 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1167

iswalpha() System Interfaces

21851 NAME
21852 iswalpha — test for an alphabetic wide-character code

21853 SYNOPSIS
21854 #include <wctype.h>

21855 int iswalpha(wint_t wc);

21856 DESCRIPTION
21857 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21858 conflict between the requirements described here and the ISO C standard is unintentional. This
21859 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21860 The iswalpha () function shall test whether wc is a wide-character code representing a character of
21861 class alpha in the program’s current locale; see the Base Definitions volume of |
21862 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21863 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
21864 code corresponding to a valid character in the current locale, or equal to the value of the macro
21865 WEOF. If the argument has any other value, the behavior is undefined.

21866 RETURN VALUE
21867 The iswalpha () function shall return non-zero if wc is an alphabetic wide-character code;
21868 otherwise, it shall return 0.

21869 ERRORS
21870 No errors are defined.

21871 EXAMPLES
21872 None.

21873 APPLICATION USAGE
21874 To ensure applications portability, especially across natural languages, only this function and
21875 those listed in the SEE ALSO section should be used for classification of wide-character codes.

21876 RATIONALE
21877 None.

21878 FUTURE DIRECTIONS
21879 None.

21880 SEE ALSO
21881 iswalnum(), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
21882 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
21883 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, <stdio.h>, the Base Definitions volume of |
21884 IEEE Std. 1003.1-200x, Chapter 7, Locale |

21885 CHANGE HISTORY
21886 First released in Issue 4.

21887 Issue 5
21888 The following change has been made in this issue for alignment with
21889 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

21890 • The SYNOPSIS has been changed to indicate that this function and associated data types are
21891 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1168 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswalpha()

21892 Issue 6
21893 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

|

System Interfaces, Issue 6 1169

iswblank() System Interfaces

21894 NAME |
21895 iswblank — test for a blank wide-character code |

21896 SYNOPSIS |
21897 #include <wctype.h> |

21898 int iswblank(wint_t wc); |

21899 DESCRIPTION |
21900 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
21901 conflict between the requirements described here and the ISO C standard is unintentional. This |
21902 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

21903 The iswblank() function shall test whether wc is a wide-character code representing a character of |
21904 class blank in the program’s current locale; see the Base Definitions volume of |
21905 IEEE Std. 1003.1-200x, Chapter 7, Locale. In all cases, wc is a wint_t, the value of which the |
21906 application shall ensure is a wide-character code corresponding to a valid character in the |
21907 current locale, or equal to the value of the macro WEOF. If the argument has any other value, the |
21908 behavior is undefined. |

21909 RETURN VALUE |
21910 The iswblank() function shall return non-zero if wc is a <blank> wide-character code; otherwise, |
21911 it shall return 0. |

21912 ERRORS |
21913 No errors are defined. |

21914 EXAMPLES |
21915 None. |

21916 APPLICATION USAGE |
21917 To ensure applications portability, especially across natural languages, only this function and |
21918 those listed in the SEE ALSO section should be used for classification of wide-character codes. |

21919 RATIONALE |
21920 None. |

21921 FUTURE DIRECTIONS |
21922 None. |

21923 SEE ALSO |
21924 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), |
21925 iswpunct(), iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
21926 IEEE Std. 1003.1-200x, <wchar.h>, <wctype.h>, <stdio.h> |

21927 CHANGE HISTORY |
21928 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1170 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswcntrl()

21929 NAME
21930 iswcntrl — test for a control wide-character code

21931 SYNOPSIS
21932 #include <wctype.h>

21933 int iswcntrl(wint_t wc);

21934 DESCRIPTION
21935 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21936 conflict between the requirements described here and the ISO C standard is unintentional. This
21937 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21938 The iswcntrl() function shall test whether wc is a wide-character code representing a character of
21939 class control in the program’s current locale; see the Base Definitions volume of |
21940 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

21941 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
21942 code corresponding to a valid character in the current locale, or equal to the value of the macro
21943 WEOF. If the argument has any other value, the behavior is undefined.

21944 RETURN VALUE
21945 The iswcntrl() function shall return non-zero if wc is a control wide-character code; otherwise, it
21946 shall return 0.

21947 ERRORS
21948 No errors are defined.

21949 EXAMPLES
21950 None.

21951 APPLICATION USAGE
21952 To ensure applications portability, especially across natural languages, only this function and
21953 those listed in the SEE ALSO section should be used for classification of wide-character codes.

21954 RATIONALE
21955 None.

21956 FUTURE DIRECTIONS
21957 None.

21958 SEE ALSO
21959 iswalnum(), iswalpha (), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
21960 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
21961 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
21962 IEEE Std. 1003.1-200x, Chapter 7, Locale |

21963 CHANGE HISTORY
21964 First released in Issue 4.

21965 Issue 5
21966 The following change has been made in this issue for alignment with
21967 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

21968 • The SYNOPSIS has been changed to indicate that this function and associated data types are
21969 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

System Interfaces, Issue 6 1171

iswcntrl() System Interfaces

21970 Issue 6
21971 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1172 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswctype()

21972 NAME
21973 iswctype — test character for a specified class

21974 SYNOPSIS
21975 #include <wctype.h>

21976 int iswctype(wint_t wc, wctype_t charclass);

21977 DESCRIPTION
21978 CX The functionality described on this reference page is aligned with the ISO C standard. Any
21979 conflict between the requirements described here and the ISO C standard is unintentional. This
21980 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

21981 The iswctype() function shall determine whether the wide-character code wc has the character
21982 class charclass , returning true or false. The iswctype() function is defined on WEOF and wide-
21983 character codes corresponding to the valid character encodings in the current locale. If the wc |
21984 argument is not in the domain of the function, the result is undefined. If the value of charclass is |
21985 invalid (that is, not obtained by a call to wctype() or charclass is invalidated by a subsequent call
21986 to setlocale () that has affected category LC_CTYPE) the result is unspecified. |

21987 RETURN VALUE
21988 The iswctype() function shall return non-zero (true) if and only if wc has the property described |
21989 CX by charclass . If charclass is 0, iswctype() shall return 0. |

21990 ERRORS
21991 No errors are defined.

21992 EXAMPLES

21993 Testing for a Valid Character

21994 #include <wctype.h>
21995 ...
21996 int yes_or_no;
21997 wint_t wc;
21998 wctype_t valid_class;
21999 ...
22000 if ((valid_class=wctype("vowel")) == (wctype_t)0)
22001 /* Invalid character class. */
22002 yes_or_no=iswctype(wc,valid_class);

22003 APPLICATION USAGE
22004 The twelve strings "alnum" , "alpha" , "blank" , "cntrl" , "digit" , "graph" , "lower" ,
22005 "print" , "punct" , "space" , "upper" , and "xdigit" are reserved for the standard
22006 character classes. In the table below, the functions in the left column are equivalent to the
22007 functions in the right column.

22008 iswalnum(wc) iswctype(wc, wctype("alnum"))
22009 iswalpha(wc) iswctype(wc, wctype("alpha"))
22010 iswblank(wc) iswctype(wc, wctype("blank"))
22011 iswcntrl(wc) iswctype(wc, wctype("cntrl"))
22012 iswdigit(wc) iswctype(wc, wctype("digit"))
22013 iswgraph(wc) iswctype(wc, wctype("graph"))
22014 iswlower(wc) iswctype(wc, wctype("lower"))
22015 iswprint(wc) iswctype(wc, wctype("print"))
22016 iswpunct(wc) iswctype(wc, wctype("punct"))
22017 iswspace(wc) iswctype(wc, wctype("space"))

System Interfaces, Issue 6 1173

iswctype() System Interfaces

22018 iswupper(wc) iswctype(wc, wctype("upper"))
22019 iswxdigit(wc) iswctype(wc, wctype("xdigit"))

22020 RATIONALE |
22021 None.

22022 FUTURE DIRECTIONS
22023 None.

22024 SEE ALSO
22025 iswalnum(), iswalpha (), iswcntrl(), iswdigit (), iswgraph(), iswlower(), iswprint(), iswpunct(),
22026 iswspace(), iswupper(), iswxdigit (), setlocale (), wctype(), the Base Definitions volume of |
22027 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h> |

22028 CHANGE HISTORY
22029 First released as World-wide Portability Interfaces in Issue 4.

22030 Issue 5
22031 The following change has been made in this issue for alignment with
22032 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22033 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22034 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1174 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswdigit()

22035 NAME
22036 iswdigit — test for a decimal digit wide-character code

22037 SYNOPSIS
22038 #include <wctype.h>

22039 int iswdigit(wint_t wc);

22040 DESCRIPTION
22041 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22042 conflict between the requirements described here and the ISO C standard is unintentional. This
22043 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22044 The iswdigit () function shall test whether wc is a wide-character code representing a character of
22045 class digit in the program’s current locale; see the Base Definitions volume of |
22046 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22047 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22048 code corresponding to a valid character in the current locale, or equal to the value of the macro
22049 WEOF. If the argument has any other value, the behavior is undefined.

22050 RETURN VALUE
22051 The iswdigit () function shall return non-zero if wc is a decimal digit wide-character code;
22052 otherwise, it shall return 0.

22053 ERRORS
22054 No errors are defined.

22055 EXAMPLES
22056 None.

22057 APPLICATION USAGE
22058 To ensure applications portability, especially across natural languages, only this function and
22059 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22060 RATIONALE
22061 None.

22062 FUTURE DIRECTIONS
22063 None.

22064 SEE ALSO
22065 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(),
22066 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22067 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h> |

22068 CHANGE HISTORY
22069 First released in Issue 4.

22070 Issue 5
22071 The following change has been made in this issue for alignment with
22072 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22073 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22074 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

22075 Issue 6
22076 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1175

iswgraph() System Interfaces

22077 NAME
22078 iswgraph — test for a visible wide-character code

22079 SYNOPSIS
22080 #include <wctype.h>

22081 int iswgraph(wint_t wc);

22082 DESCRIPTION
22083 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22084 conflict between the requirements described here and the ISO C standard is unintentional. This
22085 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22086 The iswgraph() function shall test whether wc is a wide-character code representing a character
22087 of class graph in the program’s current locale; see the Base Definitions volume of |
22088 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22089 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22090 code corresponding to a valid character in the current locale, or equal to the value of the macro
22091 WEOF. If the argument has any other value, the behavior is undefined.

22092 RETURN VALUE
22093 The iswgraph() function shall return non-zero if wc is a wide-character code with a visible
22094 representation; otherwise, it shall return 0.

22095 ERRORS
22096 No errors are defined.

22097 EXAMPLES
22098 None.

22099 APPLICATION USAGE
22100 To ensure applications portability, especially across natural languages, only this function and
22101 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22102 RATIONALE
22103 None.

22104 FUTURE DIRECTIONS
22105 None.

22106 SEE ALSO
22107 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswlower(), iswprint(), iswpunct(),
22108 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22109 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22110 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22111 CHANGE HISTORY
22112 First released in Issue 4.

22113 Issue 5
22114 The following change has been made in this issue for alignment with
22115 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22116 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22117 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1176 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswgraph()

22118 Issue 6
22119 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1177

iswlower() System Interfaces

22120 NAME
22121 iswlower — test for a lowercase letter wide-character code

22122 SYNOPSIS
22123 #include <wctype.h>

22124 int iswlower(wint_t wc);

22125 DESCRIPTION
22126 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22127 conflict between the requirements described here and the ISO C standard is unintentional. This
22128 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22129 The iswlower() function shall test whether wc is a wide-character code representing a character
22130 of class lower in the program’s current locale; see the Base Definitions volume of |
22131 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22132 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22133 code corresponding to a valid character in the current locale, or equal to the value of the macro
22134 WEOF. If the argument has any other value, the behavior is undefined.

22135 RETURN VALUE
22136 The iswlower() function shall return non-zero if wc is a lowercase letter wide-character code;
22137 otherwise, it shall return 0.

22138 ERRORS
22139 No errors are defined.

22140 EXAMPLES
22141 None.

22142 APPLICATION USAGE
22143 To ensure applications portability, especially across natural languages, only this function and
22144 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22145 RATIONALE
22146 None.

22147 FUTURE DIRECTIONS
22148 None.

22149 SEE ALSO
22150 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswprint(), iswpunct(),
22151 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22152 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22153 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22154 CHANGE HISTORY
22155 First released in Issue 4.

22156 Issue 5
22157 The following change has been made in this issue for alignment with
22158 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22159 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22160 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1178 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswlower()

22161 Issue 6
22162 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1179

iswprint() System Interfaces

22163 NAME
22164 iswprint — test for a printing wide-character code

22165 SYNOPSIS
22166 #include <wctype.h>

22167 int iswprint(wint_t wc);

22168 DESCRIPTION
22169 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22170 conflict between the requirements described here and the ISO C standard is unintentional. This
22171 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22172 The iswprint() function shall test whether wc is a wide-character code representing a character of
22173 class print in the program’s current locale; see the Base Definitions volume of |
22174 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22175 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22176 code corresponding to a valid character in the current locale, or equal to the value of the macro
22177 WEOF. If the argument has any other value, the behavior is undefined.

22178 RETURN VALUE
22179 The iswprint() function shall return non-zero if wc is a printing wide-character code; otherwise, it
22180 shall return 0.

22181 ERRORS
22182 No errors are defined.

22183 EXAMPLES
22184 None.

22185 APPLICATION USAGE
22186 To ensure applications portability, especially across natural languages, only this function and
22187 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22188 RATIONALE
22189 None.

22190 FUTURE DIRECTIONS
22191 None.

22192 SEE ALSO
22193 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswpunct(),
22194 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22195 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22196 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22197 CHANGE HISTORY
22198 First released in Issue 4.

22199 Issue 5
22200 The following change has been made in this issue for alignment with
22201 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22202 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22203 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1180 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswprint()

22204 Issue 6
22205 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1181

iswpunct() System Interfaces

22206 NAME
22207 iswpunct — test for a punctuation wide-character code

22208 SYNOPSIS
22209 #include <wctype.h>

22210 int iswpunct(wint_t wc);

22211 DESCRIPTION
22212 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22213 conflict between the requirements described here and the ISO C standard is unintentional. This
22214 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22215 The iswpunct() function shall test whether wc is a wide-character code representing a character
22216 of class punct in the program’s current locale; see the Base Definitions volume of |
22217 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22218 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22219 code corresponding to a valid character in the current locale, or equal to the value of the macro
22220 WEOF. If the argument has any other value, the behavior is undefined.

22221 RETURN VALUE
22222 The iswpunct() function shall return non-zero if wc is a punctuation wide-character code;
22223 otherwise, it shall return 0.

22224 ERRORS
22225 No errors are defined.

22226 EXAMPLES
22227 None.

22228 APPLICATION USAGE
22229 To ensure applications portability, especially across natural languages, only this function and
22230 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22231 RATIONALE
22232 None.

22233 FUTURE DIRECTIONS
22234 None.

22235 SEE ALSO
22236 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
22237 iswspace(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22238 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22239 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22240 CHANGE HISTORY
22241 First released in Issue 4.

22242 Issue 5
22243 The following change has been made in this issue for alignment with
22244 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22245 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22246 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1182 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswpunct()

22247 Issue 6
22248 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1183

iswspace() System Interfaces

22249 NAME
22250 iswspace — test for a white-space wide-character code

22251 SYNOPSIS
22252 #include <wctype.h>

22253 int iswspace(wint_t wc);

22254 DESCRIPTION
22255 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22256 conflict between the requirements described here and the ISO C standard is unintentional. This
22257 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22258 The iswspace() function shall test whether wc is a wide-character code representing a character of
22259 class space in the program’s current locale; see the Base Definitions volume of |
22260 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22261 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22262 code corresponding to a valid character in the current locale, or equal to the value of the macro
22263 WEOF. If the argument has any other value, the behavior is undefined.

22264 RETURN VALUE
22265 The iswspace() function shall return non-zero if wc is a white-space wide-character code;
22266 otherwise, it shall return 0.

22267 ERRORS
22268 No errors are defined.

22269 EXAMPLES
22270 None.

22271 APPLICATION USAGE
22272 To ensure applications portability, especially across natural languages, only this function and
22273 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22274 RATIONALE
22275 None.

22276 FUTURE DIRECTIONS
22277 None.

22278 SEE ALSO
22279 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
22280 iswpunct(), iswupper(), iswxdigit (), setlocale (), the Base Definitions volume of |
22281 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22282 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22283 CHANGE HISTORY
22284 First released in Issue 4.

22285 Issue 5
22286 The following change has been made in this issue for alignment with
22287 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22288 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22289 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1184 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswspace()

22290 Issue 6
22291 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1185

iswupper() System Interfaces

22292 NAME
22293 iswupper — test for an uppercase letter wide-character code

22294 SYNOPSIS
22295 #include <wctype.h>

22296 int iswupper(wint_t wc);

22297 DESCRIPTION
22298 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22299 conflict between the requirements described here and the ISO C standard is unintentional. This
22300 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22301 The iswupper() function shall test whether wc is a wide-character code representing a character
22302 of class upper in the program’s current locale; see the Base Definitions volume of |
22303 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22304 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22305 code corresponding to a valid character in the current locale, or equal to the value of the macro
22306 WEOF. If the argument has any other value, the behavior is undefined.

22307 RETURN VALUE
22308 The iswupper() function shall return non-zero if wc is an uppercase letter wide-character code;
22309 otherwise, it shall return 0.

22310 ERRORS
22311 No errors are defined.

22312 EXAMPLES
22313 None.

22314 APPLICATION USAGE
22315 To ensure applications portability, especially across natural languages, only this function and
22316 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22317 RATIONALE
22318 None.

22319 FUTURE DIRECTIONS
22320 None.

22321 SEE ALSO
22322 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
22323 iswpunct(), iswspace(), iswxdigit (), setlocale (), the Base Definitions volume of |
22324 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the Base Definitions volume of |
22325 IEEE Std. 1003.1-200x, Chapter 7, Locale |

22326 CHANGE HISTORY
22327 First released in Issue 4.

22328 Issue 5
22329 The following change has been made in this issue for alignment with
22330 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22331 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22332 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

1186 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces iswupper()

22333 Issue 6
22334 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1187

iswxdigit() System Interfaces

22335 NAME
22336 iswxdigit — test for a hexadecimal digit wide-character code

22337 SYNOPSIS
22338 #include <wctype.h>

22339 int iswxdigit(wint_t wc);

22340 DESCRIPTION
22341 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22342 conflict between the requirements described here and the ISO C standard is unintentional. This
22343 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22344 The iswxdigit () function shall test whether wc is a wide-character code representing a character
22345 of class xdigit in the program’s current locale; see the Base Definitions volume of |
22346 IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22347 In all cases wc is a wint_t, the value of which the application shall ensure is a wide-character
22348 code corresponding to a valid character in the current locale, or equal to the value of the macro
22349 WEOF. If the argument has any other value, the behavior is undefined.

22350 RETURN VALUE
22351 The iswxdigit () function shall return non-zero if wc is a hexadecimal digit wide-character code;
22352 otherwise, it shall return 0.

22353 ERRORS
22354 No errors are defined.

22355 EXAMPLES
22356 None.

22357 APPLICATION USAGE
22358 To ensure applications portability, especially across natural languages, only this function and
22359 those listed in the SEE ALSO section should be used for classification of wide-character codes.

22360 RATIONALE
22361 None.

22362 FUTURE DIRECTIONS
22363 None.

22364 SEE ALSO
22365 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswdigit (), iswgraph(), iswlower(), iswprint(),
22366 iswpunct(), iswspace(), iswupper(), setlocale (), the Base Definitions volume of |
22367 IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h> |

22368 CHANGE HISTORY
22369 First released in Issue 4.

22370 Issue 5
22371 The following change has been made in this issue for alignment with
22372 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

22373 • The SYNOPSIS has been changed to indicate that this function and associated data types are
22374 now made visible by inclusion of the <wctype.h> header rather than <wchar.h>.

22375 Issue 6
22376 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1188 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces isxdigit()

22377 NAME
22378 isxdigit — test for a hexadecimal digit

22379 SYNOPSIS
22380 #include <ctype.h>

22381 int isxdigit(int c);

22382 DESCRIPTION
22383 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22384 conflict between the requirements described here and the ISO C standard is unintentional. This
22385 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22386 The isxdigit () function shall test whether c is a character of class xdigit in the program’s current |
22387 locale; see the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale. |

22388 In all cases c is an int, the value of which the application shall ensure is a character representable
22389 as an unsigned char or equal to the value of the macro EOF. If the argument has any other value,
22390 the behavior is undefined.

22391 RETURN VALUE
22392 The isxdigit () function shall return non-zero if c is a hexadecimal digit; otherwise, it shall return
22393 0.

22394 ERRORS
22395 No errors are defined.

22396 EXAMPLES
22397 None.

22398 APPLICATION USAGE
22399 To ensure applications portability, especially across natural languages, only this function and
22400 those listed in the SEE ALSO section should be used for character classification.

22401 RATIONALE
22402 None.

22403 FUTURE DIRECTIONS
22404 None.

22405 SEE ALSO
22406 isalnum(), isalpha (), iscntrl(), isdigit (), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(), |
22407 the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h> |

22408 CHANGE HISTORY
22409 First released in Issue 1. Derived from Issue 1 of the SVID. |

22410 Issue 4
22411 The text of the DESCRIPTION is revised, although there are no functional differences between
22412 this issue and Issue 3.

22413 Issue 6
22414 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1189

j0() System Interfaces

22415 NAME
22416 j0, j1, jn — Bessel functions of the first kind

22417 SYNOPSIS
22418 XSI #include <math.h>

22419 double j0(double x);
22420 double j1(double x);
22421 double jn(int n, double x);
22422

22423 DESCRIPTION
22424 The j0(), j1(), and jn() functions shall compute Bessel functions of x of the first kind of orders 0,
22425 1, and n respectively.

22426 An application wishing to check for error situations should set errno to 0 before calling j0(), j1(),
22427 or jn(). If errno is non-zero on return, or the return value is NaN, an error has occurred.

22428 RETURN VALUE
22429 Upon successful completion, j0(), j1(), and jn() shall return the relevant Bessel value of x of the
22430 first kind.

22431 If the x argument is too large in magnitude, 0 shall be returned and errno may be set to
22432 [ERANGE]. |

22433 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

22434 If the correct result would cause underflow, 0 shall be returned and errno may be set to
22435 [ERANGE].

22436 ERRORS
22437 The j0(), j1(), and jn() functions may fail if:

22438 [EDOM] The value of x is NaN. |

22439 [ERANGE] The value of x was too large in magnitude, or underflow occurred. |

22440 No other errors shall occur.

22441 EXAMPLES
22442 None.

22443 APPLICATION USAGE
22444 None.

22445 RATIONALE
22446 None.

22447 FUTURE DIRECTIONS
22448 None.

22449 SEE ALSO
22450 isnan(), y0(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

22451 CHANGE HISTORY
22452 First released in Issue 1. Derived from Issue 1 of the SVID. |

22453 Issue 4
22454 References to matherr() are removed.

22455 The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
22456 handling in the mathematics functions.

1190 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces j0()

22457 Issue 5
22458 The DESCRIPTION is updated to indicate how an application should check for an error. This
22459 text was previously published in the APPLICATION USAGE section.

System Interfaces, Issue 6 1191

jrand48() System Interfaces

22460 NAME
22461 jrand48 — generate a uniformly distributed pseudo-random long signed integer

22462 SYNOPSIS
22463 XSI #include <stdlib.h>

22464 long jrand48(unsigned short xsubi [3]); |
22465 |

22466 DESCRIPTION
22467 Refer to drand48().

1192 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces kill()

22468 NAME
22469 kill — send a signal to a process or a group of processes

22470 SYNOPSIS
22471 #include <signal.h>

22472 int kill(pid_t pid , int sig);

22473 DESCRIPTION
22474 The kill () function shall send a signal to a process or a group of processes specified by pid . The
22475 signal to be sent is specified by sig and is either one from the list given in <signal.h> or 0. If sig is
22476 0 (the null signal), error checking is performed but no signal is actually sent. The null signal can
22477 be used to check the validity of pid .

22478 For a process to have permission to send a signal to a process designated by pid , unless the
22479 sending process has appropriate privileges, the application shall ensure that the real or effective
22480 user ID of the sending process matchs the real or saved set-user-ID of the receiving process.

22481 If pid is greater than 0, sig shall be sent to the process whose process ID is equal to pid .

22482 If pid is 0, sig shall be sent to all processes (excluding an unspecified set of system processes)
22483 whose process group ID is equal to the process group ID of the sender, and for which the
22484 process has permission to send a signal.

22485 If pid is −1, sig shall be sent to all processes (excluding an unspecified set of system processes) for |
22486 which the process has permission to send that signal. |

22487 If pid is negative, but not −1, sig shall be sent to all processes (excluding an unspecified set of
22488 system processes) whose process group ID is equal to the absolute value of pid , and for which
22489 the process has permission to send a signal.

22490 If the value of pid causes sig to be generated for the sending process, and if sig is not blocked for
22491 the calling thread and if no other thread has sig unblocked or is waiting in a sigwait () function
22492 for sig , either sig or at least one pending unblocked signal shall be delivered to the sending
22493 thread before kill () returns.

22494 The user ID tests described above shall not be applied when sending SIGCONT to a process that
22495 is a member of the same session as the sending process.

22496 An implementation that provides extended security controls may impose further |
22497 implementation-defined restrictions on the sending of signals, including the null signal. In |
22498 particular, the system may deny the existence of some or all of the processes specified by pid .

22499 The kill () function is successful if the process has permission to send sig to any of the processes
22500 specified by pid . If kill () fails, no signal shall be sent.

22501 RETURN VALUE
22502 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
22503 indicate the error.

22504 ERRORS
22505 The kill () function shall fail if:

22506 [EINVAL] The value of the sig argument is an invalid or unsupported signal number. |

22507 [EPERM] The process does not have permission to send the signal to any receiving |
22508 process.

22509 [ESRCH] No process or process group can be found corresponding to that specified by |
22510 pid .

System Interfaces, Issue 6 1193

kill() System Interfaces

22511 EXAMPLES
22512 None.

22513 APPLICATION USAGE
22514 None.

22515 RATIONALE
22516 The semantics for permission checking for kill () differed between System V and most other
22517 implementations, such as Version 7 or 4.3 BSD. The semantics chosen for this volume of
22518 IEEE Std. 1003.1-200x agree with System V. Specifically, a set-user-ID process cannot protect
22519 itself against signals (or at least not against SIGKILL) unless it changes its real user ID. This
22520 choice allows the user who starts an application to send it signals even if it changes its effective
22521 user ID. The other semantics give more power to an application that wants to protect itself from
22522 the user who ran it.

22523 Some implementations provide semantic extensions to the kill () function when the absolute
22524 value of pid is greater than some maximum, or otherwise special, value. Negative values are a
22525 flag to kill (). Since most implementations return [ESRCH] in this case, this behavior is not |
22526 included in this volume of IEEE Std. 1003.1-200x, although a conforming implementation could
22527 provide such an extension.

22528 The implementation-defined processes to which a signal cannot be sent may include the |
22529 scheduler or init.

22530 There was initially strong sentiment to specify that, if pid specifies that a signal be sent to the
22531 calling process and that signal is not blocked, that signal would be delivered before kill ()
22532 returns. This would permit a process to call kill () and be guaranteed that the call never return.
22533 However, historical implementations that provide only the signal() function make only the
22534 weaker guarantee in this volume of IEEE Std. 1003.1-200x, because they only deliver one signal
22535 each time a process enters the kernel. Modifications to such implementations to support the
22536 sigaction () function generally require entry to the kernel following return from a signal-catching
22537 function, in order to restore the signal mask. Such modifications have the effect of satisfying the
22538 stronger requirement, at least when sigaction () is used, but not necessarily when signal() is used.
22539 The developers of this volume of IEEE Std. 1003.1-200x considered making the stronger
22540 requirement except when signal() is used, but felt this would be unnecessarily complex.
22541 Implementors are encouraged to meet the stronger requirement whenever possible. In practice,
22542 the weaker requirement is the same, except in the rare case when two signals arrive during a
22543 very short window. This reasoning also applies to a similar requirement for sigprocmask ().

22544 In 4.2 BSD, the SIGCONT signal can be sent to any descendant process regardless of user-ID
22545 security checks. This allows a job control shell to continue a job even if processes in the job have
22546 altered their user IDs (as in the su command). In keeping with the addition of the concept of
22547 sessions, similar functionality is provided by allowing the SIGCONT signal to be sent to any
22548 process in the same session regardless of user ID security checks. This is less restrictive than BSD
22549 in the sense that ancestor processes (in the same session) can now be the recipient. It is more
22550 restrictive than BSD in the sense that descendant processes that form new sessions are now
22551 subject to the user ID checks. A similar relaxation of security is not necessary for the other job
22552 control signals since those signals are typically sent by the terminal driver in recognition of
22553 special characters being typed; the terminal driver bypasses all security checks.

22554 In secure implementations, a process may be restricted from sending a signal to a process having
22555 a different security label. In order to prevent the existence or nonexistence of a process from
22556 being used as a covert channel, such processes should appear nonexistent to the sender; that is,
22557 [ESRCH] should be returned, rather than [EPERM], if pid refers only to such processes. |

1194 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces kill()

22558 Existing implementations vary on the result of a kill () with pid indicating an inactive process (a
22559 terminated process that has not been waited for by its parent). Some indicate success on such a
22560 call (subject to permission checking), while others give an error of [ESRCH]. Since the definition
22561 of process lifetime in this volume of IEEE Std. 1003.1-200x covers inactive processes, the
22562 [ESRCH] error as described is inappropriate in this case. In particular, this means that an
22563 application cannot have a parent process check for termination of a particular child with kill ().
22564 (Usually this is done with the null signal; this can be done reliably with waitpid ().)

22565 There is some belief that the name kill () is misleading, since the function is not always intended
22566 to cause process termination. However, the name is common to all historical implementations,
22567 and any change would be in conflict with the goal of minimal changes to existing application
22568 code.

22569 FUTURE DIRECTIONS
22570 None.

22571 SEE ALSO
22572 getpid(), raise(), setsid(), sigaction (), sigqueue(), the Base Definitions volume of |
22573 IEEE Std. 1003.1-200x, <signal.h>, <sys/types.h> |

22574 CHANGE HISTORY
22575 First released in Issue 1. Derived from Issue 1 of the SVID. |

22576 Issue 4
22577 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
22578 XSI-conformant systems.

22579 The DESCRIPTION is clarified in various places.

22580 The following change is incorporated for alignment with the FIPS requirements:

22581 • In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-user-
22582 ID of the calling process is checked in place of its effective user ID. This functionality is
22583 marked as an extension.

22584 Issue 5
22585 The DESCRIPTION is updated for alignment with POSIX Threads Extension.

22586 Issue 6
22587 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

22588 The following new requirements on POSIX implementations derive from alignment with the
22589 Single UNIX Specification:

22590 • In the DESCRIPTION, the second paragraph is reworded to indicate that the saved set-user-
22591 ID of the calling process is checked in place of its effective user ID. This is a FIPS
22592 requirement.

22593 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
22594 required for conforming implementations of previous POSIX specifications, it was not
22595 required for UNIX applications.

22596 • The behavior when pid is −1 is now specified. It was previously explicitly unspecified in the
22597 POSIX.1-1988 standard.

22598 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1195

killpg() System Interfaces

22599 NAME
22600 killpg — send a signal to a process group

22601 SYNOPSIS
22602 XSI #include <signal.h>

22603 int killpg(pid_t pgrp , int sig);
22604

22605 DESCRIPTION
22606 The killpg () function shall send the signal specified by sig to the process group specified by pgrp .

22607 If pgrp is greater than 1, killpg(pgrp, sig) shall be equivalent to kill(−pgrp, sig). If pgrp is less than or
22608 equal to 1, the behavior of killpg () is undefined.

22609 RETURN VALUE
22610 Refer to kill ().

22611 ERRORS
22612 Refer to kill ().

22613 EXAMPLES
22614 None.

22615 APPLICATION USAGE
22616 None.

22617 RATIONALE
22618 None.

22619 FUTURE DIRECTIONS
22620 None.

22621 SEE ALSO
22622 getpgid(), getpid(), kill (), raise(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
22623 <signal.h>

CHANGE22624 HISTORY
22625 First released in Issue 4, Version 2.

22626 Issue 5
22627 Moved from X/OPEN UNIX extension to BASE.

1196 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces l64a()

22628 NAME
22629 l64a — convert a 32-bit integer to a radix-64 ASCII string

22630 SYNOPSIS
22631 XSI #include <stdlib.h>

22632 char *l64a(long value);
22633

22634 DESCRIPTION
22635 Refer to a64l ().

System Interfaces, Issue 6 1197

labs() System Interfaces

22636 NAME
22637 labs, llabs — return a long integer absolute value |

22638 SYNOPSIS
22639 #include <stdlib.h>

22640 long labs(long i); |
22641 long long llabs(long long i); |

22642 DESCRIPTION |
22643 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22644 conflict between the requirements described here and the ISO C standard is unintentional. This
22645 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22646 These functions shall compute the absolute value of the long integer operand, i . If the result |
22647 cannot be represented, the behavior is undefined.

22648 RETURN VALUE
22649 These functions shall return the absolute value of the long integer operand. |

22650 ERRORS
22651 No errors are defined.

22652 EXAMPLES
22653 None.

22654 APPLICATION USAGE
22655 None.

22656 RATIONALE
22657 None.

22658 FUTURE DIRECTIONS
22659 None.

22660 SEE ALSO
22661 abs(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

22662 CHANGE HISTORY
22663 First released in Issue 4. Derived from the ISO C standard. |

22664 Issue 6 |
22665 The llabs() function is added for alignment with the ISO/IEC 9899: 1999 standard. |

1198 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lchown()

22666 NAME
22667 lchown — change the owner and group of a symbolic link

22668 SYNOPSIS
22669 XSI #include <unistd.h>

22670 int lchown(const char * path , uid_t owner , gid_t group);
22671

22672 DESCRIPTION
22673 The lchown() function shall have the same effect as chown() except in the case where the named
22674 file is a symbolic link. In this case, lchown() shall change the ownership of the symbolic link file
22675 itself, while chown() changes the ownership of the file or directory to which the symbolic link
22676 refers.

22677 RETURN VALUE
22678 Upon successful completion, lchown() shall return 0. Otherwise, it shall return −1 and set errno to
22679 indicate an error.

22680 ERRORS
22681 The lchown() function shall fail if:

22682 [EACCES] Search permission is denied on a component of the path prefix of path . |

22683 [EINVAL] The owner or group ID is not a value supported by the implementation. |

22684 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
22685 argument. |

22686 [ENAMETOOLONG] |
22687 The length of a path name exceeds {PATH_MAX} or a path name component |
22688 is longer than {NAME_MAX}. |

22689 [ENOENT] A component of path does not name an existing file or path is an empty string. |

22690 [ENOTDIR] A component of the path prefix of path is not a directory. |

22691 [EOPNOTSUPP] The path argument names a symbolic link and the implementation does not |
22692 support setting the owner or group of a symbolic link. |

22693 [EPERM] The effective user ID does not match the owner of the file and the process |
22694 does not have appropriate privileges.

22695 [EROFS] The file resides on a read-only file system. |

22696 The lchown() function may fail if:

22697 [EIO] An I/O error occurred while reading or writing to the file system. |

22698 [EINTR] A signal was caught during execution of the function. |

22699 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
22700 resolution of the path argument. |

22701 [ENAMETOOLONG] |
22702 Path name resolution of a symbolic link produced an intermediate result
22703 whose length exceeds {PATH_MAX}.

System Interfaces, Issue 6 1199

lchown() System Interfaces

22704 EXAMPLES

22705 Changing the Current Owner of a File

22706 The following example shows how to change the ownership of the symbolic link named
22707 /modules/pass1 to the user ID associated with ‘‘jones’’ and the group ID associated with ‘‘cnd’’.

22708 The numeric value for the user ID is obtained by using the getpwnam() function. The numeric
22709 value for the group ID is obtained by using the getgrnam() function.

22710 #include <sys/types.h>
22711 #include <unistd.h>
22712 #include <pwd.h>
22713 #include <grp.h>

22714 struct passwd *pwd;
22715 struct group *grp;
22716 char *path = "/modules/pass1";
22717 ...
22718 pwd = getpwnam("jones");
22719 grp = getgrnam("cnd");
22720 lchown(path, pwd->pw_uid, grp->gr_gid);

22721 APPLICATION USAGE
22722 None.

22723 RATIONALE
22724 None.

22725 FUTURE DIRECTIONS
22726 None.

22727 SEE ALSO
22728 chown(), symlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

22729 CHANGE HISTORY
22730 First released in Issue 4, Version 2.

22731 Issue 5
22732 Moved from X/OPEN UNIX extension to BASE. |

22733 Issue 6 |
22734 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
22735 [ELOOP] error condition is added. |

1200 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lcong48()

22736 NAME
22737 lcong48 — seed a uniformly distributed pseudo-random signed long integer generator

22738 SYNOPSIS
22739 XSI #include <stdlib.h>

22740 void lcong48(unsigned short param [7]); |
22741 |

22742 DESCRIPTION
22743 Refer to drand48().

System Interfaces, Issue 6 1201

ldexp() System Interfaces

22744 NAME
22745 ldexp, ldexpf, ldexpl — load exponent of a floating point number |

22746 SYNOPSIS
22747 #include <math.h>

22748 double ldexp(double x, int exp);
22749 float ldexpf(float x, int exp); |
22750 long double ldexpl(long double x, int exp); |

22751 DESCRIPTION |
22752 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22753 conflict between the requirements described here and the ISO C standard is unintentional. This
22754 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22755 These functions shall compute the quantity x * 2exp. |

22756 An application wishing to check for error situations should set errno to 0 before calling ldexp().
22757 If errno is non-zero on return, or the return value is NaN, an error has occurred.

22758 RETURN VALUE
22759 Upon successful completion, these functions shall return x multiplied by 2, raised to the power |
22760 exp.

22761 XSI If the value of x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

22762 If ldexp() would cause overflow, ±HUGE_VAL shall be returned (according to the sign of x), and
22763 errno shall be set to [ERANGE]. |

22764 If ldexp() would cause underflow, 0 shall be returned and errno may be set to [ERANGE].

22765 ERRORS
22766 These functions shall fail if: |

22767 [ERANGE] The value to be returned would have caused overflow. |

22768 These functions may fail if: |

22769 XSI [EDOM] The argument x is NaN. |

22770 [ERANGE] The value to be returned would have caused underflow. |

22771 No other errors shall occur.

22772 EXAMPLES
22773 None.

22774 APPLICATION USAGE
22775 None.

22776 RATIONALE
22777 None.

22778 FUTURE DIRECTIONS
22779 None.

22780 SEE ALSO
22781 frexp(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

1202 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ldexp()

22782 CHANGE HISTORY
22783 First released in Issue 1. Derived from Issue 1 of the SVID. |

22784 Issue 4
22785 References to matherr() are removed.

22786 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
22787 ISO C standard and to rationalize error handling in the mathematics functions.

22788 The return value specified for [EDOM] is marked as an extension.

22789 Issue 5
22790 The DESCRIPTION is updated to indicate how an application should check for an error. This
22791 text was previously published in the APPLICATION USAGE section. |

22792 Issue 6 |
22793 The ldexpf() and ldexpl() functions are added for alignment with the ISO/IEC 9899: 1999 |
22794 standard. |

System Interfaces, Issue 6 1203

ldiv() System Interfaces

22795 NAME
22796 ldiv, lldiv — compute quotient and remainder of a long division |

22797 SYNOPSIS
22798 #include <stdlib.h>

22799 ldiv_t ldiv(long numer , long denom); |
22800 lldiv_t lldiv(long long numer , long long denom); |

22801 DESCRIPTION |
22802 CX The functionality described on this reference page is aligned with the ISO C standard. Any
22803 conflict between the requirements described here and the ISO C standard is unintentional. This
22804 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

22805 These functions shall compute the quotient and remainder of the division of the numerator |
22806 numer by the denominator denom. If the division is inexact, the resulting quotient is the long |
22807 integer of lesser magnitude that is the nearest to the algebraic quotient. If the result cannot be |
22808 represented, the behavior is undefined; otherwise, quot * denom+rem shall equal numer. |

22809 RETURN VALUE
22810 These functions shall return a structure of type ldiv_t, comprising both the quotient and the |
22811 remainder. The structure includes the following members, in any order:

22812 long quot; /* Quotient */
22813 long rem; /* Remainder */

22814 ERRORS
22815 No errors are defined.

22816 EXAMPLES
22817 None.

22818 APPLICATION USAGE
22819 None.

22820 RATIONALE
22821 None.

22822 FUTURE DIRECTIONS
22823 None.

22824 SEE ALSO
22825 div(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

22826 CHANGE HISTORY
22827 First released in Issue 4. Derived from the ISO C standard. |

22828 Issue 6 |
22829 The lldiv () function is added for alignment with the ISO/IEC 9899: 1999 standard. |

1204 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lfind()

22830 NAME
22831 lfind — find entry in a linear search table

22832 SYNOPSIS
22833 XSI #include <search.h>

22834 void *lfind(const void * key , const void * base , size_t * nelp ,
22835 size_t width , int (* compar)(const void *, const void *));
22836

22837 DESCRIPTION
22838 Refer to lsearch().

System Interfaces, Issue 6 1205

lgamma() System Interfaces

22839 NAME
22840 lgamma, lgammaf, lgammal — log gamma function |

22841 SYNOPSIS
22842 XSI #include <math.h>

22843 double lgamma(double x);
22844 float lgammaf(float x); |
22845 long double lgammal(long double x); |
22846 extern int signgam; |
22847

22848 DESCRIPTION

22849 These functions function shall compute loge LΓ(x) L where Γ(x) is defined as
22850 0

∫
∞

e−tt x−1dt. The sign of |

22851 Γ(x) is returned in the external integer signgam . The argument x need not be a non-positive |
22852 integer (Γ(x) is defined over the reals, except the non-positive integers).

22853 An application wishing to check for error situations should set errno to 0 before calling lgamma().
22854 If errno is non-zero on return, or the return value is NaN, an error has occurred.

22855 These functions need not be reentrant. A function that is not required to be reentrant is not |
22856 required to be thread-safe.

22857 RETURN VALUE
22858 Upon successful completion, these functions shall return the logarithmic gamma of x . |

22859 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

22860 If x is a non-positive integer, either HUGE_VAL or NaN shall be returned and errno may be set to |
22861 [ERANGE]. |

22862 If the correct value would cause overflow, lgamma() shall return HUGE_VAL and may set errno
22863 to [ERANGE]. |

22864 If the correct value would cause underflow, lgamma() shall return 0 and may set errno to
22865 [ERANGE].

22866 ERRORS
22867 These functions may fail if: |

22868 [EDOM] The value of x is NaN. |

22869 [ERANGE] The value of x is a non-positive integer, or the value to be returned would |
22870 have caused overflow or underflow. |

22871 No other errors shall occur.

22872 EXAMPLES
22873 None.

22874 APPLICATION USAGE
22875 None.

22876 RATIONALE
22877 None.

22878 FUTURE DIRECTIONS
22879 None.

1206 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lgamma()

22880 SEE ALSO
22881 exp(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

22882 CHANGE HISTORY
22883 First released in Issue 3.

22884 Issue 4
22885 This page no longer points to gamma(), but contains all information relating to lgamma().

22886 The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
22887 handling in the mathematics functions.

22888 Issue 5
22889 The DESCRIPTION is updated to indicate how an application should check for an error. This
22890 text was previously published in the APPLICATION USAGE section.

22891 A note indicating that this function need not be reentrant is added to the DESCRIPTION. |

22892 Issue 6 |
22893 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

22894 • The lgammaf () and lgammal () functions are added. |

22895 • The RETURN VALUE and ERRORS sections are updated so that when x is a non-positive |
22896 integer, errno may be set to [ERANGE]; previously, this was [EDOM]. |

|

System Interfaces, Issue 6 1207

link() System Interfaces

22897 NAME
22898 link — link to a file

22899 SYNOPSIS
22900 #include <unistd.h>

22901 int link(const char * path1 , const char * path2);

22902 DESCRIPTION
22903 The link () function shall create a new link (directory entry) for the existing file, path1 .

22904 The path1 argument points to a path name naming an existing file. The path2 argument points to
22905 a path name naming the new directory entry to be created. The link () function shall atomically
22906 create a new link for the existing file and the link count of the file shall be incremented by one.

22907 If path1 names a directory, link () shall fail unless the process has appropriate privileges and the
22908 implementation supports using link () on directories.

22909 Upon successful completion, link () shall mark for update the st_ctime field of the file. Also, the
22910 st_ctime and st_mtime fields of the directory that contains the new entry shall be marked for
22911 update.

22912 If link () fails, no link shall be created and the link count of the file shall remain unchanged.

22913 The implementation may require that the calling process has permission to access the existing
22914 file.

22915 RETURN VALUE
22916 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
22917 indicate the error.

22918 ERRORS
22919 The link () function shall fail if:

22920 [EACCES] A component of either path prefix denies search permission, or the requested |
22921 link requires writing in a directory that denies write permission, or the calling
22922 process does not have permission to access the existing file and this is
22923 required by the implementation.

22924 [EEXIST] The path2 argument resolves to an existing file or refers to a symbolic link. |

22925 [ELOOP] A loop exists in symbolic links encountered during resolution of the path1 or |
22926 path2 argument. |

22927 [EMLINK] The number of links to the file named by path1 would exceed {LINK_MAX}. |

22928 [ENAMETOOLONG] |
22929 The length of the path1 or path2 argument exceeds {PATH_MAX} or a path |
22930 name component is longer than {NAME_MAX}. |

22931 [ENOENT] A component of either path prefix does not exist; the file named by path1 does |
22932 not exist; or path1 or path2 points to an empty string.

22933 [ENOSPC] The directory to contain the link cannot be extended. |

22934 [ENOTDIR] A component of either path prefix is not a directory. |

22935 [EPERM] The file named by path1 is a directory and either the calling process does not |
22936 have appropriate privileges or the implementation prohibits using link () on
22937 directories.

1208 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces link()

22938 [EROFS] The requested link requires writing in a directory on a read-only file system. |

22939 [EXDEV] The link named by path2 and the file named by path1 are on different file |
22940 XSR systems and the implementation does not support links between file systems,
22941 or path1 refers to a named STREAM.

22942 The link () function may fail if:

22943 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
22944 resolution of the path1 or path2 argument. |

22945 [ENAMETOOLONG] |
22946 As a result of encountering a symbolic link in resolution of the path1 or path2
22947 argument, the length of the substituted path name string exceeded
22948 {PATH_MAX}. |

22949 EXAMPLES

22950 Creating a Link to a File

22951 The following example shows how to create a link to a file named /home/cnd/mod1 by creating a
22952 new directory entry named /modules/pass1.

22953 #include <unistd.h>

22954 char *path1 = "/home/cnd/mod1";
22955 char *path2 = "/modules/pass1";
22956 int status;
22957 ...
22958 status = link (path1, path2);

22959 Creating a Link to a File Within a Program

22960 In the following program example, the link () function is used to link the /etc/passwd file
22961 (defined as PASSWDFILE) to a file named /etc/opasswd (defined as SAVEFILE), which is used
22962 to save the current password file. Then, after removing the current password file (defined as
22963 PASSWDFILE), the new password file is saved as the current password file using the link ()
22964 function again.

22965 #include <unistd.h>

22966 #define LOCKFILE "/etc/ptmp"
22967 #define PASSWDFILE "/etc/passwd"
22968 #define SAVEFILE "/etc/opasswd"
22969 ...
22970 /* Save current password file */
22971 link (PASSWDFILE, SAVEFILE);

22972 /* Remove current password file. */
22973 unlink (PASSWDFILE);

22974 /* Save new password file as current password file. */
22975 link (LOCKFILE,PASSWDFILE);

22976 APPLICATION USAGE
22977 Some implementations do allow links between file systems.

System Interfaces, Issue 6 1209

link() System Interfaces

22978 RATIONALE
22979 Linking to a directory is restricted to the superuser in most historical implementations because
22980 this capability may produce loops in the file hierarchy or otherwise corrupt the file system. This
22981 volume of IEEE Std. 1003.1-200x continues that philosophy by prohibiting link () and unlink()
22982 from doing this. Other functions could do it if the implementor designed such an extension.

22983 Some historical implementations allow linking of files on different file systems. Wording was
22984 added to explicitly allow this optional behavior.

22985 The exception for cross-file system links is intended to apply only to links that are
22986 programmatically indistinguishable from ‘‘hard’’ links.

22987 FUTURE DIRECTIONS
22988 None.

22989 SEE ALSO
22990 symlink(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

22991 CHANGE HISTORY
22992 First released in Issue 1. Derived from Issue 1 of the SVID. |

22993 Issue 4
22994 The <unistd.h> header is added to the SYNOPSIS section.

22995 The following change is incorporated for alignment with the ISO POSIX-1 standard:

22996 • The type of arguments path1 and path2 are changed from char* to const char*.

22997 The following change is incorporated for alignment with the FIPS requirements:

22998 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
22999 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
23000 an extension.

23001 Issue 4, Version 2
23002 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

23003 • The [ELOOP] error is returned if too many symbolic links are encountered during path name
23004 resolution.

23005 • The [EXDEV] error may also be returned if path1 refers to a named STREAM.

23006 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
23007 intermediate result of path name resolution of a symbolic link.

23008 Issue 6
23009 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

23010 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
23011 This is since behavior may vary from one file system to another.

23012 The following new requirements on POSIX implementations derive from alignment with the
23013 Single UNIX Specification:

23014 • The [ELOOP] mandatory error condition is added.

23015 • A second [ENAMETOOLONG] is added as an optional error condition.

23016 The following changes were made to align with the IEEE P1003.1a draft standard:

23017 • An explanation is added of action when path2 refers to a symbolic link.

1210 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces link()

23018 • The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 1211

lio_listio() System Interfaces

23019 NAME
23020 lio_listio — list directed I/O (REALTIME)

23021 SYNOPSIS
23022 AIO #include <aio.h>

23023 int lio_listio(int mode, struct aiocb *restrict const list [restrict], |
23024 int nent , struct sigevent *restrict sig); |
23025 |

23026 DESCRIPTION
23027 The lio_listio () function allows the calling process to initiate a list of I/O requests with a single
23028 function call.

23029 The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
23030 determines whether the function returns when the I/O operations have been completed, or as
23031 soon as the operations have been queued. If the mode argument is LIO_WAIT, the function waits
23032 until all I/O is complete and the sig argument is ignored.

23033 If the mode argument is LIO_NOWAIT, the function shall return immediately, and asynchronous
23034 notification shall occur, according to the sig argument, when all the I/O operations complete. If
23035 sig is NULL, then no asynchronous notification shall occur. If sig is not NULL, asynchronous
23036 notification occurs as specified in Section 2.4.1 (on page 528) when all the requests in list have
23037 completed.

23038 The I/O requests enumerated by list are submitted in an unspecified order.

23039 The list argument is an array of pointers to aiocb structures. The array contains nent elements.
23040 The array may contain NULL elements, which shall be ignored.

23041 The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
23042 supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
23043 <aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
23044 element is equal to LIO_READ, then an I/O operation is submitted as if by a call to aio_read ()
23045 with the aiocbp equal to the address of the aiocb structure. If the aio_lio_opcode element is equal
23046 to LIO_WRITE, then an I/O operation is submitted as if by a call to aio_write () with the aiocbp
23047 equal to the address of the aiocb structure.

23048 The aio_fildes member specifies the file descriptor on which the operation is to be performed.

23049 The aio_buf member specifies the address of the buffer to or from which the data is transferred.

23050 The aio_nbytes member specifies the number of bytes of data to be transferred.

23051 The members of the aiocb structure further describe the I/O operation to be performed, in a
23052 manner identical to that of the corresponding aiocb structure when used by the aio_read () and
23053 aio_write () functions.

23054 The nent argument specifies how many elements are members of the list; that is, the length of the
23055 array.

23056 The behavior of this function is altered according to the definitions of synchronized I/O data
23057 integrity completion and synchronized I/O file integrity completion if synchronized I/O is
23058 enabled on the file associated with aio_fildes .

23059 For regular files, no data transfer shall occur past the offset maximum established in the open |
23060 file description associated with aiocbp->aio_fildes. |

1212 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lio_listio()

23061 RETURN VALUE
23062 If the mode argument has the value LIO_NOWAIT, the lio_listio () function shall return the value
23063 zero if the I/O operations are successfully queued; otherwise, the function shall return the value
23064 −1 and set errno to indicate the error.

23065 If the mode argument has the value LIO_WAIT, the lio_listio () function shall return the value
23066 zero when all the indicated I/O has completed successfully. Otherwise, lio_listio () shall return a
23067 value of −1 and set errno to indicate the error.

23068 In either case, the return value only indicates the success or failure of the lio_listio () call itself,
23069 not the status of the individual I/O requests. In some cases one or more of the I/O requests
23070 contained in the list may fail. Failure of an individual request does not prevent completion of
23071 any other individual request. To determine the outcome of each I/O request, the application
23072 shall examine the error status associated with each aiocb control block. The error statuses so
23073 returned are identical to those returned as the result of an aio_read () or aio_write () function.

23074 ERRORS
23075 The lio_listio () function shall fail if:

23076 [EAGAIN] The resources necessary to queue all the I/O requests were not available. The |
23077 application may check the error status for each aiocb to determine the
23078 individual request(s) that failed.

23079 [EAGAIN] The number of entries indicated by nent would cause the system-wide limit
23080 {AIO_MAX} to be exceeded.

23081 [EINVAL] The mode argument is not a proper value, or the value of nent was greater than |
23082 {AIO_LISTIO_MAX}.

23083 [EINTR] A signal was delivered while waiting for all I/O requests to complete during |
23084 an LIO_WAIT operation. Note that, since each I/O operation invoked by
23085 lio_listio () may possibly provoke a signal when it completes, this error return
23086 may be caused by the completion of one (or more) of the very I/O operations
23087 being awaited. Outstanding I/O requests are not canceled, and the application
23088 shall examine each list element to determine whether the request was
23089 initiated, canceled, or completed.

23090 [EIO] One or more of the individual I/O operations failed. The application may |
23091 check the error status for each aiocb structure to determine the individual
23092 request(s) that failed.

23093 In addition to the errors returned by the lio_listio () function, if the lio_listio () function succeeds
23094 or fails with errors of [EAGAIN], [EINTR], or [EIO], then some of the I/O specified by the list
23095 may have been initiated. If the lio_listio () function fails with an error code other than [EAGAIN],
23096 [EINTR], or [EIO], no operations from the list shall have been initiated. The I/O operation
23097 indicated by each list element can encounter errors specific to the individual read or write
23098 function being performed. In this event, the error status for each aiocb control block contains the
23099 associated error code. The error codes that can be set are the same as would be set by a read() or
23100 write() function, with the following additional error codes possible:

23101 [EAGAIN] The requested I/O operation was not queued due to resource limitations. |

23102 [ECANCELED] The requested I/O was canceled before the I/O completed due to an explicit |
23103 aio_cancel () request. |

23104 [EFBIG] The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular file, aiocbp- |
23105 >aio_nbytes is greater than 0, and the aiocbp->aio_offset is greater than or equal |
23106 to the offset maximum in the open file description associated with aiocbp- |

System Interfaces, Issue 6 1213

lio_listio() System Interfaces

23107 >aio_fildes. |

23108 [EINPROGRESS] The requested I/O is in progress. |

23109 [EOVERFLOW] The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular file, aiocbp- |
23110 >aio_nbytes is greater than 0, and the aiocbp->aio_offset is before the end-of-file |
23111 and is greater than or equal to the offset maximum in the open file description |
23112 associated with aiocbp->aio_fildes. |

23113 EXAMPLES
23114 None.

23115 APPLICATION USAGE
23116 None.

23117 RATIONALE
23118 Although it may appear that there are inconsistencies in the specified circumstances for error
23119 codes, the [EIO] error condition applies when any circumstance relating to an individual |
23120 operation makes that operation fail. This might be due to a badly formulated request (for
23121 example, the aio_lio_opcode field is invalid, and aio_error () returns [EINVAL]) or might arise from |
23122 application behavior (for example, the file descriptor is closed before the operation is initiated,
23123 and aio_error () returns [EBADF]). |

23124 The limitation on the set of error codes returned when operations from the list shall have been
23125 initiated enables applications to know when operations have been started and whether
23126 aio_error () is valid for a specific operation.

23127 FUTURE DIRECTIONS
23128 None.

23129 SEE ALSO
23130 aio_read (), aio_write (), aio_error (), aio_return(), aio_cancel (), close(), exec, exit(), fork (), lseek(), |
23131 read(), the Base Definitions volume of IEEE Std. 1003.1-200x, <aio.h> |

23132 CHANGE HISTORY
23133 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

23134 Large File Summit extensions are added.

23135 Issue 6
23136 The [ENOSYS] error condition has been removed as stubs need not be provided if an
23137 implementation does not support the Asynchronous Input and Output option. |

23138 The lio_listio () function is marked as part of the Asynchronous Input and Output option. |

23139 The following new requirements on POSIX implementations derive from alignment with the
23140 Single UNIX Specification:

23141 • In the DESCRIPTION, text is added to indicate that for regular files no data transfer occurs
23142 past the offset maximum established in the open file description associated with aiocbp- |
23143 >aio_fildes. This change is to support large files. |

23144 • The [EBIG] and [EOVERFLOW] error conditions are defined. This change is to support large
23145 files.

23146 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

23147 The restrict keyword is added to the lio_listio () prototype for alignment with the |
23148 ISO/IEC 9899: 1999 standard. |

1214 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces listen()

23149 NAME
23150 listen — listen for socket connections and limit the queue of incoming connections

23151 SYNOPSIS
23152 #include <sys/socket.h>

23153 int listen(int socket , int backlog);

23154 DESCRIPTION
23155 The listen() function shall mark a connection-mode socket, specified by the socket argument, as
23156 accepting connections.

23157 The backlog argument provides a hint to the implementation which the implementation shall use
23158 to limit the number of outstanding connections in the socket’s listen queue. Implementations
23159 may impose a limit on backlog and silently reduce the specified value. Normally, a larger backlog
23160 argument value shall result in a larger or equal length of the listen queue. Implementations shall
23161 support values of backlog up to SOMAXCONN, defined in <sys/socket.h>.

23162 The implementation may include incomplete connections in its listen queue. The limits on the
23163 number of incomplete connections and completed connections queued may be different.

23164 The implementation may have an upper limit on the length of the listen queue—either global or
23165 per accepting socket. If backlog exceeds this limit, the length of the listen queue is set to the limit.

23166 If listen() is called with a backlog argument value that is less than 0, the function behaves as if it
23167 had been called with a backlog argument value of 0.

23168 A backlog argument of 0 may allow the socket to accept connections, in which case the length of
23169 the listen queue may be set to an implementation-defined minimum value. |

23170 The socket in use may require the process to have appropriate privileges to use the listen()
23171 function.

23172 RETURN VALUE
23173 Upon successful completions, listen() shall return 0; otherwise, −1 shall be returned and errno set
23174 to indicate the error.

23175 ERRORS
23176 The listen() function shall fail if:

23177 [EBADF] The socket argument is not a valid file descriptor.

23178 [EDESTADDRREQ]
23179 The socket is not bound to a local address, and the protocol does not support
23180 listening on an unbound socket.

23181 [EINVAL] The socket is already connected.

23182 [ENOTSOCK] The socket argument does not refer to a socket.

23183 [EOPNOTSUPP] The socket protocol does not support listen().

23184 The listen() function may fail if:

23185 [EACCES] The calling process does not have the appropriate privileges.

23186 [EINVAL] The socket has been shut down.

23187 [ENOBUFS] Insufficient resources are available in the system to complete the call.

System Interfaces, Issue 6 1215

listen() System Interfaces

23188 EXAMPLES
23189 None.

23190 APPLICATION USAGE
23191 None.

23192 RATIONALE
23193 None.

23194 FUTURE DIRECTIONS
23195 None.

23196 SEE ALSO
23197 accept(), connect(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

23198 CHANGE HISTORY
23199 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

23200 The DESCRIPTION is updated to describe the relationship of SOMAXCONN and the backlog
23201 argument.

|

1216 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces llrint()

23202 NAME |
23203 llrint, llrintf, llrintl, lrint, lrintf, lrinfl — round to nearest integer value using current rounding |
23204 direction |

23205 SYNOPSIS |
23206 #include <math.h> |

23207 long long llrint(double x); |
23208 long long llrintf(float x); |
23209 long long llrintl(long double x); |
23210 long lrint(double x); |
23211 long lrintf(float x); |
23212 long lrintl(long double x); |

23213 DESCRIPTION |
23214 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
23215 conflict between the requirements described here and the ISO C standard is unintentional. This |
23216 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

23217 These functions shall round their argument to the nearest integer value, rounding according to |
23218 the current rounding direction. |

23219 An application wishing to check for error situations should set errno to 0 before calling these |
23220 functions. If errno is non-zero on return, an error has occurred. |

23221 RETURN VALUE |
23222 Upon successful completion, these functions shall return the rounded integer value. |

23223 If the rounded value is outside the range of the return type, the numeric result is unspecified. |

23224 If the magnitude of x is too large, the numeric result is unspecified and errno may be set to |
23225 [ERANGE]. |

23226 ERRORS |
23227 These functions may fail if: |

23228 [ERANGE] The magnitude of x is too large. |

23229 EXAMPLES |
23230 None. |

23231 APPLICATION USAGE |
23232 None. |

23233 RATIONALE |
23234 None. |

23235 FUTURE DIRECTIONS |
23236 None. |

23237 SEE ALSO |
23238 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23239 CHANGE HISTORY |
23240 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1217

llround() System Interfaces

23241 NAME |
23242 llround, llroundf, llroundl, lround, lroundf, lroundl — round to nearest integer value |

23243 SYNOPSIS |
23244 #include <math.h> |

23245 long long llround(double x); |
23246 long long llroundf(float x); |
23247 long long llroundl(long double x); |
23248 long lround(double x); |
23249 long lroundf(float x); |
23250 long lroundl(long double x); |

23251 DESCRIPTION |
23252 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
23253 conflict between the requirements described here and the ISO C standard is unintentional. This |
23254 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

23255 These functions shall round their argument to the nearest integer value, rounding halfway cases |
23256 away from zero, regardless of the current rounding direction. |

23257 An application wishing to check for error situations should set errno to 0 before calling these |
23258 functions. If errno is non-zero on return, an error has occurred. |

23259 RETURN VALUE |
23260 Upon successful completion, these functions shall return the rounded integer value. |

23261 If the rounded value is outside the range of the return type, the numeric result is unspecified. |

23262 If the magnitude of x is too large, the numeric result is unspecified and errno may be set to |
23263 [ERANGE]. |

23264 ERRORS |
23265 These functions may fail if: |

23266 [ERANGE] The magnitude of x is too large. |

23267 EXAMPLES |
23268 None. |

23269 APPLICATION USAGE |
23270 None. |

23271 RATIONALE |
23272 None. |

23273 FUTURE DIRECTIONS |
23274 None. |

23275 SEE ALSO |
23276 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23277 CHANGE HISTORY |
23278 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1218 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces localeconv()

23279 NAME
23280 localeconv — return locale-specific information |

23281 SYNOPSIS
23282 #include <locale.h>

23283 struct lconv *localeconv(void);

23284 DESCRIPTION
23285 CX The functionality described on this reference page is aligned with the ISO C standard. Any
23286 conflict between the requirements described here and the ISO C standard is unintentional. This
23287 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

23288 The localeconv () function shall set the components of an object with the type struct lconv with
23289 the values appropriate for the formatting of numeric quantities (monetary and otherwise)
23290 according to the rules of the current locale.

23291 The members of the structure with type char* are pointers to strings, any of which (except
23292 decimal_point) can point to " " , to indicate that the value is not available in the current locale or
23293 is of zero length. The members with type char are non-negative numbers, any of which can be
23294 {CHAR_MAX} to indicate that the value is not available in the current locale.

23295 The members include the following:

23296 char *decimal_point
23297 The radix character used to format non-monetary quantities.

23298 char *thousands_sep
23299 The character used to separate groups of digits before the decimal-point character in
23300 formatted non-monetary quantities.

23301 char *grouping
23302 A string whose elements taken as one-byte integer values indicate the size of each group of
23303 digits in formatted non-monetary quantities.

23304 char *int_curr_symbol
23305 The international currency symbol applicable to the current locale. The first three
23306 characters contain the alphabetic international currency symbol in accordance with those
23307 specified in the ISO 4217: 1995 standard. The fourth character (immediately preceding the
23308 null byte) is the character used to separate the international currency symbol from the
23309 monetary quantity.

23310 char *currency_symbol
23311 The local currency symbol applicable to the current locale.

23312 char *mon_decimal_point
23313 The radix character used to format monetary quantities.

23314 char *mon_thousands_sep
23315 The separator for groups of digits before the decimal-point in formatted monetary
23316 quantities.

23317 char *mon_grouping
23318 A string whose elements taken as one-byte integer values indicate the size of each group of
23319 digits in formatted monetary quantities.

23320 char *positive_sign
23321 The string used to indicate a non-negative valued formatted monetary quantity.

System Interfaces, Issue 6 1219

localeconv() System Interfaces

23322 char *negative_sign
23323 The string used to indicate a negative valued formatted monetary quantity.

23324 char int_frac_digits
23325 The number of fractional digits (those after the decimal-point) to be displayed in an
23326 internationally formatted monetary quantity.

23327 char frac_digits
23328 The number of fractional digits (those after the decimal-point) to be displayed in a
23329 formatted monetary quantity.

23330 char p_cs_precedes
23331 Set to 1 if the currency_symbol or int_curr_symbol precedes the value for a non-negative |
23332 formatted monetary quantity. Set to 0 if the symbol succeeds the value.

23333 char p_sep_by_space
23334 Set to 0 if no space separates the currency_symbol or int_curr_symbol from the value for a |
23335 non-negative formatted monetary quantity. Set to 1 if a space separates the symbol from the
23336 XSI value; and set to 2 if a space separates the symbol and the sign string, if adjacent.

23337 char n_cs_precedes
23338 Set to 1 if the currency_symbol or int_curr_symbol precedes the value for a negative |
23339 formatted monetary quantity. Set to 0 if the symbol succeeds the value.

23340 char n_sep_by_space
23341 Set to 0 if no space separates the currency_symbol or int_curr_symbol from the value for a |
23342 negative formatted monetary quantity. Set to 1 if a space separates the symbol from the
23343 XSI value; and set to 2 if a space separates the symbol and the sign string, if adjacent.

23344 char p_sign_posn
23345 Set to a value indicating the positioning of the positive_sign for a non-negative formatted
23346 monetary quantity.

23347 char n_sign_posn
23348 Set to a value indicating the positioning of the negative_sign for a negative formatted
23349 monetary quantity. |

23350 char int_p_cs_precedes |
23351 Set to 1 or 0 if the int_currency_symbol respectively precedes or succeeds the value for a |
23352 non-negative internationally formatted monetary quantity. |

23353 char int_n_cs_precedes |
23354 Set to 1 or 0 if the int_currency_symbol respectively precedes or succeeds the value for a |
23355 negative internationally formatted monetary quantity. |

23356 char int_p_sep_by_space |
23357 Set to a value indicating the separation of the int_currency_symbol, the sign string, and the |
23358 value for a non-negative internationally formatted monetary quantity. |

23359 char int_n_sep_by_space |
23360 Set to a value indicating the separation of the int_currency_symbol, the sign string, and the |
23361 value for a negative internationally formatted monetary quantity. |

23362 char int_p_sign_posn |
23363 Set to a value indicating the positioning of the positive_sign for a non-negative |
23364 internationally formatted monetary quantity. |

23365 char int_n_sign_posn |
23366 Set to a value indicating the positioning of the negative_sign for a negative internationally |

1220 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces localeconv()

23367 formatted monetary quantity. |

23368 The elements of grouping and mon_grouping are interpreted according to the following:

23369 {CHAR_MAX} No further grouping is to be performed.

23370 0 The previous element is to be repeatedly used for the remainder of the digits.

23371 other The integer value is the number of digits that comprise the current group. The
23372 next element is examined to determine the size of the next group of digits
23373 before the current group.

23374 The values of p_sep_by_space, n_sep_by_space, int_p_sep_by_space, and int_n_sep_by_space |
23375 are interpreted according to the following:

23376 0 No space separates the currency symbol and value. |

23377 1 If the currency symbol and sign string are adjacent, a space separates them from the value; |
23378 otherwise, a space separates the currency symbol from the value. |

23379 2 If the currency symbol and sign string are adjacent, a space separates them; otherwise, a |
23380 space separates the sign string from the value. |

23381 The values of p_sign_posn, n_sign_posn, int_p_sign_posn, and int_n_sign_posn are |
23382 interpreted according to the following: |

23383 0 Parentheses surround the quantity and currency_symbol or int_curr_symbol. |

23384 1 The sign string precedes the quantity and currency_symbol or int_curr_symbol. |

23385 2 The sign string succeeds the quantity and currency_symbol or int_curr_symbol. |

23386 3 The sign string immediately precedes the currency_symbol or int_curr_symbol. |

23387 4 The sign string immediately succeeds the currency_symbol or int_curr_symbol. |

23388 The implementation shall behave as if no function in this volume of IEEE Std. 1003.1-200x calls
23389 localeconv ().

23390 CX The localeconv () function need not be reentrant. A function that is not required to be reentrant is
23391 not required to be thread-safe.

23392 RETURN VALUE
23393 The localeconv () function shall return a pointer to the filled-in object. The application shall not
23394 modify the structure pointed to by the return value which may be overwritten by a subsequent
23395 call to localeconv (). In addition, calls to setlocale () with the categories LC_ALL, LC_MONETARY,
23396 or LC_NUMERIC may overwrite the contents of the structure.

23397 ERRORS
23398 No errors are defined.

23399 EXAMPLES
23400 None.

23401 APPLICATION USAGE
23402 The following table illustrates the rules which may be used by four countries to format monetary
23403 quantities.

System Interfaces, Issue 6 1221

localeconv() System Interfaces

23404 __
23405 Country Positive Format Negative Format International Format__
23406 Italy L.1.230 −L.1.230 ITL.1.230
23407 Netherlands F 1.234,56 F −1.234,56 NLG 1.234,56
23408 Norway kr1.234,56 kr1.234,56− NOK 1.234,56
23409 Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

23410 For these four countries, the respective values for the monetary members of the structure
23411 returned by localeconv () are:

__
23412 Italy Netherlands Norway Switzerland__
23413 int_curr_symbol "ITL." "NLG " "NOK " "CHF "
23414 currency_symbol "L." "F" "kr" "SFrs."
23415 mon_decimal_point "" "," "," "."
23416 mon_thousands_sep "." "." "." ","
23417 mon_grouping "\3" "\3" "\3" "\3"
23418 positive_sign "" "" "" ""
23419 negative_sign "-" "-" "-" "C"
23420 int_frac_digits 0 2 2 2
23421 frac_digits 0 2 2 2
23422 p_cs_precedes 1 1 1 1
23423 p_sep_by_space 0 1 0 0
23424 n_cs_precedes 1 1 1 1
23425 n_sep_by_space 0 1 0 0
23426 p_sign_posn 1 1 1 1
23427 n_sign_posn 1 4 2 2
23428 int_p_cs_precedes 1 1 1 1
23429 int_n_cs_precedes 1 1 1 1
23430 int_p_sep_by_space 0 0 0 0
23431 int_n_sep_by_space 0 0 0 0
23432 int_p_sign_posn 1 1 1 1
23433 int_n_sign_posn 1 4 4 2__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

23434 RATIONALE
23435 None.

23436 FUTURE DIRECTIONS
23437 None.

23438 SEE ALSO
23439 isalpha (), isascii (), nl_langinfo (), printf(), scanf(), setlocale (), strcat(), strchr(), strcmp(), strcoll(),
23440 strcpy(), strftime(), strlen(), strpbrk(), strspn(), strtok(), strxfrm(), strtod(), the Base Definitions |
23441 volume of IEEE Std. 1003.1-200x, <langinfo.h>, <locale.h> |

23442 CHANGE HISTORY
23443 First released in Issue 4. Derived from the ANSI C standard. |

23444 Issue 6
23445 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

23446 The RETURN VALUE section is rewritten to avoid use of the term ‘‘must’’. |

23447 This reference page is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1222 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces localtime()

23448 NAME
23449 localtime, localtime_r — convert a time value to a broken-down local time

23450 SYNOPSIS
23451 #include <time.h>

23452 struct tm *localtime(const time_t * timer);
23453 TSF struct tm *localtime_r(const time_t *restrict timer , |
23454 struct tm *restrict result); |
23455 |

23456 DESCRIPTION
23457 CX For localtime (): The functionality described on this reference page is aligned with the ISO C
23458 standard. Any conflict between the requirements described here and the ISO C standard is
23459 unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

23460 The localtime () function shall convert the time in seconds since the Epoch pointed to by timer
23461 into a broken-down time, expressed as a local time. The function corrects for the timezone and
23462 any seasonal time adjustments. Local timezone information is used as though localtime () calls
23463 tzset().

23464 CX The localtime () function need not be reentrant. A function that is not required to be reentrant is
23465 not required to be thread-safe.

23466 TSF The localtime_r () function shall convert the time in seconds since the Epoch pointed to by timer |
23467 into a broken-down time stored in the structure to which result points. The localtime_r () function
23468 shall also return a pointer to that same structure.

23469 Unlike localtime (), the reentrant version is not required to set tzname .

23470 RETURN VALUE
23471 The localtime () function shall return a pointer to the broken-down time structure.

23472 TSF Upon successful completion, localtime_r () shall return a pointer to the structure pointed to by
23473 the argument result.

23474 ERRORS
23475 No errors are defined.

23476 EXAMPLES

23477 Getting the Local Date and Time

23478 The following example uses the time() function to calculate the time elapsed, in seconds, since
23479 January 1, 1970 0:00 UTC (the Epoch), localtime () to convert that value to a broken-down time,
23480 and asctime() to convert the broken-down time values into a printable string.

23481 #include <stdio.h>
23482 #include <time.h>

23483 main()
23484 {
23485 time_t result;

23486 result = time(NULL);
23487 printf("%s%ld secs since the Epoch\n",
23488 asctime(localtime(&result)),
23489 (long)result);
23490 return(0);
23491 }

System Interfaces, Issue 6 1223

localtime() System Interfaces

23492 This example writes the current time to stdout in a form like this:

23493 Wed Jun 26 10:32:15 1996
23494 835810335 secs since the Epoch

23495 Getting the Modification Time for a File

23496 The following example gets the modification time for a file. The localtime () function converts the
23497 time_t value of the last modification date, obtained by a previous call to stat(), into a tm
23498 structure that contains the year, month, day, and so on.

23499 #include <time.h>
23500 ...
23501 struct stat statbuf;
23502 ...
23503 tm = localtime(&statbuf.st_mtime);
23504 ...

23505 Timing an Event

23506 The following example gets the current time, converts it to a string using localtime () and
23507 asctime(), and prints it to standard output using fputs(). It then prints the number of minutes to
23508 an event being timed.

23509 #include <time.h>
23510 #include <stdio.h>
23511 ...
23512 time_t now;
23513 int minutes_to_event;
23514 ...
23515 time(&now);
23516 printf("The time is ");
23517 fputs(asctime(localtime(&now)), stdout);
23518 printf("There are still %d minutes to the event.\n",
23519 minutes_to_event);
23520 ...

23521 APPLICATION USAGE
23522 The asctime(), ctime(), getdate(), gettimeofday (), gmtime(), and localtime () functions return values
23523 in one of two static objects: a broken-down time structure and an array of char. Execution of any
23524 of the functions may overwrite the information returned in either of these objects by any of the
23525 other functions.

23526 The localtime_r () function is thread-safe and shall return values in a user-supplied buffer instead
23527 of possibly using a static data area that may be overwritten by each call.

23528 RATIONALE
23529 None.

23530 FUTURE DIRECTIONS
23531 None.

23532 SEE ALSO
23533 asctime(), clock (), ctime(), difftime (), getdate(), gettimeofday (), gmtime(), mktime(), strftime(),
23534 strptime(), time(), utime(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

1224 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces localtime()

23535 CHANGE HISTORY
23536 First released in Issue 1. Derived from Issue 1 of the SVID. |

23537 Issue 4
23538 The APPLICATION USAGE section is expanded to provide a more complete description of how
23539 static areas are used by the *time() functions.

23540 The following change is incorporated for alignment with the ISO C standard:

23541 • The timer argument is now a type const time_t.

23542 Issue 5
23543 A note indicating that the localtime () function need not be reentrant is added to the
23544 DESCRIPTION.

23545 The localtime_r () function is included for alignment with the POSIX Threads Extension.

23546 Issue 6
23547 The localtime_r () function is marked as part of the Thread-Safe Functions option. |

23548 Extensions beyond the ISO C standard are now marked.

23549 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
23550 its avoidance of possibly using a static data area. |

23551 The restrict keyword is added to the localtime_r () prototype for alignment with the |
23552 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1225

lockf() System Interfaces

23553 NAME
23554 lockf — record locking on files

23555 SYNOPSIS
23556 XSI #include <unistd.h>

23557 int lockf(int fildes , int function , off_t size);
23558

23559 DESCRIPTION
23560 The lockf () function allows sections of a file to be locked with advisory-mode locks. Calls to
23561 lockf () from other threads which attempt to lock the locked file section shall either return an
23562 error value or block until the section becomes unlocked. All the locks for a process are removed
23563 when the process terminates. Record locking with lockf () is supported for regular files and may
23564 be supported for other files.

23565 The fildes argument is an open file descriptor. The application shall ensure that the file descriptor
23566 has been opened with write-only permission (O_WRONLY) or with read/write permission
23567 (O_RDWR) to establish a lock with this function.

23568 The function argument is a control value which specifies the action to be taken. The permissible
23569 values for function are defined in <unistd.h> as follows:
23570 __
23571 Function Description__
23572 F_ULOCK Unlock locked sections.
23573 F_LOCK Lock a section for exclusive use.
23574 F_TLOCK Test and lock a section for exclusive use.
23575 F_TEST Test a section for locks by other processes.__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

23576 F_TEST detects if a lock by another process is present on the specified section.

23577 F_LOCK and F_TLOCK both lock a section of a file if the section is available.

23578 F_ULOCK removes locks from a section of the file.

23579 The size argument is the number of contiguous bytes to be locked or unlocked. The section to be
23580 locked or unlocked starts at the current offset in the file and extends forward for a positive size
23581 or backward for a negative size (the preceding bytes up to but not including the current offset).
23582 If size is 0, the section from the current offset through the largest possible file offset is locked
23583 (that is, from the current offset through the present or any future end-of-file). An area need not
23584 be allocated to the file to be locked because locks may exist past the end-of-file.

23585 The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained
23586 by a previously locked section for the same process. When this occurs, or if adjacent locked
23587 sections would occur, the sections are combined into a single locked section. If the request
23588 would cause the number of locks to exceed a system-imposed limit, the request shall fail.

23589 F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.
23590 F_LOCK blocks the calling thread until the section is available. F_TLOCK makes the function
23591 fail if the section is already locked by another process.

23592 File locks are released on first close by the locking process of any file descriptor for the file.

23593 F_ULOCK requests may release (wholly or in part) one or more locked sections controlled by the
23594 process. Locked sections shall be unlocked starting at the current file offset through size bytes or
23595 to the end-of-file if size is (off_t)0. When all of a locked section is not released (that is, when the
23596 beginning or end of the area to be unlocked falls within a locked section), the remaining portions
23597 of that section are still locked by the process. Releasing the center portion of a locked section

1226 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lockf()

23598 shall cause the remaining locked beginning and end portions to become two separate locked
23599 sections. If the request would cause the number of locks in the system to exceed a system-
23600 imposed limit, the request shall fail.

23601 A potential for deadlock occurs if the threads of a process controlling a locked section are
23602 blocked by accessing another process’ locked section. If the system detects that deadlock would
23603 occur, lockf () shall fail with an [EDEADLK] error. |

23604 The interaction between fcntl() and lockf () locks is unspecified.

23605 Blocking on a section is interrupted by any signal.

23606 An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested
23607 section is the maximum value for an object of type off_t, when the process has an existing lock
23608 in which size is 0 and which includes the last byte of the requested section, shall be treated as a
23609 request to unlock from the start of the requested section with a size equal to 0. Otherwise, an
23610 F_ULOCK request shall attempt to unlock only the requested section.

23611 Attempting to lock a section of a file that is associated with a buffered stream produces
23612 unspecified results.

23613 RETURN VALUE
23614 Upon successful completion, lockf () shall return 0. Otherwise, it shall return −1, set errno to
23615 indicate an error, and existing locks shall not be changed.

23616 ERRORS
23617 The lockf () function shall fail if:

23618 [EBADF] The fildes argument is not a valid open file descriptor; or function is F_LOCK |
23619 or F_TLOCK and fildes is not a valid file descriptor open for writing.

23620 [EACCES] or [EAGAIN] |
23621 The function argument is F_TLOCK or F_TEST and the section is already
23622 locked by another process.

23623 [EDEADLK] The function argument is F_LOCK and a deadlock is detected. |

23624 [EINTR] A signal was caught during execution of the function. |

23625 [EINVAL] The function argument is not one of F_LOCK, F_TLOCK, F_TEST, or |
23626 F_ULOCK; or size plus the current file offset is less than 0.

23627 [EOVERFLOW] The offset of the first, or if size is not 0 then the last, byte in the requested |
23628 section cannot be represented correctly in an object of type off_t.

23629 The lockf () function may fail if:

23630 [EAGAIN] The function argument is F_LOCK or F_TLOCK and the file is mapped with |
23631 mmap().

23632 [EDEADLK] or [ENOLCK] |
23633 The function argument is F_LOCK, F_TLOCK, or F_ULOCK, and the request
23634 would cause the number of locks to exceed a system-imposed limit.

23635 [EOPNOTSUPP] or [EINVAL] |
23636 The implementation does not support the locking of files of the type indicated
23637 by the fildes argument.

System Interfaces, Issue 6 1227

lockf() System Interfaces

23638 EXAMPLES

23639 Locking a Portion of a File

23640 In the following example, a file named /home/cnd/mod1 is being modified. Other processes that
23641 use locking are prevented from changing it during this process. Only the first 10,000 bytes are
23642 locked, and the lock call fails if another process has any part of this area locked already.

23643 #include <fcntl.h>
23644 #include <unistd.h>

23645 int fildes;
23646 int status;
23647 ...
23648 fildes = open("/home/cnd/mod1", O_RDWR);
23649 status = lockf(fildes, F_TLOCK, (off_t)10000);

23650 APPLICATION USAGE
23651 Record-locking should not be used in combination with the fopen(), fread(), fwrite(), and other
23652 stdio functions. Instead, the more primitive, non-buffered functions (such as open()) should be
23653 used. Unexpected results may occur in processes that do buffering in the user address space. The
23654 process may later read/write data which is/was locked. The stdio functions are the most
23655 common source of unexpected buffering.

23656 The alarm() function may be used to provide a timeout facility in applications requiring it.

23657 RATIONALE
23658 None.

23659 FUTURE DIRECTIONS
23660 None.

23661 SEE ALSO
23662 alarm(), chmod(), close(), creat(), fcntl(), fopen(), mmap(), open(), read(), write(), the Base |
23663 Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

23664 CHANGE HISTORY
23665 First released in Issue 4, Version 2.

23666 Issue 5
23667 Moved from X/OPEN UNIX extension to BASE.

23668 Large File Summit extensions are added. In particular, the description of [EINVAL] is clarified
23669 and moved from optional to mandatory status.

23670 A note is added to the DESCRIPTION indicating the effects of attempting to lock a section of a
23671 file that is associated with a buffered stream.

23672 Issue 6
23673 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1228 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces log()

23674 NAME
23675 log, logf, logl — natural logarithm function |

23676 SYNOPSIS
23677 #include <math.h>

23678 double log(double x);
23679 float logf(float x); |
23680 long double logl(long double x); |

23681 DESCRIPTION |
23682 CX The functionality described on this reference page is aligned with the ISO C standard. Any
23683 conflict between the requirements described here and the ISO C standard is unintentional. This
23684 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

23685 These functions shall compute the natural logarithm of x , loge(x). The application shall ensure |
23686 that the value of x is positive.

23687 An application wishing to check for error situations should set errno to 0 before calling log(). If
23688 errno is non-zero on return, or the return value is NaN, an error has occurred.

23689 RETURN VALUE
23690 Upon successful completion, these functions shall return the natural logarithm of x . |

23691 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

23692 XSI If x is less than 0, −HUGE_VAL or NaN shall be returned,and errno shall be set to [EDOM].

23693 If x is 0, −HUGE_VAL shall be returned and errno may be set to [ERANGE]. |

23694 ERRORS
23695 These functions shall fail if: |

23696 [EDOM] The value of x is negative. |

23697 These functions may fail if: |

23698 XSI [EDOM] The value of x is NaN. |

23699 [ERANGE] The value of x is 0. |

23700 XSI No other errors shall occur.

23701 EXAMPLES
23702 None.

23703 APPLICATION USAGE
23704 None.

23705 RATIONALE
23706 None.

23707 FUTURE DIRECTIONS
23708 None.

23709 SEE ALSO
23710 exp(), isnan(), log10 (), log1p (), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23711 CHANGE HISTORY
23712 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 1229

log() System Interfaces

23713 Issue 4
23714 References to matherr() are removed.

23715 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
23716 ISO C standard and to rationalize error handling in the mathematics functions.

23717 The return value specified for [EDOM] is marked as an extension.

23718 Issue 5
23719 The DESCRIPTION is updated to indicate how an application should check for an error. This
23720 text was previously published in the APPLICATION USAGE section.

23721 Issue 6
23722 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

23723 The logf () and logl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

1230 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces log10()

23724 NAME
23725 log10, log10f, log10l — base 10 logarithm function |

23726 SYNOPSIS
23727 #include <math.h>

23728 double log10(double x);
23729 float log10f(float x); |
23730 long double log10l(long double x); |

23731 DESCRIPTION |
23732 CX The functionality described on this reference page is aligned with the ISO C standard. Any
23733 conflict between the requirements described here and the ISO C standard is unintentional. This
23734 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

23735 These functions shall compute the base 10 logarithm of x , log
10

(x). The application shall ensure |
23736 that the value of x is positive.

23737 An application wishing to check for error situations should set errno to 0 before calling log10 ().
23738 If errno is non-zero on return, or the return value is NaN, an error has occurred.

23739 RETURN VALUE
23740 Upon successful completion, these functions shall return the base 10 logarithm of x . |

23741 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

23742 XSI If x is less than 0, −HUGE_VAL or NaN shall be returned,and errno shall be set to [EDOM].

23743 If x is 0, −HUGE_VAL shall be returned and errno may be set to [ERANGE]. |

23744 ERRORS
23745 These functions shall fail if: |

23746 [EDOM] The value of x is negative. |

23747 These functions may fail if: |

23748 XSI [EDOM] The value of x is NaN. |

23749 [ERANGE] The value of x is 0. |

23750 XSI No other errors shall occur.

23751 EXAMPLES
23752 None.

23753 APPLICATION USAGE
23754 None.

23755 RATIONALE
23756 None.

23757 FUTURE DIRECTIONS
23758 None.

23759 SEE ALSO
23760 isnan(), log(), pow(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23761 CHANGE HISTORY
23762 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 1231

log10() System Interfaces

23763 Issue 4
23764 References to matherr() are removed.

23765 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
23766 ISO C standard and to rationalize error handling in the mathematics functions.

23767 The return value specified for [EDOM] is marked as an extension.

23768 Issue 5
23769 The DESCRIPTION is updated to indicate how an application should check for an error. This
23770 text was previously published in the APPLICATION USAGE section.

23771 Issue 6
23772 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

23773 The log10f () and log10l () functions are added for alignment with the ISO/IEC 9899: 1999 |
23774 standard. |

1232 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces log1p()

23775 NAME
23776 log1p, log1pf, log1pl — compute a natural logarithm |

23777 SYNOPSIS
23778 #include <math.h> |

23779 double log1p(double x); |
23780 float log1pf(float x); |
23781 long double log1pl(long double x); |

23782 DESCRIPTION |
23783 These functions shall compute log

e
(1.0 + x). The application shall ensure that the value of x is |

23784 greater than −1.0.

23785 RETURN VALUE
23786 Upon successful completion, these functions shall return the natural logarithm of 1.0 + x . |

23787 If x is NaN, log1p () shall return NaN and may set errno to [EDOM]. |

23788 If x is less than −1.0, log1p () shall return −HUGE_VAL or NaN and set errno to [EDOM].

23789 If x is −1.0, log1p () shall return −HUGE_VAL and may set errno to [ERANGE]. |

23790 ERRORS
23791 These functions shall fail if: |

23792 [EDOM] The value of x is less than −1.0. |

23793 These functions may fail and set errno to: |

23794 [EDOM] The value of x is NaN. |

23795 [ERANGE] The value of x is −1.0. |

23796 No other errors shall occur.

23797 EXAMPLES
23798 None.

23799 APPLICATION USAGE
23800 None.

23801 RATIONALE
23802 None.

23803 FUTURE DIRECTIONS
23804 None.

23805 SEE ALSO
23806 log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23807 CHANGE HISTORY
23808 First released in Issue 4, Version 2.

23809 Issue 5
23810 Moved from X/OPEN UNIX extension to BASE.

23811 Issue 6
23812 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

23813 The log1pf () and log1pl () functions are added for alignment with the ISO/IEC 9899: 1999 |
23814 standard. |

|

System Interfaces, Issue 6 1233

log2() System Interfaces

23815 NAME |
23816 log2, log2f, log2l — compute base 2 logarithm functions |

23817 SYNOPSIS |
23818 #include <math.h> |

23819 double log2(double x); |
23820 float log2f(float x); |
23821 long double log2l(long double x); |

23822 DESCRIPTION |
23823 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
23824 conflict between the requirements described here and the ISO C standard is unintentional. This |
23825 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

23826 These functions shall compute the base 2 logarithm of x , log2(x). The application shall ensure |
23827 that the value of x is positive. |

23828 An application wishing to check for error situations should set errno to 0 before calling these |
23829 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

23830 RETURN VALUE |
23831 Upon successful completion, these functions shall return the base 2 logarithm of x . |

23832 If x is NaN, these functions shall return NaN and may set errno to [EDOM]. |

23833 If x is less than 0, these functions shall return −HUGE_VAL or NaN and set errno to [EDOM]. |

23834 If x is 0, these functions shall return −HUGE_VAL and may set errno to [ERANGE]. |

23835 ERRORS |
23836 These functions shall fail if: |

23837 [EDOM] The value of x is less than 0. |

23838 These functions may fail if: |

23839 [EDOM] The value of x is NaN. |

23840 [ERANGE] The value of x is 0. |

23841 No other errors shall occur. |

23842 EXAMPLES |
23843 None. |

23844 APPLICATION USAGE |
23845 None. |

23846 RATIONALE |
23847 None. |

23848 FUTURE DIRECTIONS |
23849 None. |

23850 SEE ALSO |
23851 log(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

23852 CHANGE HISTORY |
23853 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1234 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces logb()

23854 NAME
23855 logb, logbf, logbl — radix-independent exponent |

23856 SYNOPSIS
23857 XSI #include <math.h>

23858 double logb(double x);
23859 float logbf(float x); |
23860 long double logbl(long double x); |
23861 |

23862 DESCRIPTION
23863 These functions shall compute the exponent of x , which is the integral part of logr A x A , as a |
23864 signed floating point value, for non-zero x , where r is the radix of the machine’s floating-point |
23865 arithmetic, which is the value of FLT_RADIX defined in the <float.h> header. |

23866 RETURN VALUE
23867 Upon successful completion, these functions shall return the exponent of x . |

23868 If x is 0.0, logb() shall return −HUGE_VAL and set errno to [EDOM].

23869 If x is ±Inf, logb() shall return +Inf.

23870 If x is NaN, logb() shall return NaN and may set errno to [EDOM]. |

23871 ERRORS
23872 These functions shall fail if: |

23873 [EDOM] The x argument is 0.0. |

23874 These functions may fail if: |

23875 [EDOM] The x argument is NaN. |

23876 EXAMPLES
23877 None.

23878 APPLICATION USAGE
23879 None.

23880 RATIONALE
23881 None.

23882 FUTURE DIRECTIONS
23883 None.

23884 SEE ALSO
23885 ilogb (), scalb(), the Base Definitions volume of IEEE Std. 1003.1-200x, <float.h> <math.h> |

23886 CHANGE HISTORY
23887 First released in Issue 4, Version 2.

23888 Issue 5
23889 Moved from X/OPEN UNIX extension to BASE. |

23890 Issue 6 |
23891 The logbf () and logbl () functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1235

longjmp() System Interfaces

23892 NAME
23893 longjmp — non-local goto

23894 SYNOPSIS
23895 #include <setjmp.h>

23896 void longjmp(jmp_buf env , int val);

23897 DESCRIPTION
23898 CX The functionality described on this reference page is aligned with the ISO C standard. Any
23899 conflict between the requirements described here and the ISO C standard is unintentional. This
23900 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

23901 The longjmp() function shall restore the environment saved by the most recent invocation of
23902 setjmp() in the same thread, with the corresponding jmp_buf argument. If there is no such |
23903 invocation, or if the function containing the invocation of the setjmp() macro has terminated |
23904 execution in the interim, or if the invocation of setjmp() was within the scope of an identifier |
23905 with variably modified type and execution has left that scope in the interim, the behavior is |
23906 CX undefined. It is unspecified whether longjmp() restores the signal mask, leaves the signal mask |
23907 unchanged, or restores it to its value at the time setjmp() was called.

23908 All accessible objects have values as of the time longjmp() was called, and all other components |
23909 of the abstract machine have state (for example, floating-point status flags and open files), |
23910 except that the values of objects of automatic storage duration are indeterminate if they meet all |
23911 the following conditions: |

23912 • They are local to the function containing the corresponding setjmp() invocation.

23913 • They do not have volatile-qualified type.

23914 • They are changed between the setjmp() invocation and longjmp() call.

23915 As it bypasses the usual function call and return mechanisms, longjmp() shall execute correctly
23916 in contexts of interrupts, signals, and any of their associated functions. However, if longjmp() is
23917 invoked from a nested signal handler (that is, from a function invoked as a result of a signal
23918 raised during the handling of another signal), the behavior is undefined.

23919 CX The effect of a call to longjmp() where initialization of the jmp_buf structure was not performed
23920 in the calling thread is undefined.

23921 RETURN VALUE
23922 After longjmp() is completed, program execution continues as if the corresponding invocation of
23923 setjmp() had just returned the value specified by val . The longjmp() function shall not cause
23924 setjmp() to return 0; if val is 0, setjmp() shall return 1.

23925 ERRORS
23926 No errors are defined.

23927 EXAMPLES
23928 None.

23929 APPLICATION USAGE
23930 Applications whose behavior depends on the value of the signal mask should not use longjmp()
23931 and setjmp(), since their effect on the signal mask is unspecified, but should instead use the
23932 siglongjmp () and sigsetjmp() functions (which can save and restore the signal mask under
23933 application control).

1236 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces longjmp()

23934 RATIONALE
23935 None.

23936 FUTURE DIRECTIONS
23937 None.

23938 SEE ALSO
23939 setjmp(), sigaction (), siglongjmp (), sigsetjmp(), the Base Definitions volume of |
23940 IEEE Std. 1003.1-200x, <setjmp.h> |

23941 CHANGE HISTORY
23942 First released in Issue 1. Derived from Issue 1 of the SVID. |

23943 Issue 4
23944 The APPLICATION USAGE section is deleted.

23945 The following change is incorporated for alignment with the ISO C standard:

23946 • Mention of volatile-qualified types is added to the DESCRIPTION.

23947 Issue 4, Version 2
23948 The DESCRIPTION is updated for X/OPEN UNIX conformance and discusses valid possibilities
23949 for the resulting state of the signal mask.

23950 Issue 5
23951 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

23952 Issue 6
23953 Extensions beyond the ISO C standard are now marked.

23954 The following new requirements on POSIX implementations derive from alignment with the
23955 Single UNIX Specification:

23956 • The DESCRIPTION now explicitly makes longjmp()’s effect on the signal mask unspecified.

23957 The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1237

lrand48() System Interfaces

23958 NAME
23959 lrand48 — generate uniformly distributed pseudo-random non-negative long integers

23960 SYNOPSIS
23961 XSI #include <stdlib.h>

23962 long lrand48(void); |
23963 |

23964 DESCRIPTION
23965 Refer to drand48().

1238 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lsearch()

23966 NAME
23967 lsearch, lfind — linear search and update

23968 SYNOPSIS
23969 XSI #include <search.h>

23970 void *lsearch(const void * key , void * base , size_t * nelp , size_t width ,
23971 int (* compar)(const void *, const void *));
23972 void *lfind(const void * key , const void * base , size_t * nelp ,
23973 size_t width, int (* compar)(const void *, const void *));
23974

23975 DESCRIPTION
23976 The lsearch() function is a linear search routine. It returns a pointer into the table for the
23977 matching entry. If the entry does not occur, it is added at the end of the table. The key argument
23978 points to the entry to be sought in the table. The base argument points to the first element in the
23979 table. The width argument is the size of an element in bytes. The nelp argument points to an
23980 integer containing the current number of elements in the table. The integer to which nelp points
23981 is incremented if the entry is added to the table. The compar argument points to a comparison
23982 function which the application shall supply (for example, strcmp()). It is called with two
23983 arguments that point to the elements being compared. The application shall ensure that the
23984 function returns 0 if the elements are equal, and non-zero otherwise.

23985 The lfind () function is the same as lsearch() except that if the entry is not found, it is not added to
23986 the table. Instead, a null pointer is returned.

23987 RETURN VALUE
23988 If the searched for entry is found, both lsearch() and lfind () shall return a pointer to it. Otherwise,
23989 lfind () shall return a null pointer and lsearch() shall return a pointer to the newly added element.

23990 Both functions shall return a null pointer in case of error.

23991 ERRORS
23992 No errors are defined.

23993 EXAMPLES

23994 Storing Strings in a Table

23995 This fragment reads in less than or equal to TABSIZE strings of length less than or equal to
23996 ELSIZE and stores them in a table, eliminating duplicates.

23997 #include <stdio.h>
23998 #include <string.h>
23999 #include <search.h>

24000 #define TABSIZE 50
24001 #define ELSIZE 120

24002 ...
24003 char line[ELSIZE], tab[TABSIZE][ELSIZE];
24004 size_t nel = 0;
24005 ...
24006 while (fgets(line, ELSIZE, stdin) != NULL && nel < TABSIZE)
24007 (void) lsearch(line, tab, &nel,
24008 ELSIZE, (int (*)(const void *, const void *)) strcmp);
24009 ...

System Interfaces, Issue 6 1239

lsearch() System Interfaces

24010 Finding a Matching Entry

24011 The following example finds any line that reads "This is a test." .

24012 #include <search.h>
24013 #include <string.h>
24014 ...
24015 char line[ELSIZE], tab[TABSIZE][ELSIZE];
24016 size_t nel = 0;
24017 char *findline;
24018 void *entry;

24019 findline = "This is a test.\n";

24020 entry = lfind(findline, tab, &nel, ELSIZE, (
24021 int (*)(const void *, const void *)) strcmp);

24022 APPLICATION USAGE
24023 The comparison function need not compare every byte, so arbitrary data may be contained in
24024 the elements in addition to the values being compared.

24025 Undefined results can occur if there is not enough room in the table to add a new item.

24026 RATIONALE
24027 None.

24028 FUTURE DIRECTIONS
24029 None.

24030 SEE ALSO
24031 hcreate(), tsearch(), the Base Definitions volume of IEEE Std. 1003.1-200x, <search.h> |

24032 CHANGE HISTORY
24033 First released in Issue 1. Derived from Issue 1 of the SVID. |

24034 Issue 4
24035 In the SYNOPSIS section, the type of argument key in the declaration of lsearch() is changed from
24036 void* to const void*, the type arguments key and base have been changed from void* to const
24037 void* in the declaration of lfind (), and the arguments to compar are defined for both functions.

24038 In the EXAMPLES section, the sample code is updated to use ISO C standard syntax.

24039 Warnings about the casting of various arguments are removed from the APPLICATION USAGE
24040 section, as casting requirements are now clear from the function definitions.

24041 Issue 6
24042 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1240 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lseek()

24043 NAME
24044 lseek — move the read/write file offset

24045 SYNOPSIS
24046 #include <unistd.h>

24047 off_t lseek(int fildes , off_t offset , int whence);

24048 DESCRIPTION
24049 The lseek() function shall set the file offset for the open file description associated with the file
24050 descriptor fildes, as follows:

24051 • If whence is {SEEK_SET}, the file offset is set to offset bytes.

24052 • If whence is {SEEK_CUR}, the file offset is set to its current location plus offset .

24053 • If whence is {SEEK_END}, the file offset is set to the size of the file plus offset .

24054 The symbolic constants {SEEK_SET}, {SEEK_CUR}, and {SEEK_END} are defined in <unistd.h>.

24055 The behavior of lseek() on devices which are incapable of seeking is implementation-defined. |
24056 The value of the file offset associated with such a device is undefined.

24057 The lseek() function shall allow the file offset to be set beyond the end of the existing data in the
24058 file. If data is later written at this point, subsequent reads of data in the gap shall return bytes
24059 with the value 0 until data is actually written into the gap.

24060 The lseek() function shall not, by itself, extend the size of a file.

24061 SHM If fildes refers to a shared memory object, the result of the lseek() function is unspecified.

24062 TYM If fildes refers to a typed memory object, the result of the lseek() function is unspecified.

24063 RETURN VALUE
24064 Upon successful completion, the resulting offset, as measured in bytes from the beginning of the
24065 file, shall be returned. Otherwise, (off_t)−1 shall be returned, errno shall be set to indicate the
24066 error, and the file offset shall remain unchanged.

24067 ERRORS
24068 The lseek() function shall fail if:

24069 [EBADF] The fildes argument is not an open file descriptor. |

24070 [EINVAL] The whence argument is not a proper value, or the resulting file offset would |
24071 be negative for a regular file, block special file, or directory. |

24072 [EOVERFLOW] The resulting file offset would be a value which cannot be represented |
24073 correctly in an object of type off_t. |

24074 [ESPIPE] The fildes argument is associated with a pipe, FIFO, or socket. |

24075 EXAMPLES
24076 None.

24077 APPLICATION USAGE
24078 None.

24079 RATIONALE
24080 The ISO C standard includes the functions fgetpos() and fsetpos(), which work on very large files
24081 by use of a special positioning type.

24082 Although lseek() may position the file offset beyond the end of the file, this function does not
24083 itself extend the size of the file. While the only function in this volume of IEEE Std. 1003.1-200x

System Interfaces, Issue 6 1241

lseek() System Interfaces

24084 that may directly extend the size of the file is write(), several functions originally derived from
24085 the ISO C standard, such as fwrite(), fprintf (), and so on, may do so (by causing calls on write()).

24086 An invalid file offset that would cause [EINVAL] to be returned may be both implementation- |
24087 defined and device-dependent (for example, memory may have few invalid values). A negative |
24088 file offset may be valid for some devices in some implementations.

24089 The POSIX.1-1990 standard did not specifically prohibit lseek() from returning a negative offset.
24090 Therefore, an application was required to clear errno prior to the call and check errno upon return
24091 to determine whether a return value of (off_t)−1 is a negative offset or an indication of an error
24092 condition. The standard developers did not wish to require this action on the part of a portable
24093 application, and chose to require that errno be set to [EINVAL] when the resulting file offset
24094 would be negative for a regular file, block special file, or directory.

24095 FUTURE DIRECTIONS
24096 None.

24097 SEE ALSO
24098 open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

24099 CHANGE HISTORY
24100 First released in Issue 1. Derived from Issue 1 of the SVID. |

24101 Issue 4
24102 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
24103 XSI-conformant systems.

24104 The APPLICATION USAGE section is removed, as the ISO POSIX-1 standard now requires that
24105 off_t be signed.

24106 Issue 5
24107 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension.

24108 Large File Summit extensions are added.

24109 Issue 6
24110 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

24111 The following new requirements on POSIX implementations derive from alignment with the
24112 Single UNIX Specification:

24113 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
24114 required for conforming implementations of previous POSIX specifications, it was not
24115 required for UNIX applications.

24116 • The [EOVERFLOW] error condition is added. This change is to support large files.

24117 An additional [ESPIPE] error condition is added for sockets.

24118 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
24119 lseek() results are unspecified for typed memory objects.

1242 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces lstat()

24120 NAME
24121 lstat — get symbolic link status

24122 SYNOPSIS
24123 #include <sys/stat.h>

24124 int lstat(const char *restrict path , struct stat *restrict buf); |

24125 DESCRIPTION |
24126 The lstat() function shall have the same effect as stat(), except when path refers to a symbolic
24127 link. In that case lstat() shall return information about the link, while stat() shall return
24128 information about the file the link references.

24129 For symbolic links, the st_mode member shall contain meaningful information when used with
24130 the file type macros, and the st_size member shall contain the length of the path name contained
24131 in the symbolic link. File mode bits and the contents of the remaining members of the stat
24132 structure are unspecified. The value returned in the st_size member is the length of the contents
24133 of the symbolic link, and does not count any trailing null.

24134 RETURN VALUE
24135 Upon successful completion, lstat() shall return 0. Otherwise, it shall return −1 and set errno to
24136 indicate the error.

24137 ERRORS
24138 The lstat() function shall fail if:

24139 [EACCES] A component of the path prefix denies search permission.

24140 [EIO] An error occurred while reading from the file system.

24141 [ELOOP] A loop exists in symbolic links encountered during resolution of the path
24142 argument.

24143 [ENAMETOOLONG] |
24144 The length of a path name exceeds {PATH_MAX} or a path name component |
24145 is longer than {NAME_MAX}. |

24146 [ENOTDIR] A component of the path prefix is not a directory. |

24147 [ENOENT] A component of path does not name an existing file or path is an empty string. |

24148 [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file |
24149 serial number cannot be represented correctly in the structure pointed to by
24150 buf.

24151 The lstat() function may fail if:

24152 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
24153 resolution of the path argument.

24154 [ENAMETOOLONG] |
24155 As a result of encountering a symbolic link in resolution of the path argument,
24156 the length of the substituted path name string exceeded {PATH_MAX}.

24157 [EOVERFLOW] One of the members is too large to store into the structure pointed to by the |
24158 buf argument.

System Interfaces, Issue 6 1243

lstat() System Interfaces

24159 EXAMPLES

24160 Obtaining Symbolic Link Status Information

24161 The following example shows how to obtain status information for a symbolic link named
24162 /modules/pass1. The structure variable buffer is defined for the stat structure. If the path
24163 argument specified the file name for the file pointed to by the symbolic link (/home/cnd/mod1),
24164 the results of calling the function would be the same as those returned by a call to the stat()
24165 function.

24166 #include <sys/stat.h>

24167 struct stat buffer;
24168 int status;
24169 ...
24170 status = lstat("/modules/pass1", &buffer);

24171 APPLICATION USAGE
24172 None.

24173 RATIONALE
24174 The lstat() function is not required to update the time-related fields if the named file is not a
24175 symbolic link. While the st_uid , st_gid , st_atime , st_mtime, and st_ctime members of the stat
24176 structure may apply to a symbolic link, they are not required to do so. No functions in
24177 IEEE Std. 1003.1-200x are required to maintain any of these time fields.

24178 FUTURE DIRECTIONS
24179 None.

24180 SEE ALSO
24181 fstat(), readlink (), stat(), symlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
24182 <sys/stat.h>

CHANGE24183 HISTORY
24184 First released in Issue 4, Version 2.

24185 Issue 5
24186 Moved from X/OPEN UNIX extension to BASE.

24187 Large File Summit extensions are added.

24188 Issue 6
24189 The following changes were made to align with the IEEE P1003.1a draft standard:

24190 • This function is now mandatory.

24191 • The [ELOOP] optional error condition is added.

24192 The restrict keyword is added to the lstat() prototype for alignment with the ISO/IEC 9899: 1999 |
24193 standard. |

1244 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces makecontext()

24194 NAME
24195 makecontext, swapcontext — manipulate user contexts

24196 SYNOPSIS
24197 XSI #include <ucontext.h>

24198 void makecontext(ucontext_t * ucp , void (* func)(void), |
24199 int argc , ...); |
24200 int swapcontext(ucontext_t *restrict oucp , |
24201 const ucontext_t *restrict ucp); |
24202 |

24203 DESCRIPTION
24204 The makecontext() function shall modify the context specified by ucp, which has been initialized
24205 using getcontext(). When this context is resumed using swapcontext() or setcontext(), program
24206 execution shall continue by calling func, passing it the arguments that follow argc in the
24207 makecontext() call.

24208 Before a call is made to makecontext(), the application shall ensure that the context being
24209 modified has a stack allocated for it. The application shall ensure that the value of argc matches
24210 the number of integer arguments passed to func; otherwise, the behavior is undefined.

24211 The uc_link member is used to determine the context that shall be resumed when the context
24212 being modified by makecontext() returns. The application shall ensure that the uc_link member is
24213 initialized prior to the call to makecontext().

24214 The swapcontext() function shall save the current context in the context structure pointed to by
24215 oucp and shall set the context to the context structure pointed to by ucp.

24216 RETURN VALUE
24217 Upon successful completion, swapcontext() shall return 0. Otherwise, −1 shall be returned and
24218 errno set to indicate the error.

24219 ERRORS
24220 The swapcontext() function shall fail if:

24221 [ENOMEM] The ucp argument does not have enough stack left to complete the operation. |

24222 EXAMPLES
24223 None.

24224 APPLICATION USAGE
24225 None.

24226 RATIONALE
24227 None.

24228 FUTURE DIRECTIONS
24229 None.

24230 SEE ALSO
24231 exit(), getcontext(), sigaction (), sigprocmask (), the Base Definitions volume of |
24232 IEEE Std. 1003.1-200x, <ucontext.h> |

24233 CHANGE HISTORY
24234 First released in Issue 4, Version 2.

System Interfaces, Issue 6 1245

makecontext() System Interfaces

24235 Issue 5
24236 Moved from X/OPEN UNIX extension to BASE.

24237 In the ERRORS section, the description of [ENOMEM] is changed to apply to swapcontext() only.

24238 Issue 6
24239 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

24240 The restrict keyword is added to the swapcontext() prototype for alignment with the |
24241 ISO/IEC 9899: 1999 standard. |

1246 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces malloc()

24242 NAME
24243 malloc — a memory allocator

24244 SYNOPSIS
24245 #include <stdlib.h>

24246 void *malloc(size_t size);

24247 DESCRIPTION
24248 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24249 conflict between the requirements described here and the ISO C standard is unintentional. This
24250 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24251 The malloc () function shall allocate unused space for an object whose size in bytes is specified by
24252 size and whose value is indeterminate.

24253 The order and contiguity of storage allocated by successive calls to malloc () is unspecified. The |
24254 pointer returned if the allocation succeeds shall be suitably aligned so that it may be assigned to |
24255 a pointer to any type of object and then used to access such an object in the space allocated (until |
24256 the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
24257 disjoint from any other object. The pointer returned points to the start (lowest byte address) of
24258 the allocated space. If the space cannot be allocated, a null pointer shall be returned. If the size of |
24259 the space requested is 0, the behavior is implementation-defined; the value returned shall be |
24260 either a null pointer or a unique pointer. |

24261 RETURN VALUE
24262 Upon successful completion with size not equal to 0, malloc () shall return a pointer to the
24263 allocated space. If size is 0, either a null pointer or a unique pointer that can be successfully
24264 CX passed to free() shall be returned. Otherwise, it shall return a null pointer and set errno to
24265 indicate the error.

24266 ERRORS
24267 The malloc () function shall fail if:

24268 CX [ENOMEM] Insufficient storage space is available. |

24269 EXAMPLES
24270 None.

24271 APPLICATION USAGE
24272 None.

24273 RATIONALE
24274 None.

24275 FUTURE DIRECTIONS
24276 None.

24277 SEE ALSO
24278 calloc (), free(), realloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

24279 CHANGE HISTORY
24280 First released in Issue 1. Derived from Issue 1 of the SVID. |

24281 Issue 4
24282 The setting of errno and the [ENOMEM] error are marked as extensions.

24283 The APPLICATION USAGE section is changed to record that <malloc.h> need no longer be
24284 supported on XSI-conformant systems.

System Interfaces, Issue 6 1247

malloc() System Interfaces

24285 The following change is incorporated for alignment with the ISO C standard:

24286 • The RETURN VALUE section is updated to indicate what is returned if size is 0.

24287 Issue 6
24288 Extensions beyond the ISO C standard are now marked.

24289 The following new requirements on POSIX implementations derive from alignment with the
24290 Single UNIX Specification:

24291 • In the RETURN VALUE section, the requirement to set errno to indicate an error is added.

24292 • The [ENOMEM] error condition is added.

1248 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mblen()

24293 NAME
24294 mblen — get number of bytes in a character

24295 SYNOPSIS
24296 #include <stdlib.h>

24297 int mblen(const char * s, size_t n);

24298 DESCRIPTION
24299 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24300 conflict between the requirements described here and the ISO C standard is unintentional. This
24301 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24302 If s is not a null pointer, mblen() determines the number of bytes constituting the character
24303 pointed to by s. Except that the shift state of mbtowc() is not affected, it is equivalent to:

24304 mbtowc((wchar_t *)0, s, n);

24305 The implementation shall behave as if no function defined in this volume of
24306 IEEE Std. 1003.1-200x calls mblen().

24307 The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
24308 state-dependent encoding, this function is placed into its initial state by a call for which its
24309 character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
24310 pointer cause the internal state of the function to be altered as necessary. A call with s as a null
24311 pointer causes this function to return a non-zero value if encodings have state dependency, and
24312 0 otherwise. If the implementation employs special bytes to change the shift state, these bytes do
24313 not produce separate wide-character codes, but are grouped with an adjacent character.
24314 Changing the LC_CTYPE category causes the shift state of this function to be indeterminate.

24315 RETURN VALUE
24316 If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings,
24317 respectively, do or do not have state-dependent encodings. If s is not a null pointer, mblen() shall
24318 either return 0 (if s points to the null byte), or return the number of bytes that constitute the
24319 character (if the next n or fewer bytes form a valid character), or return −1 (if they do not form a
24320 CX valid character) and may set errno to indicate the error. In no case shall the value returned be
24321 greater than n or the value of the {MB_CUR_MAX} macro.

24322 ERRORS
24323 The mblen() function may fail if:

24324 XSI [EILSEQ] Invalid character sequence is detected. |

24325 EXAMPLES
24326 None.

24327 APPLICATION USAGE
24328 None.

24329 RATIONALE
24330 None.

24331 FUTURE DIRECTIONS
24332 None.

24333 SEE ALSO
24334 mbtowc(), mbstowcs(), wctomb(), wcstombs(), the Base Definitions volume of |
24335 IEEE Std. 1003.1-200x, <stdlib.h> |

System Interfaces, Issue 6 1249

mblen() System Interfaces

24336 CHANGE HISTORY
24337 First released in Issue 4. Aligned with the ISO C standard. |

1250 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbrlen()

24338 NAME
24339 mbrlen — get number of bytes in a character (restartable)

24340 SYNOPSIS
24341 #include <wchar.h>

24342 size_t mbrlen(const char *restrict s, size_t n, |
24343 mbstate_t *restrict ps); |

24344 DESCRIPTION |
24345 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24346 conflict between the requirements described here and the ISO C standard is unintentional. This
24347 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24348 If s is not a null pointer, mbrlen() shall determine the number of bytes constituting the character
24349 pointed to by s. It is equivalent to:

24350 mbstate_t internal;
24351 mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

24352 If ps is a null pointer, the mbrlen() function uses its own internal mbstate_t object, which is
24353 initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
24354 pointed to by ps is used to completely describe the current conversion state of the associated
24355 character sequence. The implementation shall behave as if no function defined in this volume of
24356 IEEE Std. 1003.1-200x calls mbrlen().

24357 XSI The behavior of this function is affected by the LC_CTYPE category of the current locale.

24358 RETURN VALUE
24359 The mbrlen() function shall return the first of the following that applies:

24360 0 If the next n or fewer bytes complete the character that corresponds to the null
24361 wide character.

24362 positive If the next n or fewer bytes complete a valid character; the value returned shall
24363 be the number of bytes that complete the character.

24364 (size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
24365 and all n bytes have been processed. When n has at least the value of the
24366 {MB_CUR_MAX} macro, this case can only occur if s points at a sequence of
24367 redundant shift sequences (for implementations with state-dependent
24368 encodings).

24369 (size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
24370 contribute to a complete and valid character. In this case, [EILSEQ] shall be |
24371 stored in errno and the conversion state is undefined.

24372 ERRORS
24373 The mbrlen() function may fail if:

24374 [EINVAL] ps points to an object that contains an invalid conversion state. |

24375 [EILSEQ] Invalid character sequence is detected. |

System Interfaces, Issue 6 1251

mbrlen() System Interfaces

24376 EXAMPLES
24377 None.

24378 APPLICATION USAGE
24379 None.

24380 RATIONALE
24381 None.

24382 FUTURE DIRECTIONS
24383 None.

24384 SEE ALSO
24385 mbsinit(), mbrtowc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

24386 CHANGE HISTORY
24387 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
24388 (E). |

24389 Issue 6 |
24390 The mbrlen() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1252 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbrtowc()

24391 NAME
24392 mbrtowc — convert a character to a wide-character code (restartable)

24393 SYNOPSIS
24394 #include <wchar.h>

24395 size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s, |
24396 size_t n, mbstate_t *restrict ps); |

24397 DESCRIPTION |
24398 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24399 conflict between the requirements described here and the ISO C standard is unintentional. This
24400 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24401 If s is a null pointer, the mbrtowc() function shall be equivalent to the call:

24402 mbrtowc(NULL, "", 1, ps)

24403 In this case, the values of the arguments pwc and n are ignored.

24404 If s is not a null pointer, the mbrtowc() function inspects at most n bytes beginning at the byte
24405 pointed to by s to determine the number of bytes needed to complete the next character
24406 (including any shift sequences). If the function determines that the next character is completed, it
24407 determines the value of the corresponding wide character and then, if pwc is not a null pointer,
24408 stores that value in the object pointed to by pwc. If the corresponding wide character is the null
24409 wide character, the resulting state described is the initial conversion state.

24410 If ps is a null pointer, the mbrtowc() function uses its own internal mbstate_t object, which is
24411 initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
24412 pointed to by ps is used to completely describe the current conversion state of the associated
24413 character sequence. The implementation shall behave as if no function defined in this volume of
24414 IEEE Std. 1003.1-200x calls mbrtowc().

24415 XSI The behavior of this function is affected by the LC_CTYPE category of the current locale.

24416 RETURN VALUE
24417 The mbrtowc() function shall return the first of the following that applies:

24418 0 If the next n or fewer bytes complete the character that corresponds to the null
24419 wide character (which is the value stored).

24420 positive If the next n or fewer bytes complete a valid character (which is the value
24421 stored); the value returned shall be the number of bytes that complete the
24422 character.

24423 (size_t)−2 If the next n bytes contribute to an incomplete but potentially valid character,
24424 and all n bytes have been processed (no value is stored). When n has at least
24425 the value of the {MB_CUR_MAX} macro, this case can only occur if s points at
24426 a sequence of redundant shift sequences (for implementations with state-
24427 dependent encodings).

24428 (size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes do not
24429 contribute to a complete and valid character (no value is stored). In this case,
24430 [EILSEQ] shall be stored in errno and the conversion state is undefined. |

24431 ERRORS
24432 The mbrtowc() function may fail if:

24433 CX [EINVAL] ps points to an object that contains an invalid conversion state. |

System Interfaces, Issue 6 1253

mbrtowc() System Interfaces

24434 [EILSEQ] Invalid character sequence is detected. |

24435 EXAMPLES
24436 None.

24437 APPLICATION USAGE
24438 None.

24439 RATIONALE
24440 None.

24441 FUTURE DIRECTIONS
24442 None.

24443 SEE ALSO
24444 mbsinit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

24445 CHANGE HISTORY
24446 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
24447 (E). |

24448 Issue 6 |
24449 The mbrtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1254 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbsinit()

24450 NAME
24451 mbsinit — determine conversion object status

24452 SYNOPSIS
24453 #include <wchar.h>

24454 int mbsinit(const mbstate_t * ps);

24455 DESCRIPTION
24456 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24457 conflict between the requirements described here and the ISO C standard is unintentional. This
24458 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24459 If ps is not a null pointer, the mbsinit() function shall determine whether the object pointed to by
24460 ps describes an initial conversion state.

24461 RETURN VALUE
24462 The mbsinit() function shall return non-zero if ps is a null pointer, or if the pointed-to object
24463 describes an initial conversion state; otherwise, it shall return zero.

24464 If an mbstate_t object is altered by any of the functions described as ‘‘restartable’’, and is then
24465 used with a different character sequence, or in the other conversion direction, or with a different
24466 LC_CTYPE category setting than on earlier function calls, the behavior is undefined.

24467 ERRORS
24468 No errors are defined.

24469 EXAMPLES
24470 None.

24471 APPLICATION USAGE
24472 The mbstate_t object is used to describe the current conversion state from a particular character
24473 sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the
24474 LC_CTYPE category of the current locale.

24475 The initial conversion state corresponds, for a conversion in either direction, to the beginning of
24476 a new character sequence in the initial shift state. A zero valued mbstate_t object is at least one
24477 way to describe an initial conversion state. A zero valued mbstate_t object can be used to initiate
24478 conversion involving any character sequence, in any LC_CTYPE category setting.

24479 RATIONALE
24480 None.

24481 FUTURE DIRECTIONS
24482 None.

24483 SEE ALSO
24484 mbrlen(), mbrtowc(), wcrtomb(), mbsrtowcs(), wcsrtombs(), the Base Definitions volume of |
24485 IEEE Std. 1003.1-200x, <wchar.h> |

24486 CHANGE HISTORY
24487 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
24488 (E).

System Interfaces, Issue 6 1255

mbsrtowcs() System Interfaces

24489 NAME
24490 mbsrtowcs — convert a character string to a wide-character string (restartable)

24491 SYNOPSIS
24492 #include <wchar.h>

24493 size_t mbsrtowcs(wchar_t *restrict dst , const char **restrict src , |
24494 size_t len , mbstate_t *restrict ps); |

24495 DESCRIPTION |
24496 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24497 conflict between the requirements described here and the ISO C standard is unintentional. This
24498 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24499 The mbsrtowcs() function shall convert a sequence of characters, beginning in the conversion
24500 state described by the object pointed to by ps, from the array indirectly pointed to by src into a
24501 sequence of corresponding wide characters. If dst is not a null pointer, the converted characters
24502 are stored into the array pointed to by dst. Conversion continues up to and including a
24503 terminating null character, which is also stored. Conversion stops early in either of the following
24504 cases:

24505 • A sequence of bytes is encountered that does not form a valid character.

24506 • len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

24507 Each conversion takes place as if by a call to the mbrtowc() function.

24508 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
24509 conversion stopped due to reaching a terminating null character) or the address just past the last
24510 character converted (if any). If conversion stopped due to reaching a terminating null character,
24511 and if dst is not a null pointer, the resulting state described is the initial conversion state.

24512 If ps is a null pointer, the mbsrtowcs() function uses its own internal mbstate_t object, which is
24513 initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
24514 pointed to by ps is used to completely describe the current conversion state of the associated
24515 character sequence. The implementation behaves as if no function defined in this volume of
24516 IEEE Std. 1003.1-200x calls mbsrtowcs().

24517 XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

24518 RETURN VALUE
24519 If the input conversion encounters a sequence of bytes that do not form a valid character, an
24520 encoding error occurs. In this case, the mbsrtowcs() function stores the value of the macro
24521 [EILSEQ] in errno and shall return (size_t)−1; the conversion state is undefined. Otherwise, it |
24522 shall return the number of characters successfully converted, not including the terminating null
24523 (if any).

24524 ERRORS
24525 The mbsrtowcs() function may fail if:

24526 [EINVAL] ps points to an object that contains an invalid conversion state. |

24527 [EILSEQ] Invalid character sequence is detected. |

1256 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbsrtowcs()

24528 EXAMPLES
24529 None.

24530 APPLICATION USAGE
24531 None.

24532 RATIONALE
24533 None.

24534 FUTURE DIRECTIONS
24535 None.

24536 SEE ALSO
24537 mbsinit(), mbrtowc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

24538 CHANGE HISTORY
24539 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
24540 (E). |

24541 Issue 6 |
24542 The mbsrtowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1257

mbstowcs() System Interfaces

24543 NAME
24544 mbstowcs — convert a character string to a wide-character string

24545 SYNOPSIS
24546 #include <stdlib.h>

24547 size_t mbstowcs(wchar_t *restrict pwcs , const char *restrict s, |
24548 size_t n); |

24549 DESCRIPTION |
24550 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24551 conflict between the requirements described here and the ISO C standard is unintentional. This
24552 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24553 The mbstowcs() function shall convert a sequence of characters that begins in the initial shift
24554 state from the array pointed to by s into a sequence of corresponding wide-character codes and
24555 stores not more than n wide-character codes into the array pointed to by pwcs. No characters
24556 that follow a null byte (which is converted into a wide-character code with value 0) shall be
24557 examined or converted. Each character is converted as if by a call to mbtowc(), except that the
24558 shift state of mbtowc() is not affected.

24559 No more than n elements shall be modified in the array pointed to by pwcs. If copying takes
24560 place between objects that overlap, the behavior is undefined.

24561 XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale. If
24562 pwcs is a null pointer, mbstowcs() shall return the length required to convert the entire array
24563 regardless of the value of n, but no values are stored.

24564 RETURN VALUE
24565 CX If an invalid character is encountered, mbstowcs() shall return (size_t)−1 and may set errno to
24566 indicate the error. Otherwise, mbstowcs() shall return the number of the array elements modified
24567 (or required if pwcs is null), not including a terminating 0 code, if any. The array shall not be
24568 zero-terminated if the value returned is n.

24569 ERRORS
24570 The mbstowcs() function may fail if:

24571 XSI [EILSEQ] Invalid byte sequence is detected. |

24572 EXAMPLES
24573 None.

24574 APPLICATION USAGE
24575 None.

24576 RATIONALE
24577 None.

24578 FUTURE DIRECTIONS
24579 None.

24580 SEE ALSO
24581 mblen(), mbtowc(), wctomb(), wcstombs(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
24582 <stdlib.h>

CHANGE24583 HISTORY
24584 First released in Issue 4. Aligned with the ISO C standard. |

1258 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbstowcs()

24585 Issue 6 |
24586 The mbstowcs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1259

mbtowc() System Interfaces

24587 NAME
24588 mbtowc — convert a character to a wide-character code

24589 SYNOPSIS
24590 #include <stdlib.h>

24591 int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n); |

24592 DESCRIPTION |
24593 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24594 conflict between the requirements described here and the ISO C standard is unintentional. This
24595 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24596 If s is not a null pointer, mbtowc() shall determine the number of the bytes that constitute the
24597 character pointed to by s. It then determines the wide-character code for the value of type
24598 wchar_t that corresponds to that character. (The value of the wide-character code corresponding
24599 to the null byte is 0.) If the character is valid and pwc is not a null pointer, mbtowc() stores the
24600 wide-character code in the object pointed to by pwc.

24601 The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
24602 state-dependent encoding, this function is placed into its initial state by a call for which its
24603 character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
24604 pointer cause the internal state of the function to be altered as necessary. A call with s as a null
24605 pointer causes this function to return a non-zero value if encodings have state dependency, and
24606 0 otherwise. If the implementation employs special bytes to change the shift state, these bytes do
24607 not produce separate wide-character codes, but are grouped with an adjacent character.
24608 Changing the LC_CTYPE category causes the shift state of this function to be indeterminate. At
24609 most n bytes of the array pointed to by s shall be examined.

24610 The implementation shall behave as if no function defined in this volume of
24611 IEEE Std. 1003.1-200x calls mbtowc().

24612 RETURN VALUE
24613 If s is a null pointer, mbtowc() shall return a non-zero or 0 value, if character encodings,
24614 respectively, do or do not have state-dependent encodings. If s is not a null pointer, mbtowc()
24615 shall either return 0 (if s points to the null byte), or return the number of bytes that constitute the
24616 CX converted character (if the next n or fewer bytes form a valid character), or return −1 and may
24617 set errno to indicate the error(if they do not form a valid character).

24618 In no case shall the value returned be greater than n or the value of the {MB_CUR_MAX} macro.

24619 ERRORS
24620 The mbtowc() function may fail if:

24621 XSI [EILSEQ] Invalid character sequence is detected. |

24622 EXAMPLES
24623 None.

24624 APPLICATION USAGE
24625 None.

24626 RATIONALE
24627 None.

24628 FUTURE DIRECTIONS
24629 None.

1260 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mbtowc()

24630 SEE ALSO
24631 mblen(), mbstowcs(), wctomb(), wcstombs(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
24632 <stdlib.h>

CHANGE24633 HISTORY
24634 First released in Issue 4. Aligned with the ISO C standard. |

24635 Issue 6 |
24636 The mbtowc() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1261

memccpy() System Interfaces

24637 NAME
24638 memccpy — copy bytes in memory

24639 SYNOPSIS
24640 XSI #include <string.h>

24641 void *memccpy(void *restrict s1 , const void *restrict s2 , |
24642 int c, size_t n); |
24643 |

24644 DESCRIPTION
24645 The memccpy() function shall copy bytes from memory area s2 into s1, stopping after the first
24646 occurrence of byte c (converted to an unsigned char) is copied, or after n bytes are copied,
24647 whichever comes first. If copying takes place between objects that overlap, the behavior is
24648 undefined.

24649 RETURN VALUE
24650 The memccpy() function shall return a pointer to the byte after the copy of c in s1, or a null
24651 pointer if c was not found in the first n bytes of s2.

24652 ERRORS
24653 No errors are defined.

24654 EXAMPLES
24655 None.

24656 APPLICATION USAGE
24657 The memccpy() function does not check for the overflow of the receiving memory area.

24658 RATIONALE
24659 None.

24660 FUTURE DIRECTIONS
24661 None.

24662 SEE ALSO
24663 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24664 CHANGE HISTORY
24665 First released in Issue 1. Derived from Issue 1 of the SVID. |

24666 Issue 4
24667 The type of argument s2 is changed from void* to const void*.

24668 Reference to use of the <memory.h> header is removed from the APPLICATION USAGE
24669 section.

24670 The FUTURE DIRECTIONS section is removed. |

24671 Issue 6 |
24672 The restrict keyword is added to the memccpy() prototype for alignment with the |
24673 ISO/IEC 9899: 1999 standard. |

1262 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces memchr()

24674 NAME
24675 memchr — find byte in memory

24676 SYNOPSIS
24677 #include <string.h>

24678 void *memchr(const void * s, int c, size_t n);

24679 DESCRIPTION
24680 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24681 conflict between the requirements described here and the ISO C standard is unintentional. This
24682 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24683 The memchr() function shall locate the first occurrence of c (converted to an unsigned char) in
24684 the initial n bytes (each interpreted as unsigned char) of the object pointed to by s.

24685 RETURN VALUE
24686 The memchr() function shall return a pointer to the located byte, or a null pointer if the byte does
24687 not occur in the object.

24688 ERRORS
24689 No errors are defined.

24690 EXAMPLES
24691 None.

24692 APPLICATION USAGE
24693 None.

24694 RATIONALE
24695 None.

24696 FUTURE DIRECTIONS
24697 None.

24698 SEE ALSO
24699 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24700 CHANGE HISTORY
24701 First released in Issue 1. Derived from Issue 1 of the SVID. |

24702 Issue 4
24703 The APPLICATION USAGE section is removed.

24704 The following changes are incorporated for alignment with the ISO C standard:

24705 • The function is no longer marked as an extension.

24706 • The type of argument s is changed from void* to const void*.

System Interfaces, Issue 6 1263

memcmp() System Interfaces

24707 NAME
24708 memcmp — compare bytes in memory

24709 SYNOPSIS
24710 #include <string.h>

24711 int memcmp(const void * s1 , const void * s2 , size_t n);

24712 DESCRIPTION
24713 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24714 conflict between the requirements described here and the ISO C standard is unintentional. This
24715 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24716 The memcmp() function shall compare the first n bytes (each interpreted as unsigned char) of the
24717 object pointed to by s1 to the first n bytes of the object pointed to by s2.

24718 The sign of a non-zero return value shall be determined by the sign of the difference between the
24719 values of the first pair of bytes (both interpreted as type unsigned char) that differ in the objects
24720 being compared.

24721 RETURN VALUE
24722 The memcmp() function shall return an integer greater than, equal to, or less than 0, if the object
24723 pointed to by s1 is greater than, equal to, or less than the object pointed to by s2, respectively.

24724 ERRORS
24725 No errors are defined.

24726 EXAMPLES
24727 None.

24728 APPLICATION USAGE
24729 None.

24730 RATIONALE
24731 None.

24732 FUTURE DIRECTIONS
24733 None.

24734 SEE ALSO
24735 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24736 CHANGE HISTORY
24737 First released in Issue 1. Derived from Issue 1 of the SVID. |

24738 Issue 4
24739 The RETURN VALUE section is clarified.

24740 The APPLICATION USAGE section is removed.

24741 The following changes are incorporated for alignment with the ISO C standard:

24742 • The function is no longer marked as an extension.

24743 • The type of arguments s1 and s2 are changed from void* to const void*.

1264 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces memcpy()

24744 NAME
24745 memcpy — copy bytes in memory

24746 SYNOPSIS
24747 #include <string.h>

24748 void *memcpy(void *restrict s1 , const void *restrict s2 , size_t n); |

24749 DESCRIPTION |
24750 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24751 conflict between the requirements described here and the ISO C standard is unintentional. This
24752 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24753 The memcpy() function shall copy n bytes from the object pointed to by s2 into the object pointed
24754 to by s1. If copying takes place between objects that overlap, the behavior is undefined.

24755 RETURN VALUE
24756 The memcpy() function shall return s1; no return value is reserved to indicate an error.

24757 ERRORS
24758 No errors are defined.

24759 EXAMPLES
24760 None.

24761 APPLICATION USAGE
24762 The memcpy() function does not check for the overflowing of the receiving memory area.

24763 RATIONALE
24764 None.

24765 FUTURE DIRECTIONS
24766 None.

24767 SEE ALSO
24768 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24769 CHANGE HISTORY
24770 First released in Issue 1. Derived from Issue 1 of the SVID. |

24771 Issue 4
24772 Reference to use of the <memory.h> header is removed from the APPLICATION USAGE
24773 section, and a note about overflow checking has been added.

24774 The FUTURE DIRECTIONS section is removed.

24775 The following changes are incorporated for alignment with the ISO C standard:

24776 • The function is no longer marked as an extension.

24777 • The type of argument s2 is changed from void* to const void*.

24778 Issue 6 |
24779 The memcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1265

memmove() System Interfaces

24780 NAME
24781 memmove — copy bytes in memory with overlapping areas

24782 SYNOPSIS
24783 #include <string.h>

24784 void *memmove(void * s1 , const void * s2 , size_t n);

24785 DESCRIPTION
24786 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24787 conflict between the requirements described here and the ISO C standard is unintentional. This
24788 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24789 The memmove() function shall copy n bytes from the object pointed to by s2 into the object
24790 pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2 are first
24791 copied into a temporary array of n bytes that does not overlap the objects pointed to by s1 and
24792 s2, and then the n bytes from the temporary array are copied into the object pointed to by s1.

24793 RETURN VALUE
24794 The memmove() function shall return s1; no return value is reserved to indicate an error.

24795 ERRORS
24796 No errors are defined.

24797 EXAMPLES
24798 None.

24799 APPLICATION USAGE
24800 None.

24801 RATIONALE
24802 None.

24803 FUTURE DIRECTIONS
24804 None.

24805 SEE ALSO
24806 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24807 CHANGE HISTORY
24808 First released in Issue 4. Derived from the ANSI C standard. |

1266 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces memset()

24809 NAME
24810 memset — set bytes in memory

24811 SYNOPSIS
24812 #include <string.h>

24813 void *memset(void * s, int c, size_t n);

24814 DESCRIPTION
24815 CX The functionality described on this reference page is aligned with the ISO C standard. Any
24816 conflict between the requirements described here and the ISO C standard is unintentional. This
24817 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

24818 The memset() function shall copy c (converted to an unsigned char) into each of the first n bytes
24819 of the object pointed to by s.

24820 RETURN VALUE
24821 The memset() function shall return s; no return value is reserved to indicate an error.

24822 ERRORS
24823 No errors are defined.

24824 EXAMPLES
24825 None.

24826 APPLICATION USAGE
24827 None.

24828 RATIONALE
24829 None.

24830 FUTURE DIRECTIONS
24831 None.

24832 SEE ALSO
24833 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

24834 CHANGE HISTORY
24835 First released in Issue 1. Derived from Issue 1 of the SVID. |

24836 Issue 4
24837 The APPLICATION USAGE section is removed.

24838 The following change is incorporated for alignment with the ISO C standard:

24839 • The function is no longer marked as an extension.

System Interfaces, Issue 6 1267

mkdir() System Interfaces

24840 NAME
24841 mkdir — make a directory

24842 SYNOPSIS
24843 #include <sys/stat.h>

24844 int mkdir(const char * path , mode_t mode);

24845 DESCRIPTION
24846 The mkdir() function creates a new directory with name path . The file permission bits of the new
24847 directory are initialized from mode. These file permission bits of the mode argument are modified
24848 by the process’ file creation mask.

24849 When bits in mode other than the file permission bits are set, the meaning of these additional bits |
24850 is implementation-defined. |

24851 The directory’s user ID is set to the process’ effective user ID. The directory’s group ID shall be
24852 set to the group ID of the parent directory or to the effective group ID of the process.

24853 The newly created directory shall be an empty directory.

24854 If path names a symbolic link, mkdir() shall fail and set errno to [EEXIST].

24855 Upon successful completion, mkdir() shall mark for update the st_atime , st_ctime, and st_mtime
24856 fields of the directory. Also, the st_ctime and st_mtime fields of the directory that contains the
24857 new entry shall be marked for update.

24858 RETURN VALUE
24859 Upon successful completion, mkdir() shall return 0. Otherwise, −1 shall be returned, no directory
24860 shall be created, and errno shall be set to indicate the error.

24861 ERRORS
24862 The mkdir() function shall fail if:

24863 [EACCES] Search permission is denied on a component of the path prefix, or write |
24864 permission is denied on the parent directory of the directory to be created.

24865 [EEXIST] The named file exists. |

24866 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
24867 argument. |

24868 [EMLINK] The link count of the parent directory would exceed {LINK_MAX}. |

24869 [ENAMETOOLONG] |
24870 The length of the path argument exceeds {PATH_MAX} or a path name
24871 component is longer than {NAME_MAX}. |

24872 [ENOENT] A component of the path prefix specified by path does not name an existing |
24873 directory or path is an empty string.

24874 [ENOSPC] The file system does not contain enough space to hold the contents of the new |
24875 directory or to extend the parent directory of the new directory.

24876 [ENOTDIR] A component of the path prefix is not a directory. |

24877 [EROFS] The parent directory resides on a read-only file system. |

24878 The mkdir() function may fail if:

24879 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
24880 resolution of the path argument. |

1268 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mkdir()

24881 [ENAMETOOLONG] |
24882 As a result of encountering a symbolic link in resolution of the path argument,
24883 the length of the substituted path name string exceeded {PATH_MAX}. |

24884 EXAMPLES

24885 Creating a Directory

24886 The following example shows how to create a directory named /home/cnd/mod1, with
24887 read/write/search permissions for owner and group, and with read/search permissions for
24888 others.

24889 #include <sys/types.h>
24890 #include <sys/stat.h>

24891 int status;
24892 ...
24893 status = mkdir("/home/cnd/mod1", S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

24894 APPLICATION USAGE
24895 None.

24896 RATIONALE
24897 The mkdir() function originated in 4.2 BSD and was added to System V in Release 3.0.

24898 4.3 BSD detects [ENAMETOOLONG]. |

24899 See getgroups() about the group of a newly created directory.

24900 FUTURE DIRECTIONS
24901 None.

24902 SEE ALSO
24903 umask(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h>, <sys/types.h> |

24904 CHANGE HISTORY
24905 First released in Issue 3.

24906 Entry included for alignment with the POSIX.1-1988 standard.

24907 Issue 4
24908 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
24909 XSI-conformant systems.

24910 The following change is incorporated for alignment with the ISO POSIX-1 standard:

24911 • The type of argument path is changed from char* to const char*.

24912 The following changes are incorporated for alignment with the FIPS requirements:

24913 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
24914 name component is larger than {NAME_MAX} is now defined as mandatory and marked as
24915 an extension.

24916 Issue 4, Version 2
24917 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

24918 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
24919 name resolution.

24920 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
24921 intermediate result of path name resolution of a symbolic link.

System Interfaces, Issue 6 1269

mkdir() System Interfaces

24922 Issue 6
24923 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

24924 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

24925 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
24926 This is since behavior may vary from one file system to another.

24927 The following new requirements on POSIX implementations derive from alignment with the
24928 Single UNIX Specification:

24929 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
24930 required for conforming implementations of previous POSIX specifications, it was not
24931 required for UNIX applications.

24932 • The [ELOOP] mandatory error condition is added.

24933 • A second [ENAMETOOLONG] is added as an optional error condition.

24934 The following changes were made to align with the IEEE P1003.1a draft standard:

24935 • The [ELOOP] optional error condition is added.

1270 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mkfifo()

24936 NAME
24937 mkfifo — make a FIFO special file

24938 SYNOPSIS
24939 #include <sys/stat.h>

24940 int mkfifo(const char * path , mode_t mode);

24941 DESCRIPTION
24942 The mkfifo () function shall create a new FIFO special file named by the path name pointed to by
24943 path . The file permission bits of the new FIFO are initialized from mode. The file permission bits
24944 of the mode argument are modified by the process’ file creation mask.

24945 When bits in mode other than the file permission bits are set, the effect is implementation- |
24946 defined. |

24947 If path names a symbolic link, mkfifo () shall fail and set errno to [EEXIST]. |

24948 The FIFO’s user ID shall be set to the process’ effective user ID. The FIFO’s group ID shall be set |
24949 to the group ID of the parent directory or to the effective group ID of the process. |

24950 Upon successful completion, mkfifo () shall mark for update the st_atime , st_ctime, and st_mtime
24951 fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new
24952 entry shall be marked for update.

24953 RETURN VALUE
24954 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned, no FIFO shall
24955 be created, and errno shall be set to indicate the error.

24956 ERRORS
24957 The mkfifo () function shall fail if:

24958 [EACCES] A component of the path prefix denies search permission, or write permission |
24959 is denied on the parent directory of the FIFO to be created.

24960 [EEXIST] The named file already exists. |

24961 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
24962 argument. |

24963 [ENAMETOOLONG] |
24964 The length of the path argument exceeds {PATH_MAX} or a path name
24965 component is longer than {NAME_MAX}. |

24966 [ENOENT] A component of the path prefix specified by path does not name an existing |
24967 directory or path is an empty string.

24968 [ENOSPC] The directory that would contain the new file cannot be extended or the file |
24969 system is out of file-allocation resources.

24970 [ENOTDIR] A component of the path prefix is not a directory. |

24971 [EROFS] The named file resides on a read-only file system. |

24972 The mkfifo () function may fail if:

24973 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
24974 resolution of the path argument. |

24975 [ENAMETOOLONG] |
24976 As a result of encountering a symbolic link in resolution of the path argument,
24977 the length of the substituted path name string exceeded {PATH_MAX}. |

System Interfaces, Issue 6 1271

mkfifo() System Interfaces

24978 EXAMPLES

24979 Creating a FIFO File

24980 The following example shows how to create a FIFO file named /home/cnd/mod_done, with
24981 read/write permissions for owner, and with read permissions for group and others.

24982 #include <sys/types.h>
24983 #include <sys/stat.h>

24984 int status;
24985 ...
24986 status = mkfifo("/home/cnd/mod_done", S_IWUSR | S_IRUSR |
24987 S_IRGRP | S_IROTH);

24988 APPLICATION USAGE
24989 None.

24990 RATIONALE
24991 The syntax of this function is intended to maintain compatibility with historical
24992 implementations of mknod(). The latter function was included in the 1984 /usr/group standard
24993 but only for use in creating FIFO special files. The mknod() function was originally excluded
24994 from the POSIX.1-1988 standard as implementation-defined and replaced by mkdir() and |
24995 mkfifo (). The mknod() function is now included for alignment with the Single UNIX
24996 Specification.

24997 See getgroups() about the group of a newly created FIFO.

24998 FUTURE DIRECTIONS
24999 None.

25000 SEE ALSO
25001 umask(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/stat.h>, <sys/types.h> |

25002 CHANGE HISTORY
25003 First released in Issue 3.

25004 Entry included for alignment with the POSIX.1-1988 standard.

25005 Issue 4
25006 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
25007 XSI-conformant systems.

25008 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

25009 • The type of argument path is changed from char* to const char*.

25010 • The description of [EACCES] is updated to indicate that this error is also returned if write
25011 permission is denied to the parent directory.

25012 The following changes are incorporated for alignment with the FIPS requirements:

25013 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
25014 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
25015 an extension.

25016 Issue 4, Version 2
25017 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

25018 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
25019 name resolution.

1272 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mkfifo()

25020 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
25021 intermediate result of path name resolution of a symbolic link.

25022 Issue 6
25023 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

25024 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

25025 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
25026 This is since behavior may vary from one file system to another.

25027 The following new requirements on POSIX implementations derive from alignment with the
25028 Single UNIX Specification:

25029 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
25030 required for conforming implementations of previous POSIX specifications, it was not
25031 required for UNIX applications.

25032 • The [ELOOP] mandatory error condition is added.

25033 • A second [ENAMETOOLONG] is added as an optional error condition.

25034 The following changes were made to align with the IEEE P1003.1a draft standard:

25035 • The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 1273

mknod() System Interfaces

25036 NAME
25037 mknod — make a directory, a special or regular file

25038 SYNOPSIS
25039 XSI #include <sys/stat.h>

25040 int mknod(const char * path , mode_t mode, dev_t dev);
25041

25042 DESCRIPTION
25043 The mknod() function shall create a new file named by the path name to which the argument
25044 path points.

25045 The file type for path is OR’ed into the mode argument, and the application shall select one of the
25046 following symbolic constants:
25047 __
25048 Name Description__
25049 S_IFIFO FIFO-special
25050 S_IFCHR Character-special (non-portable)
25051 S_IFDIR Directory (non-portable)
25052 S_IFBLK Block-special (non-portable)
25053 S_IFREG Regular (non-portable)__LL

L
L
L
L
L
L

LL
L
L
L
L
L
L

LL
L
L
L
L
L
L

25054 The only portable use of mknod() is to create a FIFO-special file. If mode is not S_IFIFO or dev is
25055 not 0, the behavior of mknod() is unspecified.

25056 The permissions for the new file are OR’ed into the mode argument, and may be selected from
25057 any combination of the following symbolic constants:
25058 ___
25059 Name Description___
25060 S_ISUID Set user ID on execution.
25061 S_ISGID Set group ID on execution.
25062 S_IRWXU Read, write, or execute (search) by owner.
25063 S_IRUSR Read by owner.
25064 S_IWUSR Write by owner.
25065 S_IXUSR Execute (search) by owner.
25066 S_IRWXG Read, write, or execute (search) by group.
25067 S_IRGRP Read by group.
25068 S_IWGRP Write by group.
25069 S_IXGRP Execute (search) by group.
25070 S_IRWXO Read, write, or execute (search) by others.
25071 S_IROTH Read by others.
25072 S_IWOTH Write by others.
25073 S_IXOTH Execute (search) by others.
25074 S_ISVTX On directories, restricted deletion flag.___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

25075 The user ID of the file is initialized to the effective user ID of the process. The group ID of the file
25076 is initialized to either the effective group ID of the process or the group ID of the parent
25077 directory.

25078 The owner, group, and other permission bits of mode are modified by the file mode creation
25079 mask of the process. The mknod() function clears each bit whose corresponding bit in the file
25080 mode creation mask of the process is set.

1274 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mknod()

25081 If path names a symbolic link, mknod() shall fail and set errno to [EEXIST]. |

25082 Upon successful completion, mknod() shall mark for update the st_atime , st_ctime, and st_mtime |
25083 fields of the file. Also, the st_ctime and st_mtime fields of the directory that contains the new
25084 entry shall be marked for update.

25085 Only a process with appropriate privileges may invoke mknod() for file types other than FIFO-
25086 special.

25087 RETURN VALUE
25088 Upon successful completion, mknod() shall return 0. Otherwise, it shall return −1, the new file
25089 shall not be created, and errno shall be set to indicate the error.

25090 ERRORS
25091 The mknod() function shall fail if:

25092 [EACCES] A component of the path prefix denies search permission, or write permission |
25093 is denied on the parent directory. |

25094 [EEXIST] The named file exists. |

25095 [EINVAL] An invalid argument exists. |

25096 [EIO] An I/O error occurred while accessing the file system. |

25097 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
25098 argument. |

25099 [ENAMETOOLONG] |
25100 The length of a path name exceeds {PATH_MAX} or a path name component |
25101 is longer than {NAME_MAX}. |

25102 [ENOENT] A component of the path prefix specified by path does not name an existing |
25103 directory or path is an empty string. |

25104 [ENOSPC] The directory that would contain the new file cannot be extended or the file |
25105 system is out of file allocation resources. |

25106 [ENOTDIR] A component of the path prefix is not a directory. |

25107 [EPERM] The invoking process does not have appropriate privileges and the file type is |
25108 not FIFO-special. |

25109 [EROFS] The directory in which the file is to be created is located on a read-only file |
25110 system. |

25111 The mknod() function may fail if:

25112 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
25113 resolution of the path argument. |

25114 [ENAMETOOLONG] |
25115 Path name resolution of a symbolic link produced an intermediate result
25116 whose length exceeds {PATH_MAX}.

System Interfaces, Issue 6 1275

mknod() System Interfaces

25117 EXAMPLES

25118 Creating a FIFO Special File

25119 The following example shows how to create a FIFO special file named /home/cnd/mod_done,
25120 with read/write permissions for owner, and with read permissions for group and others.

25121 #include <sys/types.h>
25122 #include <sys/stat.h>

25123 dev_t dev;
25124 int status;
25125 ...
25126 status = mknod("/home/cnd/mod_done", S_IFIFO | S_IWUSR |
25127 S_IRUSR | S_IRGRP | S_IROTH, dev);

25128 APPLICATION USAGE
25129 mkfifo () is preferred over this function for making FIFO special files.

25130 RATIONALE
25131 None.

25132 FUTURE DIRECTIONS
25133 None.

25134 SEE ALSO
25135 chmod(), creat(), exec, mkdir(), mkfifo (), open(), stat(), umask(), the Base Definitions volume of |
25136 IEEE Std. 1003.1-200x, <sys/stat.h> |

25137 CHANGE HISTORY
25138 First released in Issue 4, Version 2.

25139 Issue 5
25140 Moved from X/OPEN UNIX extension to BASE.

25141 Issue 6
25142 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

25143 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
25144 [ELOOP] error condition is added. |

1276 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mkstemp()

25145 NAME
25146 mkstemp — make a unique file name

25147 SYNOPSIS
25148 XSI #include <stdlib.h>

25149 int mkstemp(char * template);
25150

25151 DESCRIPTION
25152 The mkstemp() function shall replace the contents of the string pointed to by template by a unique
25153 file name, and return a file descriptor for the file open for reading and writing. The function thus
25154 prevents any possible race condition between testing whether the file exists and opening it for
25155 use. The string in template should look like a file name with six trailing Xs; mkstemp() replaces
25156 each X with a character from the portable file name character set. The characters are chosen such
25157 that the resulting name does not duplicate the name of an existing file at the time of a call to
25158 mkstemp().

25159 RETURN VALUE
25160 Upon successful completion, mkstemp() shall return an open file descriptor. Otherwise, −1 shall
25161 be returned if no suitable file could be created.

25162 ERRORS
25163 No errors are defined.

25164 EXAMPLES

25165 Generating a File Name

25166 The following example creates a file with a 10-character name beginning with the characters
25167 "file" and opens the file for reading and writing. The value returned as the value of fd is a file
25168 descriptor that identifies the file.

25169 #include <stdlib.h>
25170 ...
25171 char *template = "/tmp/fileXXXXXX";
25172 int fd;

25173 fd = mkstemp(template);

25174 APPLICATION USAGE
25175 It is possible to run out of letters.

25176 The mkstemp() function need not check to determine whether the file name part of template
25177 exceeds the maximum allowable file name length.

25178 RATIONALE
25179 None.

25180 FUTURE DIRECTIONS
25181 None.

25182 SEE ALSO
25183 getpid(), open(), tmpfile(), tmpnam(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
25184 <stdlib.h>

System Interfaces, Issue 6 1277

mkstemp() System Interfaces

25185 CHANGE HISTORY
25186 First released in Issue 4, Version 2.

25187 Issue 5
25188 Moved from X/OPEN UNIX extension to BASE.

1278 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mktemp()

25189 NAME
25190 mktemp — make a unique file name (LEGACY)

25191 SYNOPSIS
25192 XSI #include <stdlib.h>

25193 char *mktemp(char * template);
25194

25195 DESCRIPTION
25196 The mktemp() function shall replace the contents of the string pointed to by template by a unique
25197 file name and return template . The application shall initialize template to be a file name with six
25198 trailing Xs; mktemp() shall replace each X with a single byte character from the portable file
25199 name character set.

25200 RETURN VALUE
25201 The mktemp() function shall return the pointer template . If a unique name cannot be created,
25202 template shall point to a null string.

25203 ERRORS
25204 No errors are defined.

25205 EXAMPLES

25206 Generating a File Name

25207 The following example replaces the contents of the "template" string with a 10-character file
25208 name beginning with the characters "file" and returns a pointer to the "template" string
25209 that contains the new file name.

25210 #include <stdlib.h>
25211 ...
25212 char *template = "/tmp/fileXXXXXX";
25213 char *ptr;

25214 ptr = mktemp(template);

25215 APPLICATION USAGE
25216 Between the time a path name is created and the file opened, it is possible for some other process
25217 to create a file with the same name. The mkstemp() function avoids this problem and is preferred
25218 over this function.

25219 RATIONALE
25220 None.

25221 FUTURE DIRECTIONS
25222 This function may be withdrawn in a future version.

25223 SEE ALSO
25224 mkstemp(), tmpfile(), tmpnam(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

25225 CHANGE HISTORY
25226 First released in Issue 4, Version 2.

25227 Issue 5
25228 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1279

mktemp() System Interfaces

25229 Issue 6
25230 This function is marked LEGACY.

25231 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1280 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mktime()

25232 NAME
25233 mktime — convert broken-down time into time since the Epoch

25234 SYNOPSIS
25235 #include <time.h>

25236 time_t mktime(struct tm * timeptr);

25237 DESCRIPTION
25238 CX The functionality described on this reference page is aligned with the ISO C standard. Any
25239 conflict between the requirements described here and the ISO C standard is unintentional. This
25240 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

25241 The mktime() function shall convert the broken-down time, expressed as local time, in the
25242 structure pointed to by timeptr, into a time since the Epoch value with the same encoding as that
25243 of the values returned by time(). The original values of the tm_wday and tm_yday components of
25244 the structure are ignored, and the original values of the other components are not restricted to
25245 the ranges described in <time.h>.

25246 CX A positive or 0 value for tm_isdst shall cause mktime() to presume initially that Daylight Savings
25247 Time, respectively, is or is not in effect for the specified time. A negative value for tm_isdst shall
25248 cause mktime() to attempt to determine whether Daylight Saving Time is in effect for the
25249 specified time.

25250 Local timezone information shall be set as though mktime() called tzset().

25251 Upon successful completion, the values of the tm_wday and tm_yday components of the structure
25252 shall be set appropriately, and the other components are set to represent the specified time since
25253 the Epoch, but with their values forced to the ranges indicated in the <time.h> entry; the final
25254 value of tm_mday shall not be set until tm_mon and tm_year are determined.

25255 RETURN VALUE
25256 The mktime() function shall return the specified time since the Epoch encoded as a value of type
25257 time_t. If the time since the Epoch cannot be represented, the function shall return the value
25258 (time_t)−1.

25259 ERRORS
25260 No errors are defined.

25261 EXAMPLES
25262 What day of the week is July 4, 2001?

25263 #include <stdio.h>
25264 #include <time.h>

25265 struct tm time_str;

25266 char daybuf[20];

25267 int main(void)
25268 {
25269 time_str.tm_year = 2001 — 1900;
25270 time_str.tm_mo n = 7 — 1;
25271 time_str.tm_mday = 4;
25272 time_str.tm_hour = 0;
25273 time_str.tm_min = 0;
25274 time_str.tm_sec = 1;
25275 time_str.tm_isdst = −1;
25276 if (mktime(&time_str) == -1)

System Interfaces, Issue 6 1281

mktime() System Interfaces

25277 (void)puts("-unknown-");
25278 else {
25279 (void)strftime(daybuf, sizeof(daybuf), "%A", &time_str);
25280 (void)puts(daybuf);
25281 }
25282 return 0;
25283 }

25284 APPLICATION USAGE
25285 None.

25286 RATIONALE
25287 None.

25288 FUTURE DIRECTIONS
25289 None.

25290 SEE ALSO
25291 asctime(), clock (), ctime(), difftime (), gmtime(), localtime (), strftime(), strptime(), time(), utime(), |
25292 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

25293 CHANGE HISTORY
25294 First released in Issue 3.

25295 Entry included for alignment with the POSIX.1-1988 standard and the ANSI C standard.

25296 Issue 4
25297 In the DESCRIPTION, a paragraph is added indicating the possible settings of tm_isdst , and
25298 reference to setting of tm_sec for leap seconds or double leap seconds is removed (although this
25299 functionality is still supported).

25300 In the EXAMPLES section, the sample code is updated to use ISO C standard syntax.

25301 Issue 6
25302 Extensions beyond the ISO C standard are now marked.

1282 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mlock()

25303 NAME
25304 mlock, munlock — lock or unlock a range of process address space (REALTIME)

25305 SYNOPSIS
25306 MLR #include <sys/mman.h>

25307 int mlock(const void * addr , size_t len);
25308 int munlock(const void * addr , size_t len);
25309

25310 DESCRIPTION
25311 The mlock() function shall cause those whole pages containing any part of the address space of
25312 the process starting at address addr and continuing for len bytes to be memory-resident until
25313 unlocked or until the process exits or execs another process image. The implementation may
25314 require that addr be a multiple of {PAGESIZE}.

25315 The munlock() function shall unlock those whole pages containing any part of the address space
25316 of the process starting at address addr and continuing for len bytes, regardless of how many
25317 times mlock() has been called by the process for any of the pages in the specified range. The
25318 implementation may require that addr be a multiple of the {PAGESIZE}.

25319 If any of the pages in the range specified to a call to munlock() are also mapped into the address
25320 spaces of other processes, any locks established on those pages by another process are
25321 unaffected by the call of this process to munlock(). If any of the pages in the range specified by a
25322 call to munlock() are also mapped into other portions of the address space of the calling process
25323 outside the range specified, any locks established on those pages via the other mappings are also
25324 unaffected by this call.

25325 Upon successful return from mlock(), pages in the specified range shall be locked and memory-
25326 resident. Upon successful return from munlock(), pages in the specified range shall be unlocked
25327 with respect to the address space of the process. Memory residency of unlocked pages is
25328 unspecified.

25329 The appropriate privilege is required to lock process memory with mlock().

25330 RETURN VALUE
25331 Upon successful completion, the mlock() and munlock() functions shall return a value of zero.
25332 Otherwise, no change is made to any locks in the address space of the process, and the function
25333 shall return a value of −1 and set errno to indicate the error.

25334 ERRORS
25335 The mlock() and munlock() functions shall fail if:

25336 [ENOMEM] Some or all of the address range specified by the addr and len arguments does |
25337 not correspond to valid mapped pages in the address space of the process.

25338 The mlock() function shall fail if:

25339 [EAGAIN] Some or all of the memory identified by the operation could not be locked |
25340 when the call was made.

25341 The mlock() and munlock() functions may fail if:

25342 [EINVAL] The addr argument is not a multiple of {PAGESIZE}. |

25343 The mlock() function may fail if:

25344 [ENOMEM] Locking the pages mapped by the specified range would exceed an |
25345 implementation-defined limit on the amount of memory that the process may |
25346 lock.

System Interfaces, Issue 6 1283

mlock() System Interfaces

25347 [EPERM] The calling process does not have the appropriate privilege to perform the |
25348 requested operation.

25349 EXAMPLES
25350 None.

25351 APPLICATION USAGE
25352 None.

25353 RATIONALE
25354 None.

25355 FUTURE DIRECTIONS
25356 None.

25357 SEE ALSO
25358 exec, exit(), fork (), mlockall (), munmap(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
25359 <sys/mman.h>

CHANGE25360 HISTORY
25361 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

25362 Issue 6
25363 The mlock() and munlock() functions are marked as part of the Range Memory Locking option. |

25364 The [ENOSYS] error condition has been removed as stubs need not be provided if an
25365 implementation does not support the Range Memory Locking option. |

1284 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mlockall()

25366 NAME
25367 mlockall, munlockall — lock/unlock the address space of a process (REALTIME)

25368 SYNOPSIS
25369 ML #include <sys/mman.h>

25370 int mlockall(int flags);
25371 int munlockall(void);
25372

25373 DESCRIPTION
25374 The mlockall () function shall cause all of the pages mapped by the address space of a process to
25375 be memory-resident until unlocked or until the process exits or execs another process image. The
25376 flags argument determines whether the pages to be locked are those currently mapped by the
25377 address space of the process, those that are mapped in the future, or both. The flags argument is
25378 constructed from the bitwise-inclusive OR of one or more of the following symbolic constants,
25379 defined in <sys/mman.h>:

25380 MCL_CURRENT Lock all of the pages currently mapped into the address space of the process.

25381 MCL_FUTURE Lock all of the pages that become mapped into the address space of the
25382 process in the future, when those mappings are established.

25383 If MCL_FUTURE is specified, and the automatic locking of future mappings eventually causes
25384 the amount of locked memory to exceed the amount of available physical memory or any other |
25385 implementation-defined limit, the behavior is implementation-defined. The manner in which the |
25386 implementation informs the application of these situations is also implementation-defined. |

25387 The munlockall () function unlocks all currently mapped pages of the address space of the
25388 process. Any pages that become mapped into the address space of the process after a call to
25389 munlockall () shall not be locked, unless there is an intervening call to mlockall () specifying
25390 MCL_FUTURE or a subsequent call to mlockall () specifying MCL_CURRENT. If pages mapped
25391 into the address space of the process are also mapped into the address spaces of other processes
25392 and are locked by those processes, the locks established by the other processes are unaffected by
25393 a call by this process to munlockall ().

25394 Upon successful return from the mlockall () function that specifies MCL_CURRENT, all currently
25395 mapped pages of the process’ address space shall be memory-resident and locked. Upon return
25396 from the munlockall () function, all currently mapped pages of the process’ address space shall be
25397 unlocked with respect to the process’ address space. The memory residency of unlocked pages is
25398 unspecified.

25399 The appropriate privilege is required to lock process memory with mlockall ().

25400 RETURN VALUE
25401 Upon successful completion, the mlockall () function shall return a value of zero. Otherwise, no
25402 additional memory shall be locked, and the function shall return a value of −1 and set errno to
25403 indicate the error. The effect of failure of mlockall () on previously existing locks in the address
25404 space is unspecified.

25405 If it is supported by the implementation, the munlockall () function shall always return a value of
25406 zero. Otherwise, the function shall return a value of −1 and set errno to indicate the error.

25407 ERRORS
25408 The mlockall () function shall fail if:

25409 [EAGAIN] Some or all of the memory identified by the operation could not be locked |
25410 when the call was made.

System Interfaces, Issue 6 1285

mlockall() System Interfaces

25411 [EINVAL] The flags argument is zero, or includes unimplemented flags. |

25412 The mlockall () function may fail if:

25413 [ENOMEM] Locking all of the pages currently mapped into the address space of the |
25414 process would exceed an implementation-defined limit on the amount of |
25415 memory that the process may lock.

25416 [EPERM] The calling process does not have the appropriate privilege to perform the |
25417 requested operation.

25418 EXAMPLES
25419 None.

25420 APPLICATION USAGE
25421 None.

25422 RATIONALE
25423 None.

25424 FUTURE DIRECTIONS
25425 None.

25426 SEE ALSO
25427 exec, exit(), fork (), mlock(), munmap(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
25428 <sys/mman.h>

CHANGE25429 HISTORY
25430 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

25431 Issue 6
25432 The mlockall () and munlockall () functions are marked as part of the Process Memory Locking |
25433 option. |

25434 The [ENOSYS] error condition has been removed as stubs need not be provided if an
25435 implementation does not support the Process Memory Locking option. |

1286 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mmap()

25436 NAME
25437 mmap — map pages of memory

25438 SYNOPSIS
25439 MF|SHM #include <sys/mman.h>

25440 void *mmap(void * addr , size_t len , int prot , int flags ,
25441 int fildes , off_t off);
25442

25443 DESCRIPTION
25444 The mmap() function shall establish a mapping between a process’ address space and a file, |
25445 TYM shared memory object, or typed memory object. The format of the call is as follows: |

25446 pa=mmap(addr , len , prot , flags , fildes , off);

25447 The mmap() function establishes a mapping between the address space of the process at an
25448 address pa for len bytes to the memory object represented by the file descriptor fildes at offset off
25449 for len bytes. The value of pa is an implementation-defined function of the parameter addr and |
25450 the values of flags , further described below. A successful mmap() call shall return pa as its result.
25451 The address range starting at pa and continuing for len bytes shall be legitimate for the possible
25452 (not necessarily current) address space of the process. The range of bytes starting at off and
25453 continuing for len bytes shall be legitimate for the possible (not necessarily current) offsets in the |
25454 TYM file, shared memory object, or typed memory object represented by fildes . |

25455 TYM If fildes represents a typed memory object opened with either the
25456 POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
25457 flag, the memory object to be mapped shall be that portion of the typed memory object allocated
25458 by the implementation as specified below. In this case, if off is non-zero, the behavior of mmap()
25459 is undefined. If fildes refers to a valid typed memory object that is not accessible from the calling
25460 process, mmap() shall fail.

25461 The mapping established by mmap() replaces any previous mappings for those whole pages
25462 containing any part of the address space of the process starting at pa and continuing for len
25463 bytes.

25464 If the size of the mapped file changes after the call to mmap() as a result of some other operation
25465 on the mapped file, the effect of references to portions of the mapped region that correspond to
25466 added or removed portions of the file is unspecified.

25467 TYM The mmap() function is supported for regular files, shared memory objects, and typed memory |
25468 objects. Support for any other type of file is unspecified. |

25469 The parameter prot determines whether read, write, execute, or some combination of accesses
25470 are permitted to the data being mapped. The prot should be either PROT_NONE or the bitwise-
25471 inclusive OR of one or more of the other flags in the following table, defined in the header
25472 <sys/mman.h>.
25473 __
25474 Symbolic Constant Description__
25475 PROT_READ Data can be read.
25476 PROT_WRITE Data can be written.
25477 PROT_EXEC Data can be executed.
25478 PROT_NONE Data cannot be accessed.__LL

L
L
L
L
L

LL
L
L
L
L
L

LL
L
L
L
L
L

25479 If an implementation cannot support the combination of access types specified by prot , the call
25480 MPR to mmap() fails. An implementation may permit accesses other than those specified by prot ; |
25481 however, if the Memory Protection option is supported, the implementation shall not permit a |

System Interfaces, Issue 6 1287

mmap() System Interfaces

25482 write to succeed where PROT_WRITE has not been set or shall not permit any access where |
25483 PROT_NONE alone has been set. The implementation shall support at least the following values |
25484 of prot : PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise-inclusive OR of
25485 PROT_READ and PROT_WRITE. If the Memory Protection option is not supported, the result of |
25486 any access that conflicts with the specified protection is undefined. The file descriptor fildes shall |
25487 have been opened with read permission, regardless of the protection options specified. If
25488 PROT_WRITE is specified, the application shall ensure that it has opened the file descriptor
25489 fildes with write permission unless MAP_PRIVATE is specified in the flags parameter as
25490 described below.

25491 The parameter flags provides other information about the handling of the mapped data. The
25492 value of flags is the bitwise-inclusive OR of these options, defined in <sys/mman.h>:
25493 __
25494 Symbolic Constant Description__
25495 MAP_SHARED Changes are shared.
25496 MAP_PRIVATE Changes are private.
25497 MAP_FIXED Interpret addr exactly.__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

25498 Implementations that do not support the Memory Mapped Files option are not required to |
25499 XSI support MAP_PRIVATE. It is implementation-defined whether MAP_FIXED shall be supported. |
25500 MAP_FIXED shall be supported on XSI-conformant systems.

25501 MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the memory
25502 object. If MAP_SHARED is specified, write references change the underlying object. If
25503 MAP_PRIVATE is specified, modifications to the mapped data by the calling process shall be
25504 visible only to the calling process and shall not change the underlying object. It is unspecified
25505 whether modifications to the underlying object done after the MAP_PRIVATE mapping is
25506 established are visible through the MAP_PRIVATE mapping. Either MAP_SHARED or
25507 MAP_PRIVATE can be specified, but not both. The mapping type is retained across fork ().

25508 TYM When fildes represents a typed memory object opened with either the
25509 POSIX_TYPED_MEM_ALLOCATE flag or the POSIX_TYPED_MEM_ALLOCATE_CONTIG
25510 flag, mmap() shall, if there are enough resources available, map len bytes allocated from the
25511 corresponding typed memory object which were not previously allocated to any process in any
25512 processor that may access that typed memory object. If there are not enough resources available,
25513 the function shall fail. If fildes represents a typed memory object opened with the
25514 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, these allocated bytes shall be contiguous
25515 within the typed memory object. If fildes represents a typed memory object opened with the
25516 POSIX_TYPED_MEM_ALLOCATE flag, these allocated bytes may be composed of non-
25517 contiguous fragments within the typed memory object. If fildes represents a typed memory
25518 object opened with neither the POSIX_TYPED_MEM_ALLOCATE_CONTIG flag nor the
25519 POSIX_TYPED_MEM_ALLOCATE flag, len bytes starting at offset off within the typed memory
25520 object are mapped, exactly as when mapping a file or shared memory object. In this case, if two
25521 processes map an area of typed memory using the same off and len values and using file
25522 descriptors that refer to the same memory pool (either from the same port or from a different
25523 port), both processes shall map the same region of storage.

25524 When MAP_FIXED is set in the flags argument, the implementation is informed that the value of
25525 pa shall be addr , exactly. If MAP_FIXED is set, mmap() may return MAP_FAILED and set errno to |
25526 [EINVAL]. If a MAP_FIXED request is successful, the mapping established by mmap() replaces
25527 any previous mappings for the process’ pages in the range [pa,pa+len). |

25528 When MAP_FIXED is not set, the implementation uses addr in an implementation-defined |
25529 manner to arrive at pa . The pa so chosen shall be an area of the address space that the |

1288 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mmap()

25530 implementation deems suitable for a mapping of len bytes to the file. All implementations
25531 interpret an addr value of 0 as granting the implementation complete freedom in selecting pa ,
25532 subject to constraints described below. A non-zero value of addr is taken to be a suggestion of a
25533 process address near which the mapping should be placed. When the implementation selects a
25534 value for pa , it never places a mapping at address 0, nor does it replace any extant mapping.

25535 The off argument is constrained to be aligned and sized according to the value returned by |
25536 sysconf() when passed _SC_PAGESIZE or _SC_PAGE_SIZE. When MAP_FIXED is specified, the
25537 application shall ensure that the argument addr also meets these constraints. The
25538 implementation performs mapping operations over whole pages. Thus, while the argument len
25539 need not meet a size or alignment constraint, the implementation shall include, in any mapping
25540 operation, any partial page specified by the range [pa,pa+len). |

25541 The system shall always zero-fill any partial page at the end of an object. Further, the system |
25542 shall never write out any modified portions of the last page of an object which are beyond its |
25543 MPR end. References within the address range starting at pa and continuing for len bytes to whole |
25544 pages following the end of an object shall result in delivery of a SIGBUS signal. |

25545 An implementation may generate SIGBUS signals when a reference would cause an error in the |
25546 mapped object, such as out-of-space condition. |

25547 The mmap() function adds an extra reference to the file associated with the file descriptor fildes |
25548 which is not removed by a subsequent close() on that file descriptor. This reference is removed
25549 when there are no more mappings to the file. |

25550 The st_atime field of the mapped file may be marked for update at any time between the mmap()
25551 call and the corresponding munmap() call. The initial read or write reference to a mapped region
25552 shall cause the file’s st_atime field to be marked for update if it has not already been marked for
25553 update.

25554 The st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and PROT_WRITE
25555 shall be marked for update at some point in the interval between a write reference to the
25556 mapped region and the next call to msync() with MS_ASYNC or MS_SYNC for that portion of
25557 the file by any process. If there is no such call and if the underlying file is modified as a result of
25558 a write reference, then these fields shall be marked for update at some time after the write
25559 reference.

25560 There may be implementation-defined limits on the number of memory regions that can be |
25561 mapped (per process or per system). |

25562 XSI If such a limit is imposed, whether the number of memory regions that can be mapped by a
25563 process is decreased by the use of shmat() is implementation-defined. |

25564 If mmap() fails for reasons other than [EBADF], [EINVAL], or [ENOTSUP], some of the
25565 mappings in the address range starting at addr and continuing for len bytes may have been
25566 unmapped.

25567 RETURN VALUE
25568 Upon successful completion, the mmap() function shall return the address at which the mapping
25569 was placed (pa); otherwise, it shall return a value of MAP_FAILED and set errno to indicate the
25570 error. The symbol MAP_FAILED is defined in the header <sys/mman.h>. No successful return
25571 from mmap() shall return the value MAP_FAILED.

25572 ERRORS
25573 The mmap() function shall fail if:

25574 [EACCES] The fildes argument is not open for read, regardless of the protection specified,
25575 or fildes is not open for write and PROT_WRITE was specified for a

System Interfaces, Issue 6 1289

mmap() System Interfaces

25576 MAP_SHARED type mapping.

25577 ML [EAGAIN] The mapping could not be locked in memory, if required by mlockall (), due to
25578 a lack of resources.

25579 [EBADF] The fildes argument is not a valid open file descriptor. |

25580 [EINVAL] The addr argument (if MAP_FIXED was specified) or off is not a multiple of |
25581 the page size as returned by sysconf(), or are considered invalid by the
25582 implementation. |

25583 [EINVAL] The value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
25584 set). |

25585 [EMFILE] The number of mapped regions would exceed an implementation-defined |
25586 limit (per process or per system). |

25587 [ENODEV] The fildes argument refers to a file whose type is not supported by mmap().

25588 [ENOMEM] MAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed
25589 for the address space of a process; or, if MAP_FIXED was not specified and
25590 there is insufficient room in the address space to effect the mapping.

25591 ML [ENOMEM] The mapping could not be locked in memory, if required by mlockall (),
25592 because it would require more space than the system is able to supply.

25593 MAP_FIXED or MAP_PRIVATE was specified in the flags argument and the
25594 implementation does not support this functionality.

25595 TYM [ENOMEM] Not enough unallocated memory resources remain in the typed memory
25596 object designated by fildes to allocate len bytes.

25597 [ENOTSUP] The implementation does not support the combination of accesses requested
25598 in the prot argument.

25599 [ENXIO] Addresses in the range [off,off+len) are invalid for the object specified by fildes .

25600 [ENXIO] MAP_FIXED was specified in flags and the combination of addr , len, and off is
25601 invalid for the object specified by fildes .

25602 TYM [ENXIO] The fildes argument refers to a typed memory object that is not accessible from
25603 the calling process. |

25604 [EOVERFLOW] The file is a regular file and the value of off plus len exceeds the offset |
25605 maximum established in the open file description associated with fildes . |

25606 EXAMPLES
25607 None.

25608 APPLICATION USAGE
25609 Use of mmap() may reduce the amount of memory available to other memory allocation
25610 functions.

25611 Use of MAP_FIXED may result in unspecified behavior in further use of malloc () and shmat().
25612 The use of MAP_FIXED is discouraged, as it may prevent an implementation from making the
25613 most effective use of resources.

25614 The application must ensure correct synchronization when using mmap() in conjunction with
25615 any other file access method, such as read() and write(), standard input/output, and shmat().

25616 The mmap() function allows access to resources via address space manipulations, instead of
25617 read()/write(). Once a file is mapped, all a process has to do to access it is use the data at the

1290 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mmap()

25618 address to which the file was mapped. So, using pseudo-code to illustrate the way in which an
25619 existing program might be changed to use mmap(), the following:

25620 fildes = open(...)
25621 lseek(fildes, some_offset)
25622 read(fildes, buf, len)
25623 /* Use data in buf. */

25624 becomes:

25625 fildes = open(...)
25626 address = mmap(0, len, PROT_READ, MAP_PRIVATE, fildes, some_offset)
25627 /* Use data at address. */

25628 The [EINVAL] error above is marked EX because it is defined as an optional error in the POSIX
25629 Realtime Extension.

25630 RATIONALE
25631 After considering several other alternatives, it was decided to adopt the mmap() definition found
25632 in SVR4 for mapping memory objects into process address spaces. The SVR4 definition is
25633 minimal, in that it describes only what has been built, and what appears to be necessary for a
25634 general and portable mapping facility.

25635 Note that while mmap() was first designed for mapping files, it is actually a general-purpose
25636 mapping facility. It can be used to map any appropriate object, such as memory, files, devices,
25637 and so on, into the address space of a process.

25638 When a mapping is established, it is possible that the implementation may need to map more
25639 than is requested into the address space of the process because of hardware requirements. An
25640 application, however, cannot count on this behavior. Implementations that do not use a paged
25641 architecture may simply allocate a common memory region and return the address of it; such
25642 implementations probably do not allocate any more than is necessary. References past the end of
25643 the requested area are unspecified.

25644 If an application requests a mapping that would overlay existing mappings in the process, it
25645 might be desirable that an implementation detect this and inform the application. However, the
25646 default, portable (not MAP_FIXED) operation does not overlay existing mappings. On the other
25647 hand, if the program specifies a fixed address mapping (which requires some implementation
25648 knowledge to determine a suitable address, if the function is supported at all), then the program
25649 is presumed to be successfully managing its own address space and should be trusted when it
25650 asks to map over existing data structures. Furthermore, it is also desirable to make as few system
25651 calls as possible, and it might be considered onerous to require an munmap() before an mmap()
25652 to the same address range. This volume of IEEE Std. 1003.1-200x specifies that the new
25653 mappings replace any existing mappings, following existing practice in this regard.

25654 It is not expected, when the Memory Protection option is supported, that all hardware
25655 implementations are able to support all combinations of permissions at all addresses. When this
25656 option is supported, implementations are required to disallow write access to mappings without
25657 write permission and to disallow access to mappings without any access permission. Other than
25658 these restrictions, implementations may allow access types other than those requested by the
25659 application. For example, if the application requests only PROT_WRITE, the implementation
25660 may also allow read access. A call to mmap() fails if the implementation cannot support allowing
25661 all the access requested by the application. For example, some implementations cannot support
25662 a request for both write access and execute access simultaneously. All implementations
25663 supporting the Memory Protection option must support requests for no access, read access,
25664 write access, and both read and write access. Strictly conforming code must only rely on the
25665 required checks. These restrictions allow for portability across a wide range of hardware.

System Interfaces, Issue 6 1291

mmap() System Interfaces

25666 The MAP_FIXED address treatment is likely to fail for non-page-aligned values and for certain
25667 architecture-dependent address ranges. Conforming implementations cannot count on being
25668 able to choose address values for MAP_FIXED without utilizing non-portable, implementation- |
25669 defined knowledge. Nonetheless, MAP_FIXED is provided as a standard interface conforming to |
25670 existing practice for utilizing such knowledge when it is available.

25671 Similarly, in order to allow implementations that do not support virtual addresses, support for
25672 directly specifying any mapping addresses via MAP_FIXED is not required and thus a
25673 conforming application may not count on it.

25674 The MAP_PRIVATE function can be implemented efficiently when memory protection hardware
25675 is available. When such hardware is not available, implementations can implement such
25676 ‘‘mappings’’ by simply making a real copy of the relevant data into process private memory,
25677 though this tends to behave similarly to read().

25678 The function has been defined to allow for many different models of using shared memory.
25679 However, all uses are not equally portable across all machine architectures. In particular, the
25680 mmap() function allows the system as well as the application to specify the address at which to
25681 map a specific region of a memory object. The most portable way to use the function is always to
25682 let the system choose the address, specifying NULL as the value for the argument addr and not
25683 to specify MAP_FIXED.

25684 If it is intended that a particular region of a memory object be mapped at the same address in a
25685 group of processes (on machines where this is even possible), then MAP_FIXED can be used to
25686 pass in the desired mapping address. The system can still be used to choose the desired address
25687 if the first such mapping is made without specifying MAP_FIXED, and then the resulting
25688 mapping address can be passed to subsequent processes for them to pass in via MAP_FIXED.
25689 The availability of a specific address range cannot be guaranteed, in general.

25690 The mmap() function can be used to map a region of memory that is larger than the current size
25691 of the object. Memory access within the mapping but beyond the current end of the underlying
25692 objects may result in SIGBUS signals being sent to the process. The reason for this is that the size
25693 of the object can be manipulated by other processes and can change at any moment. The
25694 implementation should tell the application that a memory reference is outside the object where
25695 this can be detected; otherwise, written data may be lost and read data may not reflect actual
25696 data in the object.

25697 Note that references beyond the end of the object do not extend the object as the new end cannot
25698 be determined precisely by most virtual memory hardware. Instead, the size can be directly
25699 manipulated by ftruncate().

25700 Process memory locking does apply to shared memory regions, and the MEMLOCK_FUTURE
25701 argument to memlockall () can be relied upon to cause new shared memory regions to be
25702 automatically locked.

25703 Existing implementations of mmap() return the value −1 when unsuccessful. Since the casting of
25704 this value to type void* cannot be guaranteed by the ISO C standard to be distinct from a
25705 successful value, this volume of IEEE Std. 1003.1-200x defines the symbol MAP_FAILED, which
25706 a conforming implementation does not return as the result of a successful call.

25707 FUTURE DIRECTIONS
25708 None.

25709 SEE ALSO
25710 exec, fcntl(), fork (), lockf (), msync(), munmap(), mprotect(), posix_typed_mem_open(), shmat(),
25711 sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/mman.h> |

1292 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mmap()

25712 CHANGE HISTORY
25713 First released in Issue 4, Version 2.

25714 Issue 5
25715 Moved from X/OPEN UNIX extension to BASE.

25716 Aligned with mmap() in the POSIX Realtime Extension as follows:

25717 • The DESCRIPTION is extensively reworded.

25718 • The [EAGAIN] and [ENOTSUP] mandatory error conditions are added.

25719 • New cases of [ENOMEM] and [ENXIO] are added as mandatory error conditions.

25720 • The value returned on failure is the value of the constant MAP_FAILED; this was previously
25721 defined as −1.

25722 Large File Summit extensions are added.

25723 Issue 6
25724 The mmap() function is marked as part of the Memory Mapped Files option. |

25725 The Open Group corrigenda item U028/6 has been applied, changing (void *)−1 to
25726 MAP_FAILED.

25727 The following new requirements on POSIX implementations derive from alignment with the
25728 Single UNIX Specification:

25729 • The DESCRIPTION is updated to described the use of MAP_FIXED.

25730 • The DESCRIPTION is updated to describe the addition of an extra reference to the file
25731 associated with the file descriptor passed to mmap().

25732 • The DESCRIPTION is updated to state that there may be implementation-defined limits on |
25733 the number of memory regions that can be mapped. |

25734 • The DESCRIPTION is updated to describe constraints on the alignment and size of the off
25735 argument.

25736 • The [EINVAL] and [EMFILE] error conditions are added.

25737 • The [EOVERFLOW] error condition is added. This change is to support large files.

25738 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

25739 • The DESCRIPTION is updated to describe the cases when MAP_PRIVATE and MAP_FIXED
25740 need not be supported.

25741 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

25742 • Semantics for typed memory objects are added to the DESCRIPTION.

25743 • New [ENOMEM] and [ENXIO] errors are added to the ERRORS section.

25744 • The posix_typed_mem_open() function is added to the SEE ALSO section.

25745 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1293

modf() System Interfaces

25746 NAME
25747 modf, modff, modfl — decompose a floating-point number |

25748 SYNOPSIS
25749 #include <math.h>

25750 double modf(double x, double * iptr);
25751 float modff(float value , float * iptr); |
25752 long double modfl(long double value , long double * iptr); |

25753 DESCRIPTION |
25754 CX The functionality described on this reference page is aligned with the ISO C standard. Any
25755 conflict between the requirements described here and the ISO C standard is unintentional. This
25756 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

25757 These functions shall break the argument x into integral and fractional parts, each of which has |
25758 the same sign as the argument. It stores the integral part as a double in the object pointed to by
25759 iptr .

25760 An application wishing to check for error situations should set errno to 0 before calling modf(). If
25761 errno is non-zero on return, or the return value is NaN, an error has occurred.

25762 RETURN VALUE
25763 Upon successful completion, these functions shall return the signed fractional part of x . |

25764 XSI If x is NaN, NaN shall be returned, errno may be set to [EDOM], and *iptr shall be set to NaN.

25765 If the correct value would cause underflow, 0 shall be returned and errno may be set to
25766 [ERANGE].

25767 ERRORS
25768 These functions may fail if: |

25769 XSI [EDOM] The value of x is NaN. |

25770 [ERANGE] The result underflows. |

25771 XSI No other errors shall occur.

25772 EXAMPLES
25773 None.

25774 APPLICATION USAGE
25775 The modf() function computes the function result and *iptr such that:

25776 a = modf(x, &iptr)
25777 x == a+iptr

25778 allowing for the usual floating point inaccuracies.

25779 RATIONALE
25780 None.

25781 FUTURE DIRECTIONS
25782 None.

25783 SEE ALSO
25784 frexp(), isnan(), ldexp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

1294 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces modf()

25785 CHANGE HISTORY
25786 First released in Issue 1. Derived from Issue 1 of the SVID. |

25787 Issue 4
25788 References to matherr() are removed.

25789 The name of the first argument is changed from value to x .

25790 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
25791 ISO C standard and to rationalize error handling in the mathematics functions.

25792 The return value specified for [EDOM] is marked as an extension.

25793 Issue 5
25794 The DESCRIPTION is updated to indicate how an application should check for an error. This
25795 text was previously published in the APPLICATION USAGE section. |

25796 Issue 6 |
25797 The modff() and modfl() functions are added for alignment with the ISO/IEC 9899: 1999 |
25798 standard. |

System Interfaces, Issue 6 1295

mprotect() System Interfaces

25799 NAME
25800 mprotect — set protection of memory mapping

25801 SYNOPSIS
25802 MPR #include <sys/mman.h>

25803 int mprotect(void * addr , size_t len , int prot);
25804

25805 DESCRIPTION
25806 The mprotect() function shall change the access protections to be that specified by prot for those
25807 whole pages containing any part of the address space of the process starting at address addr and
25808 continuing for len bytes. The parameter prot determines whether read, write, execute, or some
25809 combination of accesses are permitted to the data being mapped. The prot argument should be
25810 either PROT_NONE or the bitwise-inclusive OR of one or more of PROT_READ, PROT_WRITE,
25811 and PROT_EXEC.

25812 If an implementation cannot support the combination of access types specified by prot , the call
25813 to mprotect() shall fail.

25814 An implementation may permit accesses other than those specified by prot ; however, no |
25815 implementation shall permit a write to succeed where PROT_WRITE has not been set or shall |
25816 permit any access where PROT_NONE alone has been set. Implementations shall support at |
25817 least the following values of prot : PROT_NONE, PROT_READ, PROT_WRITE, and the bitwise- |
25818 inclusive OR of PROT_READ and PROT_WRITE. If PROT_WRITE is specified, the application
25819 shall ensure that it has opened the mapped objects in the specified address range with write
25820 permission, unless MAP_PRIVATE was specified in the original mapping, regardless of whether
25821 the file descriptors used to map the objects have since been closed.

25822 The implementation shall require that addr be a multiple of the page size as returned by |
25823 sysconf().

25824 The behavior of this function is unspecified if the mapping was not established by a call to
25825 mmap().

25826 When mprotect() fails for reasons other than [EINVAL], the protections on some of the pages in
25827 the range [addr,addr+len) may have been changed.

25828 RETURN VALUE
25829 Upon successful completion, mprotect() shall return 0; otherwise, it shall return −1 and set errno
25830 to indicate the error.

25831 ERRORS
25832 The mprotect() function shall fail if:

25833 [EACCES] The prot argument specifies a protection that violates the access permission |
25834 the process has to the underlying memory object.

25835 [EAGAIN] The prot argument specifies PROT_WRITE over a MAP_PRIVATE mapping |
25836 and there are insufficient memory resources to reserve for locking the private
25837 page. |

25838 [EINVAL] The addr argument is not a multiple of the page size as returned by sysconf(). |

25839 [ENOMEM] Addresses in the range [addr,addr+len) are invalid for the address space of a |
25840 process, or specify one or more pages which are not mapped.

25841 [ENOMEM] The prot argument specifies PROT_WRITE on a MAP_PRIVATE mapping, and
25842 it would require more space than the system is able to supply for locking the
25843 private pages, if required.

1296 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mprotect()

25844 [ENOTSUP] The implementation does not support the combination of accesses requested |
25845 in the prot argument.

25846 EXAMPLES
25847 None.

25848 APPLICATION USAGE
25849 The [EINVAL] error above is marked EX because it is defined as an optional error in the POSIX
25850 Realtime Extension.

25851 RATIONALE
25852 None.

25853 FUTURE DIRECTIONS
25854 None.

25855 SEE ALSO
25856 mmap(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/mman.h> |

25857 CHANGE HISTORY
25858 First released in Issue 4, Version 2.

25859 Issue 5
25860 Moved from X/OPEN UNIX extension to BASE.

25861 Aligned with mprotect() in the POSIX Realtime Extension as follows:

25862 • The DESCRIPTION is largely reworded.

25863 • [ENOTSUP] and a second form of [ENOMEM] are added as mandatory error conditions.

25864 • [EAGAIN] is moved from the optional to the mandatory error conditions.

25865 Issue 6
25866 The mprotect() function is marked as part of the Memory Protection option. |

25867 The following new requirements on POSIX implementations derive from alignment with the
25868 Single UNIX Specification:

25869 • The DESCRIPTION is updated to state that implementations require addr to be a multiple of
25870 the page size as returned by sysconf().

25871 • The [EINVAL] error condition is added.

25872 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1297

mq_close() System Interfaces

25873 NAME
25874 mq_close — close a message queue (REALTIME)

25875 SYNOPSIS
25876 MSG #include <mqueue.h>

25877 int mq_close(mqd_t mqdes);
25878

25879 DESCRIPTION
25880 The mq_close() function shall remove the association between the message queue descriptor,
25881 mqdes, and its message queue. The results of using this message queue descriptor after
25882 successful return from this mq_close(), and until the return of this message queue descriptor
25883 from a subsequent mq_open(), are undefined.

25884 If the process has successfully attached a notification request to the message queue via this
25885 mqdes, this attachment shall be removed, and the message queue is available for another process
25886 to attach for notification.

25887 RETURN VALUE
25888 Upon successful completion, the mq_close() function shall return a value of zero; otherwise, the
25889 function shall return a value of −1 and set errno to indicate the error.

25890 ERRORS
25891 The mq_close() function shall fail if:

25892 [EBADF] The mqdes argument is not a valid message queue descriptor. |

25893 EXAMPLES
25894 None.

25895 APPLICATION USAGE
25896 None.

25897 RATIONALE
25898 None.

25899 FUTURE DIRECTIONS
25900 None.

25901 SEE ALSO
25902 mq_open(), mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of |
25903 IEEE Std. 1003.1-200x, <mqueue.h> |

25904 CHANGE HISTORY
25905 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

25906 Issue 6
25907 The mq_close() function is marked as part of the Message Passing option. |

25908 The [ENOSYS] error condition has been removed as stubs need not be provided if an
25909 implementation does not support the Message Passing option. |

1298 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_getattr()

25910 NAME
25911 mq_getattr — get message queue attributes (REALTIME)

25912 SYNOPSIS
25913 MSG #include <mqueue.h>

25914 int mq_getattr(mqd_t mqdes, struct mq_attr * mqstat);
25915

25916 DESCRIPTION
25917 The mqdes argument specifies a message queue descriptor.

25918 The mq_getattr() function is used to get status information and attributes of the message queue
25919 and the open message queue description associated with the message queue descriptor.

25920 The results are returned in the mq_attr structure referenced by the mqstat argument.

25921 Upon return, the following members have the values associated with the open message queue
25922 description as set when the message queue was opened and as modified by subsequent
25923 mq_setattr() calls: mq_flags .

25924 The following attributes of the message queue shall be returned as set at message queue
25925 creation: mq_maxmsg, mq_msgsize.

25926 Upon return, the following members within the mq_attr structure referenced by the mqstat
25927 argument are set to the current state of the message queue:

25928 mq_curmsgs The number of messages currently on the queue.

25929 RETURN VALUE
25930 Upon successful completion, the mq_getattr() function shall return zero. Otherwise, the function
25931 shall return −1 and set errno to indicate the error.

25932 ERRORS
25933 The mq_getattr() function shall fail if:

25934 [EBADF] The mqdes argument is not a valid message queue descriptor. |

25935 EXAMPLES
25936 None.

25937 APPLICATION USAGE
25938 None.

25939 RATIONALE
25940 None.

25941 FUTURE DIRECTIONS
25942 None.

25943 SEE ALSO
25944 mq_open(), mq_send(), mq_setattr(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the |
25945 Base Definitions volume of IEEE Std. 1003.1-200x, <mqueue.h> |

25946 CHANGE HISTORY
25947 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

25948 Issue 6
25949 The mq_getattr() function is marked as part of the Message Passing option. |

25950 The [ENOSYS] error condition has been removed as stubs need not be provided if an
25951 implementation does not support the Message Passing option. |

System Interfaces, Issue 6 1299

mq_getattr() System Interfaces

25952 The mq_timedsend() function is added to the SEE ALSO section for alignment with
25953 IEEE Std. 1003.1d-1999.

1300 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_notify()

25954 NAME
25955 mq_notify — notify process that a message is available (REALTIME)

25956 SYNOPSIS
25957 MSG #include <mqueue.h>

25958 int mq_notify(mqd_t mqdes, const struct sigevent * notification);
25959

25960 DESCRIPTION
25961 If the argument notification is not NULL, this function registers the calling process to be notified
25962 of message arrival at an empty message queue associated with the specified message queue
25963 descriptor, mqdes. The notification specified by the notification argument shall be sent to the
25964 process when the message queue transitions from empty to non-empty. At any time, only one
25965 process may be registered for notification by a message queue. If the calling process or any other
25966 process has already registered for notification of message arrival at the specified message queue,
25967 subsequent attempts to register for that message queue fail.

25968 If notification is NULL and the process is currently registered for notification by the specified
25969 message queue, the existing registration is removed.

25970 When the notification is sent to the registered process, its registration shall be removed. The
25971 message queue shall then be available for registration.

25972 If a process has registered for notification of message arrival at a message queue and some
25973 thread is blocked in mq_receive() waiting to receive a message when a message arrives at the
25974 queue, the arriving message satisfies the appropriate mq_receive(). The resulting behavior is as if
25975 the message queue remains empty, and no notification is sent.

25976 RETURN VALUE
25977 Upon successful completion, the mq_notify() function shall return a value of zero; otherwise, the
25978 function shall return a value of −1 and set errno to indicate the error.

25979 ERRORS
25980 The mq_notify() function shall fail if:

25981 [EBADF] The mqdes argument is not a valid message queue descriptor. |

25982 [EBUSY] A process is already registered for notification by the message queue. |

25983 EXAMPLES
25984 None.

25985 APPLICATION USAGE
25986 None.

25987 RATIONALE
25988 None.

25989 FUTURE DIRECTIONS
25990 None.

25991 SEE ALSO
25992 mq_open(), mq_send(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base |
25993 Definitions volume of IEEE Std. 1003.1-200x, <mqueue.h> |

25994 CHANGE HISTORY
25995 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

System Interfaces, Issue 6 1301

mq_notify() System Interfaces

25996 Issue 6
25997 The mq_notify() function is marked as part of the Message Passing option. |

25998 The [ENOSYS] error condition has been removed as stubs need not be provided if an
25999 implementation does not support the Message Passing option. |

26000 The mq_timedsend() function is added to the SEE ALSO section for alignment with
26001 IEEE Std. 1003.1d-1999.

1302 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_open()

26002 NAME
26003 mq_open — open a message queue (REALTIME)

26004 SYNOPSIS
26005 MSG #include <mqueue.h>

26006 mqd_t mq_open(const char * name, int oflag , ...);
26007

26008 DESCRIPTION
26009 The mq_open() function shall establish the connection between a process and a message queue
26010 with a message queue descriptor. It creates an open message queue description that refers to the
26011 message queue, and a message queue descriptor that refers to that open message queue
26012 description. The message queue descriptor is used by other functions to refer to that message
26013 queue. The name argument points to a string naming a message queue. It is unspecified whether
26014 the name appears in the file system and is visible to other functions that take path names as
26015 arguments. The name argument conforms to the construction rules for a path name. If name
26016 begins with the slash character, then processes calling mq_open() with the same value of name
26017 refer to the same message queue object, as long as that name has not been removed. If name does
26018 not begin with the slash character, the effect is implementation-defined. The interpretation of |
26019 slash characters other than the leading slash character in name is implementation-defined. If the |
26020 name argument is not the name of an existing message queue and creation is not requested,
26021 mq_open() shall fail and return an error.

26022 A message queue descriptor may be implemented using a file descriptor, in which case |
26023 applications can open up to at least {OPEN_MAX} file and message queues. |

26024 The oflag argument requests the desired receive and/or send access to the message queue. The |
26025 requested access permission to receive messages or send messages is granted if the calling
26026 process would be granted read or write access, respectively, to an equivalently protected file.

26027 The value of oflag is the bitwise-inclusive OR of values from the following list. Applications
26028 specify exactly one of the first three values (access modes) below in the value of oflag :

26029 O_RDONLY Open the message queue for receiving messages. The process can use the
26030 returned message queue descriptor with mq_receive(), but not mq_send(). A
26031 message queue may be open multiple times in the same or different processes
26032 for receiving messages.

26033 O_WRONLY Open the queue for sending messages. The process can use the returned
26034 message queue descriptor with mq_send() but not mq_receive(). A message
26035 queue may be open multiple times in the same or different processes for
26036 sending messages.

26037 O_RDWR Open the queue for both receiving and sending messages. The process can use
26038 any of the functions allowed for O_RDONLY and O_WRONLY. A message
26039 queue may be open multiple times in the same or different processes for
26040 sending messages.

26041 Any combination of the remaining flags may be specified in the value of oflag :

26042 O_CREAT This option is used to create a message queue, and it requires two additional
26043 arguments: mode, which is of type mode_t, and attr, which is a pointer to a
26044 mq_attr structure. If the path name name has already been used to create a
26045 message queue that still exists, then this flag has no effect, except as noted
26046 under O_EXCL. Otherwise, a message queue is created without any messages
26047 in it. The user ID of the message queue is set to the effective user ID of the
26048 process, and the group ID of the message queue is set to the effective group ID

System Interfaces, Issue 6 1303

mq_open() System Interfaces

26049 of the process. The file permission bits are set to the value of mode. When bits
26050 in mode other than file permission bits are set, the effect is implementation- |
26051 defined. If attr is NULL, the message queue is created with implementation- |
26052 defined default message queue attributes. If attr is non-NULL and the calling |
26053 process has the appropriate privilege on name, the message queue mq_maxmsg
26054 and mq_msgsize attributes are set to the values of the corresponding members
26055 in the mq_attr structure referred to by attr . If attr is non-NULL, but the calling
26056 process does not have the appropriate privilege on name, the mq_open()
26057 function shall fail and return an error without creating the message queue.

26058 O_EXCL If O_EXCL and O_CREAT are set, mq_open() fails if the message queue name
26059 exists. The check for the existence of the message queue and the creation of |
26060 the message queue if it does not exist shall be atomic with respect to other |
26061 threads executing mq_open() naming the same name with O_EXCL and |
26062 O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is
26063 undefined.

26064 O_NONBLOCK The setting of this flag is associated with the open message queue description
26065 and determines whether a mq_send() or mq_receive() waits for resources or
26066 messages that are not currently available, or fails with errno set to [EAGAIN];
26067 see mq_send() and mq_receive() for details.

26068 The mq_open() function does not add or remove messages from the queue.

26069 RETURN VALUE
26070 Upon successful completion, the function shall return a message queue descriptor; otherwise,
26071 the function shall return (mqd_t)−1 and set errno to indicate the error.

26072 ERRORS
26073 The mq_open() function shall fail if:

26074 [EACCES] The message queue exists and the permissions specified by oflag are denied, or |
26075 the message queue does not exist and permission to create the message queue
26076 is denied.

26077 [EEXIST] O_CREAT and O_EXCL are set and the named message queue already exists. |

26078 [EINTR] The mq_open() function was interrupted by a signal. |

26079 [EINVAL] The mq_open() function is not supported for the given name. |

26080 [EINVAL] O_CREAT was specified in oflag , the value of attr is not NULL, and either
26081 mq_maxmsg or mq_msgsize was less than or equal to zero.

26082 [EMFILE] Too many message queue descriptors or file descriptors are currently in use by |
26083 this process.

26084 [ENAMETOOLONG] |
26085 The length of the name argument exceeds {PATH_MAX} or a path name |
26086 component is longer than {NAME_MAX}. |

26087 [ENFILE] Too many message queues are currently open in the system. |

26088 [ENOENT] O_CREAT is not set and the named message queue does not exist. |

26089 [ENOSPC] There is insufficient space for the creation of the new message queue. |

1304 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_open()

26090 EXAMPLES
26091 None.

26092 APPLICATION USAGE
26093 None.

26094 RATIONALE
26095 None.

26096 FUTURE DIRECTIONS
26097 None.

26098 SEE ALSO
26099 mq_close(), mq_getattr(), mq_receive(), mq_send(), mq_setattr(), mq_timedreceive(), mq_timedsend(),
26100 mq_unlink(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of |
26101 IEEE Std. 1003.1-200x, <mqueue.h> |

26102 CHANGE HISTORY
26103 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

26104 Issue 6
26105 The mq_open() function is marked as part of the Message Passing option. |

26106 The [ENOSYS] error condition has been removed as stubs need not be provided if an
26107 implementation does not support the Message Passing option. |

26108 The mq_timedreceive() and mq_timedsend() functions are added to the SEE ALSO section for
26109 alignment with IEEE Std. 1003.1d-1999. |

26110 The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48. |

System Interfaces, Issue 6 1305

mq_receive() System Interfaces

26111 NAME
26112 mq_receive, mq_timedreceive — receive a message from a message queue (REALTIME)

26113 SYNOPSIS
26114 MSG #include <mqueue.h>

26115 ssize_t mq_receive(mqd_t mqdes, char * msg_ptr , size_t msg_len ,
26116 unsigned * msg_prio); |
26117 |

26118 MSG TMO #include <mqueue.h>
26119 #include <time.h>

26120 ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr , |
26121 size_t msg_len , unsigned *restrict msg_prio , |
26122 const struct timespec *restrict abs_timeout); |
26123 |

26124 DESCRIPTION |
26125 The mq_receive() function is used to receive the oldest of the highest priority message(s) from the
26126 message queue specified by mqdes. If the size of the buffer in bytes, specified by the msg_len
26127 argument, is less than the mq_msgsize attribute of the message queue, the function shall fail and
26128 return an error. Otherwise, the selected message is removed from the queue and copied to the
26129 buffer pointed to by the msg_ptr argument.

26130 If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined. |

26131 If the argument msg_prio is not NULL, the priority of the selected message is stored in the
26132 location referenced by msg_prio .

26133 If the specified message queue is empty and O_NONBLOCK is not set in the message queue
26134 description associated with mqdes, mq_receive() blocks until a message is enqueued on the
26135 message queue or until mq_receive() is interrupted by a signal. If more than one thread is waiting
26136 to receive a message when a message arrives at an empty queue and the Priority Scheduling
26137 option is supported, then the thread of highest priority that has been waiting the longest shall be
26138 selected to receive the message. Otherwise, it is unspecified which waiting thread receives the
26139 message. If the specified message queue is empty and O_NONBLOCK is set in the message
26140 queue description associated with mqdes, no message is removed from the queue, and
26141 mq_receive() shall return an error.

26142 TMO The mq_timedreceive() function is used to receive the oldest of the highest priority messages from
26143 the message queue specified by mqdes as in the mq_receive() function. However, if
26144 O_NONBLOCK was not specified when the message queue was opened via the mq_open()
26145 function, and no message exists on the queue to satisfy the receive, the wait for such a message
26146 will be terminated when the specified timeout expires. If O_NONBLOCK is set, this function
26147 shall behave identically to mq_receive().

26148 The timeout expires when the absolute time specified by abs_timeout passes, as measured by the
26149 clock on which timeouts are based (that is, when the value of that clock equals or exceeds
26150 abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
26151 of the call. If the Timers option is supported, the timeout is based on the CLOCK_REALTIME
26152 clock; if the Timers option is not supported, the timeout is based on the system clock as returned
26153 by the time() function. The resolution of the timeout is the resolution of the clock on which it is
26154 based. The timespec argument is defined as a structure in the <time.h> header.

26155 Under no circumstance shall the operation fail with a timeout if a message can be removed from
26156 the message queue immediately. The validity of the abs_timeout parameter need not be checked
26157 if a message can be removed from the message queue immediately.

1306 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_receive()

26158 RETURN VALUE
26159 TMO Upon successful completion, the mq_receive() and mq_timedreceive() functions shall return the
26160 length of the selected message in bytes and the message shall be removed from the queue.
26161 Otherwise, no message shall be removed from the queue, the functions shall return a value of −1,
26162 and set errno to indicate the error.

26163 ERRORS
26164 TMO The mq_receive() and mq_timedreceive()functions shall fail if:

26165 [EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, |
26166 and the specified message queue is empty.

26167 [EBADF] The mqdes argument is not a valid message queue descriptor open for reading. |

26168 [EMSGSIZE] The specified message buffer size, msg_len, is less than the message size |
26169 attribute of the message queue.

26170 TMO [EINTR] The mq_receive() or mq_timedreceive()operation was interrupted by a signal. |

26171 TMO [EINVAL] The process or thread would have blocked, and the abs_timeout parameter |
26172 specified a nanoseconds field value less than zero or greater than or equal to
26173 1 000 million.

26174 TMO [ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
26175 but no message arrived on the queue before the specified timeout expired.

26176 TMO The mq_receive() and mq_timedreceive()functions may fail if:

26177 [EBADMSG] The implementation has detected a data corruption problem with the |
26178 message.

26179 EXAMPLES
26180 None.

26181 APPLICATION USAGE
26182 None.

26183 RATIONALE
26184 None.

26185 FUTURE DIRECTIONS
26186 None.

26187 SEE ALSO
26188 mq_open(), mq_send(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), time(), the Base |
26189 Definitions volume of IEEE Std. 1003.1-200x, <mqueue.h>, <time.h> |

26190 CHANGE HISTORY
26191 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

26192 Issue 6
26193 The mq_receive() function is marked as part of the Message Passing option. |

26194 The Open Group corrigenda item U021/4 has been applied. The DESCRIPTION is changed to
26195 refer to msg_len rather than maxsize .

26196 The [ENOSYS] error condition has been removed as stubs need not be provided if an
26197 implementation does not support the Message Passing option. |

26198 The following new requirements on POSIX implementations derive from alignment with the
26199 Single UNIX Specification:

System Interfaces, Issue 6 1307

mq_receive() System Interfaces

26200 • In this function it is possible for the return value to exceed the range of the type ssize_t (since
26201 size_t has a larger range of positive values than ssize_t). A sentence restricting the size of
26202 the size_t object is added to the description to resolve this conflict.

26203 The mq_timedreceive() function is added for alignment with IEEE Std. 1003.1d-1999. |

26204 The restrict keyword is added to the mq_timedreceive() prototype for alignment with the |
26205 ISO/IEC 9899: 1999 standard. |

26206 IEEE PASC Interpretation 1003.1 #109 is applied, correcting the return type for mq_timedreceive() |
26207 from int to ssize_t. |

1308 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_send()

26208 NAME
26209 mq_send, mq_timedsend — send a message to a message queue (REALTIME)

26210 SYNOPSIS
26211 MSG #include <mqueue.h>

26212 int mq_send(mqd_t mqdes, const char * msg_ptr , size_t msg_len ,
26213 unsigned msg_prio); |
26214 |

26215 MSG TMO #include <mqueue.h>
26216 #include <time.h>

26217 int mq_timedsend(mqd_t mqdes, const char * msg_ptr , size_t msg_len ,
26218 unsigned msg_prio , const struct timespec * abs_timeout); |
26219 |

26220 DESCRIPTION
26221 The mq_send() function shall add the message pointed to by the argument msg_ptr to the
26222 message queue specified by mqdes. The msg_len argument specifies the length of the message in
26223 bytes pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize
26224 attribute of the message queue, or mq_send() shall fail.

26225 If the specified message queue is not full, mq_send() behaves as if the message shall be inserted
26226 into the message queue at the position indicated by the msg_prio argument. A message with a
26227 larger numeric value of msg_prio shall be inserted before messages with lower values of
26228 msg_prio . A message shall be inserted after other messages in the queue, if any, with equal
26229 msg_prio . The value of msg_prio shall be less than {MQ_PRIO_MAX}.

26230 If the specified message queue is full and O_NONBLOCK is not set in the message queue
26231 description associated with mqdes, mq_send() shall block until space becomes available to
26232 enqueue the message, or until mq_send() is interrupted by a signal. If more than one thread is
26233 waiting to send when space becomes available in the message queue and the Priority Scheduling
26234 option is supported, then the thread of the highest priority that has been waiting the longest
26235 shall be unblocked to send its message. Otherwise, it is unspecified which waiting thread is
26236 unblocked. If the specified message queue is full and O_NONBLOCK is set in the message
26237 queue description associated with mqdes, the message shall not be queued and mq_send() shall
26238 return an error.

26239 TMO The mq_timedsend() function adds a message to the message queue specified by mqdes in the
26240 manner defined for the mq_send() function. However, if the specified message queue is full and
26241 O_NONBLOCK is not set in the message queue description associated with mqdes, the wait for
26242 sufficient room in the queue shall be terminated when the specified timeout expires. If
26243 O_NONBLOCK is set in the message queue description, this function shall behave identically to
26244 mq_send().

26245 The timeout expires when the absolute time specified by abs_timeout passes, as measured by the
26246 clock on which timeouts are based (that is, when the value of that clock equals or exceeds
26247 abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
26248 of the call. If the Timers option is supported, the timeout is based on the CLOCK_REALTIME
26249 clock; if the Timers option is not supported, the timeout is based on the system clock as returned
26250 by the time() function. The resolution of the timeout is the resolution of the clock on which it is
26251 based. The timespec argument is defined as a structure in the <time.h> header.

26252 Under no circumstance shall the operation fail with a timeout if there is sufficient room in the
26253 queue to add the message immediately. The validity of the abs_timeout parameter need not be
26254 checked when there is sufficient room in the queue.

System Interfaces, Issue 6 1309

mq_send() System Interfaces

26255 RETURN VALUE
26256 TMO Upon successful completion, the mq_send() and mq_timedsend() functions shall return a value of
26257 zero. Otherwise, no message shall be enqueued, the functions shall return −1, and errno shall be
26258 set to indicate the error.

26259 ERRORS
26260 TMO The mq_send() and mq_timedsend()functions shall fail if:

26261 [EAGAIN] The O_NONBLOCK flag is set in the message queue description associated |
26262 with mqdes, and the specified message queue is full.

26263 [EBADF] The mqdes argument is not a valid message queue descriptor open for writing. |

26264 TMO [EINTR] A signal interrupted the call to mq_send() or mq_timedsend(). |

26265 [EINVAL] The value of msg_prio was outside the valid range. |

26266 TMO [EINVAL] The process or thread would have blocked, and the abs_timeout parameter |
26267 specified a nanoseconds field value less than zero or greater than or equal to
26268 1 000 million.

26269 [EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of |
26270 the message queue.

26271 TMO [ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened,
26272 but the timeout expired before the message could be added to the queue. |

26273 EXAMPLES
26274 None.

26275 APPLICATION USAGE
26276 The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the
26277 application. Message priorities range from 0 to {MQ_PRIO_MAX}−1.

26278 RATIONALE
26279 None.

26280 FUTURE DIRECTIONS
26281 None.

26282 SEE ALSO
26283 mq_open(), mq_receive(), mq_setattr(), mq_timedreceive(), time(), the Base Definitions volume of |
26284 IEEE Std. 1003.1-200x, <mqueue.h>, <time.h> |

26285 CHANGE HISTORY
26286 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

26287 Issue 6
26288 The mq_send() function is marked as part of the Message Passing option. |

26289 The [ENOSYS] error condition has been removed as stubs need not be provided if an
26290 implementation does not support the Message Passing option. |

26291 The mq_timedsend() function is added for alignment with IEEE Std. 1003.1d-1999.

1310 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_setattr()

26292 NAME
26293 mq_setattr — set message queue attributes (REALTIME)

26294 SYNOPSIS
26295 MSG #include <mqueue.h>

26296 int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict mqstat , |
26297 struct mq_attr *restrict omqstat); |
26298 |

26299 DESCRIPTION
26300 The mq_setattr() function is used to set attributes associated with the open message queue
26301 description referenced by the message queue descriptor specified by mqdes.

26302 The message queue attributes corresponding to the following members defined in the mq_attr
26303 structure are set to the specified values upon successful completion of mq_setattr():

26304 mq_flags The value of this member is the bitwise-logical OR of zero or more of |
26305 O_NONBLOCK and any implementation-defined flags. |

26306 The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure are
26307 ignored by mq_setattr().

26308 If omqstat is non-NULL, the mq_setattr() function stores, in the location referenced by omqstat , the
26309 previous message queue attributes and the current queue status. These values are the same as
26310 would be returned by a call to mq_getattr() at that point.

26311 RETURN VALUE
26312 Upon successful completion, the function shall return a value of zero and the attributes of the
26313 message queue shall have been changed as specified.

26314 Otherwise, the message queue attributes shall be unchanged, and the function shall return a
26315 value of −1 and set errno to indicate the error.

26316 ERRORS
26317 The mq_setattr() function shall fail if:

26318 [EBADF] The mqdes argument is not a valid message queue descriptor. |

26319 EXAMPLES
26320 None.

26321 APPLICATION USAGE
26322 None.

26323 RATIONALE
26324 None.

26325 FUTURE DIRECTIONS
26326 None.

26327 SEE ALSO
26328 mq_open(), mq_send(), mq_timedsend(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base |
26329 Definitions volume of IEEE Std. 1003.1-200x, <mqueue.h> |

26330 CHANGE HISTORY
26331 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

System Interfaces, Issue 6 1311

mq_setattr() System Interfaces

26332 Issue 6
26333 The mq_setattr() function is marked as part of the Message Passing option. |

26334 The [ENOSYS] error condition has been removed as stubs need not be provided if an
26335 implementation does not support the Message Passing option. |

26336 The mq_timedsend() function is added to the SEE ALSO section for alignment with
26337 IEEE Std. 1003.1d-1999. |

26338 The restrict keyword is added to the mq_setattr() prototype for alignment with the |
26339 ISO/IEC 9899: 1999 standard. |

1312 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_timedreceive()

26340 NAME
26341 mq_timedreceive — receive a message from a message queue (REALTIME)

26342 SYNOPSIS
26343 MSG TMO #include <mqueue.h>
26344 #include <time.h>

26345 int mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr , |
26346 size_t msg_len , unsigned *restrict msg_prio , |
26347 const struct timespec *restrict abs_timeout); |
26348 |

26349 DESCRIPTION
26350 Refer to mq_receive().

System Interfaces, Issue 6 1313

mq_timedsend() System Interfaces

26351 NAME
26352 mq_timedsend — send a message to a message queue (REALTIME)

26353 SYNOPSIS
26354 MSG TMO #include <mqueue.h>
26355 #include <time.h>

26356 int mq_timedsend(mqd_t mqdes, const char * msg_ptr , size_t msg_len ,
26357 unsigned msg_prio , const struct timespec * abs_timeout); |
26358 |

26359 DESCRIPTION
26360 Refer to mq_send().

1314 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mq_unlink()

26361 NAME
26362 mq_unlink — remove a message queue (REALTIME)

26363 SYNOPSIS
26364 MSG #include <mqueue.h>

26365 int mq_unlink(const char * name);
26366

26367 DESCRIPTION
26368 The mq_unlink() function shall remove the message queue named by the path name name. After
26369 a successful call to mq_unlink() with name, a call to mq_open() with name fails if the flag
26370 O_CREAT is not set in flags . If one or more processes have the message queue open when
26371 mq_unlink() is called, destruction of the message queue is postponed until all references to the |
26372 message queue have been closed. |

26373 Calls to mq_open() to recreate the message queue may fail until the message queue is actually |
26374 removed. However, the mq_unlink() call need not block until all references have been closed; it
26375 may return immediately.

26376 RETURN VALUE
26377 Upon successful completion, the function shall return a value of zero. Otherwise, the named
26378 message queue shall be unchanged by this function call, and the function shall return a value of
26379 −1 and set errno to indicate the error.

26380 ERRORS
26381 The mq_unlink() function shall fail if:

26382 [EACCES] Permission is denied to unlink the named message queue. |

26383 [ENAMETOOLONG] |
26384 The length of the name argument exceeds {PATH_MAX} or a path name |
26385 component is longer than {NAME_MAX}. |

26386 [ENOENT] The named message queue does not exist. |

26387 EXAMPLES
26388 None.

26389 APPLICATION USAGE
26390 None.

26391 RATIONALE
26392 None.

26393 FUTURE DIRECTIONS
26394 None.

26395 SEE ALSO
26396 mq_close(), mq_open(), msgctl(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of |
26397 IEEE Std. 1003.1-200x, <mqueue.h> |

26398 CHANGE HISTORY
26399 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

26400 Issue 6
26401 The mq_unlink() function is marked as part of the Message Passing option. |

26402 The Open Group corrigenda item U021/5 has been applied, clarifying that upon unsuccessful
26403 completion, the named message queue is unchanged by this function.

System Interfaces, Issue 6 1315

mq_unlink() System Interfaces

26404 The [ENOSYS] error condition has been removed as stubs need not be provided if an
26405 implementation does not support the Message Passing option. |

1316 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces mrand48()

26406 NAME
26407 mrand48 — generate uniformly distributed pseudo-random signed long integers

26408 SYNOPSIS
26409 XSI #include <stdlib.h>

26410 long mrand48(void); |
26411 |

26412 DESCRIPTION
26413 Refer to drand48().

System Interfaces, Issue 6 1317

msgctl() System Interfaces

26414 NAME
26415 msgctl — XSI message control operations

26416 SYNOPSIS
26417 XSI #include <sys/msg.h>

26418 int msgctl(int msqid , int cmd, struct msqid_ds * buf);
26419

26420 DESCRIPTION
26421 The msgctl() function operates on XSI message queues (see the Base Definitions volume of |
26422 IEEE Std. 1003.1-200x, Section 3.226, Message Queue). It is unspecified whether this function |
26423 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
26424 page 543).

26425 The msgctl() function shall provide message control operations as specified by cmd. The
26426 following values for cmd, and the message control operations they specify, are:

26427 IPC_STAT Place the current value of each member of the msqid_ds data structure
26428 associated with msqid into the structure pointed to by buf. The contents of this
26429 structure are defined in <sys/msg.h>.

26430 IPC_SET Set the value of the following members of the msqid_ds data structure
26431 associated with msqid to the corresponding value found in the structure
26432 pointed to by buf:

26433 msg_perm.uid
26434 msg_perm.gid
26435 msg_perm.mode
26436 msg_qbytes

26437 IPC_SET can only be executed by a process with appropriate privileges or that
26438 has an effective user ID equal to the value of msg_perm.cuid or
26439 msg_perm.uid in the msqid_ds data structure associated with msqid. Only a
26440 process with appropriate privileges can raise the value of msg_qbytes.

26441 IPC_RMID Remove the message queue identifier specified by msqid from the system and
26442 destroy the message queue and msqid_ds data structure associated with it.
26443 IPC_RMD can only be executed by a process with appropriate privileges or
26444 one that has an effective user ID equal to the value of msg_perm.cuid or
26445 msg_perm.uid in the msqid_ds data structure associated with msqid.

26446 RETURN VALUE
26447 Upon successful completion, msgctl() shall return 0; otherwise, it shall return −1 and set errno to
26448 indicate the error.

26449 ERRORS
26450 The msgctl() function shall fail if:

26451 [EACCES] The argument cmd is IPC_STAT and the calling process does not have read |
26452 permission; see Section 2.7 (on page 541).

26453 [EINVAL] The value of msqid is not a valid message queue identifier; or the value of cmd |
26454 is not a valid command.

26455 [EPERM] The argument cmd is IPC_RMID or IPC_SET and the effective user ID of the |
26456 calling process is not equal to that of a process with appropriate privileges
26457 and it is not equal to the value of msg_perm.cuid or msg_perm.uid in the data
26458 structure associated with msqid.

1318 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msgctl()

26459 [EPERM] The argument cmd is IPC_SET, an attempt is being made to increase to the |
26460 value of msg_qbytes, and the effective user ID of the calling process does not
26461 have appropriate privileges.

26462 EXAMPLES
26463 None.

26464 APPLICATION USAGE
26465 The POSIX Realtime Extension defines alternative interfaces for interprocess communication
26466 (IPC). Application developers who need to use IPC should design their applications so that
26467 modules using the IPC routines described in Section 2.7 (on page 541) can be easily modified to
26468 use the alternative interfaces.

26469 RATIONALE
26470 None.

26471 FUTURE DIRECTIONS
26472 None.

26473 SEE ALSO
26474 mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
26475 mq_unlink(), msgget(), msgrcv(), msgsnd(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
26476 <sys/msg.h>, Section 2.7 (on page 541)

26477 CHANGE HISTORY
26478 First released in Issue 2. Derived from Issue 2 of the SVID. |

26479 Issue 4
26480 The function is no longer marked as OPTIONAL FUNCTIONALITY.

26481 Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS section.

26482 A FUTURE DIRECTIONS section is added warning application developers about migration to
26483 IEEE 1003.4 interfaces for interprocess communication.

26484 The [ENOSYS] error is removed from the ERRORS section.

26485 Issue 5
26486 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
26487 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1319

msgget() System Interfaces

26488 NAME
26489 msgget — get the XSI message queue identifier

26490 SYNOPSIS
26491 XSI #include <sys/msg.h>

26492 int msgget(key_t key , int msgflg);
26493

26494 DESCRIPTION
26495 The msgget() function operates on XSI message queues (see the Base Definitions volume of |
26496 IEEE Std. 1003.1-200x, Section 3.226, Message Queue). It is unspecified whether this function |
26497 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
26498 page 543).

26499 The msgget() function shall return the message queue identifier associated with the argument
26500 key.

26501 A message queue identifier, associated message queue, and data structure (see <sys/msg.h>), are
26502 created for the argument key if one of the following is true:

26503 • The argument key is equal to IPC_PRIVATE.

26504 • The argument key does not already have a message queue identifier associated with it, and
26505 (msgflg & IPC_CREAT) is non-zero.

26506 Upon creation, the data structure associated with the new message queue identifier is initialized
26507 as follows:

26508 • msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to the
26509 effective user ID and effective group ID, respectively, of the calling process.

26510 • The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of msgflg .

26511 • msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.

26512 • msg_ctime is set equal to the current time.

26513 • msg_qbytes is set equal to the system limit.

26514 RETURN VALUE
26515 Upon successful completion, msgget() shall return a non-negative integer, namely a message
26516 queue identifier. Otherwise, it shall return −1 and set errno to indicate the error.

26517 ERRORS
26518 The msgget() function shall fail if:

26519 [EACCES] A message queue identifier exists for the argument key, but operation |
26520 permission as specified by the low-order 9 bits of msgflg would not be granted;
26521 see Section 2.7 (on page 541).

26522 [EEXIST] A message queue identifier exists for the argument key but ((msgflg & |
26523 IPC_CREAT) && (msgflg & IPC_EXCL)) is non-zero.

26524 [ENOENT] A message queue identifier does not exist for the argument key and (msgflg & |
26525 IPC_CREAT) is 0.

26526 [ENOSPC] A message queue identifier is to be created but the system-imposed limit on |
26527 the maximum number of allowed message queue identifiers system-wide
26528 would be exceeded.

1320 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msgget()

26529 EXAMPLES
26530 None.

26531 APPLICATION USAGE
26532 The POSIX Realtime Extension defines alternative interfaces for interprocess communication
26533 (IPC). Application developers who need to use IPC should design their applications so that
26534 modules using the IPC routines described in Section 2.7 (on page 541) can be easily modified to
26535 use the alternative interfaces.

26536 RATIONALE
26537 None.

26538 FUTURE DIRECTIONS
26539 None.

26540 SEE ALSO
26541 mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
26542 mq_unlink(), msgctl(), msgrcv(), msgsnd(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
26543 <sys/msg.h>, Section 2.7 (on page 541)

26544 CHANGE HISTORY
26545 First released in Issue 2. Derived from Issue 2 of the SVID. |

26546 Issue 4
26547 The function is no longer marked as OPTIONAL FUNCTIONALITY.

26548 Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS section.

26549 The [ENOSYS] error is removed from the ERRORS section.

26550 Issue 5
26551 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
26552 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1321

msgrcv() System Interfaces

26553 NAME
26554 msgrcv — XSI message receive operation

26555 SYNOPSIS
26556 XSI #include <sys/msg.h>

26557 ssize_t msgrcv(int msqid , void * msgp, size_t msgsz, long msgtyp , |
26558 int msgflg); |
26559

26560 DESCRIPTION
26561 The msgrcv() function operates on XSI message queues (see the Base Definitions volume of |
26562 IEEE Std. 1003.1-200x, Section 3.226, Message Queue). It is unspecified whether this function |
26563 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
26564 page 543).

26565 The msgrcv() function shall read a message from the queue associated with the message queue
26566 identifier specified by msqid and place it in the user-defined buffer pointed to by msgp.

26567 The application shall ensure that the argument msgp points to a user-defined buffer that contains
26568 first a field of type long specifying the type of the message, and then a data portion that holds |
26569 the data bytes of the message. The structure below is an example of what this user-defined
26570 buffer might look like:

26571 struct mymsg {
26572 long mtype; /* Message type. */
26573 char mtext[1]; /* Message text. */
26574 }

26575 The structure member mtype is the received message’s type as specified by the sending process.

26576 The structure member mtext is the text of the message.

26577 The argument msgsz specifies the size in bytes of mtext. The received message is truncated to
26578 msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is non-zero. The truncated
26579 part of the message is lost and no indication of the truncation is given to the calling process.

26580 If the value of msgsz is greater than {SSIZE_MAX}, the result is implementation-defined. |

26581 The argument msgtyp specifies the type of message requested as follows:

26582 • If msgtyp is 0, the first message on the queue is received.

26583 • If msgtyp is greater than 0, the first message of type msgtyp is received.

26584 • If msgtyp is less than 0, the first message of the lowest type that is less than or equal to the
26585 absolute value of msgtyp is received.

26586 The argument msgflg specifies the action to be taken if a message of the desired type is not on the
26587 queue. These are as follows:

26588 • If (msgflg & IPC_NOWAIT) is non-zero, the calling thread shall return immediately with a
26589 return value of −1 and errno set to [ENOMSG].

26590 • If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
26591 following occurs:

26592 — A message of the desired type is placed on the queue.

26593 — The message queue identifier msqid is removed from the system; when this occurs, errno
26594 shall be set equal to [EIDRM] and −1 shall be returned.

1322 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msgrcv()

26595 — The calling thread receives a signal that is to be caught; in this case a message is not
26596 received and the calling thread resumes execution in the manner prescribed in sigaction ().

26597 Upon successful completion, the following actions are taken with respect to the data structure
26598 associated with msqid:

26599 • msg_qnum is decremented by 1.

26600 • msg_lrpid is set equal to the process ID of the calling process.

26601 • msg_rtime is set equal to the current time.

26602 RETURN VALUE
26603 Upon successful completion, msgrcv() shall return a value equal to the number of bytes actually
26604 placed into the buffer mtext. Otherwise, no message shall be received, msgrcv() shall return
26605 (ssize_t)−1, and errno shall be set to indicate the error.

26606 ERRORS
26607 The msgrcv() function shall fail if:

26608 [E2BIG] The value of mtext is greater than msgsz and (msgflg & MSG_NOERROR) is 0. |

26609 [EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page |
26610 541).

26611 [EIDRM] The message queue identifier msqid is removed from the system. |

26612 [EINTR] The msgrcv() function was interrupted by a signal. |

26613 [EINVAL] msqid is not a valid message queue identifier. |

26614 [ENOMSG] The queue does not contain a message of the desired type and (msgflg & |
26615 IPC_NOWAIT) is non-zero.

26616 EXAMPLES

26617 Receiving a Message

26618 The following example receives the first message on the queue (based on the value of the
26619 msgtype argument, 0). The queue is identified by the msqid argument (assuming that the value
26620 has previously been set). This call specifies that an error should be reported if no message is
26621 available, but not if the message is too large. The message size is calculated directly using the
26622 sizeof operator.

26623 #include <sys/msg.h>
26624 ...
26625 int result;
26626 int msqid;
26627 struct message {
26628 long type;
26629 char text[20];
26630 } msg;
26631 long msgtyp = 0;
26632 ...
26633 result = msgrcv(msqid, (void *) &msg, sizeof(msg.text),
26634 msgtyp, MSG_NOERROR | IPC_NOWAIT);

System Interfaces, Issue 6 1323

msgrcv() System Interfaces

26635 APPLICATION USAGE
26636 The POSIX Realtime Extension defines alternative interfaces for interprocess communication
26637 (IPC). Application developers who need to use IPC should design their applications so that
26638 modules using the IPC routines described in Section 2.7 (on page 541) can be easily modified to
26639 use the alternative interfaces.

26640 RATIONALE
26641 None.

26642 FUTURE DIRECTIONS
26643 None.

26644 SEE ALSO
26645 mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
26646 mq_unlink(), msgctl(), msgget(), msgsnd(), sigaction (), the Base Definitions volume of |
26647 IEEE Std. 1003.1-200x, <sys/msg.h>, Section 2.7 (on page 541) |

26648 CHANGE HISTORY
26649 First released in Issue 2. Derived from Issue 2 of the SVID. |

26650 Issue 4
26651 The function is no longer marked as OPTIONAL FUNCTIONALITY.

26652 Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS section.

26653 The [ENOSYS] error is removed from the ERRORS section.

26654 A FUTURE DIRECTIONS section is added warning application developers about migration to
26655 IEEE 1003.4 interfaces for interprocess communication.

26656 Issue 5
26657 The type of the return value is changed from int to ssize_t, and a warning is added to the
26658 DESCRIPTION about values of msgsz larger the {SSIZE_MAX}.

26659 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
26660 DIRECTIONS to the APPLICATION USAGE section.

26661 Issue 6
26662 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1324 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msgsnd()

26663 NAME
26664 msgsnd — XSI message send operation

26665 SYNOPSIS
26666 XSI #include <sys/msg.h>

26667 int msgsnd(int msqid , const void * msgp, size_t msgsz, int msgflg);
26668

26669 DESCRIPTION
26670 The msgsnd() function operates on XSI message queues (see the Base Definitions volume of |
26671 IEEE Std. 1003.1-200x, Section 3.226, Message Queue). It is unspecified whether this function |
26672 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
26673 page 543).

26674 The msgsnd() function is used to send a message to the queue associated with the message
26675 queue identifier specified by msqid.

26676 The application shall ensure that the argument msgp points to a user-defined buffer that contains
26677 first a field of type long specifying the type of the message, and then a data portion that holds |
26678 the data bytes of the message. The structure below is an example of what this user-defined
26679 buffer might look like:

26680 struct mymsg {
26681 long mtype; /* Message type. */
26682 char mtext[1]; /* Message text. */
26683 }

26684 The structure member mtype is a non-zero positive type long that can be used by the receiving |
26685 process for message selection.

26686 The structure member mtext is any text of length msgsz bytes. The argument msgsz can range
26687 from 0 to a system-imposed maximum.

26688 The argument msgflg specifies the action to be taken if one or more of the following are true:

26689 • The number of bytes already on the queue is equal to msg_qbytes; see <sys/msg.h>.

26690 • The total number of messages on all queues system-wide is equal to the system-imposed
26691 limit.

26692 These actions are as follows:

26693 • If (msgflg & IPC_NOWAIT) is non-zero, the message shall not be sent and the calling thread
26694 shall return immediately.

26695 • If (msgflg & IPC_NOWAIT) is 0, the calling thread shall suspend execution until one of the
26696 following occurs:

26697 — The condition responsible for the suspension no longer exists, in which case the message
26698 is sent.

26699 — The message queue identifier msqid is removed from the system; when this occurs, errno
26700 shall be set equal to [EIDRM] and −1 shall be returned.

26701 — The calling thread receives a signal that is to be caught; in this case the message is not
26702 sent and the calling thread resumes execution in the manner prescribed in sigaction ().

26703 Upon successful completion, the following actions are taken with respect to the data structure
26704 associated with msqid; see <sys/msg.h>:

System Interfaces, Issue 6 1325

msgsnd() System Interfaces

26705 • msg_qnum is incremented by 1.

26706 • msg_lspid is set equal to the process ID of the calling process.

26707 • msg_stime is set equal to the current time.

26708 RETURN VALUE
26709 Upon successful completion, msgsnd() shall return 0; otherwise, no message shall be sent,
26710 msgsnd() shall return −1, and errno shall be set to indicate the error.

26711 ERRORS
26712 The msgsnd() function shall fail if:

26713 [EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page |
26714 541).

26715 [EAGAIN] The message cannot be sent for one of the reasons cited above and (msgflg & |
26716 IPC_NOWAIT) is non-zero.

26717 [EIDRM] The message queue identifier msgid is removed from the system. |

26718 [EINTR] The msgsnd() function was interrupted by a signal. |

26719 [EINVAL] The value of msqid is not a valid message queue identifier, or the value of |
26720 mtype is less than 1; or the value of msgsz is less than 0 or greater than the
26721 system-imposed limit.

26722 EXAMPLES

26723 Sending a Message

26724 The following example sends a message to the queue identified by the msqid argument
26725 (assuming that value has previously been set). This call specifies that an error should be
26726 reported if no message is available. The message size is calculated directly using the sizeof
26727 operator.

26728 #include <sys/msg.h>
26729 ...
26730 int result;
26731 int msqid;
26732 struct message {
26733 long type;
26734 char text[20];
26735 } msg;

26736 msg.type = 1;
26737 strcpy(msg.text, "This is message 1");
26738 ...
26739 result = msgsnd(msqid, (void *) &msg, sizeof(msg.text), IPC_NOWAIT);

26740 APPLICATION USAGE
26741 The POSIX Realtime Extension defines alternative interfaces for interprocess communication
26742 (IPC). Application developers who need to use IPC should design their applications so that
26743 modules using the IPC routines described in Section 2.7 (on page 541) can be easily modified to
26744 use the alternative interfaces.

1326 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msgsnd()

26745 RATIONALE
26746 None.

26747 FUTURE DIRECTIONS
26748 None.

26749 SEE ALSO
26750 mq_close(), mq_getattr(), mq_notify(), mq_open(), mq_receive(), mq_send(), mq_setattr(),
26751 mq_unlink(), msgctl(), msgget(), msgrcv(), sigaction (), the Base Definitions volume of |
26752 IEEE Std. 1003.1-200x, <sys/msg.h>, Section 2.7 (on page 541) |

26753 CHANGE HISTORY
26754 First released in Issue 2. Derived from Issue 2 of the SVID. |

26755 Issue 4
26756 The function is no longer marked as OPTIONAL FUNCTIONALITY.

26757 Inclusion of the <sys/types.h> and <sys/ipc.h> headers is removed from the SYNOPSIS section.
26758 Also the type of argument msgp is changed from void* to const void*.

26759 In the DESCRIPTION, the example of a message buffer is changed:

26760 • Explicitly to define the first member as being of type long |

26761 • To define the size of the message array mtext

26762 The [ENOSYS] error is removed from the ERRORS section.

26763 A FUTURE DIRECTIONS section is added warning application developers about migration to
26764 IEEE 1003.4 interfaces for interprocess communication.

26765 Issue 5
26766 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
26767 DIRECTIONS to a new APPLICATION USAGE section.

26768 Issue 6
26769 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1327

msync() System Interfaces

26770 NAME
26771 msync — synchronize memory with physical storage

26772 SYNOPSIS
26773 MF SIO #include <sys/mman.h>

26774 int msync(void * addr , size_t len , int flags);
26775

26776 DESCRIPTION
26777 The msync() function shall write all modified data to permanent storage locations, if any, in
26778 those whole pages containing any part of the address space of the process starting at address
26779 addr and continuing for len bytes. If no such storage exists, msync() need not have any effect. If
26780 requested, the msync() function then invalidates cached copies of data.

26781 The implementation shall require that addr be a multiple of the page size as returned by |
26782 sysconf().

26783 For mappings to files, the msync() function ensures that all write operations are completed as
26784 defined for synchronized I/O data integrity completion. It is unspecified whether the
26785 implementation also writes out other file attributes. When the msync() function is called on
26786 MAP_PRIVATE mappings, any modified data shall not be written to the underlying object and
26787 shall not cause such data to be made visible to other processes. It is unspecified whether data in
26788 SHM|TYM MAP_PRIVATE mappings has any permanent storage locations. The effect of msync() on a
26789 shared memory object or a typed memory object is unspecified. The behavior of this function is |
26790 unspecified if the mapping was not established by a call to mmap(). |

26791 The flags argument is constructed from the bitwise-inclusive OR of one or more of the following
26792 flags defined in the header <sys/mman.h>:
26793 ___
26794 Symbolic Constant Description___
26795 MS_ASYNC Perform asynchronous writes.
26796 MS_SYNC Perform synchronous writes.
26797 MS_INVALIDATE Invalidate cached data.___LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

26798 When MS_ASYNC is specified, msync() shall return immediately once all the write operations
26799 are initiated or queued for servicing; when MS_SYNC is specified, msync() shall not return until
26800 all write operations are completed as defined for synchronized I/O data integrity completion.
26801 Either MS_ASYNC or MS_SYNC is specified, but not both.

26802 When MS_INVALIDATE is specified, msync() invalidates all cached copies of mapped data that
26803 are inconsistent with the permanent storage locations such that subsequent references shall
26804 obtain data that was consistent with the permanent storage locations sometime between the call
26805 to msync() and the first subsequent memory reference to the data.

26806 If msync() causes any write to a file, the file’s st_ctime and st_mtime fields shall be marked for |
26807 update.

26808 RETURN VALUE
26809 Upon successful completion, msync() shall return 0; otherwise, it shall return −1 and set errno to
26810 indicate the error.

26811 ERRORS
26812 The msync() function shall fail if:

26813 [EBUSY] Some or all of the addresses in the range starting at addr and continuing for len |
26814 bytes are locked, and MS_INVALIDATE is specified. |

1328 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces msync()

26815 [EINVAL] The value of flags is invalid. |

26816 [EINVAL] The value of addr is not a multiple of the page size, {PAGESIZE}. |

26817 [ENOMEM] The addresses in the range starting at addr and continuing for len bytes are |
26818 outside the range allowed for the address space of a process or specify one or
26819 more pages that are not mapped.

26820 EXAMPLES
26821 None.

26822 APPLICATION USAGE
26823 The msync() function is only supported if the Memory Mapped Files option and the |
26824 Synchronized Input and Output option are supported, and thus need not be available on all |
26825 implementations.

26826 The msync() function should be used by programs that require a memory object to be in a
26827 known state; for example, in building transaction facilities.

26828 Normal system activity can cause pages to be written to disk. Therefore, there are no guarantees
26829 that msync() is the only control over when pages are or are not written to disk.

26830 RATIONALE
26831 The msync() function is used to write out data in a mapped region to the permanent storage for
26832 the underlying object. The call to msync() ensures data integrity of the file.

26833 After the data is written out, any cached data may be invalidated if the MS_INVALIDATE flag
26834 was specified. This is useful on systems that do not support read/write consistency.

26835 FUTURE DIRECTIONS
26836 None.

26837 SEE ALSO
26838 mmap(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/mman.h> |

26839 CHANGE HISTORY
26840 First released in Issue 4, Version 2.

26841 Issue 5
26842 Moved from X/OPEN UNIX extension to BASE.

26843 Aligned with msync() in the POSIX Realtime Extension as follows:

26844 • The DESCRIPTION is extensively reworded.

26845 • [EBUSY] and a new form of [EINVAL] are added as mandatory error conditions.

26846 Issue 6
26847 The msync() function is marked as part of the Memory Mapped Files and Synchronized Input |
26848 and Output options. |

26849 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

26850 • The [EBUSY] mandatory error condition is added.

26851 The following new requirements on POSIX implementations derive from alignment with the
26852 Single UNIX Specification:

26853 • The DESCRIPTION is updated to state that implementations require addr to be a multiple of
26854 the page size.

26855 • The second [EINVAL] error condition is made mandatory.

System Interfaces, Issue 6 1329

msync() System Interfaces

26856 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding reference to
26857 typed memory objects.

1330 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces munlock()

26858 NAME
26859 munlock — unlock a range of process address space

26860 SYNOPSIS
26861 MLR #include <sys/mman.h>

26862 int munlock(const void * addr , size_t len);
26863

26864 DESCRIPTION
26865 Refer to mlock().

System Interfaces, Issue 6 1331

munlockall() System Interfaces

26866 NAME
26867 munlockall — unlock the address space of a process

26868 SYNOPSIS
26869 ML #include <sys/mman.h>

26870 int munlockall(void);
26871

26872 DESCRIPTION
26873 Refer to mlockall ().

1332 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces munmap()

26874 NAME
26875 munmap — unmap pages of memory

26876 SYNOPSIS
26877 MF|SHM #include <sys/mman.h>

26878 int munmap(void * addr , size_t len);
26879

26880 DESCRIPTION
26881 The munmap() function shall remove any mappings for those entire pages containing any part of
26882 the address space of the process starting at addr and continuing for len bytes. Further references
26883 to these pages result in the generation of a SIGSEGV signal to the process. If there are no
26884 mappings in the specified address range, then munmap() has no effect.

26885 The implementation shall require that addr be a multiple of the page size {PAGESIZE}. |

26886 If a mapping to be removed was private, any modifications made in this address range shall be
26887 discarded.

26888 ML|MLR Any memory locks (see mlock() and mlockall ()) associated with this address range shall be
26889 removed, as if by an appropriate call to munlock().

26890 TYM If a mapping removed from a typed memory object causes the corresponding address range of
26891 the memory pool to be inaccessible by any process in the system except through allocatable
26892 mappings (that is, mappings of typed memory objects opened with the
26893 POSIX_TYPED_MEM_MAP_ALLOCATABLE flag), then that range of the memory pool shall
26894 become deallocated and may become available to satisfy future typed memory allocation
26895 requests.

26896 A mapping removed from a typed memory object opened with the
26897 POSIX_TYPED_MEM_MAP_ALLOCATABLE flag shall not affect in any way the availability of
26898 that typed memory for allocation.

26899 The behavior of this function is unspecified if the mapping was not established by a call to
26900 mmap().

26901 RETURN VALUE
26902 Upon successful completion, munmap() shall return 0; otherwise, it shall return −1 and set errno
26903 to indicate the error.

26904 ERRORS
26905 The munmap() function shall fail if:

26906 [EINVAL] Addresses in the range [addr,addr+len) are outside the valid range for the |
26907 address space of a process. |

26908 [EINVAL] The len argument is 0. |

26909 [EINVAL] The addr argument is not a multiple of the page size as returned by sysconf(). |

System Interfaces, Issue 6 1333

munmap() System Interfaces

26910 EXAMPLES
26911 None.

26912 APPLICATION USAGE
26913 The munmap() function is only supported if the Memory Mapped Files option or the Shared |
26914 Memory Objects option is supported. |

26915 RATIONALE
26916 The munmap() function corresponds to SVR4, just as the mmap() function does.

26917 It is possible that an application has applied process memory locking to a region that contains
26918 shared memory. If this has occurred, the munmap() call ignores those locks and, if necessary,
26919 causes those locks to be removed.

26920 FUTURE DIRECTIONS
26921 None.

26922 SEE ALSO
26923 mlock(), mlockall (), mmap(), posix_typed_mem_open(), sysconf(), the Base Definitions volume of |
26924 IEEE Std. 1003.1-200x, <signal.h>, <sys/mman.h> |

26925 CHANGE HISTORY
26926 First released in Issue 4, Version 2.

26927 Issue 5
26928 Moved from X/OPEN UNIX extension to BASE.

26929 Aligned with munmap() in the POSIX Realtime Extension as follows:

26930 • The DESCRIPTION is extensively reworded.

26931 • The SIGBUS error is no longer permitted to be generated.

26932 Issue 6
26933 The munmap() function is marked as part of the Memory Mapped Files and Shared Memory |
26934 Objects option. |

26935 The following new requirements on POSIX implementations derive from alignment with the
26936 Single UNIX Specification:

26937 • The DESCRIPTION is updated to state that implementations require addr to be a multiple of
26938 the page size.

26939 • The [EINVAL] error conditions are added.

26940 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

26941 • Semantics for typed memory objects are added to the DESCRIPTION.

26942 • The posix_typed_mem_open() function is added to the SEE ALSO section.
|

1334 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nan()

26943 NAME |
26944 nan, nanf, nanl — return quiet NaN |

26945 SYNOPSIS |
26946 #include <math.h> |

26947 double nan(const char * tagp); |
26948 float nanf(const char * tagp); |
26949 long double nanl(const char * tagp); |

26950 DESCRIPTION |
26951 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
26952 conflict between the requirements described here and the ISO C standard is unintentional. This |
26953 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

26954 The function call nan("n-char-sequence") shall be equivalent to: |

26955 strtod("NAN(n-char-sequence)", (char **) NULL); |

26956 The function call nan(" ") shall be equivalent to: |

26957 strtod("NAN()", (char **) NULL) |

26958 If tagp does not point to an n-char sequence or an empty string, the function call shall be |
26959 equivalent to: |

26960 strtod("NAN", (char **) NULL) |

26961 Function calls to nanf() and nanl() are equivalent to the corresponding function calls to strtof() |
26962 and strtold(). |

26963 RETURN VALUE |
26964 These functions shall return a quiet NaN, if available, with content indicated through tagp . |

26965 If the implementation does not support quiet NaNs, these functions shall return zero. |

26966 ERRORS |
26967 No errors are defined. |

26968 EXAMPLES |
26969 None. |

26970 APPLICATION USAGE |
26971 None. |

26972 RATIONALE |
26973 None. |

26974 FUTURE DIRECTIONS |
26975 None. |

26976 SEE ALSO |
26977 strtod(), <REFERENCE UNDEFINED>(strtold), the Base Definitions volume of |
26978 IEEE Std. 1003.1-200x, <math.h> |

26979 CHANGE HISTORY |
26980 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1335

nanosleep() System Interfaces

26981 NAME
26982 nanosleep — high resolution sleep (REALTIME)

26983 SYNOPSIS
26984 TMR #include <time.h>

26985 int nanosleep(const struct timespec * rqtp , struct timespec * rmtp);
26986

26987 DESCRIPTION
26988 The nanosleep() function shall cause the current thread to be suspended from execution until
26989 either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
26990 calling thread, and its action is to invoke a signal-catching function or to terminate the process.
26991 The suspension time may be longer than requested because the argument value is rounded up to
26992 an integer multiple of the sleep resolution or because of the scheduling of other activity by the
26993 system. But, except for the case of being interrupted by a signal, the suspension time shall not be
26994 less than the time specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

26995 The use of the nanosleep() function has no effect on the action or blockage of any signal.

26996 RETURN VALUE
26997 If the nanosleep() function returns because the requested time has elapsed, its return value shall
26998 be zero.

26999 If the nanosleep() function returns because it has been interrupted by a signal, the function shall
27000 return a value of −1 and set errno to indicate the interruption. If the rmtp argument is non-NULL,
27001 the timespec structure referenced by it is updated to contain the amount of time remaining in
27002 the interval (the requested time minus the time actually slept). If the rmtp argument is NULL, the
27003 remaining time is not returned.

27004 If nanosleep() fails, it shall return a value of −1 and set errno to indicate the error.

27005 ERRORS
27006 The nanosleep() function shall fail if:

27007 [EINTR] The nanosleep() function was interrupted by a signal. |

27008 [EINVAL] The rqtp argument specified a nanosecond value less than zero or greater than |
27009 or equal to 1000 million.

27010 EXAMPLES
27011 None.

27012 APPLICATION USAGE
27013 None.

27014 RATIONALE
27015 It is common to suspend execution of a process for an interval in order to poll the status of a
27016 non-interrupting function. A large number of actual needs can be met with a simple extension to
27017 sleep() that provides finer resolution.

27018 In the POSIX.1-1990 standard and SVR4, it is possible to implement such a routine, but the
27019 frequency of wakeup is limited by the resolution of the alarm() and sleep() functions. In 4.3 BSD,
27020 it is possible to write such a routine using no static storage and reserving no system facilities.
27021 Although it is possible to write a function with similar functionality to sleep() using the
27022 remainder of the timers function, such a function requires the use of signals and the reservation
27023 of some signal number. This volume of IEEE Std. 1003.1-200x requires that nanosleep() be non-
27024 intrusive of the signals function.

1336 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nanosleep()

27025 The nanosleep() function shall return a value of 0 on success and −1 on failure or if interrupted.
27026 This latter case is different from sleep(). This was done because the remaining time is returned
27027 via an argument structure pointer, rmtp, instead of as the return value.

27028 FUTURE DIRECTIONS
27029 None.

27030 SEE ALSO
27031 sleep(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

27032 CHANGE HISTORY
27033 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

27034 Issue 6
27035 The nanosleep() function is marked as part of the Timers option. |

27036 The [ENOSYS] error condition has been removed as stubs need not be provided if an
27037 implementation does not support the Timers option. |

|

System Interfaces, Issue 6 1337

nearbyint() System Interfaces

27038 NAME |
27039 nearbyint, nearbyintf, nearbyintl — floating-point rounding functions |

27040 SYNOPSIS |
27041 #include <math.h> |

27042 double nearbyint(double x); |
27043 float nearbyintf(float x); |
27044 long double nearbyintl(long double x); |

27045 DESCRIPTION |
27046 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
27047 conflict between the requirements described here and the ISO C standard is unintentional. This |
27048 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

27049 These functions shall round their argument to an integer value in floating-point format, using |
27050 the current rounding direction and without raising the inexact floating-point exception. |

27051 An application wishing to check for error situations should set errno to 0 before calling these |
27052 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

27053 RETURN VALUE |
27054 Upon successful completion, these functions shall return the rounded integer value. |

27055 If x is ±Inf, these functions shall return x . |

27056 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

27057 ERRORS |
27058 These functions may fail if: |

27059 [EDOM] The value of x is NaN. |

27060 EXAMPLES |
27061 None. |

27062 APPLICATION USAGE |
27063 None. |

27064 RATIONALE |
27065 None. |

27066 FUTURE DIRECTIONS |
27067 None. |

27068 SEE ALSO |
27069 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

27070 CHANGE HISTORY |
27071 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1338 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nextafter()

27072 NAME
27073 nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl — next representable |
27074 double-precision floating-point number

27075 SYNOPSIS
27076 XSI #include <math.h>

27077 double nextafter(double x, double y);
27078 float nextafterf(float x, float y); |
27079 long double nextafterl(long double x, long double y); |
27080 double nexttoward(double x, long double y); |
27081 float nexttowardf(float x, long double y); |
27082 long double nexttowardl(long double x, long double y); |
27083 |

27084 DESCRIPTION
27085 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
27086 conflict between the requirements described here and the ISO C standard is unintentional. This |
27087 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

27088 The nextafter(), nextafterf(), and nextafterl() functions shall compute the next representable |
27089 double-precision floating-point value following x in the direction of y . Thus, if y is less than x , |
27090 nextafter() returns the largest representable floating-point number less than x . The nextafter(), |
27091 nextafterf(), and nextafterl() functions shall return y if x equals y . |

27092 The nexttoward(), nexttowardf (), and nexttowardl () functions are equivalent to the corresponding |
27093 nextafter() functions, except that the second parameter has type long double and the functions |
27094 return y converted to the type of the function if x equals y . |

27095 An application wishing to check for error situations should set errno to 0 before calling |
27096 nextafter(). If errno is non-zero on return, or the value NaN is returned, an error has occurred.

27097 RETURN VALUE
27098 These functions shall return the next representable double-precision floating-point value |
27099 following x in the direction of y . The nextafter(), nextafterf(), and nextafterl() functions shall |
27100 return y if x equals y . |

27101 If x or y is NaN, then nextafter() shall return NaN and may set errno to [EDOM]. |

27102 If x is finite and the correct function value would overflow, HUGE_VAL shall be returned and
27103 errno set to [ERANGE]. |

27104 ERRORS
27105 These functions shall fail if: |

27106 [ERANGE] The correct value would overflow. |

27107 These functions may fail if: |

27108 [EDOM] The x or y argument is NaN. |

System Interfaces, Issue 6 1339

nextafter() System Interfaces

27109 EXAMPLES
27110 None.

27111 APPLICATION USAGE
27112 None.

27113 RATIONALE
27114 None.

27115 FUTURE DIRECTIONS
27116 None.

27117 SEE ALSO
27118 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

27119 CHANGE HISTORY
27120 First released in Issue 4, Version 2.

27121 Issue 5
27122 Moved from X/OPEN UNIX extension to BASE. |

27123 Issue 6 |
27124 The nextafterf(), nextafterl(), nexttoward(), nexttowardf (), nexttowardl () functions are added for |
27125 alignment with the ISO/IEC 9899: 1999 standard. |

1340 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nftw()

27126 NAME
27127 nftw — walk a file tree

27128 SYNOPSIS
27129 XSI #include <ftw.h>

27130 int nftw(const char * path , int (* fn)(const char *,
27131 const struct stat *, int, struct FTW *), int depth , int flags);
27132

27133 DESCRIPTION
27134 The nftw() function shall recursively descend the directory hierarchy rooted in path . The nftw()
27135 function has a similar effect to ftw() except that it takes an additional argument flags, which is a
27136 bitwise-inclusive OR of zero or more of the following flags:

27137 FTW_CHDIR If set, nftw() shall change the current working directory to each directory as it
27138 reports files in that directory. If clear, nftw() shall not change the current
27139 working directory.

27140 FTW_DEPTH If set, nftw() shall report all files in a directory before reporting the directory
27141 itself. If clear, nftw() shall report any directory before reporting the files in that
27142 directory.

27143 FTW_MOUNT If set, nftw() shall only report files in the same file system as path . If clear,
27144 nftw() shall report all files encountered during the walk.

27145 FTW_PHYS If set, nftw() shall perform a physical walk and shall not follow symbolic links.

27146 If FTW_PHYS is clear and FTW_DEPTH is set, nftw() shall follow links instead of reporting
27147 them, but shall not report any directory that would be a descendant of itself. If FTW_PHYS is
27148 clear and FTW_DEPTH is clear, nftw() shall follow links instead of reporting them, but shall not
27149 report the contents of any directory that would be a descendant of itself.

27150 At each file it encounters, nftw() shall call the user-supplied function fn with four arguments:

27151 • The first argument is the path name of the object.

27152 • The second argument is a pointer to the stat buffer containing information on the object.

27153 • The third argument is an integer giving additional information. Its value is one of the
27154 following:

27155 FTW_F The object is a file.

27156 FTW_D The object is a directory.

27157 FTW_DP The object is a directory and subdirectories have been visited. (This condition
27158 shall only occur if the FTW_DEPTH flag is included in flags .)

27159 FTW_SL The object is a symbolic link. (This condition shall only occur if the FTW_PHYS
27160 flag is included in flags .)

27161 FTW_SLN The object is a symbolic link that does not name an existing file. (This
27162 condition shall only occur if the FTW_PHYS flag is not included in flags .)

27163 FTW_DNR The object is a directory that cannot be read. The fn function shall not be called
27164 for any of its descendants.

27165 FTW_NS The stat() function failed on the object because of lack of appropriate
27166 permission. The stat buffer passed to fn is undefined. Failure of stat() for any
27167 other reason is considered an error and nftw() shall return −1.

System Interfaces, Issue 6 1341

nftw() System Interfaces

27168 • The fourth argument is a pointer to an FTW structure. The value of base is the offset of the
27169 object’s file name in the path name passed as the first argument to fn . The value of level
27170 indicates depth relative to the root of the walk, where the root level is 0.

27171 The argument depth sets the maximum number of file descriptors that are shall be by nftw()
27172 while traversing the file tree. At most one file descriptor shall be used for each directory level.

27173 RETURN VALUE
27174 The nftw() function shall continue until the first of the following conditions occurs:

27175 • An invocation of fn shall return a non-zero value, in which case nftw() shall return that value.

27176 • The nftw() function detects an error other than [EACCES] (see FTW_DNR and FTW_NS |
27177 above), in which case nftw() shall return −1 and set errno to indicate the error.

27178 • The tree is exhausted, in which case nftw() shall return 0.

27179 ERRORS
27180 The nftw() function shall fail if:

27181 [EACCES] Search permission is denied for any component of path or read permission is |
27182 denied for path , or fn returns −1 and does not reset errno. |

27183 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
27184 argument. |

27185 [ENAMETOOLONG] |
27186 The length of the path argument exceeds {PATH_MAX} or a path name |
27187 component is longer than {NAME_MAX}.

27188 [ENOENT] A component of path does not name an existing file or path is an empty string. |

27189 [ENOTDIR] A component of path is not a directory. |

27190 The nftw() function may fail if:

27191 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
27192 resolution of the path argument. |

27193 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

27194 [ENAMETOOLONG] |
27195 Path name resolution of a symbolic link produced an intermediate result
27196 whose length exceeds {PATH_MAX}.

27197 [ENFILE] Too many files are currently open in the system. |

27198 In addition, errno may be set if the function pointed by fn causes errno to be set.

27199 EXAMPLES
27200 The following example walks the /tmp directory and its subdirectories, calling the nftw()
27201 function for every directory entry, to a maximum of 5 levels deep.

27202 #include <ftw.h>
27203 ...
27204 int nftwfunc(const char *, const struct stat *, int, struct FTW *);

27205 int nftwfunc(const char *filename, const struct stat *statptr,
27206 int fileflags, struct FTW *pfwt)
27207 {
27208 return 0;
27209 }

1342 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nftw()

27210 ...
27211 char *startpath = "/tmp";
27212 int depth = 5;
27213 int flags = FTW_CHDIR | FTW_DEPTH | FTW_MOUNT;
27214 int ret;

27215 ret = nftw(startpath, nftwfunc, depth, flags);

27216 APPLICATION USAGE
27217 None.

27218 RATIONALE
27219 None.

27220 FUTURE DIRECTIONS
27221 None.

27222 SEE ALSO
27223 lstat(), opendir(), readdir(), stat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ftw.h> |

27224 CHANGE HISTORY
27225 First released in Issue 4, Version 2.

27226 Issue 5
27227 Moved from X/OPEN UNIX extension to BASE.

27228 In the DESCRIPTION, the definition of the depth argument is clarified.

27229 Issue 6
27230 The Open Group Base Resolution bwg97-003 is applied. |

27231 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
27232 [ELOOP] error condition is added. |

System Interfaces, Issue 6 1343

nice() System Interfaces

27233 NAME
27234 nice — change the nice value of a process

27235 SYNOPSIS
27236 XSI #include <unistd.h>

27237 int nice(int incr);
27238

27239 DESCRIPTION
27240 The nice() function shall add the value of incr to the nice value of the calling process. A process’
27241 nice value is a non-negative number for which a more positive value results in less favorable
27242 scheduling.

27243 A maximum nice value of 2*{NZERO}−1 and a minimum nice value of 0 are imposed by the
27244 system. Requests for values above or below these limits result in the nice value being set to the
27245 corresponding limit. Only a process with appropriate privileges can lower the nice value.

27246 PS|TPS Calling the nice() function has no effect on the priority of processes or threads with policy
27247 SCHED_FIFO or SCHED_RR. The effect on processes or threads with other scheduling policies
27248 is implementation-defined. |

27249 The nice value set with nice() shall be applied to the process. If the process is multi-threaded, the
27250 nice value shall affect all system scope threads in the process.

27251 As −1 is a permissible return value in a successful situation, an application wishing to check for
27252 error situations should set errno to 0, then call nice(), and if it returns −1, check to see if errno is
27253 non-zero.

27254 RETURN VALUE
27255 Upon successful completion, nice() shall return the new nice value −{NZERO}. Otherwise, −1
27256 shall be returned, the process’ nice value shall not be changed, and errno shall be set to indicate
27257 the error.

27258 ERRORS
27259 The nice() function shall fail if:

27260 [EPERM] The incr argument is negative and the calling process does not have |
27261 appropriate privileges.

27262 EXAMPLES

27263 Changing the Nice Value

27264 The following example adds the value of the incr argument, −20, to the nice value of the calling
27265 process.

27266 #include <unistd.h>
27267 ...
27268 int incr = -20;
27269 int ret;

27270 ret = nice(incr);

27271 APPLICATION USAGE
27272 None.

1344 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nice()

27273 RATIONALE
27274 None.

27275 FUTURE DIRECTIONS
27276 None.

27277 SEE ALSO
27278 The Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <unistd.h> |

27279 CHANGE HISTORY
27280 First released in Issue 1. Derived from Issue 1 of the SVID. |

27281 Issue 4
27282 The <unistd.h> header is added to the SYNOPSIS section.

27283 A statement is added to the DESCRIPTION indicating that the nice value can only be lowered by
27284 a process with appropriate privileges.

27285 Issue 4, Version 2
27286 The RETURN VALUE section is updated for X/OPEN UNIX conformance to define that the
27287 process’ nice value is not changed if an error is detected.

27288 Issue 5
27289 A statement is added to the description indicating the effects of this function on the different
27290 scheduling policies and multi-threaded processes.

System Interfaces, Issue 6 1345

nl_langinfo() System Interfaces

27291 NAME
27292 nl_langinfo — language information

27293 SYNOPSIS
27294 XSI #include <langinfo.h>

27295 char *nl_langinfo(nl_item item);
27296

27297 DESCRIPTION
27298 The nl_langinfo () function shall return a pointer to a string containing information relevant to
27299 the particular language or cultural area defined in the program’s locale (see <langinfo.h>). The
27300 manifest constant names and values of item are defined in <langinfo.h>. For example:

27301 nl_langinfo(ABDAY_1)

27302 would return a pointer to the string "Dom" if the identified language was Portuguese, and
27303 "Sun" if the identified language was English.

27304 Calls to setlocale () with a category corresponding to the category of item (see <langinfo.h>), or to
27305 the category LC_ALL, may overwrite the array pointed to by the return value.

27306 The nl_langinfo () function need not be reentrant. A function that is not required to be reentrant is
27307 not required to be thread-safe.

27308 RETURN VALUE
27309 In a locale where langinfo data is not defined, nl_langinfo () shall return a pointer to the
27310 corresponding string in the POSIX locale. In all locales, nl_langinfo () shall return a pointer to an
27311 empty string if item contains an invalid setting.

27312 This pointer may point to static data that may be overwritten on the next call.

27313 ERRORS
27314 No errors are defined.

27315 EXAMPLES

27316 Getting Date and Time Formatting Information

27317 The following example returns a pointer to a string containing date and time formatting
27318 information, as defined in the LC_TIME category of the current locale.

27319 #include <time.h>
27320 #include <langinfo.h>
27321 ...
27322 strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);
27323 ...

27324 APPLICATION USAGE
27325 The array pointed to by the return value should not be modified by the program, but may be
27326 modified by further calls to nl_langinfo ().

27327 RATIONALE
27328 None.

27329 FUTURE DIRECTIONS
27330 None.

1346 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces nl_langinfo()

27331 SEE ALSO
27332 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <langinfo.h>, <nl_types.h>, the |
27333 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

27334 CHANGE HISTORY
27335 First released in Issue 2.

27336 Issue 4
27337 The <nl_types.h> header is removed from the SYNOPSIS section.

27338 Issue 5
27339 The last paragraph of the DESCRIPTION is moved from the APPLICATION USAGE section.

27340 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

System Interfaces, Issue 6 1347

nrand48() System Interfaces

27341 NAME
27342 nrand48 — generate uniformly distributed pseudo-random non-negative long integers

27343 SYNOPSIS
27344 XSI #include <stdlib.h>

27345 long nrand48(unsigned short xsubi [3]); |
27346 |

27347 DESCRIPTION
27348 Refer to drand48().

1348 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ntohl()

27349 NAME
27350 ntohl — convert values between host and network byte order

27351 SYNOPSIS
27352 #include <arpa/inet.h>

27353 uint32_t ntohl(uint32_t netlong);

27354 DESCRIPTION
27355 Refer to htonl().

System Interfaces, Issue 6 1349

ntohs() System Interfaces

27356 NAME
27357 ntohs — convert values between host and network byte order

27358 SYNOPSIS
27359 #include <arpa/inet.h>

27360 uint16_t ntohs(uint16_t netshort);

27361 DESCRIPTION
27362 Refer to htonl().

1350 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces open()

27363 NAME
27364 open — open a file

27365 SYNOPSIS
27366 OH #include <sys/stat.h>
27367 #include <fcntl.h>

27368 int open(const char * path , int oflag , ...);

27369 DESCRIPTION
27370 The open() function establishes the connection between a file and a file descriptor. It creates an
27371 open file description that refers to a file and a file descriptor that refers to that open file
27372 description. The file descriptor is used by other I/O functions to refer to that file. The path
27373 argument points to a path name naming the file.

27374 The open() function shall return a file descriptor for the named file that is the lowest file
27375 descriptor not currently open for that process. The open file description is new, and therefore the
27376 file descriptor does not share it with any other process in the system. The FD_CLOEXEC file
27377 descriptor flag associated with the new file descriptor shall be cleared.

27378 The file offset used to mark the current position within the file shall be set to the beginning of the
27379 file.

27380 The file status flags and file access modes of the open file description shall be set according to
27381 the value of oflag .

27382 Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list,
27383 defined in <fcntl.h>. Applications shall specify exactly one of the first three values (file access
27384 modes) below in the value of oflag :

27385 O_RDONLY Open for reading only.

27386 O_WRONLY Open for writing only.

27387 O_RDWR Open for reading and writing. The result is undefined if this flag is applied to
27388 a FIFO.

27389 Any combination of the following may be used:

27390 O_APPEND If set, the file offset shall be set to the end of the file prior to each write.

27391 O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL below.
27392 Otherwise, the file is created; the user ID of the file shall be set to the effective
27393 user ID of the process; the group ID of the file shall be set to the group ID of
27394 the file’s parent directory or to the effective group ID of the process; and the
27395 access permission bits (see <sys/stat.h>) of the file mode shall be set to the
27396 value of the third argument taken as type mode_t modified as follows: a
27397 bitwise AND is performed on the file-mode bits and the corresponding bits in
27398 the complement of the process’ file mode creation mask. Thus, all bits in the
27399 file mode whose corresponding bit in the file mode creation mask is set are
27400 cleared. When bits other than the file permission bits are set, the effect is
27401 unspecified. The third argument does not affect whether the file is open for
27402 reading, writing, or for both.

27403 SIO O_DSYNC Write I/O operations on the file descriptor complete as defined by
27404 synchronized I/O data integrity completion

27405 O_EXCL If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The check
27406 for the existence of the file and the creation of the file if it does not exist shall
27407 be atomic with respect to other threads executing open() naming the same file |

System Interfaces, Issue 6 1351

open() System Interfaces

27408 name in the same directory with O_EXCL and O_CREAT set. If O_EXCL and
27409 O_CREAT are set, and path names a symbolic link, open() shall fail and set
27410 errno to [EEXIST], regardless of the contents of the symbolic link. If O_EXCL is
27411 set and O_CREAT is not set, the result is undefined.

27412 O_NOCTTY If set and path identify a terminal device, open() shall not cause the terminal
27413 device to become the controlling terminal for the process.

27414 O_NONBLOCK When opening a FIFO with O_RDONLY or O_WRONLY set:

27415 • If O_NONBLOCK is set, an open() for reading-only shall return without |
27416 delay. An open() for writing-only shall return an error if no process |
27417 currently has the file open for reading. |

27418 • If O_NONBLOCK is clear, an open() for reading-only shall block the |
27419 calling thread until a thread opens the file for writing. An open() for |
27420 writing-only shall block the calling thread until a thread opens the file for |
27421 reading.

27422 When opening a block special or character special file that supports non-
27423 blocking opens:

27424 • If O_NONBLOCK is set, the open() function shall return without blocking
27425 for the device to be ready or available. Subsequent behavior of the device
27426 is device-specific.

27427 • If O_NONBLOCK is clear, the open() function shall block the calling
27428 thread until the device is ready or available before returning.

27429 Otherwise, the behavior of O_NONBLOCK is unspecified.

27430 SIO O_RSYNC Read I/O operations on the file descriptor complete at the same level of
27431 integrity as specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC
27432 and O_RSYNC are set in oflag , all I/O operations on the file descriptor
27433 complete as defined by synchronized I/O data integrity completion. If both
27434 O_SYNC and O_RSYNC are set in flags, all I/O operations on the file
27435 descriptor complete as defined by synchronized I/O file integrity completion.

27436 SIO O_SYNC Write I/O operations on the file descriptor complete as defined by
27437 synchronized I/O file integrity completion.

27438 O_TRUNC If the file exists and is a regular file, and the file is successfully opened
27439 O_RDWR or O_WRONLY, its length is truncated to 0, and the mode and
27440 owner are unchanged. It shall have no effect on FIFO special files or terminal
27441 device files. Its effect on other file types is implementation-defined. The result |
27442 of using O_TRUNC with O_RDONLY is undefined. |

27443 If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall
27444 mark for update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime and
27445 st_mtime fields of the parent directory.

27446 If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall
27447 mark for update the st_ctime and st_mtime fields of the file.

27448 SIO If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.
27449

27450 XSR If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR’ed with
27451 either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to
27452 STREAMS devices and have no effect on them. The value O_NONBLOCK affects the operation

1352 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces open()

27453 of STREAMS drivers and certain functions applied to file descriptors associated with STREAMS
27454 files. For STREAMS drivers, the implementation of O_NONBLOCK is device-specific.

27455 If path names the master side of a pseudo-terminal device, then it is unspecified whether open()
27456 locks the slave side so that it cannot be opened. Portable applications shall call unlockpt () before
27457 opening the slave side.

27458 The largest value that can be represented correctly in an object of type off_t shall be established |
27459 as the offset maximum in the open file description. |

27460 RETURN VALUE
27461 Upon successful completion, the function shall open the file and return a non-negative integer
27462 representing the lowest numbered unused file descriptor. Otherwise, −1 shall be returned and
27463 errno set to indicate the error. No files shall be created or modified if the function returns −1.

27464 ERRORS
27465 The open() function shall fail if:

27466 [EACCES] Search permission is denied on a component of the path prefix, or the file |
27467 exists and the permissions specified by oflag are denied, or the file does not
27468 exist and write permission is denied for the parent directory of the file to be
27469 created, or O_TRUNC is specified and write permission is denied.

27470 [EEXIST] O_CREAT and O_EXCL are set, and the named file exists. |

27471 [EINTR] A signal was caught during open(). |

27472 SIO [EINVAL] The implementation does not support synchronized I/O for this file. |

27473 XSR [EIO] The path argument names a STREAMS file and a hangup or error occurred |
27474 during the open().

27475 [EISDIR] The named file is a directory and oflag includes O_WRONLY or O_RDWR. |

27476 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
27477 argument. |

27478 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

27479 [ENAMETOOLONG] |
27480 The length of the path argument exceeds {PATH_MAX} or a path name
27481 component is longer than {NAME_MAX}. |

27482 [ENFILE] The maximum allowable number of files is currently open in the system. |

27483 [ENOENT] O_CREAT is not set and the named file does not exist; or O_CREAT is set and |
27484 either the path prefix does not exist or the path argument points to an empty
27485 string.

27486 XSR [ENOSR] The path argument names a STREAMS-based file and the system is unable to |
27487 allocate a STREAM.

27488 [ENOSPC] The directory or file system that would contain the new file cannot be |
27489 expanded, the file does not exist, and O_CREAT is specified.

27490 [ENOTDIR] A component of the path prefix is not a directory. |

27491 [ENXIO] O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no |
27492 process has the file open for reading. |

27493 [ENXIO] The named file is a character special or block special file, and the device |
27494 associated with this special file does not exist. |

System Interfaces, Issue 6 1353

open() System Interfaces

27495 [EOVERFLOW] The named file is a regular file and the size of the file cannot be represented |
27496 correctly in an object of type off_t. |

27497 [EROFS] The named file resides on a read-only file system and either O_WRONLY, |
27498 O_RDWR, O_CREAT (if file does not exist), or O_TRUNC is set in the oflag
27499 argument.

27500 The open() function may fail if:

27501 XSR [EAGAIN] The path argument names the slave side of a pseudo-terminal device that is |
27502 locked. |

27503 [EINVAL] The value of the oflag argument is not valid. |

27504 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
27505 resolution of the path argument. |

27506 [ENAMETOOLONG] |
27507 As a result of encountering a symbolic link in resolution of the path argument,
27508 the length of the substituted path name string exceeded {PATH_MAX}. |

27509 XSR [ENOMEM] The path argument names a STREAMS file and the system is unable to allocate |
27510 resources. |

27511 [ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is |
27512 O_WRONLY or O_RDWR. |

27513 EXAMPLES

27514 Opening a File for Writing by the Owner

27515 The following example opens the file /tmp/file, either by creating it (if it does not already exist),
27516 or by truncating its length to 0 (if it does exist). In the former case, if the call creates a new file,
27517 the access permission bits in the file mode of the file are set to permit reading and writing by the
27518 owner, and to permit reading only by group members and others.

27519 If the call to open() is successful, the file is opened for writing.

27520 #include <fcntl.h>
27521 ...
27522 int fd;
27523 mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
27524 char *filename = "/tmp/file";
27525 ...
27526 fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, mode);
27527 ...

27528 Opening a File Using an Existence Check

27529 The following example uses the open() function to try to create the LOCKFILE file and open it
27530 for writing. Because the open() function specifies the O_EXCL flag, the call fails if the file already
27531 exists. In that case, the program assumes that someone else is updating the password file and
27532 exits.

27533 #include <fcntl.h>
27534 #include <stdio.h>
27535 #include <stdlib.h>

1354 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces open()

27536 #define LOCKFILE "/etc/ptmp"
27537 ...
27538 int pfd; /* Integer for file descriptor returned by open() call. */
27539 ...
27540 if ((pfd = open(LOCKFILE, O_WRONLY | O_CREAT | O_EXCL,
27541 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
27542 {
27543 fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
27544 exit(1);
27545 }
27546 ...

27547 Opening a File for Writing

27548 The following example opens a file for writing, creating the file if it does not already exist. If the
27549 file does exist, the system truncates the file to zero bytes.

27550 #include <fcntl.h>
27551 #include <stdio.h>
27552 #include <stdlib.h>

27553 #define LOCKFILE "/etc/ptmp"
27554 ...
27555 int pfd;
27556 char filename[PATH_MAX+1];
27557 ...
27558 if ((pfd = open(filename, O_WRONLY | O_CREAT | O_TRUNC,
27559 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) == -1)
27560 {
27561 perror("Cannot open output file\n"); exit(1);
27562 }
27563 ...

27564 APPLICATION USAGE
27565 None.

27566 RATIONALE
27567 Except as specified in this volume of IEEE Std. 1003.1-200x, the flags allowed in oflag are not
27568 mutually-exclusive and any number of them may be used simultaneously.

27569 Some implementations permit opening FIFOs with O_RDWR. Since FIFOs could be
27570 implemented in other ways, and since two file descriptors can be used to the same effect, this
27571 possibility is left as undefined.

27572 See getgroups() about the group of a newly created file.

27573 The use of open() to create a regular file is preferable to the use of creat(), because the latter is
27574 redundant and included only for historical reasons.

27575 The use of the O_TRUNC flag on FIFOs and directories (pipes cannot be open()-ed) must be
27576 permissible without unexpected side effects (for example, creat() on a FIFO must not remove
27577 data). Because terminal special files might have type-ahead data stored in the buffer, O_TRUNC
27578 should not affect their content, particularly if a program that normally opens a regular file
27579 should open the current controlling terminal instead. Other file types, particularly |
27580 implementation-defined ones, are left implementation-defined. |

System Interfaces, Issue 6 1355

open() System Interfaces

27581 IEEE Std. 1003.1-200x permits [EACCES] to be returned for conditions other than those explicitly |
27582 listed. |

27583 The O_NOCTTY flag was added to allow applications to avoid unintentionally acquiring a
27584 controlling terminal as a side effect of opening a terminal file. This volume of
27585 IEEE Std. 1003.1-200x does not specify how a controlling terminal is acquired, but it allows an
27586 implementation to provide this on open() if the O_NOCTTY flag is not set and other conditions
27587 specified in the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
27588 Interface are met. The O_NOCTTY flag is an effective no-op if the file being opened is not a |
27589 terminal device.

27590 In historical implementations the value of O_RDONLY is zero. Because of that, it is not possible
27591 to detect the presence of O_RDONLY and another option. Future implementations should
27592 encode O_RDONLY and O_WRONLY as bit flags so that:

27593 O_RDONLY | O_WRONLY == O_RDWR

27594 In general, the open() function follows the symbolic link if path names a symbolic link. However,
27595 the open() function, when called with O_CREAT and O_EXCL, is required to fail with [EEXIST]
27596 if path names an existing symbolic link, even if the symbolic link refers to a nonexistent file. This
27597 behavior is required so that privileged applications can create a new file in a known location
27598 without the possibility that a symbolic link might cause the file to be created in a different
27599 location.

27600 For example, a privileged application that must create a file with a predictable name in a user-
27601 writable directory, such as the user’s home directory, could be compromised if the user creates a
27602 symbolic link with that name that refers to a nonexistent file in a system directory. If the user can
27603 influence the contents of a file, the user could compromise the system by creating a new system
27604 configuration or spool file that would then be interpreted by the system. The test for a symbolic
27605 link which refers to a nonexisting file must be atomic with the creation of a new file.

27606 FUTURE DIRECTIONS
27607 None.

27608 SEE ALSO
27609 chmod(), close(), creat(), dup(), fcntl(), lseek(), read(), umask(), unlockpt (), write(), the Base |
27610 Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, <sys/stat.h>, <sys/types.h> |

27611 CHANGE HISTORY
27612 First released in Issue 1. Derived from Issue 1 of the SVID. |

27613 Issue 4
27614 The <sys/types.h> and <sys/stat.h> headers are now marked as optional (OH); these headers do
27615 not need to be included on XSI-conformant systems.

27616 O_NDELAY is removed from the list of oflag values (this flag was marked WITHDRAWN in
27617 Issue 3).

27618 The [ENXIO] error (for the condition where the file is a character or block special file and the
27619 associated device does not exist) and the [EINVAL] error are marked as extensions.

27620 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

27621 • The type of argument path is changed from char* to const char*.

27622 • Various wording changes are made to the DESCRIPTION to improve clarity and to align the
27623 text with the ISO POSIX-1 standard.

27624 The following changes are incorporated for alignment with the FIPS requirements:

1356 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces open()

27625 • In the DESCRIPTION, the description of O_CREAT is amended and the relevant part marked
27626 as an extension.

27627 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
27628 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
27629 an extension.

27630 Issue 4, Version 2
27631 The following changes are incorporated for X/OPEN UNIX conformance:

27632 • The DESCRIPTION is updated to define the use of open flags with STREAMS files, and to
27633 identify special considerations when opening the master side of a pseudo-terminal.

27634 • In the ERRORS section, the [EIO], [ELOOP], and [ENOSR] mandatory error conditions are
27635 added, and the [EAGAIN], [ENAMETOOLONG], and [ENOMEM] optional error conditions
27636 are added.

27637 Issue 5
27638 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
27639 Threads Extension.

27640 Large File Summit extensions are added.

27641 Issue 6
27642 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

27643 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

27644 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
27645 This is since behavior may vary from one file system to another.

27646 The following new requirements on POSIX implementations derive from alignment with the
27647 Single UNIX Specification:

27648 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
27649 required for conforming implementations of previous POSIX specifications, it was not
27650 required for UNIX applications.

27651 • In the DESCRIPTION, O_CREAT is amended to state that the group ID of the file is set to the
27652 group ID of the file’s parent directory or to the effective group ID of the process. This is a
27653 FIPS requirement.

27654 • In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
27655 description. This change is to support large files.

27656 • In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
27657 large files.

27658 • The [ENXIO] mandatory error condition is added.

27659 • The [EINVAL], [ENAMETOOLONG], and [ETXTBSY] optional error conditions are added.

27660 The DESCRIPTION and ERRORS sections are updated so that items related to the optional XSI
27661 STREAMS Option Group are marked.

27662 The following changes were made to align with the IEEE P1003.1a draft standard:

27663 • An explanation is added of the effect of the O_CREAT and O_EXCL flags when the path
27664 refers to a symbolic link.

27665 • The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 1357

open() System Interfaces

27666 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

27667 The DESCRIPTION of O_EXCL is updated in response to IEEE PASC Interpretation 1003.1c #48. |

1358 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces opendir()

27668 NAME
27669 opendir — open a directory

27670 SYNOPSIS
27671 #include <dirent.h>

27672 DIR *opendir(const char * dirname);

27673 DESCRIPTION
27674 The opendir() function shall open a directory stream corresponding to the directory named by
27675 the dirname argument. The directory stream is positioned at the first entry. If the type DIR is
27676 implemented using a file descriptor, applications shall only be able to open up to a total of
27677 {OPEN_MAX} files and directories.

27678 RETURN VALUE
27679 Upon successful completion, opendir() shall return a pointer to an object of type DIR.
27680 Otherwise, a null pointer shall be returned and errno set to indicate the error.

27681 ERRORS
27682 The opendir() function shall fail if:

27683 [EACCES] Search permission is denied for the component of the path prefix of dirname or |
27684 read permission is denied for dirname. |

27685 [ELOOP] A loop exists in symbolic links encountered during resolution of the dirname |
27686 argument. |

27687 [ENAMETOOLONG] |
27688 The length of the dirname argument exceeds {PATH_MAX} or a path name |
27689 component is longer than {NAME_MAX}. |

27690 [ENOENT] A component of dirname does not name an existing directory or dirname is an |
27691 empty string.

27692 [ENOTDIR] A component of dirname is not a directory. |

27693 The opendir() function may fail if:

27694 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
27695 resolution of the dirname argument.

27696 [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

27697 [ENAMETOOLONG] |
27698 As a result of encountering a symbolic link in resolution of the dirname
27699 argument, the length of the substituted path name string exceeded
27700 {PATH_MAX}. |

27701 [ENFILE] Too many files are currently open in the system. |

27702 EXAMPLES

System Interfaces, Issue 6 1359

opendir() System Interfaces

27703 Open a Directory Stream

27704 The following program fragment demonstrates how the opendir() function is used.

27705 #include <sys/types.h>
27706 #include <dirent.h>
27707 #include <libgen.h>
27708 ...
27709 DIR *dir;
27710 struct dirent *dp;
27711 ...
27712 if ((dir = opendir (".")) == NULL) {
27713 perror ("Cannot open .");
27714 exit (1);
27715 }

27716 while ((dp = readdir (dir)) != NULL) {
27717 ...

27718 APPLICATION USAGE
27719 The opendir() function should be used in conjunction with readdir(), closedir(), and rewinddir() to
27720 examine the contents of the directory (see the EXAMPLES section in readdir()). This method is
27721 recommended for portability.

27722 RATIONALE
27723 Based on historical implementations, the rules about file descriptors apply to directory streams
27724 as well. However, this volume of IEEE Std. 1003.1-200x does not mandate that the directory
27725 stream be implemented using file descriptors. The description of closedir() clarifies that if a file |
27726 descriptor is used for the directory stream, it is mandatory that closedir() deallocate the file
27727 descriptor. When a file descriptor is used to implement the directory stream, it behaves as if the
27728 FD_CLOEXEC had been set for the file descriptor.

27729 The directory entries for dot and dot-dot are optional. This volume of IEEE Std. 1003.1-200x does |
27730 not provide a way to test a priori for their existence because an application that is portable must
27731 be written to look for (and usually ignore) those entries. Writing code that presumes that they
27732 are the first two entries does not always work, as many implementations permit them to be
27733 other than the first two entries, with a ‘‘normal’’ entry preceding them. There is negligible value
27734 in providing a way to determine what the implementation does because the code to deal with
27735 dot and dot-dot must be written in any case and because such a flag would add to the list of
27736 those flags (which has proven in itself to be objectionable) and might be abused.

27737 Since the structure and buffer allocation, if any, for directory operations are defined by the
27738 implementation, this volume of IEEE Std. 1003.1-200x imposes no portability requirements for
27739 erroneous program constructs, erroneous data, or the use of indeterminate values such as the
27740 use or referencing of a dirp value or a dirent structure value after a directory stream has been
27741 closed or after a fork () or one of the exec function calls. |

27742 FUTURE DIRECTIONS
27743 None.

27744 SEE ALSO
27745 closedir(), lstat(), readdir(), rewinddir(), symlink(), the Base Definitions volume of |
27746 IEEE Std. 1003.1-200x, <dirent.h>, <limits.h>, <sys/types.h> |

1360 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces opendir()

27747 CHANGE HISTORY
27748 First released in Issue 2.

27749 Issue 4
27750 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
27751 XSI-conformant systems.

27752 In the DESCRIPTION, the following sentence is moved to the Base Definitions volume of |
27753 IEEE Std. 1003.1-200x: ‘‘The type DIR, which is defined in <dirent.h>, represents a directory |
27754 stream, which is an ordered sequence of all directory entries in a particular directory.’’

27755 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

27756 • The type of argument dirname is changed from char* to const char*.

27757 • The generation of an [ENOENT] error when dirname points to an empty string is made |
27758 mandatory.

27759 The following change is incorporated for alignment with the FIPS requirements:

27760 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path |
27761 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
27762 an extension.

27763 Issue 4, Version 2
27764 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

27765 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
27766 name resolution.

27767 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
27768 intermediate result of path name resolution of a symbolic link.

27769 Issue 6
27770 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

27771 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

27772 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
27773 This is since behavior may vary from one file system to another.

27774 The following new requirements on POSIX implementations derive from alignment with the
27775 Single UNIX Specification:

27776 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
27777 required for conforming implementations of previous POSIX specifications, it was not
27778 required for UNIX applications.

27779 • The [ELOOP] mandatory error condition is added.

27780 • A second [ENAMETOOLONG] is added as an optional error condition.

27781 The following changes were made to align with the IEEE P1003.1a draft standard:

27782 • The [ELOOP] optional error condition is added.

System Interfaces, Issue 6 1361

openlog() System Interfaces

27783 NAME
27784 openlog — open a connection to the logging facility

27785 SYNOPSIS
27786 XSI #include <syslog.h>

27787 void openlog(const char * ident , int logopt , int facility);
27788

27789 DESCRIPTION
27790 Refer to closelog ().

1362 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces optarg

27791 NAME
27792 optarg, opterr, optind, optopt — options parsing variables

27793 SYNOPSIS
27794 #include <unistd.h>

27795 extern char *optarg;
27796 extern int opterr, optind, optopt;

27797 DESCRIPTION
27798 Refer to getopt().

System Interfaces, Issue 6 1363

pathconf() System Interfaces

27799 NAME
27800 pathconf — get configurable path name variables

27801 SYNOPSIS
27802 #include <unistd.h>

27803 long pathconf(const char * path , int name); |

27804 DESCRIPTION |
27805 Refer to fpathconf ().

1364 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pause()

27806 NAME
27807 pause — suspend the thread until a signal is received

27808 SYNOPSIS
27809 #include <unistd.h>

27810 int pause(void);

27811 DESCRIPTION
27812 The pause() function shall suspend the calling thread until delivery of a signal whose action is
27813 either to execute a signal-catching function or to terminate the process.

27814 If the action is to terminate the process, pause() shall not return.

27815 If the action is to execute a signal-catching function, pause() shall return after the signal-catching
27816 function returns.

27817 RETURN VALUE
27818 Since pause() suspends thread execution indefinitely unless interrupted by a signal, there is no
27819 successful completion return value. A value of −1 shall be returned and errno set to indicate the
27820 error.

27821 ERRORS
27822 The pause() function shall fail if:

27823 [EINTR] A signal is caught by the calling process and control is returned from the |
27824 signal-catching function.

27825 EXAMPLES
27826 None.

27827 APPLICATION USAGE
27828 Many common uses of pause() have timing windows. The scenario involves checking a
27829 condition related to a signal and, if the signal has not occurred, calling pause(). When the signal
27830 occurs between the check and the call to pause(), the process often blocks indefinitely. The
27831 sigprocmask () and sigsuspend() functions can be used to avoid this type of problem.

27832 RATIONALE
27833 None.

27834 FUTURE DIRECTIONS
27835 None.

27836 SEE ALSO
27837 sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

27838 CHANGE HISTORY
27839 First released in Issue 1. Derived from Issue 1 of the SVID. |

27840 Issue 4
27841 The <unistd.h> header is added to the SYNOPSIS section.

27842 In the RETURN VALUE section, the text is expanded to indicate that process execution is
27843 suspended indefinitely ‘‘unless interrupted by a signal’’.

27844 The following change is incorporated for alignment with the ISO POSIX-1 standard:

27845 • The argument list is explicitly defined as void.

System Interfaces, Issue 6 1365

pause() System Interfaces

27846 Issue 5
27847 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

27848 Issue 6
27849 The APPLICATION USAGE section is added.

1366 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pclose()

27850 NAME
27851 pclose — close a pipe stream to or from a process

27852 SYNOPSIS
27853 #include <stdio.h>

27854 int pclose(FILE * stream);

27855 DESCRIPTION
27856 The pclose() function shall close a stream that was opened by popen(), wait for the command to
27857 terminate, and return the termination status of the process that was running the command
27858 language interpreter. However, if a call caused the termination status to be unavailable to
27859 pclose(), then pclose() shall return −1 with errno set to [ECHILD] to report this situation. This can
27860 happen if the application calls one of the following functions:

27861 • wait()

27862 • waitpid () with a pid argument less than or equal to 0 or equal to the process ID of the
27863 command line interpreter

27864 • Any other function not defined in this volume of IEEE Std. 1003.1-200x that could do one of
27865 the above

27866 In any case, pclose() shall not return before the child process created by popen() has terminated.

27867 If the command language interpreter cannot be executed, the child termination status returned
27868 by pclose() is as if the command language interpreter terminated using exit(127) or _exit(127).

27869 The pclose() function shall not affect the termination status of any child of the calling process
27870 other than the one created by popen() for the associated stream.

27871 If the argument stream to pclose() is not a pointer to a stream created by popen(), the result of
27872 pclose() is undefined.

27873 RETURN VALUE
27874 Upon successful return, pclose() shall return the termination status of the command language
27875 interpreter. Otherwise, pclose() shall return −1 and set errno to indicate the error.

27876 ERRORS
27877 The pclose() function shall fail if:

27878 [ECHILD] The status of the child process could not be obtained, as described above. |

27879 EXAMPLES
27880 None.

27881 APPLICATION USAGE
27882 None.

27883 RATIONALE
27884 There is a requirement that pclose() not return before the child process terminates. This is
27885 intended to disallow implementations that return [EINTR] if a signal is received while waiting.
27886 If pclose() returned before the child terminated, there would be no way for the application to
27887 discover which child used to be associated with the stream, and it could not do the cleanup
27888 itself.

27889 If the stream pointed to by stream was not created by popen(), historical implementations of
27890 pclose() return −1 without setting errno. To avoid requiring pclose() to set errno in this case,
27891 IEEE Std. 1003.1-200x makes the behavior unspecified. An application should not use pclose() to
27892 close any stream that was not created by popen().

System Interfaces, Issue 6 1367

pclose() System Interfaces

27893 Some historical implementations of pclose() either block or ignore the signals SIGINT, SIGQUIT,
27894 and SIGHUP while waiting for the child process to terminate. Since this behavior is not
27895 described for the pclose() function in IEEE Std. 1003.1-200x, such implementations are not
27896 conforming. Also, some historical implementations return [EINTR] if a signal is received, even
27897 though the child process has not terminated. Such implementations are also considered non-
27898 conforming.

27899 Consider, for example, an application that uses:

27900 popen("command", "r")

27901 to start command , which is part of the same application. The parent writes a prompt to its
27902 standard output (presumably the terminal) and then reads from the stream. The child reads the |
27903 response from the user, does some transformation on the response (path name expansion, |
27904 perhaps) and writes the result to its standard output. The parent process reads the result from
27905 the pipe, does something with it, and prints another prompt. The cycle repeats. Assuming that
27906 both processes do appropriate buffer flushing, this would be expected to work. |

27907 To conform to IEEE Std. 1003.1-200x, pclose() must use waitpid (), or some similar function, |
27908 instead of wait().

27909 The code sample below illustrates how the pclose() function might be implemented on a system
27910 conforming to IEEE Std. 1003.1-200x.

27911 int pclose(FILE *stream)
27912 {
27913 int stat;
27914 pid_t pid;

27915 pid = <pid for process created for stream by popen()>
27916 (void) fclose(stream);
27917 while (waitpid(pid, &stat, 0) == -1) {
27918 if (errno != EINTR){
27919 stat = -1;
27920 break;
27921 }
27922 }
27923 return(stat);
27924 }

27925 FUTURE DIRECTIONS
27926 None.

27927 SEE ALSO
27928 fork (), popen(), waitpid (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

27929 CHANGE HISTORY
27930 First released in Issue 1. Derived from Issue 1 of the SVID. |

27931 Issue 4
27932 The following changes are incorporated for alignment with the ISO POSIX-2 standard:

27933 • The function is no longer marked as an extension.

27934 • The simple DESCRIPTION given in Issue 3 is replaced with a more complete description in
27935 this issue. In particular, interactions between this function and wait() and waitpid () are
27936 defined.

1368 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces perror()

27937 NAME
27938 perror — write error messages to standard error

27939 SYNOPSIS
27940 #include <stdio.h>

27941 void perror(const char * s);

27942 DESCRIPTION
27943 CX The functionality described on this reference page is aligned with the ISO C standard. Any
27944 conflict between the requirements described here and the ISO C standard is unintentional. This
27945 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

27946 The perror() function maps the error number accessed through the symbol errno to a language-
27947 dependent error message, which shall be written to the standard error stream as follows:

27948 • First (if s is not a null pointer and the character pointed to by s is not the null byte), the string
27949 pointed to by s followed by a colon and a <space> character.

27950 • Then an error message string followed by a <newline> character.

27951 The contents of the error message strings are the same as those returned by strerror() with
27952 argument errno.

27953 CX The perror() function shall mark the file associated with the standard error stream as having
27954 been written (st_ctime, st_mtime marked for update) at some time between its successful
27955 completion and exit(), abort(), or the completion of fflush() or fclose() on stderr.

27956 The perror() function shall not change the orientation of the standard error stream.

27957 RETURN VALUE
27958 The perror() function shall return no value.

27959 ERRORS
27960 No errors are defined.

27961 EXAMPLES

27962 Printing an Error Message for a Function

27963 The following example replaces bufptr with a buffer that is the necessary size. If an error occurs,
27964 the perror() function prints a message and the program exits.

27965 #include <stdio.h>
27966 #include <stdlib.h>
27967 ...
27968 char *bufptr;
27969 size_t szbuf;
27970 ...
27971 if ((bufptr = malloc(szbuf)) == NULL) {
27972 perror("malloc"); exit(2);
27973 }
27974 ...

27975 APPLICATION USAGE
27976 None.

System Interfaces, Issue 6 1369

perror() System Interfaces

27977 RATIONALE
27978 None.

27979 FUTURE DIRECTIONS
27980 None.

27981 SEE ALSO
27982 strerror(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

27983 CHANGE HISTORY
27984 First released in Issue 1. Derived from Issue 1 of the SVID. |

27985 Issue 4
27986 The language for error message strings was given as implementation-defined in Issue 3. In this |
27987 issue, they are defined as language-dependent. |

27988 The following change is incorporated for alignment with the ISO POSIX-1 standard:

27989 • A paragraph is added to the DESCRIPTION defining the effects of this function on the
27990 st_ctime and st_mtime fields of the standard error stream.

27991 The following change is incorporated for alignment with the ISO C standard:

27992 • The type of argument s is changed from char* to const char*.

27993 Issue 5
27994 A paragraph is added to the DESCRIPTION indicating that perror() does not change the
27995 orientation of the standard error stream.

27996 Issue 6
27997 Extensions beyond the ISO C standard are now marked.

1370 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pipe()

27998 NAME
27999 pipe — create an interprocess channel

28000 SYNOPSIS
28001 #include <unistd.h>

28002 int pipe(int fildes [2]);

28003 DESCRIPTION
28004 The pipe() function shall create a pipe and place two file descriptors, one each into the
28005 arguments fildes[0] and fildes[1], that refer to the open file descriptions for the read and write
28006 ends of the pipe. Their integer values shall be the two lowest available at the time of the pipe()
28007 call. The O_NONBLOCK and FD_CLOEXEC flags shall be clear on both file descriptors. (The
28008 fcntl() function can be used to set both these flags.)

28009 Data can be written to the file descriptor fildes[1] and read from the file descriptor fildes[0]. A
28010 read on the file descriptor fildes[0] shall access data written to the file descriptor fildes[1] on a |
28011 first-in-first-out basis. It is unspecified whether fildes[0] is also open for writing and whether |
28012 fildes[1] is also open for reading. |

28013 A process has the pipe open for reading (correspondingly writing) if it has a file descriptor open
28014 that refers to the read end, fildes[0] (write end, fildes[1]).

28015 Upon successful completion, pipe() shall mark for update the st_atime , st_ctime, and st_mtime
28016 fields of the pipe.

28017 RETURN VALUE
28018 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
28019 indicate the error.

28020 ERRORS
28021 The pipe() function shall fail if:

28022 [EMFILE] More than {OPEN_MAX} minus two file descriptors are already in use by this |
28023 process.

28024 [ENFILE] The number of simultaneously open files in the system would exceed a |
28025 system-imposed limit.

28026 EXAMPLES
28027 None.

28028 APPLICATION USAGE
28029 None.

28030 RATIONALE
28031 The wording carefully avoids using the verb ‘‘to open’’ in order to avoid any implication of use
28032 of open(); see also write().

28033 FUTURE DIRECTIONS
28034 None.

28035 SEE ALSO
28036 fcntl(), read(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, |
28037 <unistd.h>

CHANGE28038 HISTORY
28039 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 1371

pipe() System Interfaces

28040 Issue 4
28041 The <unistd.h> header is added to the SYNOPSIS section.

28042 Issue 4, Version 2
28043 The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that certain
28044 dispositions of fildes[0] and fildes[1] are unspecified.

28045 Issue 6
28046 The following new requirements on POSIX implementations derive from alignment with the
28047 Single UNIX Specification:

28048 • The DESCRIPTION is updated to indicate that certain dispositions of fildes[0] and fildes[1]
28049 are unspecified.

1372 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces poll()

28050 NAME
28051 poll — input/output multiplexing

28052 SYNOPSIS
28053 XSI #include <poll.h>

28054 int poll(struct pollfd fds [], nfds_t nfds , int timeout);
28055

28056 DESCRIPTION
28057 The poll () function provides applications with a mechanism for multiplexing input/output over
28058 a set of file descriptors. For each member of the array pointed to by fds , poll () examines the given
28059 file descriptor for the event(s) specified in events. The number of pollfd structures in the fds
28060 array is specified by nfds . The poll () function identifies those file descriptors on which an
28061 application can read or write data, or on which certain events have occurred.

28062 The fds argument specifies the file descriptors to be examined and the events of interest for each
28063 file descriptor. It is a pointer to an array with one member for each open file descriptor of
28064 interest. The array’s members are pollfd structures within which fd specifies an open file
28065 descriptor and events and revents are bitmasks constructed by OR’ing a combination of the
28066 following event flags:

28067 XSR POLLIN Data other than high-priority data may be read without blocking. For
28068 STREAMS, this flag is set in revents even if the message is of zero length.

28069 XSR POLLRDNORM Normal data (priority band equals 0) may be read without blocking. For
28070 STREAMS, this flag is set in revents even if the message is of zero length.

28071 XSR POLLRDBAND Data from a non-zero priority band may be read without blocking. For
28072 STREAMS, this flag is set in revents even if the message is of zero length.

28073 XSR POLLPRI High-priority data may be received without blocking. For STREAMS, this flag
28074 is set in revents even if the message is of zero length.

28075 POLLOUT Normal data (priority band equals 0) may be written without blocking.

28076 POLLWRNORM Same as POLLOUT.

28077 POLLWRBAND Priority data (priority band >0) may be written. This event only examines
28078 bands that have been written to at least once.

28079 POLLERR An error has occurred on the device or stream. This flag is only valid in the
28080 revents bitmask; it is ignored in the events member.

28081 POLLHUP The device has been disconnected. This event and POLLOUT are mutually-
28082 exclusive; a stream can never be writable if a hangup has occurred. However,
28083 this event and POLLIN, POLLRDNORM, POLLRDBAND, or POLLPRI are not
28084 mutually-exclusive. This flag is only valid in the revents bitmask; it is ignored
28085 in the events member.

28086 POLLNVAL The specified fd value is invalid. This flag is only valid in the revents member;
28087 it is ignored in the events member.

28088 If the value of fd is less than 0, events is ignored, and revents is set to 0 in that entry on return from
28089 poll ().

28090 In each pollfd structure, poll () clears the revents member, except that where the application
28091 requested a report on a condition by setting one of the bits of events listed above, poll () sets the
28092 corresponding bit in revents if the requested condition is true. In addition, poll () sets the
28093 POLLHUP, POLLERR, and POLLNVAL flag in revents if the condition is true, even if the

System Interfaces, Issue 6 1373

poll() System Interfaces

28094 application did not set the corresponding bit in events.

28095 If none of the defined events have occurred on any selected file descriptor, poll () waits at least
28096 timeout milliseconds for an event to occur on any of the selected file descriptors. If the value of
28097 timeout is 0, poll () shall return immediately. If the value of timeout is −1, poll () shall block until a
28098 requested event occurs or until the call is interrupted.

28099 Implementations may place limitations on the granularity of timeout intervals. If the requested
28100 timeout interval requires a finer granularity than the implementation supports, the actual
28101 timeout interval shall be rounded up to the next supported value.

28102 The poll () function is not affected by the O_NONBLOCK flag.

28103 XSR The poll () function supports regular files, terminal and pseudo-terminal devices, STREAMS-
28104 based files,FIFOs, pipes, and sockets. The behavior of poll () on elements of fds that refer to other |
28105 types of file is unspecified.

28106 Regular files always poll TRUE for reading and writing.

28107 The poll () function supports sockets.

28108 A file descriptor for a socket that is listening for connections shall indicate that it is ready for
28109 reading, once connections are available. A file descriptor for a socket that is connecting
28110 asynchronously shall indicate that it is ready for writing, once a connection has been established.

28111 RETURN VALUE
28112 Upon successful completion, poll () shall return a non-negative value. A positive value indicates
28113 the total number of file descriptors that have been selected (that is, file descriptors for which the
28114 revents member is non-zero). A value of 0 indicates that the call timed out and no file descriptors
28115 have been selected. Upon failure, poll () shall return −1 and set errno to indicate the error.

28116 ERRORS
28117 The poll () function shall fail if:

28118 [EAGAIN] The allocation of internal data structures failed but a subsequent request may |
28119 succeed.

28120 [EINTR] A signal was caught during poll (). |

28121 XSR [EINVAL] The nfds argument is greater than {OPEN_MAX}, or one of the fd members |
28122 refers to a STREAM or multiplexer that is linked (directly or indirectly)
28123 downstream from a multiplexer.

28124 EXAMPLES

28125 Checking for Events on a Stream

28126 The following example opens a pair of STREAMS devices and then waits for either one to |
28127 become writable. This example proceeds as follows: |

28128 1. Sets the timeout parameter to 500 milliseconds.

28129 2. Opens the STREAMS devices /dev/dev0 and /dev/dev1, and then polls them, specifying
28130 POLLOUT and POLLWRBAND as the events of interest.

28131 The STREAMS device names /dev/dev0 and /dev/dev1 are only examples of how
28132 STREAMS devices can be named; STREAMS naming conventions may vary among
28133 systems conforming to the IEEE Std. 1003.1-200x.

28134 3. Uses the ret variable to determine whether an event has occurred on either of the two
28135 STREAMS. The poll () function is given 500 milliseconds to wait for an event to occur (if it

1374 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces poll()

28136 has not occurred prior to the poll () call).

28137 4. Checks the returned value of ret. If a positive value is returned, one of the following can
28138 be done:

28139 a. Priority data can be written to the open STREAM on priority bands greater than 0,
28140 because the POLLWRBAND event occurred on the open STREAM (fds[0] or fds[1]).

28141 b. Data can be written to the open STREAM on priority-band 0, because the POLLOUT
28142 event occurred on the open STREAM (fds[0] or fds[1]).

28143 5. If the returned value is not a positive value, permission to write data to the open STREAM
28144 (on any priority band) is denied.

28145 6. If the POLLHUP event occurs on the open STREAM (fds[0] or fds[1]), the device on the
28146 open STREAM has disconnected.

28147 #include <stropts.h>
28148 #include <poll.h>
28149 ...
28150 struct pollfd fds[2];
28151 int timeout_msecs = 500;
28152 int ret;
28153 int i;

28154 /* Open STREAMS device. */
28155 fds[0].fd = open("/dev/dev0", ...);
28156 fds[1].fd = open("/dev/dev1", ...);
28157 fds[0].events = POLLOUT | POLLWRBAND;
28158 fds[1].events = POLLOUT | POLLWRBAND;

28159 ret = poll(fds, 2, timeout_msecs);

28160 if (ret > 0) {
28161 /* An event on one of the fds has occurred. */
28162 for (i=0; i<2; i++) {
28163 if (fds[i].revents & POLLWRBAND) {
28164 /* Priority data may be written on device number i. */
28165 ...
28166 }
28167 if (fds[i].revents & POLLOUT) {
28168 /* Data may be written on device number i. */
28169 ...
28170 }
28171 if (fds[i].revents & POLLHUP) {
28172 /* A hangup has occurred on device number i. */
28173 ...
28174 }
28175 }
28176 }

28177 APPLICATION USAGE
28178 None.

System Interfaces, Issue 6 1375

poll() System Interfaces

28179 RATIONALE
28180 None.

28181 FUTURE DIRECTIONS
28182 None.

28183 SEE ALSO
28184 getmsg(), putmsg(), read(), select(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
28185 <poll.h>, <stropts.h>, Section 2.6 (on page 539)

28186 CHANGE HISTORY
28187 First released in Issue 4, Version 2.

28188 Issue 5
28189 Moved from X/OPEN UNIX extension to BASE.

28190 The description of POLLWRBAND is updated.

28191 Issue 6
28192 Text referring to sockets is added to the DESCRIPTION.

28193 Text relating to the XSI STREAMS Option Group is marked.

1376 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces popen()

28194 NAME
28195 popen — initiate pipe streams to or from a process

28196 SYNOPSIS
28197 #include <stdio.h>

28198 FILE *popen(const char * command, const char * mode);

28199 DESCRIPTION
28200 The popen() function shall execute the command specified by the string command. It creates a
28201 pipe between the calling program and the executed command, and returns a pointer to a stream
28202 that can be used to either read from or write to the pipe.

28203 The environment of the executed command shall be as if a child process were created within the
28204 popen() call using the fork () function, and the child used execl() to invoke a command line
28205 interpreter.

28206 If the implementation supports the Shell and Utilities volume of IEEE Std. 1003.1-200x, the |
28207 environment of the executed command is as if a child process were created within the popen() |
28208 call using fork (), and the child invoked the sh utility using the call:

28209 execl(shell path , "sh", "-c", command, (char *)0);

28210 where shell path is an unspecified path name for the sh utility.

28211 The popen() function ensures that any streams from previous popen() calls that remain open in
28212 the parent process are closed in the new child process.

28213 The mode argument to popen() is a string that specifies I/O mode:

28214 1. If mode is r, when the child process is started, its file descriptor STDOUT_FILENO shall be
28215 the writable end of the pipe, and the file descriptor fileno(stream) in the calling process,
28216 where stream is the stream pointer returned by popen(), shall be the readable end of the
28217 pipe.

28218 2. If mode is w, when the child process is started its file descriptor STDIN_FILENO shall be
28219 the readable end of the pipe, and the file descriptor fileno(stream) in the calling process,
28220 where stream is the stream pointer returned by popen(), shall be the writable end of the
28221 pipe.

28222 3. If mode is any other value, the result is undefined.

28223 After popen(), both the parent and the child process shall be capable of executing independently
28224 before either terminates.

28225 Pipe streams are byte-oriented.

28226 RETURN VALUE
28227 Upon successful completion, popen() shall return a pointer to an open stream that can be used to
28228 read or write to the pipe. Otherwise, it shall return a null pointer and may set errno to indicate
28229 the error.

28230 ERRORS
28231 The popen() function may fail if:

28232 [EMFILE] {FOPEN_MAX} or {STREAM_MAX} streams are currently open in the calling |
28233 process. |

28234 [EINVAL] The mode argument is invalid. |

28235 The popen() function may also set errno values as described by fork () or pipe().

System Interfaces, Issue 6 1377

popen() System Interfaces

28236 EXAMPLES
28237 None.

28238 APPLICATION USAGE
28239 Because open files are shared, a mode r command can be used as an input filter and a mode w
28240 command as an output filter.

28241 Buffered reading before opening an input filter may leave the standard input of that filter
28242 mispositioned. Similar problems with an output filter may be prevented by careful buffer
28243 flushing; for example, with fflush().

28244 A stream opened by popen() should be closed by pclose().

28245 The behavior of popen() is specified for values of mode of r and w. Other modes such as rb and
28246 wb might be supported by specific implementations, but these would not be portable features.
28247 Note that historical implementations of popen() only check to see if the first character of mode is
28248 r. Thus, a mode of robert the robot would be treated as mode r, and a mode of anything else would be
28249 treated as mode w.

28250 If the application calls waitpid () or waitid () with a pid argument greater than 0, and it still has a
28251 stream that was called with popen() open, it must ensure that pid does not refer to the process
28252 started by popen().

28253 To determine whether or not the environment specified in the Shell and Utilities volume of |
28254 IEEE Std. 1003.1-200x is present, use the function call: |

28255 sysconf(_SC_2_VERSION)

28256 (See sysconf()).

28257 RATIONALE
28258 The popen() function should not be used by programs that have set user (or group) ID privileges.
28259 The fork () and exec family of functions (except execlp() and execvp()), should be used instead.
28260 This prevents any unforeseen manipulation of the environment of the user that could cause
28261 execution of commands not anticipated by the calling program.

28262 If the original and popen()ed processes both intend to read or write or read and write a common |
28263 file, and either will be using FILE-type C functions (fread(), fwrite(), and so on), the rules for |
28264 sharing file handles must be observed (see Section 2.5.1 (on page 535)). |

28265 Because open files are shared, a mode r argument can be used as an input filter and a mode w |
28266 argument as an output filter. |

28267 The behavior of popen() is specified for modes of r and w. Other modes such as rb and wb might |
28268 be supported by specific implementations, but these would not be portable features. Note that
28269 historical implementations of popen() only check to see if the first character of mode is ’r’ .
28270 Thus, a mode of robert the robot would be treated as mode r, and a mode of anything else would be |
28271 treated as mode w. |

28272 If the application calls waitpid () with a pid argument greater than zero, and it still has a
28273 popen()ed stream open, it must ensure that pid does not refer to the process started by popen().

28274 FUTURE DIRECTIONS
28275 None.

28276 SEE ALSO
28277 pclose(), pipe(), sysconf(), system(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
28278 <stdio.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x |

1378 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces popen()

28279 CHANGE HISTORY
28280 First released in Issue 1. Derived from Issue 1 of the SVID. |

28281 Issue 4
28282 The APPLICATION USAGE section is extended. Only notes about buffer flushing are retained
28283 from Issue 3.

28284 The following changes are incorporated for alignment with the ISO POSIX-2 standard:

28285 • The function is no longer marked as an extension.

28286 • The type of arguments command and mode are changed from char* to const char*.

28287 • The DESCRIPTION is completely rewritten for alignment with the ISO POSIX-2 standard,
28288 although it describes essentially the same functionality as Issue 3.

28289 • The sh utility defined in the Shell and Utilities volume of IEEE Std. 1003.1-200x is no longer |
28290 required in all circumstances. |

28291 • The ERRORS section is added.

28292 Issue 5
28293 A statement is added to the DESCRIPTION indicating that pipe streams are byte-oriented.

28294 Issue 6
28295 The following new requirements on POSIX implementations derive from alignment with the
28296 Single UNIX Specification:

28297 • The optional [EMFILE] error condition is added.

28298 The following changes were made to align with the IEEE P1003.1a draft standard:

28299 • The DESCRIPTION is adjusted to reflect the behavior on systems that do not support the |
28300 Shell option. |

System Interfaces, Issue 6 1379

posix_fadvise() System Interfaces

28301 NAME
28302 posix_fadvise — file advisory information

28303 SYNOPSIS
28304 ADV #include <fcntl.h>

28305 int posix_fadvise(int fd , off_t offset , size_t len , int advice);
28306

28307 DESCRIPTION
28308 The posix_fadvise() function provides advice to the implementation on the expected behavior of
28309 the application with respect to the data in the file associated with the open file descriptor, fd ,
28310 starting at offset and continuing for len bytes. The specified range need not currently exist in the
28311 file. If len is zero, all data following offset is specified. The implementation may use this
28312 information to optimize handling of the specified data. The posix_fadvise() function has no effect
28313 on the semantics of other operations on the specified data, although it may affect the |
28314 performance of other operations. |

28315 The advice to be applied to the data is specified by the advice parameter and may be one of the
28316 following values:

28317 POSIX_FADV_NORMAL
28318 Specifies that the application has no advice to give on its behavior with respect to the
28319 specified data. It is the default characteristic if no advice is given for an open file.

28320 POSIX_FADV_SEQUENTIAL
28321 Specifies that the application expects to access the specified data sequentially from lower
28322 offsets to higher offsets.

28323 POSIX_FADV_RANDOM
28324 Specifies that the application expects to access the specified data in a random order.

28325 POSIX_FADV_WILLNEED
28326 Specifies that the application expects to access the specified data in the near future.

28327 POSIX_FADV_DONTNEED
28328 Specifies that the application expects that it will not access the specified data in the near
28329 future.

28330 POSIX_FADV_NOREUSE
28331 Specifies that the application expects to access the specified data once and then not reuse it
28332 thereafter.

28333 These values shall be defined in <fcntl.h>. |

28334 RETURN VALUE
28335 Upon successful completion, posix_fadvise() shall return zero; otherwise, an error number shall
28336 be returned to indicate the error.

28337 ERRORS
28338 The posix_fadvise() function shall fail if:

28339 [EBADF] The fd argument is not a valid file descriptor.

28340 [EINVAL] The value of advice is invalid. |

28341 [ESPIPE] The fd argument is associated with a pipe or FIFO.

1380 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_fadvise()

28342 EXAMPLES
28343 None.

28344 APPLICATION USAGE
28345 The posix_fadvise() function is part of the Advisory Information option and need not be provided |
28346 on all implementations.

28347 RATIONALE
28348 None.

28349 FUTURE DIRECTIONS
28350 None.

28351 SEE ALSO
28352 posix_madvise (), the Base Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h> |

28353 CHANGE HISTORY
28354 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

28355 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1381

posix_fallocate() System Interfaces

28356 NAME
28357 posix_fallocate — file space control

28358 SYNOPSIS
28359 ADV #include <fcntl.h>

28360 int posix_fallocate(int fd , off_t offset , size_t len);
28361

28362 DESCRIPTION
28363 The posix_fallocate() function ensures that any required storage for regular file data starting at
28364 offset and continuing for len bytes is allocated on the file system storage media. If posix_fallocate()
28365 returns successfully, subsequent writes to the specified file data shall not fail due to the lack of
28366 free space on the file system storage media.

28367 If the offset+len is beyond the current file size, then posix_fallocate() shall adjust the file size to
28368 offset+len. Otherwise, the file size shall not be changed.

28369 It is implementation-defined whether a previous posix_fadvise() call influences allocation |
28370 strategy.

28371 Space allocated via posix_fallocate() shall be freed by a successful call to creat() or open() that
28372 truncates the size of the file. Space allocated via posix_fallocate() may be freed by a successful call
28373 to ftruncate() that reduces the file size to a size smaller than offset+len.

28374 RETURN VALUE
28375 Upon successful completion, posix_fallocate() shall return zero; otherwise, an error number shall
28376 be returned to indicate the error.

28377 ERRORS
28378 The posix_fallocate() function shall fail if:

28379 [EBADF] The fd argument is not a valid file descriptor.

28380 [EBADF] The fd argument references a file that was opened without write permission.

28381 [EFBIG] The value of offset+len is greater than the maximum file size.

28382 [EINTR] A signal was caught during execution.

28383 [EINVAL] The len argument was zero or the offset argument was less than zero.

28384 [EIO] An I/O error occurred while reading from or writing to a file system.

28385 [ENODEV] The fd argument does not refer to a regular file.

28386 [ENOSPC] There is insufficient free space remaining on the file system storage media.

28387 [ESPIPE] The fd argument is associated with a pipe or FIFO.

28388 EXAMPLES
28389 None.

28390 APPLICATION USAGE
28391 The posix_fallocate() function is part of the Advisory Information option and need not be |
28392 provided on all implementations.

28393 RATIONALE
28394 None.

1382 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_fallocate()

28395 FUTURE DIRECTIONS
28396 None.

28397 SEE ALSO
28398 creat(), ftruncate(), open(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
28399 <fcntl.h>

CHANGE28400 HISTORY
28401 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

28402 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1383

posix_madvise() System Interfaces

28403 NAME
28404 posix_madvise — memory advisory information and alignment control

28405 SYNOPSIS
28406 ADV #include <sys/mman.h>

28407 int posix_madvise(void * addr , size_t len , int advice);
28408

28409 DESCRIPTION |
28410 MF|SHM The posix_madvise() function need only be supported if either the Memory Mapped Files or the |
28411 Shared Memory Objects options are supported. |

28412 The posix_madvise() function provides advice to the implementation on the expected behavior of
28413 the application with respect to the data in the memory starting at address addr , and continuing
28414 for len bytes. The implementation may use this information to optimize handling of the specified
28415 data. The posix_madvise() function has no effect on the semantics of access to memory in the |
28416 specified range, although it may affect the performance of access. |

28417 The implementation may require that addr be a multiple of the page size, which is the value
28418 returned by sysconf() when the name value _SC_PAGESIZE is used.

28419 The advice to be applied to the memory range is specified by the advice parameter and may be
28420 one of the following values:

28421 POSIX_MADV_NORMAL
28422 Specifies that the application has no advice to give on its behavior with respect to the
28423 specified range. It is the default characteristic if no advice is given for a range of memory.

28424 POSIX_MADV_SEQUENTIAL
28425 Specifies that the application expects to access the specified range sequentially from lower
28426 addresses to higher addresses.

28427 POSIX_MADV_RANDOM
28428 Specifies that the application expects to access the specified range in a random order.

28429 POSIX_MADV_WILLNEED
28430 Specifies that the application expects to access the specified range in the near future.

28431 POSIX_MADV_DONTNEED
28432 Specifies that the application expects that it will not access the specified range in the near
28433 future.

28434 These values shall be defined in <sys/mman.h>. |

28435 RETURN VALUE
28436 Upon successful completion, posix_madvise() shall return zero; otherwise, an error number shall
28437 be returned to indicate the error.

28438 ERRORS
28439 The posix_madvise() function shall fail if:

28440 [EINVAL] The value of advice is invalid. |

28441 [ENOMEM] Addresses in the range starting at addr and continuing for len bytes are partly
28442 or completely outside the range allowed for the address space of the calling
28443 process.

28444 The posix_madvise() function may fail if:

1384 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_madvise()

28445 [EINVAL] The value of addr is not a multiple of the value returned by sysconf() when the
28446 name value _SC_PAGESIZE is used.

28447 [EINVAL] The value of len is zero.

28448 EXAMPLES
28449 None.

28450 APPLICATION USAGE
28451 The posix_madvise() function is part of the Advisory Information option and need not be |
28452 provided on all implementations.

28453 RATIONALE
28454 None.

28455 FUTURE DIRECTIONS
28456 None.

28457 SEE ALSO
28458 mmap(), posix_fadvise(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
28459 <sys/mmap.h>

CHANGE28460 HISTORY
28461 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

28462 IEEE PASC Interpretation 1003.1 #102 is included. |

System Interfaces, Issue 6 1385

posix_mem_offset() System Interfaces

28463 NAME
28464 posix_mem_offset — find offset and length of a mapped typed memory block

28465 SYNOPSIS
28466 TYM #include <sys/mman.h>

28467 int posix_mem_offset(const void *restrict addr , size_t len , |
28468 off_t *restrict off , size_t *restrict contig_len , |
28469 int *restrict fildes); |
28470 |

28471 DESCRIPTION
28472 The posix_mem_offset() function returns in the variable pointed to by off a value that identifies
28473 the offset (or location), within a memory object, of the memory block currently mapped at addr .
28474 The function shall return in the variable pointed to by fildes , the descriptor used (via mmap()) to
28475 establish the mapping which contains addr . If that descriptor was closed since the mapping was
28476 established, the returned value of fildes shall be −1. The len argument specifies the length of the
28477 block of the memory object the user wishes the offset for; upon return, the value pointed to by
28478 contig_len shall equal either len, or the length of the largest contiguous block of the memory
28479 object that is currently mapped to the calling process starting at addr , whichever is smaller.

28480 If the memory object mapped at addr is a typed memory object, then if the off and contig_len
28481 values obtained by calling posix_mem_offset() are used in a call to mmap() with a file descriptor
28482 that refers to the same memory pool as fildes (either through the same port or through a different
28483 port), and that was opened with neither the POSIX_TYPED_MEM_ALLOCATE nor the
28484 POSIX_TYPED_MEM_ALLOCATE_CONTIG flag, the typed memory area that is mapped shall
28485 be exactly the same area that was mapped at addr in the address space of the process that called
28486 posix_mem_offset().

28487 If the memory object specified by fildes is not a typed memory object, then the behavior of this
28488 function is implementation-defined. |

28489 RETURN VALUE
28490 Upon successful completion, the posix_mem_offset() function shall return zero; otherwise, the
28491 corresponding error status value shall be returned.

28492 ERRORS
28493 The posix_mem_offset() function shall fail if:

28494 [EACCES] The process has not mapped a memory object supported by this function at
28495 the given address addr .

28496 This function shall not return an error code of [EINTR]. |

28497 EXAMPLES
28498 None.

28499 APPLICATION USAGE
28500 None.

28501 RATIONALE
28502 None.

28503 FUTURE DIRECTIONS
28504 None.

1386 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_mem_offset()

28505 SEE ALSO
28506 mmap(), posix_typed_mem_open(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
28507 <sys/mman.h>

CHANGE28508 HISTORY
28509 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

System Interfaces, Issue 6 1387

posix_memalign() System Interfaces

28510 NAME
28511 posix_memalign — aligned memory allocation

28512 SYNOPSIS
28513 ADV #include <stdlib.h>

28514 int posix_memalign(void ** memptr , size_t alignment , size_t size);
28515

28516 DESCRIPTION
28517 The posix_memalign() function allocates size bytes aligned on a boundary specified by alignment ,
28518 and returns a pointer to the allocated memory in memptr. The value of alignment shall be a |
28519 multiple of sizeof (void*), that is also a power of two. Upon successful completion, the value |
28520 pointed to by memptr shall be a multiple of alignment .

28521 CX The free() function shall deallocate memory that has previously been allocated by |
28522 posix_memalign().

28523 RETURN VALUE
28524 Upon successful completion, posix_memalign() shall return zero; otherwise, an error number
28525 shall be returned to indicate the error.

28526 ERRORS
28527 The posix_memalign() function shall fail if:

28528 [EINVAL] The value of the alignment parameter is not a power of two multiple of
28529 sizeof (void*).

28530 [ENOMEM] There is insufficient memory available with the requested alignment.

28531 EXAMPLES
28532 None.

28533 APPLICATION USAGE
28534 The posix_memalign() function is part of the Advisory Information option and need not be |
28535 provided on all implementations.

28536 RATIONALE
28537 None.

28538 FUTURE DIRECTIONS
28539 None.

28540 SEE ALSO
28541 free(), malloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

28542 CHANGE HISTORY
28543 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

28544 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

1388 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn()

28545 NAME
28546 posix_spawn, posix_spawnp — spawn a process (REALTIME)

28547 SYNOPSIS
28548 SPN #include <spawn.h>

28549 int posix_spawn(pid_t *restrict pid , const char *restrict path , |
28550 const posix_spawn_file_actions_t * file_actions , |
28551 const posix_spawnattr_t *restrict attrp , |
28552 char *restrict const argv [restrict], |
28553 char *restrict const envp [restrict]); |
28554 int posix_spawnp(pid_t *restrict pid , const char *restrict file , |
28555 const posix_spawn_file_actions_t * file_actions , |
28556 const posix_spawnattr_t *restrict attrp , char *const argv [restrict], |
28557 char * const envp [restrict]); |
28558 |

28559 DESCRIPTION
28560 The posix_spawn () and posix_spawnp () functions shall create a new process (child process) from
28561 the specified process image. The new process image is constructed from a regular executable file
28562 called the new process image file.

28563 When a C program is executed as the result of this call, it shall be entered as a C language
28564 function call as follows:

28565 int main(int argc , char * argv []);

28566 where argc is the argument count and argv is an array of character pointers to the arguments
28567 themselves. In addition, the following variable:

28568 extern char ** environ ;

28569 is initialized as a pointer to an array of character pointers to the environment strings.

28570 The argument argv is an array of character pointers to null-terminated strings. The last member |
28571 of this array shall be a null pointer and is not counted in argc. These strings constitute the |
28572 argument list available to the new process image. The value in argv[0] should point to a file
28573 name that is associated with the process image being started by the posix_spawn () or
28574 posix_spawnp () function.

28575 The argument envp is an array of character pointers to null-terminated strings. These strings
28576 constitute the environment for the new process image. The environment array is terminated by a
28577 null pointer.

28578 The number of bytes available for the child process’ combined argument and environment lists
28579 is {ARG_MAX}. The implementation shall specify in the system documentation (see the Base |
28580 Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance) whether any list |
28581 overhead, such as length words, null terminators, pointers, or alignment bytes, is included in |
28582 this total.

28583 The path argument to posix_spawn () is a path name that identifies the new process image file to
28584 execute.

28585 The file parameter to posix_spawnp () shall be used to construct a path name that identifies the
28586 new process image file. If the file parameter contains a slash character, the file parameter shall be
28587 used as the path name for the new process image file. Otherwise, the path prefix for this file shall
28588 be obtained by a search of the directories passed as the environment variable PATH (see the Base |
28589 Definitions volume of IEEE Std. 1003.1-200x, Chapter 8, Environment Variables). If this |
28590 environment variable is not defined, the results of the search are implementation-defined. |

System Interfaces, Issue 6 1389

posix_spawn() System Interfaces

28591 If file_actions is a null pointer, then file descriptors open in the calling process shall remain open
28592 in the child process, except for those whose close-on-exec flag FD_CLOEXEC is set (see fcntl()).
28593 For those file descriptors that remain open, all attributes of the corresponding open file
28594 descriptions, including file locks (see fcntl()), shall remain unchanged.

28595 If file_actions is not NULL, then the file descriptors open in the child process shall be those open
28596 in the calling process as modified by the spawn file actions object pointed to by file_actions and
28597 the FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have
28598 been processed. The effective order of processing the spawn file actions shall be:

28599 1. The set of open file descriptors for the child process shall initially be the same set as is
28600 open for the calling process. All attributes of the corresponding open file descriptions,
28601 including file locks (see fcntl()), shall remain unchanged.

28602 2. The signal mask, signal default actions, and the effective user and group IDs for the child |
28603 process shall be changed as specified in the attributes object referenced by attrp . |

28604 3. The file actions specified by the spawn file actions object shall be performed in the order in
28605 which they were added to the spawn file actions object.

28606 4. Any file descriptor that has its FD_CLOEXEC flag set (see fcntl()) shall be closed. |

28607 The posix_spawnattr_t spawn attributes object type is defined in <spawn.h>. It shall contain at
28608 least the attributes defined below.

28609 If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object
28610 referenced by attrp , and the spawn-pgroup attribute of the same object is non-zero, then the
28611 child’s process group shall be as specified in the spawn-pgroup attribute of the object referenced
28612 by attrp .

28613 As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of
28614 the object referenced by attrp , and the spawn-pgroup attribute of the same object is set to zero, |
28615 then the child shall be in a new process group with a process group ID equal to its process ID. |

28616 If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object
28617 referenced by attrp , the new child process shall inherit the parent’s process group.

28618 PS If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object |
28619 referenced by attrp , but POSIX_SPAWN_SETSCHEDULER is not set, the new process image
28620 shall initially have the scheduling policy of the calling process with the scheduling parameters
28621 specified in the spawn-schedparam attribute of the object referenced by attrp .

28622 If the POSIX_SPAWN_SETSCHEDULER flag is set in spawn-flags attribute of the object |
28623 referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag),
28624 the new process image shall initially have the scheduling policy specified in the spawn-
28625 schedpolicy attribute of the object referenced by attrp and the scheduling parameters specified in
28626 the spawn-schedparam attribute of the same object. |

28627 The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
28628 governs the effective user ID of the child process. If this flag is not set, the child process inherits
28629 the parent process’ effective user ID. If this flag is set, the child process’ effective user ID is reset
28630 to the parent’s real user ID. In either case, if the set-user-ID mode bit of the new process image
28631 file is set, the effective user ID of the child process will become that file’s owner ID before the
28632 new process image begins execution.

28633 The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp
28634 also governs the effective group ID of the child process. If this flag is not set, the child process
28635 inherits the parent process’ effective group ID. If this flag is set, the child process’ effective group
28636 ID is reset to the parent’s real group ID. In either case, if the set-group-ID mode bit of the new

1390 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn()

28637 process image file is set, the effective group ID of the child process will become that file’s group
28638 ID before the new process image begins execution.

28639 If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object
28640 referenced by attrp , the child process shall initially have the signal mask specified in the spawn-
28641 sigmask attribute of the object referenced by attrp .

28642 If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced
28643 by attrp , the signals specified in the spawn-sigdefault attribute of the same object shall be set to
28644 their default actions in the child process. Signals set to the default action in the parent process
28645 shall be set to the default action in the child process.

28646 Signals set to be caught by the calling process shall be set to the default action in the child
28647 process.

28648 Signals set to be ignored by the calling process image shall be set to be ignored by the child
28649 process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the
28650 spawn-flags attribute of the object referenced by attrp and the signals being indicated in the
28651 spawn-sigdefault attribute of the object referenced by attrp .

28652 If the value of the attrp pointer is NULL, then the default values are used.

28653 All process attributes, other than those influenced by the attributes set in the object referenced
28654 by attrp as specified above or by the file descriptor manipulations specified in file_actions , shall
28655 appear in the new process image as though fork () had been called to create a child process and
28656 then a member of the exec family of functions had been called by the child process to execute the
28657 new process image.

28658 THR It is implementation-defined whether the fork handlers are run when posix_spawn () or |
28659 posix_spawnp () is called. |

28660 RETURN VALUE
28661 Upon successful completion, posix_spawn () and posix_spawnp () shall return the process ID of the
28662 child process to the parent process, in the variable pointed to by a non-NULL pid argument, and
28663 shall return zero as the function return value. Otherwise, no child process shall be created, the
28664 value stored into the variable pointed to by a non-NULL pid is unspecified, and an error number
28665 shall be returned as the function return value to indicate the error. If the pid argument is a null
28666 pointer, the process ID of the child is not returned to the caller.

28667 ERRORS
28668 The posix_spawn () and posix_spawnp () functions may fail if:

28669 [EINVAL] The value specified by file_actions or attrp is invalid.

28670 If this error occurs after the calling process successfully returns from the posix_spawn () or
28671 posix_spawnp () function, the child process may exit with exit status 127.

28672 If posix_spawn () or posix_spawnp () fail for any of the reasons that would cause fork () or one of
28673 the exec family of functions to fail, an error value shall be returned as described by fork () and |
28674 exec, respectively (or, if the error occurs after the calling process successfully returns, the child |
28675 process exits with exit status 127). |

28676 If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by
28677 attrp , and posix_spawn () or posix_spawnp () fails while changing the child’s process group, an
28678 error value shall be returned as described by setpgid() (or, if the error occurs after the calling |
28679 process successfully returns, the child process exits with exit status 127). |

28680 PS If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set |
28681 in the spawn-flags attribute of the object referenced by attrp , then if posix_spawn () or |

System Interfaces, Issue 6 1391

posix_spawn() System Interfaces

28682 posix_spawnp () fails for any of the reasons that would cause sched_setparam() to fail, an error |
28683 value shall be returned as described by sched_setparam() (or, if the error occurs after the calling |
28684 process successfully returns, the child process exits with exit status 127). |

28685 If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by |
28686 attrp , and if posix_spawn () or posix_spawnp () fails for any of the reasons that would cause |
28687 sched_setscheduler() to fail, an error value shall be returned as described by sched_setscheduler() |
28688 (or, if the error occurs after the calling process successfully returns, the child process exits with |
28689 exit status 127)> |

28690 If the file_actions argument is not NULL, and specifies any close , dup2 , or open actions to be |
28691 performed, and if posix_spawn () or posix_spawnp () fails for any of the reasons that would cause |
28692 close(), dup2(), or open() to fail, an error value shall be returned as described by close(), dup2(), |
28693 and open(), respectively (or, if the error occurs after the calling process successfully returns, the |
28694 child process exits with exit status 127). An open file action may, by itself, result in any of the |
28695 errors described by close() or dup2(), in addition to those described by open(). |

28696 EXAMPLES
28697 None. |

28698 APPLICATION USAGE
28699 These functions are part of the Spawn option and need not be provided on all implementations. |

28700 RATIONALE
28701 The POSIX fork () function is difficult or impossible to implement without swapping or dynamic
28702 address translation for the following reasons:

28703 • Swapping is generally too slow for a realtime environment.

28704 • Dynamic address translation is not available everywhere POSIX might be useful.

28705 • Processes are too useful to simply option out of POSIX whenever it must run without
28706 address translation or other MMU services,

28707 POSIX needs process creation and file execution primitives that can be efficiently implemented
28708 without address translation or other MMU services.

28709 This function shall be called posix_spawn (). A closely related function, posix_spawnp (), is
28710 included for completeness.

28711 The posix_spawn () function is implementable as a library routine, but both posix_spawn () and
28712 posix_spawnp () are designed as kernel operations. Also, although they may be an efficient
28713 replacement for many fork ()/exec pairs, their goal is to provide useful process creation
28714 primitives for systems that have difficulty with fork (), not to provide drop-in replacements for
28715 fork ()/exec.

28716 This view of the role of posix_spawn () and posix_spawnp () influenced the design of their API. It
28717 does not attempt to provide the full functionality of fork ()/exec in which arbitrary user-specified
28718 operations of any sort are permitted between the creation of the child process and the execution
28719 of the new process image; any attempt to reach that level would need to provide a programming
28720 language as parameters. Instead, posix_spawn () and posix_spawnp () are process creation
28721 primitives like the Start_Process and Start_Process_Search Ada language bindings package
28722 POSIX_Process_Primitives and also like those in many operating systems that are not UNIX
28723 systems, but with some POSIX-specific additions.

28724 To achieve its coverage goals, posix_spawn () and posix_spawnp () have control of six types of
28725 inheritance: file descriptors, process group ID, user and group ID, signal mask, scheduling, and
28726 whether each signal ignored in the parent will remain ignored in the child, or be reset to its
28727 default action in the child.

1392 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn()

28728 Control of file descriptors is required to allow an independently written child process image to
28729 access data streams opened by and even generated or read by the parent process without being
28730 specifically coded to know which parent files and file descriptors are to be used. Control of the
28731 process group ID is required to control how the child process’ job control relates to that of the
28732 parent.

28733 Control of the signal mask and signal defaulting is sufficient to support the implementation of
28734 system(). Although support for system() is not explicitly one of the goals for posix_spawn () and
28735 posix_spawnp (), it is covered under the ‘‘at least 50%’’ coverage goal.

28736 The intention is that the normal file descriptor inheritance across fork (), the subsequent effect of
28737 the specified spawn file actions, and the normal file descriptor inheritance across one of the exec
28738 family of functions should fully specify open file inheritance. The implementation need make no
28739 decisions regarding the set of open file descriptors when the child process image begins
28740 execution, those decisions having already been made by the caller and expressed as the set of
28741 open file descriptors and their FD_CLOEXEC flags at the time of the call and the spawn file
28742 actions object specified in the call. We have been assured that in cases where the POSIX
28743 Start_Process Ada primitives have been implemented in a library, this method of controlling file
28744 descriptor inheritance may be implemented very easily.

28745 We can identify several problems with posix_spawn () and posix_spawnp (), but there does not
28746 appear to be a solution that introduces fewer problems. Environment modification for child
28747 process attributes not specifiable via the attrp or file_actions arguments must be done in the
28748 parent process, and since the parent generally wants to save its context, it is more costly than
28749 similar functionality with fork ()/exec. It is also complicated to modify the environment of a
28750 multi-threaded process temporarily, since all threads must agree when it is safe for the
28751 environment to be changed. However, this cost is only borne by those invocations of
28752 posix_spawn () and posix_spawnp () that use the additional functionality. Since extensive
28753 modifications are not the usual case, and are particularly unlikely in time-critical code, keeping
28754 much of the environment control out of posix_spawn () and posix_spawnp () is appropriate design.

28755 The posix_spawn () and posix_spawnp () functions do not have all the power of fork ()/exec. This is
28756 to be expected. The fork () function is a wonderfully powerful operation. We do not expect to
28757 duplicate its functionality in a simple, fast function with no special hardware requirements. It is
28758 worth noting that posix_spawn () and posix_spawnp () are very similar to the process creation
28759 operations on many operating systems that are not UNIX systems.

28760 Requirements

28761 The requirements for posix_spawn () and posix_spawnp () are:

28762 • They must be implementable without an MMU or unusual hardware.

28763 • They must be compatible with existing POSIX standards.

28764 Additional goals are:

28765 • They should be efficiently implementable.

28766 • They should be able to replace at least 50% of typical executions of fork ().

28767 • A system with posix_spawn () and posix_spawnp () and without fork () should be useful, at least
28768 for realtime applications.

28769 • A system with fork () and the exec family should be able to implement posix_spawn () and
28770 posix_spawnp () as library routines.

System Interfaces, Issue 6 1393

posix_spawn() System Interfaces

28771 Two-Syntax

28772 POSIX exec has several calling sequences with approximately the same functionality. These
28773 appear to be required for compatibility with existing practice. Since the existing practice for the
28774 posix_spawn* () functions is otherwise substantially unlike POSIX, we feel that simplicity
28775 outweighs compatibility. There are, therefore, only two names for the posix_spawn* () functions.

28776 The parameter list does not differ between posix_spawn () and posix_spawnp (); posix_spawnp ()
28777 interprets the second parameter more elaborately than posix_spawn (). |

28778 Compatibility with POSIX.5 (Ada) |

28779 The Start_Process and Start_Process_Search procedures from the POSIX_Process_Primitives |
28780 package from the Ada language binding to POSIX.1 encapsulate fork () and exec functionality in a |
28781 manner similar to that of posix_spawn () and posix_spawnp (). Originally, in keeping with our
28782 simplicity goal, the standard developers had limited the capabilities of posix_spawn () and
28783 posix_spawnp () to a subset of the capabilities of Start_Process and Start_Process_Search ; certain
28784 non-default capabilities were not supported. However, based on suggestions by the ballot group
28785 to improve file descriptor mapping or drop it, and on the advice of an Ada Language Bindings
28786 working group member, the standard developers decided that posix_spawn () and posix_spawnp ()
28787 should be sufficiently powerful to implement Start_Process and Start_Process_Search . The
28788 rationale is that if the Ada language binding to such a primitive had already been approved as
28789 an IEEE standard, there can be little justification for not approving the functionally-equivalent
28790 parts of a C binding. The only three capabilities provided by posix_spawn () and posix_spawnp ()
28791 that are not provided by Start_Process and Start_Process_Search are optionally specifying the
28792 child’s process group ID, the set of signals to be reset to default signal handling in the child
28793 process, and the child’s scheduling policy and parameters.

28794 For the Ada language binding for Start_Process to be implemented with posix_spawn (), that
28795 binding would need to explicitly pass an empty signal mask and the parent’s environment to
28796 posix_spawn () whenever the caller of Start_Process allowed these arguments to default, since
28797 posix_spawn () does not provide such defaults. The ability of Start_Process to mask user-specified
28798 signals during its execution is functionally unique to the Ada language binding and must be
28799 dealt with in the binding separately from the call to posix_spawn ().

28800 Process Group

28801 The process group inheritance field can be used to join the child process with an existing process
28802 group. By assigning a value of zero to the spawn-pgroup attribute of the object referenced by
28803 attrp , the setpgid() mechanism will place the child process in a new process group.

28804 Threads

28805 Without the posix_spawn () and posix_spawnp () functions, systems without address translation
28806 can still use threads to give an abstraction of concurrency. In many cases, thread creation
28807 suffices, but it is not always a good substitute. The posix_spawn () and posix_spawnp () functions
28808 are considerably ‘‘heavier’’ than thread creation. Processes have several important attributes that
28809 threads do not. Even without address translation, a process may have base-and-bound memory
28810 protection. Each process has a process environment including security attributes and file
28811 capabilities, and powerful scheduling attributes. Processes abstract the behavior of non-
28812 uniform-memory-architecture multi-processors better than threads, and they are more
28813 convenient to use for activities that are not closely linked.

28814 The posix_spawn () and posix_spawnp () functions may not bring support for multiple processes to
28815 every configuration. Process creation is not the only piece of operating system support required
28816 to support multiple processes. The total cost of support for multiple processes may be quite high

1394 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn()

28817 in some circumstances. Existing practice shows that support for multiple processes is
28818 uncommon and threads are common among ‘‘tiny kernels’’. There should, therefore, probably
28819 continue to be AEPs for operating systems with only one process.

28820 Asynchronous Error Notification

28821 A library implementation of posix_spawn () or posix_spawnp () may not be able to detect all
28822 possible errors before it forks the child process. IEEE Std. 1003.1-200x provides for an error
28823 indication returned from a child process which could not successfully complete the spawn
28824 operation via a special exit status which may be detected using the status value returned by
28825 wait() and waitpid ().

28826 The stat_val interface and the macros used to interpret it are not well suited to the purpose of
28827 returning API errors, but they are the only path available to a library implementation. Thus, an
28828 implementation may cause the child process to exit with exit status 127 for any error detected
28829 during the spawn process after the posix_spawn () or posix_spawnp () function has successfully
28830 returned.

28831 The standard developers had proposed using two additional macros to interpret stat_val . The
28832 first, WIFSPAWNFAIL, would have detected a status that indicated that the child exited because
28833 of an error detected during the posix_spawn () or posix_spawnp () operations rather than during
28834 actual execution of the child process image; the second, WSPAWNERRNO, would have
28835 extracted the error value if WIFSPAWNFAIL indicated a failure. Unfortunately, the ballot group
28836 strongly opposed this because it would make a library implementation of posix_spawn () or
28837 posix_spawnp () dependent on kernel modifications to waitpid () to be able to embed special
28838 information in stat_val to indicate a spawn failure.

28839 The 8 bits of child process exit status that are guaranteed by IEEE Std. 1003.1-200x to be
28840 accessible to the waiting parent process are insufficient to disambiguate a spawn error from any |
28841 other kind of error that may be returned by an arbitrary process image. No other bits of the exit |
28842 status are required to be visible in stat_val , so these macros could not be strictly implemented at
28843 the library level. Reserving an exit status of 127 for such spawn errors is consistent with the use
28844 of this value by system() and popen() to signal failures in these operations that occur after the
28845 function has returned but before a shell is able to execute. The exit status of 127 does not
28846 uniquely identify this class of error, nor does it provide any detailed information on the nature
28847 of the failure. Note that a kernel implementation of posix_spawn () or posix_spawnp () is permitted
28848 (and encouraged) to return any possible error as the function value, thus providing more
28849 detailed failure information to the parent process.

28850 Thus, no special macros are available to isolate asynchronous posix_spawn () or posix_spawnp ()
28851 errors. Instead, errors detected by the posix_spawn () or posix_spawnp () operations in the context
28852 of the child process before the new process image executes are reported by setting the child’s
28853 exit status to 127. The calling process may use the WIFEXITED and WEXITSTATUS macros on
28854 the stat_val stored by the wait() or waitpid () functions to detect spawn failures to the extent that
28855 other status values with which the child process image may exit (before the parent can
28856 conclusively determine that the child process image has begun execution) are distinct from exit
28857 status 127.

28858 FUTURE DIRECTIONS
28859 None.

28860 SEE ALSO
28861 alarm(), chmod(), close(), dup(), exec, exit(), fcntl(), fork (), kill (), open(), |
28862 posix_spawn_file_actions_addclose(), posix_spawn_file_actions_adddup2(),
28863 posix_spawn_file_actions_addopen(), posix_spawn_file_actions_destroy(),
28864 posix_spawn_file_actions_init(), posix_spawnattr_destroy(), posix_spawnattr_init(), |

System Interfaces, Issue 6 1395

posix_spawn() System Interfaces

28865 posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), |
28866 posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), posix_spawnattr_getsigmask(), |
28867 posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), posix_spawnattr_setpgroup(), |
28868 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
28869 sched_setparam(), sched_setscheduler(), setpgid(), setuid(), stat(), times(), wait(), the Base |
28870 Definitions volume of IEEE Std. 1003.1-200x, <spawn.h> |

28871 CHANGE HISTORY
28872 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

28873 IEEE PASC Interpretation 1003.1 #103 is included, noting that the signal default actions are |
28874 changed as well as the signal mask in step 2. |

1396 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn_file_actions_addclose()

28875 NAME
28876 posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen — add close or open |
28877 action to spawn file actions object (REALTIME) |

28878 SYNOPSIS
28879 SPN #include <spawn.h>

28880 int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *
28881 file_actions , int fildes);
28882 int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *restrict|
28883 file_actions , int fildes , const char *restrict path , |
28884 int oflag , mode_t mode); |
28885 |

28886 DESCRIPTION
28887 A spawn file actions object is of type posix_spawn_file_actions_t (defined in <spawn.h>) and is
28888 used to specify a series of actions to be performed by a posix_spawn () or posix_spawnp ()
28889 operation in order to arrive at the set of open file descriptors for the child process given the set of
28890 open file descriptors of the parent. IEEE Std. 1003.1-200x does not define comparison or
28891 assignment operators for the type posix_spawn_file_actions_t.

28892 A spawn file actions object, when passed to posix_spawn () or posix_spawnp (), shall specify how
28893 the set of open file descriptors in the calling process is transformed into a set of potentially open
28894 file descriptors for the spawned process. This transformation shall be as if the specified sequence
28895 of actions was performed exactly once, in the context of the spawned process (prior to execution
28896 of the new process image), in the order in which the actions were added to the object;
28897 additionally, when the new process image is executed, any file descriptor (from this new set)
28898 which has its FD_CLOEXEC flag set will be closed (see posix_spawn ()).

28899 The posix_spawn_file_actions_addclose() function adds a close action to the object referenced by
28900 file_actions that will cause the file descriptor fildes to be closed (as if close(fildes) had been called)
28901 when a new process is spawned using this file actions object.

28902 The posix_spawn_file_actions_addopen() function adds an open action to the object referenced by
28903 file_actions that will cause the file named by path to be opened (as if open(path , oflag , mode) had
28904 been called, and the returned file descriptor, if not fildes , had been changed to fildes) when a new
28905 process is spawned using this file actions object. If fildes was already an open file descriptor, it
28906 shall be closed before the new file is opened. |

28907 Notes to Reviewers |
28908 This section with side shading will not appear in the final copy. - Ed. |

28909 D3, XSH, ERN 448 says the description of the posix_spawn_file_actions_addopen function does |
28910 not say whether the function has to make a copy of the path parameter or whether it can store |
28911 the pointer and assume the application does not destroy the copy of the string. Add to the |
28912 description: "The string pointed to by path can become invalid so the function has to make a |
28913 copy." |

28914 RETURN VALUE |
28915 Upon successful completion, these functions shall return zero; otherwise, an error number shall |
28916 be returned to indicate the error.

28917 ERRORS
28918 These functions shall fail if:

28919 [EBADF] The value specified by fildes is negative or greater than or equal to
28920 {OPEN_MAX}.

System Interfaces, Issue 6 1397

posix_spawn_file_actions_addclose() System Interfaces

28921 These functions may fail if:

28922 [EINVAL] The value specified by file_actions is invalid.

28923 [ENOMEM] Insufficient memory exists to add to the spawn file actions object.

28924 It shall not be considered an error for the fildes argument passed to these functions to specify a
28925 file descriptor for which the specified operation could not be performed at the time of the call.
28926 Any such error will be detected when the associated file actions object is later used during a
28927 posix_spawn () or posix_spawnp () operation.

28928 EXAMPLES
28929 None.

28930 APPLICATION USAGE
28931 These functions are part of the Spawn option and need not be provided on all implementations. |

28932 RATIONALE
28933 A spawn file actions object may be initialized to contain an ordered sequence of close(), dup2(),
28934 and open() operations to be used by posix_spawn () or posix_spawnp () to arrive at the set of open
28935 file descriptors inherited by the spawned process from the set of open file descriptors in the
28936 parent at the time of the posix_spawn () or posix_spawnp () call. It had been suggested that the
28937 close() and dup2() operations alone are sufficient to rearrange file descriptors, and that files
28938 which need to be opened for use by the spawned process can be handled either by having the
28939 calling process open them before the posix_spawn () or posix_spawnp () call (and close them after),
28940 or by passing file names to the spawned process (in argv) so that it may open them itself. The
28941 standard developers recommend that applications use one of these two methods when practical,
28942 since detailed error status on a failed open operation is always available to the application this
28943 way. However, the standard developers feel that allowing a spawn file actions object to specify
28944 open operations is still appropriate because:

28945 1. It is consistent with equivalent POSIX.5 (Ada) functionality.

28946 2. It supports the I/O redirection paradigm commonly employed by POSIX programs
28947 designed to be invoked from a shell. When such a program is the child process, it may not
28948 be designed to open files on its own.

28949 3. It allows file opens that might otherwise fail or violate file ownership/access rights if
28950 executed by the parent process.

28951 Regarding 2. above, note that the spawn open file action provides to posix_spawn () and
28952 posix_spawnp () the same capability that the shell redirection operators provide to system(), only
28953 without the intervening execution of a shell; for example:

28954 system ("myprog <file1 3<file2");

28955 Regarding 3. above, note that if the calling process needs to open one or more files for access by
28956 the spawned process, but has insufficient spare file descriptors, then the open action is necessary
28957 to allow the open() to occur in the context of the child process after other file descriptors have
28958 been closed (that must remain open in the parent).

28959 Additionally, if a parent is executed from a file having a ‘‘set-user-id’’ mode bit set and the
28960 POSIX_SPAWN_RESETIDS flag is set in the spawn attributes, a file created within the parent
28961 process will (possibly incorrectly) have the parent’s effective user ID as its owner, whereas a file
28962 created via an open() action during posix_spawn () or posix_spawnp () will have the parent’s real
28963 ID as its owner; and an open by the parent process may successfully open a file to which the real
28964 user should not have access or fail to open a file to which the real user should have access.

1398 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn_file_actions_addclose()

28965 File Descriptor Mapping

28966 The standard developers had originally proposed using an array which specified the mapping of
28967 child file descriptors back to those of the parent. It was pointed out by the ballot group that it is
28968 not possible to reshuffle file descriptors arbitrarily in a library implementation of posix_spawn ()
28969 or posix_spawnp () without provision for one or more spare file descriptor entries (which simply
28970 may not be available). Such an array requires that an implementation develop a complex
28971 strategy to achieve the desired mapping without inadvertently closing the wrong file descriptor
28972 at the wrong time.

28973 It was noted by a member of the Ada Language Bindings working group that the approved Ada
28974 Language Start_Process family of POSIX process primitives use a caller-specified set of file
28975 actions to alter the normal fork ()/exec semantics for inheritance of file descriptors in a very
28976 flexible way, yet no such problems exist because the burden of determining how to achieve the
28977 final file descriptor mapping is completely on the application. Furthermore, although the file
28978 actions interface appears frightening at first glance, it is actually quite simple to implement in
28979 either a library or the kernel.

28980 FUTURE DIRECTIONS
28981 None.

28982 SEE ALSO
28983 close(), dup(), open(), posix_spawn (), posix_spawn_file_actions_adddup2(),
28984 posix_spawn_file_actions_destroy(), posix_spawnp (), the Base Definitions volume of |
28985 IEEE Std. 1003.1-200x, <spawn.h> |

28986 CHANGE HISTORY
28987 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999. |

System Interfaces, Issue 6 1399

posix_spawn_file_actions_adddup2() System Interfaces

28988 NAME
28989 posix_spawn_file_actions_adddup2 — add dup2 action to spawn file actions object |
28990 (REALTIME) |

28991 SYNOPSIS
28992 SPN #include <spawn.h>

28993 int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *
28994 file_actions , int fildes , int newfildes);
28995

28996 DESCRIPTION
28997 A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

28998 The posix_spawn_file_actions_adddup2() function adds a dup2() action to the object referenced by
28999 file_actions that will cause the file descriptor fildes to be duplicated as newfildes (as if dup2(fildes ,
29000 newfildes) had been called) when a new process is spawned using this file actions object. |

29001 RETURN VALUE |
29002 Upon successful completion, the posix_spawn_file_actions_adddup2() function shall return zero; |
29003 otherwise, an error number shall be returned to indicate the error.

29004 ERRORS
29005 The posix_spawn_file_actions_adddup2() function shall fail if:

29006 [EBADF] The value specified by fildes or newfildes is negative or greater than or equal to |
29007 {OPEN_MAX}.

29008 [ENOMEM] Insufficient memory exists to add to the spawn file actions object.

29009 The posix_spawn_file_actions_adddup2() function may fail if:

29010 [EINVAL] The value specified by file_actions is invalid.

29011 It shall not be considered an error for the fildes argument passed to the
29012 posix_spawn_file_actions_adddup2() function to specify a file descriptor for which the specified
29013 operation could not be performed at the time of the call. Any such error will be detected when
29014 the associated file actions object is later used during a posix_spawn () or posix_spawnp ()
29015 operation.

29016 EXAMPLES
29017 None.

29018 APPLICATION USAGE
29019 The posix_spawn_file_actions_adddup2() function is part of the Spawn option and need not be |
29020 provided on all implementations.

29021 RATIONALE
29022 Refer to the RATIONALE in posix_spawn_file_actions_addclose().

29023 FUTURE DIRECTIONS
29024 None.

29025 SEE ALSO
29026 dup(), posix_spawn (), posix_spawn_file_actions_addclose(), posix_spawn_file_actions_destroy(),
29027 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <spawn.h> |

1400 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn_file_actions_adddup2()

29028 CHANGE HISTORY
29029 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

29030 IEEE PASC Interpretation 1003.1 #104 is included, noting that the [EBADF] error can apply to the |
29031 newfildes argument in addition to fildes . |

System Interfaces, Issue 6 1401

posix_spawn_file_actions_addopen() System Interfaces

29032 NAME
29033 posix_spawn_file_actions_addopen — add open action to spawn file actions object |
29034 (REALTIME) |

29035 SYNOPSIS
29036 SPN #include <spawn.h>

29037 int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *restrict|
29038 file_actions , int fildes , const char *restrict path , |
29039 int oflag , mode_t mode); |
29040 |

29041 DESCRIPTION
29042 Refer to posix_spawn_file_actions_addclose().

1402 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawn_file_actions_destroy()

29043 NAME
29044 posix_spawn_file_actions_destroy, posix_spawn_file_actions_init — destroy and initialize
29045 spawn file actions object (REALTIME)

29046 SYNOPSIS
29047 SPN #include <spawn.h>

29048 int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *
29049 file_actions);
29050 int posix_spawn_file_actions_init(posix_spawn_file_actions_t *
29051 file_actions);
29052

29053 DESCRIPTION
29054 A spawn file actions object is as defined in posix_spawn_file_actions_addclose().

29055 The posix_spawn_file_actions_destroy() function destroys the object referenced by file_actions ; the
29056 object becomes, in effect, uninitialized. An implementation may cause
29057 posix_spawn_file_actions_destroy() to set the object referenced by file_actions to an invalid value. A
29058 destroyed spawn file actions object can be reinitialized using posix_spawn_file_actions_init(); the
29059 results of otherwise referencing the object after it has been destroyed are undefined.

29060 The posix_spawn_file_actions_init() function initializes the object referenced by file_actions to
29061 contain no file actions for posix_spawn () or posix_spawnp () to perform. |

29062 The effect of initializing an already initialized spawn file actions object is undefined. |

29063 RETURN VALUE |
29064 Upon successful completion, these functions shall return zero; otherwise, an error number shall |
29065 be returned to indicate the error.

29066 ERRORS
29067 The posix_spawn_file_actions_init() function shall fail if:

29068 [ENOMEM] Insufficient memory exists to initialize the spawn file actions object.

29069 The posix_spawn_file_actions_destroy() function may fail if:

29070 [EINVAL] The value specified by file_actions is invalid.

29071 EXAMPLES
29072 None.

29073 APPLICATION USAGE
29074 These functions are part of the Spawn option and need not be provided on all implementations. |

29075 RATIONALE
29076 Refer to the RATIONALE in posix_spawn_file_actions_addclose().

29077 FUTURE DIRECTIONS
29078 None.

29079 SEE ALSO
29080 posix_spawn (), posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <spawn.h> |

29081 CHANGE HISTORY
29082 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

29083 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1403

posix_spawn_file_actions_init() System Interfaces

29084 NAME
29085 posix_spawn_file_actions_init — initialize spawn file actions object (REALTIME)

29086 SYNOPSIS
29087 SPN #include <spawn.h>

29088 int posix_spawn_file_actions_init(posix_spawn_file_actions_t *
29089 file_actions);
29090

29091 DESCRIPTION
29092 Refer to posix_spawn_file_actions_destroy().

1404 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_destroy()

29093 NAME
29094 posix_spawnattr_destroy, posix_spawnattr_init — destroy and initialize spawn attributes object
29095 (REALTIME)

29096 SYNOPSIS
29097 SPN #include <spawn.h>

29098 int posix_spawnattr_destroy(posix_spawnattr_t * attr);
29099 int posix_spawnattr_init(posix_spawnattr_t * attr);
29100

29101 DESCRIPTION
29102 A spawn attributes object is of type posix_spawnattr_t (defined in <spawn.h>) and is used to
29103 specify the inheritance of process attributes across a spawn operation. IEEE Std. 1003.1-200x
29104 does not define comparison or assignment operators for the type posix_spawnattr_t.

29105 The posix_spawnattr_destroy() function destroys a spawn attributes object. The effect of
29106 subsequent use of the object is undefined until the object is reinitialized by another call to
29107 posix_spawnattr_init(). An implementation may cause posix_spawnattr_destroy() to set the object
29108 referenced by attr to an invalid value.

29109 The posix_spawnattr_init() function initializes a spawn attributes object attr with the default
29110 value for all of the individual attributes used by the implementation. The effect of initializing an |
29111 already initialized spawn attributes option is undefined. |

29112 Each implementation shall document the individual attributes it uses and their default values
29113 unless these values are defined by IEEE Std. 1003.1-200x. Attributes not defined by
29114 IEEE Std. 1003.1-200x, their default values, and the names of the associated functions to get and
29115 set those attribute values are implementation-defined. |

29116 The resulting spawn attributes object (possibly modified by setting individual attribute values),
29117 is used to modify the behavior of posix_spawn () or posix_spawnp (). After a spawn attributes
29118 object has been used to spawn a process by a call to a posix_spawn () or posix_spawnp (), any
29119 function affecting the attributes object (including destruction) does not affect any process that
29120 has been spawned in this way. |

29121 RETURN VALUE
29122 Upon successful completion, posix_spawnattr_destroy() and posix_spawnattr_init() shall return
29123 zero; otherwise, an error number shall be returned to indicate the error.

29124 ERRORS
29125 The posix_spawnattr_init() function shall fail if:

29126 [ENOMEM] Insufficient memory exists to initialize the spawn attributes object.

29127 The posix_spawnattr_destroy() function may fail if:

29128 [EINVAL] The value specified by attr is invalid.

29129 EXAMPLES
29130 None.

29131 APPLICATION USAGE
29132 These functions are part of the Spawn option and need not be provided on all implementations. |

29133 RATIONALE
29134 The original spawn interface proposed in IEEE Std. 1003.1-200x defined the attributes that
29135 specify the inheritance of process attributes across a spawn operation as a structure. In order to
29136 be able to separate optional individual attributes under their appropriate options (that is, the
29137 spawn-schedparam and spawn-schedpolicy attributes depending upon the Process Scheduling

System Interfaces, Issue 6 1405

posix_spawnattr_destroy() System Interfaces

29138 option), and also for extensibility and consistency with the newer POSIX interfaces, the
29139 attributes interface has been changed to an opaque data type. This interface now consists of the
29140 type posix_spawnattr_t, representing a spawn attributes object, together with associated
29141 functions to initialize or destroy the attributes object, and to set or get each individual attribute.
29142 Although the new object-oriented interface is more verbose than the original structure, it is
29143 simple to use, more extensible, and easy to implement.

29144 FUTURE DIRECTIONS
29145 None.

29146 SEE ALSO
29147 posix_spawn (), posix_spawnattr_getsigdefault(), posix_spawnattr_getflags(), |
29148 posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
29149 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), |
29150 posix_spawnattr_setpgroup(), posix_spawnattr_setsigmask(), posix_spawnattr_setschedpolicy(),
29151 posix_spawnattr_setschedparam(), posix_spawnp (), the Base Definitions volume of |
29152 IEEE Std. 1003.1-200x, <spawn.h> |

29153 CHANGE HISTORY
29154 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999. |

29155 IEEE PASC Interpretation 1003.1 #106 is included, noting that the effect of initializing an already |
29156 initialized spawn attributes option is undefined. |

1406 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getflags()

29157 NAME
29158 posix_spawnattr_getflags, posix_spawnattr_setflags — get and set spawn-flags attribute of
29159 spawn attributes object (REALTIME)

29160 SYNOPSIS
29161 SPN #include <spawn.h>

29162 int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr , |
29163 short *restrict flags); |
29164 int posix_spawnattr_setflags(posix_spawnattr_t * attr , short flags); |
29165

29166 DESCRIPTION
29167 The spawn-flags attribute is used to indicate which process attributes are to be changed in the
29168 new process image when invoking posix_spawn () or posix_spawnp (). It is the bitwise-inclusive
29169 OR of zero or more of the flags POSIX_SPAWN_RESETIDS, POSIX_SPAWN_SETPGROUP, |
29170 PS POSIX_SPAWN_SETSIGDEF, and POSIX_SPAWN_SETSIGMASK, |
29171 POSIX_SPAWN_SETSCHEDPARAM, and POSIX_SPAWN_SETSCHEDULER. In addition, if the |
29172 Process Scheduling option is supported, the flags POSIX_SPAWN_SETSCHEDPARAM and
29173 POSIX_SPAWN_SETSCHEDULER shall also be supported. These flags are defined in
29174 <spawn.h>. The default value of this attribute shall be with no flags set.

29175 The posix_spawnattr_getflags() function obtains the value of the spawn-flags attribute from the
29176 attributes object referenced by attr .

29177 The posix_spawnattr_setflags() function is used to set the spawn-flags attribute in an initialized
29178 attributes object referenced by attr .

29179 RETURN VALUE
29180 Upon successful completion, posix_spawnattr_getflags() shall return zero and store the value of
29181 the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an
29182 error number shall be returned to indicate the error.

29183 Upon successful completion, posix_spawnattr_setflags() shall return zero; otherwise, an error
29184 number shall be returned to indicate the error.

29185 ERRORS
29186 These functions may fail if:

29187 [EINVAL] The value specified by attr is invalid.

29188 The posix_spawnattr_setflags() function may fail if:

29189 [EINVAL] The value of the attribute being set is not valid.

29190 EXAMPLES
29191 None.

29192 APPLICATION USAGE
29193 These functions are part of the Spawn option and need not be provided on all implementations. |

29194 RATIONALE
29195 None.

29196 FUTURE DIRECTIONS
29197 None.

System Interfaces, Issue 6 1407

posix_spawnattr_getflags() System Interfaces

29198 SEE ALSO
29199 posix_spawn (), ,=1 .ds ;p posix_spawnattr_destroy() (on page 1405), ,=1 .ds ;p
29200 posix_spawnattr_init() (on page 1419), posix_spawnattr_getsigdefault(), |
29201 posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
29202 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setpgroup(), |
29203 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
29204 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <spawn.h> |

29205 CHANGE HISTORY
29206 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

1408 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getpgroup()

29207 NAME
29208 posix_spawnattr_getpgroup, posix_spawnattr_setpgroup — get and set spawn-pgroup attribute
29209 of spawn attributes object (REALTIME)

29210 SYNOPSIS
29211 SPN #include <spawn.h>

29212 int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr , |
29213 pid_t *restrict pgroup); |
29214 int posix_spawnattr_setpgroup(posix_spawnattr_t * attr , pid_t pgroup); |
29215

29216 DESCRIPTION
29217 The spawn-pgroup attribute represents the process group to be joined by the new process image
29218 in a spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The
29219 default value of this attribute shall be zero.

29220 The posix_spawnattr_getpgroup() function obtains the value of the spawn-pgroup attribute from
29221 the attributes object referenced by attr .

29222 The posix_spawnattr_setpgroup() function is used to set the spawn-pgroup attribute in an
29223 initialized attributes object referenced by attr .

29224 RETURN VALUE
29225 Upon successful completion, posix_spawnattr_getpgroup() shall return zero and store the value of
29226 the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise,
29227 an error number shall be returned to indicate the error.

29228 Upon successful completion, posix_spawnattr_setpgroup() shall return zero; otherwise, an error
29229 number shall be returned to indicate the error.

29230 ERRORS
29231 These functions may fail if:

29232 [EINVAL] The value specified by attr is invalid.

29233 The posix_spawnattr_setpgroup() function may fail if:

29234 [EINVAL] The value of the attribute being set is not valid.

29235 EXAMPLES
29236 None.

29237 APPLICATION USAGE
29238 These functions are part of the Spawn option and need not be provided on all implementations. |

29239 RATIONALE
29240 None.

29241 FUTURE DIRECTIONS
29242 None.

29243 SEE ALSO
29244 posix_spawn (), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(), |
29245 posix_spawnattr_getflags(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(),
29246 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), |
29247 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
29248 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <spawn.h> |

System Interfaces, Issue 6 1409

posix_spawnattr_getpgroup() System Interfaces

29249 CHANGE HISTORY
29250 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999. |

1410 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getschedparam()

29251 NAME
29252 posix_spawnattr_getschedparam, posix_spawnattr_setschedparam — get and set spawn-
29253 schedparam attribute of spawn attributes object (REALTIME)

29254 SYNOPSIS
29255 SPN PS #include <spawn.h> |
29256 #include <sched.h> |

29257 int posix_spawnattr_getschedparam(const posix_spawnattr_t *restrict attr ,|
29258 struct sched_param *restrict schedparam); |
29259 int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr , |
29260 const struct sched_param *restrict schedparam); |
29261 |

29262 DESCRIPTION
29263 The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new
29264 process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or
29265 POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this
29266 attribute is unspecified.

29267 The posix_spawnattr_getschedparam() function obtains the value of the spawn-schedparam attribute
29268 from the attributes object referenced by attr .

29269 The posix_spawnattr_setschedparam() function is used to set the spawn-schedparam attribute in an
29270 initialized attributes object referenced by attr .

29271 RETURN VALUE
29272 Upon successful completion, posix_spawnattr_getschedparam() shall return zero and store the
29273 value of the spawn-schedparam attribute of attr into the object referenced by the schedparam
29274 parameter; otherwise, an error number shall be returned to indicate the error.

29275 Upon successful completion, posix_spawnattr_setschedparam() shall return zero; otherwise, an
29276 error number shall be returned to indicate the error.

29277 ERRORS
29278 These functions may fail if:

29279 [EINVAL] The value specified by attr is invalid.

29280 The posix_spawnattr_setschedparam() function may fail if:

29281 [EINVAL] The value of the attribute being set is not valid.

29282 EXAMPLES
29283 None.

29284 APPLICATION USAGE
29285 These functions are part of the Spawn and Process Scheduling options and need not be provided |
29286 on all implementations. |

29287 RATIONALE
29288 None.

29289 FUTURE DIRECTIONS
29290 None.

29291 SEE ALSO
29292 posix_spawn (), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(), |
29293 posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedpolicy(),
29294 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), |

System Interfaces, Issue 6 1411

posix_spawnattr_getschedparam() System Interfaces

29295 posix_spawnattr_setpgroup(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(),
29296 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <sched.h>, <spawn.h> |

29297 CHANGE HISTORY
29298 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

1412 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getschedpolicy()

29299 NAME
29300 posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy — get and set spawn-
29301 schedpolicy attribute of spawn attributes object (REALTIME)

29302 SYNOPSIS
29303 SPN PS #include <spawn.h> |
29304 #include <sched.h> |

29305 int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *restrict attr ,|
29306 int *restrict schedpolicy); |
29307 int posix_spawnattr_setschedpolicy(posix_spawnattr_t * attr , |
29308 int schedpolicy);
29309

29310 DESCRIPTION
29311 The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new
29312 process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-
29313 flags attribute). The default value of this attribute is unspecified.

29314 The posix_spawnattr_getschedpolicy() function obtains the value of the spawn-schedpolicy attribute
29315 from the attributes object referenced by attr .

29316 The posix_spawnattr_setschedpolicy() function is used to set the spawn-schedpolicy attribute in an
29317 initialized attributes object referenced by attr .

29318 RETURN VALUE
29319 Upon successful completion, posix_spawnattr_getschedpolicy() shall return zero and store the
29320 value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy
29321 parameter; otherwise, an error number shall be returned to indicate the error.

29322 Upon successful completion, posix_spawnattr_setschedpolicy() shall return zero; otherwise, an
29323 error number shall be returned to indicate the error.

29324 ERRORS
29325 These functions may fail if:

29326 [EINVAL] The value specified by attr is invalid.

29327 The posix_spawnattr_setschedpolicy() function may fail if:

29328 [EINVAL] The value of the attribute being set is not valid.

29329 EXAMPLES
29330 None.

29331 APPLICATION USAGE
29332 These functions are part of the Spawn and Process Scheduling options and need not be provided |
29333 on all implementations. |

29334 RATIONALE
29335 None.

29336 FUTURE DIRECTIONS
29337 None.

29338 SEE ALSO
29339 posix_spawn (), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(), |
29340 posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
29341 posix_spawnattr_getsigmask(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), |
29342 posix_spawnattr_setpgroup(), posix_spawnattr_setschedparam(), posix_spawnattr_setsigmask(),

System Interfaces, Issue 6 1413

posix_spawnattr_getschedpolicy() System Interfaces

29343 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <sched.h>, <spawn.h> |

29344 CHANGE HISTORY
29345 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

|

1414 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getsigdefault()

29346 NAME |
29347 posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault — get and set spawn-sigdefault |
29348 attribute of spawn attributes object (REALTIME) |

29349 SYNOPSIS |
29350 SPN #include <signal.h> |
29351 #include <spawn.h> |

29352 int posix_spawnattr_getsigdefault(const posix_spawnattr_t *restrict attr ,|
29353 sigset_t *restrict sigdefault); |
29354 int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr , |
29355 const sigset_t *restrict sigdefault); |
29356 |

29357 DESCRIPTION |
29358 The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling |
29359 in the new process image (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags attribute) by a |
29360 spawn operation. The default value of this attribute shall be an empty signal set. |

29361 The posix_spawnattr_getsigdefault() function obtains the value of the spawn-sigdefault attribute |
29362 from the attributes object referenced by attr . |

29363 The posix_spawnattr_setsigdefault() function is used to set the spawn-sigdefault attribute in an |
29364 initialized attributes object referenced by attr . |

29365 RETURN VALUE |
29366 Upon successful completion, posix_spawnattr_getsigdefault() shall return zero and store the value |
29367 of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter; |
29368 otherwise, an error number shall be returned to indicate the error. |

29369 Upon successful completion, posix_spawnattr_setsigdefault() shall return zero; otherwise, an error |
29370 number shall be returned to indicate the error. |

29371 ERRORS |
29372 These functions may fail if: |

29373 [EINVAL] The value specified by attr is invalid. |

29374 The posix_spawnattr_setsigdefault() function may fail if: |

29375 [EINVAL] The value of the attribute being set is not valid. |

29376 EXAMPLES |
29377 None. |

29378 APPLICATION USAGE |
29379 These functions are part of the Spawn option and need not be provided on all implementations. |

29380 RATIONALE |
29381 None. |

29382 FUTURE DIRECTIONS |
29383 None. |

29384 SEE ALSO |
29385 posix_spawn (), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getflags(), |
29386 posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(), posix_spawnattr_getschedpolicy(), |
29387 posix_spawnattr_getsigmask(), posix_spawnattr_setflags(), posix_spawnattr_setpgroup(), |
29388 posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(), posix_spawnattr_setsigmask(), |
29389 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, <spawn.h> |

System Interfaces, Issue 6 1415

posix_spawnattr_getsigdefault() System Interfaces

29390 CHANGE HISTORY |
29391 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999. |

|

1416 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_getsigmask()

29392 NAME
29393 posix_spawnattr_getsigmask, posix_spawnattr_setsigmask — get and set spawn-sigmask
29394 attribute of spawn attributes object (REALTIME)

29395 SYNOPSIS
29396 SPN #include <signal.h>
29397 #include <spawn.h>

29398 int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr , |
29399 sigset_t *restrict sigmask); |
29400 int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr , |
29401 const sigset_t *restrict sigmask); |
29402 |

29403 DESCRIPTION
29404 The spawn-sigmask attribute represents the signal mask in effect in the new process image of a
29405 spawn operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The
29406 default value of this attribute is unspecified.

29407 The posix_spawnattr_getsigmask() function obtains the value of the spawn-sigmask attribute from
29408 the attributes object referenced by attr .

29409 The posix_spawnattr_setsigmask() function is used to set the spawn-sigmask attribute in an
29410 initialized attributes object referenced by attr .

29411 RETURN VALUE
29412 Upon successful completion, posix_spawnattr_getsigmask() shall return zero and store the value
29413 of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter;
29414 otherwise, an error number shall be returned to indicate the error.

29415 Upon successful completion, posix_spawnattr_setsigmask() shall return zero; otherwise, an error
29416 number shall be returned to indicate the error.

29417 ERRORS
29418 These functions may fail if:

29419 [EINVAL] The value specified by attr is invalid.

29420 The posix_spawnattr_setsigmask() function may fail if:

29421 [EINVAL] The value of the attribute being set is not valid.

29422 EXAMPLES
29423 None.

29424 APPLICATION USAGE
29425 These functions are part of the Spawn option and need not be provided on all implementations. |

29426 RATIONALE
29427 None.

29428 FUTURE DIRECTIONS
29429 None.

29430 SEE ALSO
29431 posix_spawn (), posix_spawnattr_destroy(), posix_spawnattr_init(), posix_spawnattr_getsigdefault(), |
29432 posix_spawnattr_getflags(), posix_spawnattr_getpgroup(), posix_spawnattr_getschedparam(),
29433 posix_spawnattr_getschedpolicy(), posix_spawnattr_setsigdefault(), posix_spawnattr_setflags(), |
29434 posix_spawnattr_setpgroup(), posix_spawnattr_setschedparam(), posix_spawnattr_setschedpolicy(),
29435 posix_spawnp (), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, <spawn.h> |

System Interfaces, Issue 6 1417

posix_spawnattr_getsigmask() System Interfaces

29436 CHANGE HISTORY
29437 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

1418 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_init()

29438 NAME
29439 posix_spawnattr_init — initialize spawn attributes object (REALTIME)

29440 SYNOPSIS
29441 SPN #include <spawn.h>

29442 int posix_spawnattr_init(posix_spawnattr_t * attr);
29443

29444 DESCRIPTION
29445 Refer to posix_spawnattr_destroy().

|

System Interfaces, Issue 6 1419

posix_spawnattr_setflags() System Interfaces

29446 NAME
29447 posix_spawnattr_setflags — set spawn-flags attribute of spawn attributes object (REALTIME)

29448 SYNOPSIS
29449 SPN #include <spawn.h>

29450 int posix_spawnattr_setflags(posix_spawnattr_t * attr , short flags);
29451

29452 DESCRIPTION
29453 Refer to posix_spawnattr_getflags().

1420 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_setpgroup()

29454 NAME
29455 posix_spawnattr_setpgroup — set spawn-pgroup attribute of spawn attributes object
29456 (REALTIME)

29457 SYNOPSIS
29458 SPN #include <spawn.h>

29459 int posix_spawnattr_setpgroup(posix_spawnattr_t * attr , pid_t pgroup);
29460

29461 DESCRIPTION
29462 Refer to posix_spawnattr_getpgroup().

System Interfaces, Issue 6 1421

posix_spawnattr_setschedparam() System Interfaces

29463 NAME
29464 posix_spawnattr_setschedparam — set spawn-schedparam attribute of spawn attributes object
29465 (REALTIME)

29466 SYNOPSIS
29467 SPN PS #include <sched.h>
29468 #include <spawn.h>

29469 int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr , |
29470 const struct sched_param *restrict schedparam); |
29471 |

29472 DESCRIPTION
29473 Refer to posix_spawnattr_getschedparam().

1422 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_setschedpolicy()

29474 NAME
29475 posix_spawnattr_setschedpolicy — set spawn-schedpolicy attribute of spawn attributes object
29476 (REALTIME)

29477 SYNOPSIS
29478 SPN PS #include <sched.h>
29479 #include <spawn.h>

29480 int posix_spawnattr_setschedpolicy(posix_spawnattr_t * attr ,
29481 int schedpolicy);
29482

29483 DESCRIPTION
29484 Refer to posix_spawnattr_getschedpolicy().

|

System Interfaces, Issue 6 1423

posix_spawnattr_setsigdefault() System Interfaces

29485 NAME |
29486 posix_spawnattr_setsigdefault — set spawn-sigdefault attribute of spawn attributes object |
29487 (REALTIME) |

29488 SYNOPSIS |
29489 SPN #include <signal.h> |
29490 #include <spawn.h> |

29491 int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr , |
29492 const sigset_t *restrict sigdefault); |
29493 |

29494 DESCRIPTION |
29495 Refer to posix_spawnattr_getsigdefault(). |

|

1424 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_spawnattr_setsigmask()

29496 NAME
29497 posix_spawnattr_setsigmask — set spawn-sigmask attribute of spawn attributes object
29498 (REALTIME)

29499 SYNOPSIS
29500 SPN #include <signal.h>
29501 #include <spawn.h>

29502 int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr , |
29503 const sigset_t *restrict sigmask); |
29504 |

29505 DESCRIPTION
29506 Refer to posix_spawnattr_getsigmask().

System Interfaces, Issue 6 1425

posix_spawnp() System Interfaces

29507 NAME
29508 posix_spawnp — spawn a process (REALTIME)

29509 SYNOPSIS
29510 SPN #include <spawn.h>

29511 int posix_spawnp(pid_t *restrict pid , const char *restrict file , |
29512 const posix_spawn_file_actions_t * file_actions , |
29513 const posix_spawnattr_t *restrict attrp , |
29514 char *const argv [restrict], char *const envp [restrict]); |
29515 |

29516 DESCRIPTION
29517 Refer to posix_spawn ().

|

1426 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_destroy()

29518 NAME |
29519 posix_trace_attr_destroy, posix_trace_attr_init — trace stream attributes object destroy and |
29520 initialization |

29521 SYNOPSIS |
29522 TRC #include <trace.h> |

29523 int posix_trace_attr_destroy(trace_attr_t * attr); |
29524 int posix_trace_attr_init(trace_attr_t * attr); |
29525 |

29526 DESCRIPTION |
29527 The posix_trace_attr_destroy() function is used to destroy an initialized trace attributes object. |
29528 The results of using the attributes object after it has been destroyed are unspecified. A destroyed |
29529 trace attributes object can be reinitialized using posix_trace_attr_init(). |

29530 The posix_trace_attr_init() function initializes a trace attributes object attr with the default value |
29531 for all of the individual attributes used by a given implementation. The read-only generation- |
29532 version and clock-resolution attributes of the newly initialized trace attributes object shall be set to |
29533 their appropriate values (Section 2.11.1.2 (on page 578)). |

29534 The effect of initializing an already-initialized trace attributes object is unspecified. |

29535 Implementations may add extensions to the trace attributes object structure as permitted in the |
29536 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 2, Conformance. |

29537 The resulting attributes object (possibly modified by setting individual attributes values), when |
29538 used by posix_trace_create(), defines the attributes of the trace stream created. A single attributes |
29539 object can be used in multiple calls to posix_trace_create(). After one or more trace streams have |
29540 been created using an attributes object, any function affecting that attributes object, including |
29541 destruction, does not affect any trace stream previously created. An initialized attributes object |
29542 also serves to receive the attributes of an existing trace stream or trace log when calling the |
29543 posix_trace_get_attr() function. |

29544 RETURN VALUE |
29545 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
29546 return the corresponding error number. |

29547 ERRORS |
29548 The posix_trace_attr_destroy() function may fail if: |

29549 [EINVAL] The value of attr is invalid. |

29550 The posix_trace_attr_init() function shall fail if: |

29551 [ENOMEM] Insufficient memory exists to initialize the trace attributes object. |

29552 EXAMPLES |
29553 None. |

29554 APPLICATION USAGE |
29555 None. |

29556 RATIONALE |
29557 None. |

29558 FUTURE DIRECTIONS |
29559 None. |

System Interfaces, Issue 6 1427

posix_trace_attr_destroy() System Interfaces

29560 SEE ALSO |
29561 posix_trace_create(), posix_trace_get_attr(), uname(), the Base Definitions volume of |
29562 IEEE Std. 1003.1-200x, <trace.h> |

29563 CHANGE HISTORY |
29564 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1428 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_getclockres()

29565 NAME |
29566 posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion, |
29567 posix_trace_attr_getname, posix_trace_attr_setname — retrieve and set information about a |
29568 trace stream |

29569 SYNOPSIS |
29570 TRC #include <time.h> |
29571 #include <trace.h> |

29572 int posix_trace_attr_getclockres(const trace_attr_t * attr , |
29573 struct timespec * resolution); |
29574 int posix_trace_attr_getcreatetime(const trace_attr_t * attr , |
29575 struct timespec * createtime); |

29576 #include <trace.h> |

29577 int posix_trace_attr_getgenversion(const trace_attr_t * attr , |
29578 char * genversion); |
29579 int posix_trace_attr_getname(const trace_attr_t * attr , |
29580 char * tracename); |
29581 int posix_trace_attr_setname(trace_attr_t * attr , |
29582 const char * tracename); |
29583 |

29584 DESCRIPTION |
29585 The posix_trace_attr_getclockres() function shall copy the clock resolution of the clock used to |
29586 generate timestamps from the clock-resolution attribute of the attributes object pointed to by the |
29587 attr argument into the structure pointed to by the resolution argument. |

29588 The posix_trace_attr_getcreatetime() function shall copy the trace stream creation time from the |
29589 creation-time attribute of the attributes object pointed to by the attr argument into the structure |
29590 pointed to by the createtime argument. The creation-time attribute shall represent the time of |
29591 creation of the trace stream. |

29592 The posix_trace_attr_getgenversion() function shall copy the string containing version information |
29593 from the generation-version attribute of the attributes object pointed to by the attr argument into |
29594 the string pointed to by the genversion argument. The genversion argument shall be the address of |
29595 a character array which can store at least {TRACE_NAME_MAX} characters. |

29596 The posix_trace_attr_getname() function shall copy the string containing the trace name from the |
29597 trace-name attribute of the attributes object pointed to by the attr argument into the string |
29598 pointed to by the tracename argument. The tracename argument shall be the address of a character |
29599 array which can store at least {TRACE_NAME_MAX} characters. |

29600 The posix_trace_attr_setname() function shall set the name in the trace-name attribute of the |
29601 attributes object pointed to by the attr argument, using the trace name string supplied by the |
29602 tracename argument. If the supplied string contains more than {TRACE_NAME_MAX} |
29603 characters, the name copied into the trace-name attribute may be truncated to one less than the |
29604 length of {TRACE_NAME_MAX} characters. The default value is a null string. |

29605 RETURN VALUE |
29606 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
29607 return the corresponding error number. |

29608 If successful, the posix_trace_attr_getclockres() function stores the clock-resolution attribute value |
29609 in the object pointed to by resolution. Otherwise, the content of this object is unspecified. |

System Interfaces, Issue 6 1429

posix_trace_attr_getclockres() System Interfaces

29610 If successful, the posix_trace_attr_getcreatetime() function stores the trace stream creation time in |
29611 the object pointed to by createtime. Otherwise, the content of this object is unspecified. |

29612 If successful, the posix_trace_attr_getgenversion() function stores the trace version information in |
29613 the string pointed to by genversion. Otherwise, the content of this string is unspecified. |

29614 If successful, the posix_trace_attr_getname() function stores the trace name in the string pointed |
29615 to by tracename. Otherwise, the content of this string is unspecified. |

29616 ERRORS |
29617 The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(), posix_trace_attr_getgenversion(), |
29618 and posix_trace_attr_getname() functions may fail if: |

29619 [EINVAL] The value specified by one of the arguments is invalid. |

29620 EXAMPLES |
29621 None. |

29622 APPLICATION USAGE |
29623 None. |

29624 RATIONALE |
29625 None. |

29626 FUTURE DIRECTIONS |
29627 None. |

29628 SEE ALSO |
29629 posix_trace_attr_init(), posix_trace_create(), posix_trace_get_attr(), uname(), the Base Definitions |
29630 volume of IEEE Std. 1003.1-200x, <time.h>, <trace.h> |

29631 CHANGE HISTORY |
29632 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1430 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_getinherited()

29633 NAME |
29634 posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy, |
29635 posix_trace_attr_getstreamfullpolicy, posix_trace_attr_setinherited, |
29636 posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy — retrieve and set the |
29637 behavior of a trace stream |

29638 SYNOPSIS |
29639 TRC #include <trace.h> |

29640 TRC TRI int posix_trace_attr_getinherited(const trace_attr_t * attr , |
29641 int * inheritancepolicy); |
29642 TRC TRL int posix_trace_attr_getlogfullpolicy(const trace_attr_t * attr , |
29643 int * logpolicy); |
29644 TRC int posix_trace_attr_getstreamfullpolicy(const trace_attr_t * attr , |
29645 int * streampolicy); |
29646 TRC TRI int posix_trace_attr_setinherited(trace_attr_t * attr , |
29647 int inheritancepolicy); |
29648 TRC TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t * attr , |
29649 int logpolicy); |
29650 TRC int posix_trace_attr_setstreamfullpolicy(trace_attr_t * attr , |
29651 int streampolicy); |
29652 |

29653 DESCRIPTION |
29654 TRI The posix_trace_attr_getinherited() and posix_trace_attr_setinherited() functions, respectively, get |
29655 and set the inheritance policy stored in the inheritance attribute for traced processes across the |
29656 fork () and spawn() operations. The inheritance attribute of the attributes object pointed to by the |
29657 attr argument shall be set to one of the following values defined by manifest constants in the |
29658 <trace.h> header: |

29659 POSIX_TRACE_CLOSE_FOR_CHILD |
29660 After a fork () or spawn() operation, the child shall not be traced, and tracing of the parent |
29661 shall continue. |

29662 POSIX_TRACE_INHERITED |
29663 After a fork () or spawn() operation, if the parent is being traced, its child shall be |
29664 concurrently traced using the same trace stream. |

29665 The default value for the inheritance attribute is POSIX_TRACE_CLOSE_FOR_CHILD. |

29666 TRL The posix_trace_attr_getlogfullpolicy() and posix_trace_attr_setlogfullpolicy() functions, |
29667 respectively, get and set the trace log full policy stored in the log-full-policy attribute of the |
29668 attributes object pointed to by the attr argument. |

29669 The log-full-policy attribute shall be set to one of the following values defined by manifest |
29670 constants in the <trace.h> header: |

29671 POSIX_TRACE_LOOP |
29672 The trace log shall loop until the associated trace stream is stopped. This policy means that |
29673 when the trace log gets full, the file system shall reuse the resources allocated to the oldest |
29674 trace events that were recorded. In this way, the trace log will always contain the most |
29675 recent trace events flushed. |

29676 POSIX_TRACE_UNTIL_FULL |
29677 The trace stream shall be flushed to the trace log until the trace log is full. This condition can |
29678 be deduced from the posix_log_full_status member status (see the posix_trace_status_info() |
29679 function). The last recorded trace event shall be the POSIX_TRACE_STOP trace event. |

System Interfaces, Issue 6 1431

posix_trace_attr_getinherited() System Interfaces

29680 POSIX_TRACE_APPEND |
29681 The associated trace stream shall be flushed to the trace log without log size limitation. If |
29682 the application specifies POSIX_TRACE_APPEND, the implementation shall ignore the |
29683 log-max-size attribute. |

29684 The default value for the log-full-policy attribute is POSIX_TRACE_LOOP. |

29685 The posix_trace_attr_getstreamfullpolicy() and posix_trace_attr_setstreamfullpolicy() functions, |
29686 respectively, get and set the trace stream full policy stored in the stream-full-policy attribute of the |
29687 attributes object pointed to by the attr argument. |

29688 The stream-full-policy attribute shall be set to one of the following values defined by manifest |
29689 constants in the <trace.h> header: |

29690 POSIX_TRACE_LOOP |
29691 The trace stream shall loop until explicitly stopped by the posix_trace_stop() function. This |
29692 policy means that when the trace stream is full, the trace system shall reuse the resources |
29693 allocated to the oldest trace events recorded. In this way, the trace stream will always |
29694 contain the most recent trace events recorded. |

29695 POSIX_TRACE_UNTIL_FULL |
29696 The trace stream will run until the trace stream resources are exhausted. Then the trace |
29697 stream will stop. This condition can be deduced from posix_stream_status and |
29698 posix_stream_full_status statuses (see the posix_trace_status_info() function). When this trace |
29699 stream is read, a POSIX_TRACE_STOP trace event shall be reported after reporting the last |
29700 recorded trace event. The trace system shall reuse the resources allocated to any trace |
29701 events already reported—see the posix_trace_getnext_event(), posix_trace_trygetnext_event(), |
29702 and posix_trace_timedgetnext_event() functions—or already flushed for an active trace stream |
29703 with log if the Trace Log option is supported; see the posix_trace_flush() function. The trace |
29704 system shall restart the trace stream when it is empty and may restart it sooner. A |
29705 POSIX_TRACE_START trace event shall be reported before reporting the next recorded |
29706 trace event. |

29707 POSIX_TRACE_FLUSH |
29708 If the Trace Log option is supported, this policy is identical to the |
29709 POSIX_TRACE_UNTIL_FULL trace stream full policy except that the trace stream shall be |
29710 flushed regularly as if posix_trace_flush() had been explicitly called. Defining this policy for |
29711 an active trace stream without log shall be invalid. |

29712 The default value for the stream-full-policy attribute shall be POSIX_TRACE_LOOP for an active |
29713 trace stream without log. |

29714 If the Trace Log option is supported, the default value for the stream-full-policy attribute shall be |
29715 POSIX_TRACE_FLUSH for an active trace stream with log. |

29716 RETURN VALUE |
29717 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
29718 return the corresponding error number. |

29719 TRI If successful, the posix_trace_attr_getinherited() function stores the inheritance attribute value in |
29720 the object pointed to by inheritancepolicy. Otherwise, the content of this object is undefined. |

29721 TRL If successful, the posix_trace_attr_getlogfullpolicy() function stores the log-full-policy attribute |
29722 value in the object pointed to by logpolicy. Otherwise, the content of this object is undefined. |

29723 If successful, the posix_trace_attr_getstreamfullpolicy() function stores the stream-full-policy |
29724 attribute value in the object pointed to by streampolicy. Otherwise, the content of this object is |
29725 undefined. |

1432 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_getinherited()

29726 ERRORS |
29727 These functions may fail if: |

29728 [EINVAL] The value specified by at least one of the arguments is invalid. |

29729 EXAMPLES |
29730 None. |

29731 APPLICATION USAGE |
29732 None. |

29733 RATIONALE |
29734 None. |

29735 FUTURE DIRECTIONS |
29736 None. |

29737 SEE ALSO |
29738 fork (), posix_trace_attr_init(), posix_trace_create(), posix_trace_flush(), posix_trace_get_attr(), |
29739 posix_trace_getnext_event(), posix_trace_start(), posix_trace_status_info Structure, |
29740 posix_trace_timedgetnext_event(), <REFERENCE UNDEFINED>(spawn), the Base Definitions |
29741 volume of IEEE Std. 1003.1-200x, <trace.h> |

29742 CHANGE HISTORY |
29743 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1433

posix_trace_attr_getlogsize() System Interfaces

29744 NAME |
29745 posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize, |
29746 posix_trace_attr_getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize, |
29747 posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize, |
29748 posix_trace_attr_setstreamsize — retrieve and set trace stream size attributes |

29749 SYNOPSIS |
29750 TRC #include <sys/types.h> |
29751 #include <trace.h> |

29752 TRC TRL int posix_trace_attr_getlogsize(const trace_attr_t * attr , |
29753 size_t * logsize); |
29754 TRC int posix_trace_attr_getmaxdatasize(const trace_attr_t * attr , |
29755 size_t * maxdatasize); |
29756 int posix_trace_attr_getmaxsystemeventsize(const trace_attr_t * attr , |
29757 size_t * eventsize); |
29758 int posix_trace_attr_getmaxusereventsize(const trace_attr_t * attr , |
29759 size_t data_len , size_t * eventsize); |
29760 int posix_trace_attr_getstreamsize(const trace_attr_t * attr , |
29761 size_t * streamsize); |
29762 TRC TRL int posix_trace_attr_setlogsize(trace_attr_t * attr , |
29763 size_t logsize); |
29764 TRC int posix_trace_attr_setmaxdatasize(trace_attr_t * attr , |
29765 size_t maxdatasize); |
29766 int posix_trace_attr_setstreamsize(trace_attr_t * attr , |
29767 size_t streamsize); |
29768 |

29769 DESCRIPTION |
29770 TRL The posix_trace_attr_getlogsize() function shall copy the log size, in bytes, from the log-max-size |
29771 attribute of the attributes object pointed to by the attr argument into the variable pointed to by |
29772 the logsize argument. This log size is the maximum total of bytes that shall be allocated for |
29773 system and user trace events in the trace log. The default value for the log-max-size attribute is |
29774 implementation-defined. |

29775 The posix_trace_attr_setlogsize() function shall set the maximum allowed size, in bytes, in the |
29776 log-max-size attribute of the attributes object pointed to by the attr argument, using the size value |
29777 supplied by the logsize argument. |

29778 The trace log size shall be used if the log-full-policy attribute is set to POSIX_TRACE_LOOP or |
29779 POSIX_TRACE_UNTIL_FULL. If the log-full-policy attribute is set to POSIX_TRACE_APPEND, |
29780 the implementation shall ignore the log-max-size attribute. |

29781 The posix_trace_attr_getmaxdatasize() function shall copy the maximum user trace event data |
29782 size, in bytes, from the max-data-size attribute of the attributes object pointed to by the attr |
29783 argument into the variable pointed to by the maxdatasize argument. The default value for the |
29784 max-data-size attribute is implementation-defined. |

29785 The posix_trace_attr_getmaxsystemeventsize() function calculates the maximum memory size, in |
29786 bytes, required to store a single system trace event. This value is calculated for the trace stream |
29787 attributes object pointed to by the attr argument and is returned in the variable pointed to by the |
29788 eventsize argument. |

29789 The values returned as the maximum memory sizes of the user and system trace events shall be |
29790 such that if the sum of the maximum memory sizes of a set of the trace events that may be |
29791 recorded in a trace stream is less than or equal to the stream-min-size attribute of that trace |

1434 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_getlogsize()

29792 stream, the system provides the necessary resources for recording all those trace events, without |
29793 loss. |

29794 The posix_trace_attr_getmaxusereventsize() function calculates the maximum memory size, in |
29795 bytes, required to store a single user trace event generated by a call to posix_trace_event() with a |
29796 data_len parameter equal to the data_len value specified in this call. This value is calculated for |
29797 the trace stream attributes object pointed to by the attr argument and is returned in the variable |
29798 pointed to by the eventsize argument. |

29799 The posix_trace_attr_getstreamsize() function shall copy the stream size, in bytes, from the |
29800 stream-min-size attribute of the attributes object pointed to by the attr argument into the variable |
29801 pointed to by the streamsize argument. |

29802 This stream size is the current total memory size reserved for system and user trace events in the |
29803 trace stream. The default value for the stream-min-size attribute is implementation-defined. The |
29804 stream size refers to memory used to store trace event records. Other stream data (for example, |
29805 trace attribute values) shall not be included in this size. |

29806 The posix_trace_attr_setmaxdatasize() function shall set the maximum allowed size, in bytes, in |
29807 the max-data-size attribute of the attributes object pointed to by the attr argument, using the size |
29808 value supplied by the maxdatasize argument. This maximum size is the maximum allowed size |
29809 for the user data argument which may be passed to posix_trace_event(). The implementation |
29810 shall be allowed to truncate data passed to trace_user_event which is longer than maxdatasize. |

29811 The posix_trace_attr_setstreamsize() function shall set the minimum allowed size, in bytes, in the |
29812 stream-min-size attribute of the attributes object pointed to by the attr argument, using the size |
29813 value supplied by the streamsize argument. |

29814 RETURN VALUE |
29815 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
29816 return the corresponding error number. |

29817 TRL The posix_trace_attr_getlogsize() function stores the maximum trace log allowed size in the object |
29818 pointed to by logsize, if successful. |

29819 The posix_trace_attr_getmaxdatasize() function stores the maximum trace event record memory |
29820 size in the object pointed to by maxdatasize, if successful. |

29821 The posix_trace_attr_getmaxsystemeventsize() function stores the maximum memory size to store |
29822 a single system trace event in the object pointed to by eventsize, if successful. |

29823 The posix_trace_attr_getmaxusereventsize() function stores the maximum memory size to store a |
29824 single user trace event in the object pointed to by eventsize, if successful. |

29825 The posix_trace_attr_getstreamsize() function stores the maximum trace stream allowed size in |
29826 the object pointed to by streamsize, if successful. |

29827 ERRORS |
29828 These functions may fail if: |

29829 [EINVAL] The value specified by one of the arguments is invalid. |

System Interfaces, Issue 6 1435

posix_trace_attr_getlogsize() System Interfaces

29830 EXAMPLES |
29831 None. |

29832 APPLICATION USAGE |
29833 None. |

29834 RATIONALE |
29835 None. |

29836 FUTURE DIRECTIONS |
29837 None. |

29838 SEE ALSO |
29839 posix_trace_attr_init(), posix_trace_create(), posix_trace_event(), posix_trace_get_attr(), the Base |
29840 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <trace.h> |

29841 CHANGE HISTORY |
29842 First released in Issue 6. Derived from the IEEE Std. 1003.1q-2000. |

|

1436 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_attr_init()

29843 NAME |
29844 posix_trace_attr_init — trace stream attributes object initialization |

29845 SYNOPSIS |
29846 TRC #include <trace.h> |

29847 int posix_trace_attr_init(trace_attr_t * attr); |
29848 |

29849 DESCRIPTION |
29850 Refer to posix_trace_attr_destroy(). |

|

System Interfaces, Issue 6 1437

posix_trace_clear() System Interfaces

29851 NAME |
29852 posix_trace_clear — clear trace stream and trace log |

29853 SYNOPSIS |
29854 TRC #include <sys/types.h> |
29855 #include <trace.h> |

29856 int posix_trace_clear(trace_id_t trid); |
29857 |

29858 DESCRIPTION |
29859 The posix_trace_clear() function shall reinitialize the trace stream identified by the argument trid |
29860 as if it were returning from the posix_trace_create() function, except that the same allocated |
29861 resources are reused, the mapping of trace event type identifiers to trace event names is |
29862 unchanged, and the trace stream status remains unchanged (that is, if it was running, it remains |
29863 running and if it was suspended, it remains suspended). |

29864 All trace events in the trace stream recorded before the call to posix_trace_clear() are lost. The |
29865 posix_stream_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee |
29866 that all trace events that occurred during the posix_trace_clear() call are recorded; the behavior |
29867 with respect to trace points that may occur during this call, is unspecified. |

29868 TRL If the Trace Log option is supported and the trace stream has been created with a log, the |
29869 posix_trace_clear() function shall reinitialize the trace stream with the same behavior as if the |
29870 trace stream was created without the log, plus it shall reinitialize the trace log associated with |
29871 the trace stream identified by the argument trid as if it were returning from the |
29872 posix_trace_create_withlog() function, except that the same allocated resources, for the trace log, |
29873 may be reused and the associated trace stream status remains unchanged. The first trace event |
29874 recorded in the trace log after the call to posix_trace_clear() shall be the same as the first trace |
29875 event recorded in the active trace stream after the call to posix_trace_clear(). The |
29876 posix_log_full_status status shall be set to POSIX_TRACE_NOT_FULL. There is no guarantee that |
29877 all trace events that occurred during the posix_trace_clear() call are recorded in the trace log; the |
29878 behavior with respect to trace points that may occur during this call is unspecified. If the log full |
29879 policy is POSIX_TRACE_APPEND, the effect of a call to this function is unspecified for the trace |
29880 log associated with the trace stream identified by the trid argument. |

29881 RETURN VALUE |
29882 Upon successful completion, the posix_trace_clear() function shall return a value of zero. |
29883 Otherwise, it shall return the corresponding error number. |

29884 ERRORS |
29885 The posix_trace_clear() function may fail if: |

29886 [EINVAL] The value of the trid argument does not correspond to an active trace stream. |

29887 EXAMPLES |
29888 None. |

29889 APPLICATION USAGE |
29890 None. |

29891 RATIONALE |
29892 None. |

29893 FUTURE DIRECTIONS |
29894 None. |

1438 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_clear()

29895 SEE ALSO |
29896 posix_trace_attr_init(), posix_trace_create(), posix_trace_flush(), posix_trace_get_attr(), the Base |
29897 Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <trace.h> |

29898 CHANGE HISTORY |
29899 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1439

posix_trace_close() System Interfaces

29900 NAME |
29901 posix_trace_close, posix_trace_open, posix_trace_rewind — trace log management |

29902 SYNOPSIS |
29903 TRC TRL #include <trace.h> |

29904 int posix_trace_close(trace_id_t trid); |
29905 int posix_trace_open(int file_desc , trace_id_t * trid); |
29906 int posix_trace_rewind(trace_id_t trid); |
29907 |

29908 DESCRIPTION |
29909 The posix_trace_close() function shall deallocate the trace log identifier indicated by trid, and all |
29910 of its associated resources. If there is no valid trace log pointed to by the trid, this function shall |
29911 fail. |

29912 The posix_trace_open() function allocates the necessary resources and establishes the connection |
29913 between a trace log identified by the file_desc argument and a trace stream identifier identified by |
29914 the object pointed to by the trid argument. The file_desc argument should be a valid open file |
29915 descriptor that corresponds to a trace log. The file_desc argument shall be open for reading. The |
29916 current trace event timestamp, which specifies the timestamp of the trace event that will be read |
29917 by the next call to posix_trace_getnext_event(), shall be set to the timestamp of the oldest trace |
29918 event recorded in the trace log identified by trid. |

29919 The posix_trace_open() function returns a trace stream identifier in the variable pointed to by the |
29920 trid argument, that may only be used by the following functions: |

29921 posix_trace_close() | |
29922 posix_trace_eventid_equal() | |
29923 posix_trace_eventid_get_name() | |
29924 posix_trace_eventtypelist_getnext_id() | |
29925 posix_trace_eventtypelist_rewind() | |

posix_trace_get_attr() | |
posix_trace_get_status() | |
posix_trace_getnext_event() | |
posix_trace_rewind() | |

|

29926 In particular, notice that the operations normally used by a trace controller process, such as |
29927 posix_trace_start(), posix_trace_stop(), or posix_trace_shutdown(), cannot be invoked using the |
29928 trace stream identifier returned by the posix_trace_open() function. |

29929 The posix_trace_rewind() function shall reset the current trace event timestamp, which specifies |
29930 the timestamp of the trace event that will be read by the next call to posix_trace_getnext_event(), |
29931 to the timestamp of the oldest trace event recorded in the trace log identified by trid. |

29932 RETURN VALUE |
29933 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
29934 return the corresponding error number. |

29935 If successful, the posix_trace_open() function stores the trace stream identifier value in the object |
29936 pointed to by trid. |

29937 ERRORS |
29938 The posix_trace_open() function may fail if: |

29939 [EINTR] The operation was interrupted by a signal and thus no trace log was opened. |

29940 [EINVAL] The object pointed to by file_desc does not correspond to a valid trace log. |

29941 The posix_trace_close() and posix_trace_rewind() functions may fail if: |

29942 [EINVAL] The object pointed to by trid does not correspond to a valid trace log. |

1440 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_close()

29943 EXAMPLES |
29944 None. |

29945 APPLICATION USAGE |
29946 None. |

29947 RATIONALE |
29948 None. |

29949 FUTURE DIRECTIONS |
29950 None. |

29951 SEE ALSO |
29952 posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_getnext_event(), the Base Definitions |
29953 volume of IEEE Std. 1003.1-200x, <trace.h> |

29954 CHANGE HISTORY |
29955 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1441

posix_trace_create() System Interfaces

29956 NAME |
29957 posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown — |
29958 trace stream initialization, flush, and shutdown from a process |

29959 SYNOPSIS |
29960 TRC #include <sys/types.h> |
29961 #include <trace.h> |

29962 int posix_trace_create(pid_t pid , const trace_attr_t * attr , |
29963 trace_id_t * trid); |
29964 TRC TRL int posix_trace_create_withlog(pid_t pid , const trace_attr_t * attr , |
29965 int file_desc , trace_id_t * trid); |
29966 int posix_trace_flush(trace_id_t trid); |
29967 int posix_trace_shutdown(trace_id_t trid); |
29968 |

29969 DESCRIPTION |
29970 The posix_trace_create() function creates an active trace stream. It allocates all the resources |
29971 needed by the trace stream being created for tracing the process specified by pid in accordance |
29972 with the attr argument. The attr argument represents the initial attributes of the trace stream and |
29973 shall have been initialized by the function posix_trace_attr_init() prior the posix_trace_create() |
29974 call. If the argument attr is NULL, the default attributes shall be used. The attr attributes object |
29975 shall be manipulated through a set of functions described in the posix_trace_attr family of |
29976 functions. If the attributes of the object pointed to by attr are modified later, the attributes of the |
29977 trace stream shall not be affected. The creation-time attribute of the newly created trace stream |
29978 shall be set to the value of the system clock, if the Timers option is not supported, or to the value |
29979 of the CLOCK_REALTIME clock, if the Timers option is supported. |

29980 The pid argument represents the target process to be traced. If the process executing this |
29981 function does not have appropriate privileges to trace the process identified by pid, an error shall |
29982 be returned. If the pid argument is zero, the calling process shall be traced. |

29983 The posix_trace_create() function stores the trace stream identifier of the new trace stream in the |
29984 object pointed to by the trid argument. This trace stream identifier shall be used in subsequent |
29985 calls to control tracing. The trid argument may only be used by the following functions: |

29986 posix_trace_clear() | |
29987 posix_trace_eventid_equal() | |
29988 posix_trace_eventid_get_name() | |
29989 posix_trace_eventtypelist_getnext_id() | |
29990 posix_trace_eventtypelist_rewind() | |
29991 posix_trace_get_attr() | |
29992 posix_trace_get_status() | |

posix_trace_getnext_event() | |
posix_trace_shutdown() | |
posix_trace_start() | |
posix_trace_stop() | |
posix_trace_timedgetnext_event() | |
posix_trace_trid_eventid_open() | |
posix_trace_trygetnext_event() | |

|

29993 TEF If the Trace Event Filter option is supported, the following additional functions may use the trid |
29994 argument: |

29995 posix_trace_get_filter() | |posix_trace_set_filter() | ||

29996 |

29997 In particular, notice that the operations normally used by a trace analyser process, such as |
29998 posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier |
29999 returned by the posix_trace_create() function. |

1442 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_create()

30000 TEF A trace stream shall be created in a suspended state. If the Trace Event Filter option is |
30001 supported, its trace event type filter shall be empty. |

30002 The posix_trace_create() function may be called multiple times from the same or different |
30003 processes, with the system-wide limit indicated by the runtime invariant value |
30004 {TRACE_SYS_MAX}, which has the minimum value {_POSIX_TRACE_SYS_MAX}. |

30005 The trace stream identifier returned by the posix_trace_create() function in the argument pointed |
30006 to by trid is valid only in the process that made the function call. If it is used from another |
30007 process, that is a child process, in functions defined in IEEE Std. 1003.1-200x, these functions |
30008 shall return with the error [EINVAL]. |

30009 TRL The posix_trace_create_withlog() function creates a trace stream as in the posix_trace_create() |
30010 function and behaves the same way, plus it associates a trace log with this trace stream. The |
30011 file_desc argument shall be the file descriptor designating the trace log destination. The function |
30012 shall fail if this file descriptor refers to a file with a file type that is not compatible with the log |
30013 policy associated with the trace log. The list of the appropriate file types that are compatible |
30014 with each log policy shall be implementation-defined. |

30015 The posix_trace_create_withlog() function returns in the parameter pointed to by trid the trace |
30016 stream identifier, which uniquely identifies the newly created trace stream, and shall be used in |
30017 subsequent calls to control tracing. The trid argument may only be used by the following |
30018 functions: |

30019 posix_trace_clear() | |
30020 posix_trace_eventid_equal() | |
30021 posix_trace_eventid_get_name() | |
30022 posix_trace_eventtypelist_getnext_id() | |
30023 posix_trace_eventtypelist_rewind() | |
30024 posix_trace_flush() | |
30025 posix_trace_get_attr() | |
30026 posix_trace_get_status() | |

posix_trace_getnext_event() | |
posix_trace_shutdown() | |
posix_trace_start() | |
posix_trace_stop() | |
posix_trace_timedgetnext_event() | |
posix_trace_trid_eventid_open() | |
posix_trace_trygetnext_event() | |

|

30027 |

30028 TRL TEF If the Trace Event Filter option is supported, the following additional functions may use the trid |
30029 argument: |

30030 posix_trace_get_filter() | |posix_trace_set_filter() | ||

30031 In particular, notice that the operations normally used by a trace analyser process, such as |
30032 posix_trace_rewind() or posix_trace_close(), cannot be invoked using the trace stream identifier |
30033 returned by the posix_trace_create_withlog() function. |

30034 The posix_trace_flush() function initiates a flush operation which copies the contents of the trace |
30035 stream identified by the argument trid into the trace log associated with the trace stream at the |
30036 creation time. If no trace log has been associated with the trace stream pointed to by trid, this |
30037 function shall return an error. The termination of the flush operation can be polled by the |
30038 posix_trace_get_status() function. During the flush operation, it shall be possible to trace new |
30039 trace events up to the point when the trace stream becomes full. After flushing is completed, the |
30040 space used by the flushed trace events shall be available for tracing new trace events. |

30041 If flushing the trace stream causes the resulting trace log to become full, the trace log full policy |
30042 shall be applied. If the trace log-full-policy attribute is set, the following occurs: |

System Interfaces, Issue 6 1443

posix_trace_create() System Interfaces

30043 POSIX_TRACE_UNTIL_FULL |
30044 The trace events that have not yet been flushed are discarded. |

30045 POSIX_TRACE_LOOP |
30046 The trace events that have not yet been flushed are written to the beginning of the trace log, |
30047 overwriting previous trace events stored there. |

30048 POSIX_TRACE_APPEND |
30049 The trace events that had not yet been flushed shall be appended to the trace log. |

30050 For an active trace stream with log, when the posix_trace_shutdown() function is called, all trace |
30051 events that have not yet been flushed to the trace log shall be flushed, as in the |
30052 posix_trace_flush() function, and the trace log shall be closed. |

30053 When a trace log is closed, all the information that may be retrieved later from the trace log |
30054 through the trace interface, shall have been written to the trace log. This information includes |
30055 the trace attributes, the list of trace event types (with the mapping between trace event names |
30056 and trace event type identifiers), and the trace status. |

30057 In addition, some unspecified information shall be written to the trace log to allow detection of a |
30058 valid trace log during the posix_trace_open() operation. |

30059 The posix_trace_shutdown() function shall stop the tracing of trace events in the trace stream |
30060 identified by trid, as if posix_trace_stop() had been invoked. The posix_trace_shutdown() function |
30061 shall free all the resources associated with the trace stream. |

30062 The posix_trace_shutdown() function shall not return until all the resources associated with the |
30063 trace stream have been freed. When the posix_trace_shutdown() function returns, the trid |
30064 argument becomes an invalid trace stream identifier. A call to this function shall unconditionally |
30065 deallocate the resources regardless of whether all trace events have been retrieved by the |
30066 analyzer process. Any thread blocked on one of the trace_getnext_event() functions (which |
30067 specified this trid) before this call is unblocked with the error [EINVAL]. |

30068 If the process exits, invokes an exec() call, or is terminated, the trace streams that the process had |
30069 created and that have not yet been shut down, shall be automatically shut down as if an explicit |
30070 call were made to the posix_trace_shutdown() function. |

30071 The posix_trace_shutdown() function shall not return until all trace events have been flushed. |

30072 RETURN VALUE |
30073 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30074 return the corresponding error number. |

30075 TRL The posix_trace_create() andposix_trace_create_withlog() functions store the trace stream identifier |
30076 value in the object pointed to by trid, if successful. |

30077 ERRORS |
30078 TRL The posix_trace_create() andposix_trace_create_withlog()functions shall fail if: |

30079 [EAGAIN] No more trace streams can be started now. {TRACE_SYS_MAX} has been |
30080 exceeded. |

30081 [EINTR] The operation was interrupted by a signal. No trace stream was created. |

30082 [EINVAL] One or more of the trace parameters specified by the attr parameter is invalid. |

30083 [ENOMEM] The implementation does not currently have sufficient memory to create the |
30084 trace stream with the specified parameters. |

30085 [EPERM] The caller does not have appropriate privilege to trace the process specified by |
30086 pid. |

1444 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_create()

30087 [ESRCH] The pid argument does not refer to an existing process. |

30088 TRL The posix_trace_create_withlog() function shall fail if: |

30089 [EBADF] The file_desc argument is not a valid file descriptor open for writing. |

30090 [EINVAL] The file_desc argument refers to a file with a file type that does not support the |
30091 log policy associated with the trace log. |

30092 [ENOSPC] No space left on device. The device corresponding to the argument file_desc |
30093 does not contain the space required to create this trace log. |
30094 |

30095 TRL Theposix_trace_flush()and posix_trace_shutdown() functions shall fail if: |

30096 [EINVAL] The value of the trid argument does not correspond to an active trace stream |
30097 with log. |

30098 [EFBIG] The trace log file has attempted to exceed an implementation-defined |
30099 maximum file size. |

30100 [ENOSPC] No space left on device. |
30101 |

30102 EXAMPLES |
30103 None. |

30104 APPLICATION USAGE |
30105 None. |

30106 RATIONALE |
30107 None. |

30108 FUTURE DIRECTIONS |
30109 None. |

30110 SEE ALSO |
30111 clock_getres(), exec, posix_trace_attr_init(), posix_trace_clear(), posix_trace_close(), |
30112 posix_trace_eventid_equal(), posix_trace_eventtypelist_getnext_id(), posix_trace_flush(), |
30113 posix_trace_get_attr(), posix_trace_get_filter(), posix_trace_get_status(), posix_trace_getnext_event(), |
30114 posix_trace_open(), posix_trace_rewind(), posix_trace_set_filter(), posix_trace_shutdown(), |
30115 posix_trace_start(), posix_trace_timedgetnext_event(), posix_trace_trid_eventid_open(), |
30116 posix_trace_start(), time(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
30117 <trace.h> |

30118 CHANGE HISTORY |
30119 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1445

posix_trace_event() System Interfaces

30120 NAME |
30121 posix_trace_event, posix_trace_eventid_open — trace functions for instrumenting application |
30122 code |

30123 SYNOPSIS |
30124 TRC #include <sys/types.h> |
30125 #include <trace.h> |

30126 void posix_trace_event(trace_event_id_t event_id , const void * data_ptr , |
30127 size_t data_len); |
30128 int posix_trace_eventid_open(const char * event_name , |
30129 trace_event_id_t * event_id); |
30130 |

30131 DESCRIPTION |
30132 The posix_trace_event() function records the event_id and the user data pointed to by data_ptr in |
30133 the trace stream into which the calling process is being traced and in which event_id is not |
30134 filtered out. If the total size of the user trace event data represented by data_len is not greater |
30135 than the declared maximum size for user trace event data, then the truncation-status attribute of |
30136 the trace event recorded is POSIX_TRACE_NOT_TRUNCATED. Otherwise, the user trace event |
30137 data is truncated to this declared maximum size and the truncation-status attribute of the trace |
30138 event recorded is POSIX_TRACE_TRUNCATED_RECORD. |

30139 If there is no trace stream created for the process or if the created trace stream is not running or if |
30140 the trace event specified by event_id is filtered out in the trace stream, the posix_trace_event() |
30141 function has no effect. |

30142 The posix_trace_eventid_open() function is used to associate a user trace event name with a trace |
30143 event type identifier for the calling process. The trace event name is the string pointed to by the |
30144 argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} characters |
30145 (which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The number of user |
30146 trace event type identifiers that can be defined for any given process is limited by the maximum |
30147 value {TRACE_USER_EVENT_MAX}, which has the minimum value |
30148 {POSIX_TRACE_USER_EVENT_MAX}. |

30149 If the Trace Inheritance option is not supported, the posix_trace_trid_eventid_open() function shall |
30150 associate the user trace event name pointed to by the event_name argument with a trace event |
30151 type identifier that is unique for the traced process, and is returned in the variable pointed to by |
30152 the event argument. If the user trace event name has already been mapped for the traced process, |
30153 then the previously assigned trace event type identifier shall be returned. If the per-process user |
30154 trace event name limit represented by {TRACE_USER_EVENT_MAX} has been reached, the |
30155 pre-defined POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-10 (on page 582)) user trace |
30156 event shall be returned. |

30157 TRI If the Trace Inherit option is supported, the posix_trace_trid_eventid_open() function shall |
30158 associate the user trace event name pointed to by the event_name argument with a trace event |
30159 type identifier that is unique for all the processes being traced in this same trace stream, and is |
30160 returned in the variable pointed to by the event argument. If the user trace event name has |
30161 already been mapped for the traced processes, then the previously assigned trace event type |
30162 identifier shall be returned. If the per-process user trace event name limit represented by |
30163 {TRACE_USER_EVENT_MAX} has been reached, the pre-defined |
30164 POSIX_TRACE_UNNAMED_USEREVENT (Table 2-10 (on page 582)) user trace event shall be |
30165 returned. |

30166 Note: The above procedure, together with the fact that multiple processes can only be |
30167 traced into the same trace stream by inheritance, ensure that all the processes that are |

1446 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_event()

30168 traced into a trace stream have the same mapping of trace event names to trace event |
30169 type identifiers. |

30170 |

30171 If there is no trace stream created, the posix_trace_eventid_open() function shall store this |
30172 information for future trace streams created for this process. |

30173 RETURN VALUE |
30174 No return value is defined for the posix_trace_event() function. |

30175 Upon successful completion, the posix_trace_eventid_open() function shall return a value of zero. |
30176 Otherwise, it shall return the corresponding error number. The posix_trace_eventid_open() |
30177 function stores the trace event type identifier value in the object pointed to by event_id, if |
30178 successful. |

30179 ERRORS |
30180 The posix_trace_eventid_open() function may fail if: |

30181 [ENAMETOOLONG] |
30182 The size of the name pointed to by event_name argument was longer than the |
30183 implementation-defined value {TRACE_EVENT_NAME_MAX}. |

30184 EXAMPLES |
30185 None. |

30186 APPLICATION USAGE |
30187 None. |

30188 RATIONALE |
30189 None. |

30190 FUTURE DIRECTIONS |
30191 None. |

30192 SEE ALSO |
30193 posix_trace_start(), posix_trace_trid_eventid_open(), the Base Definitions volume of |
30194 IEEE Std. 1003.1-200x, <sys/types.h>, <trace.h> |

30195 CHANGE HISTORY |
30196 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1447

posix_trace_eventid_equal() System Interfaces

30197 NAME |
30198 posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open — |
30199 manipulate trace event type identifier |

30200 SYNOPSIS |
30201 TRC #include <trace.h> |

30202 int posix_trace_eventid_equal(trace_id_t trid , trace_eventid_t event1 , |
30203 trace_eventid_t event2); |
30204 int posix_trace_eventid_get_name(trace_id_t trid , trace_eventid_t event , |
30205 char * event_name); |
30206 TRC TEF int posix_trace_trid_eventid_open(trace_id_t trid , |
30207 const char * event_name , trace_eventid_t * event); |
30208 |

30209 DESCRIPTION |
30210 The posix_trace_eventid_equal() function compares the trace event type identifiers event1 and |
30211 event2 from the same trace stream or the same trace log identified by the trid argument. If the |
30212 trace event type identifiers event1 and event2 are from different trace streams, the return value |
30213 shall be unspecified. |

30214 The posix_trace_eventid_get_name() function returns in the argument pointed to by event_name, |
30215 the trace event name associated with the trace event type identifier identified by the argument |
30216 event, for the trace stream or for the trace log identified by the trid argument. The name of the |
30217 trace event shall have a maximum of {TRACE_EVENT_NAME_MAX} characters (which has the |
30218 minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). Successive calls to this function |
30219 with the same trace event type identifier and the same trace stream identifier shall return the |
30220 same event name. |

30221 TEF The posix_trace_trid_eventid_open() function is used to associate a user trace event name with a |
30222 trace event type identifier for a given trace stream. The trace stream is identified by the trid |
30223 argument, and it shall be an active trace stream. The trace event name is the string pointed to by |
30224 the argument event_name. It shall have a maximum of {TRACE_EVENT_NAME_MAX} |
30225 characters (which has the minimum value {_POSIX_TRACE_EVENT_NAME_MAX}). The |
30226 number of user trace event type identifiers that can be defined for any given process is limited |
30227 by the maximum value {TRACE_USER_EVENT_MAX}, which has the minimum value |
30228 {_POSIX_TRACE_USER_EVENT_MAX}. |

30229 If the Trace Inheritance option is not supported, the posix_trace_trid_eventid_open() function shall |
30230 associate the user trace event name pointed to by the event_name argument with a trace event |
30231 type identifier that is unique for the process being traced in the trace stream identified by the trid |
30232 argument, and is returned in the variable pointed to by the event argument. If the user trace |
30233 event name has already been mapped for the traced process, then the previously assigned trace |
30234 event type identifier shall be returned. If the per-process user trace event name limit represented |
30235 by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined |
30236 POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-10 (on page 582)) user trace event shall |
30237 be returned. |

30238 TEF TRI If the Trace Inheritance option is supported, the posix_trace_trid_eventid_open() function shall |
30239 associate the user trace event name pointed to by the event_name argument with a trace event |
30240 type identifier that is unique for all the processes being traced in the trace stream identified by |
30241 the trid argument, and is returned in the variable pointed to by the event argument. If the user |
30242 trace event name has already been mapped for the traced processes, then the previously |
30243 assigned trace event type identifier shall be returned. If the per-process user trace event name |
30244 limit represented by {TRACE_USER_EVENT_MAX} has been reached, the pre-defined |
30245 POSIX_TRACE_UNNAMED_USEREVENT (see Table 2-10 (on page 582)) user trace event shall |

1448 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_eventid_equal()

30246 be returned. |

30247 RETURN VALUE |
30248 TEF Upon successful completion, the posix_trace_eventid_get_name() and |
30249 posix_trace_trid_eventid_open() functions shall return a value of zero. Otherwise, they shall return |
30250 the corresponding error number. |

30251 The posix_trace_eventid_equal() function shall return a non-zero value if event1 and event2 are |
30252 equal; otherwise, a value of zero shall be returned. No errors are defined. If either event1 or |
30253 event2 are not valid trace event type identifiers for the trace stream specified by trid or if the trid |
30254 is invalid, the behavior shall be unspecified. |

30255 The posix_trace_eventid_get_name() function stores the trace event name value in the object |
30256 pointed to by event_name, if successful. |

30257 TEF The posix_trace_trid_eventid_open() function stores the trace event type identifier value in the |
30258 object pointed to by event, if successful. |

30259 ERRORS |
30260 TEF The posix_trace_eventid_get_name() andposix_trace_trid_eventid_open()functions may fail if: |

30261 [EINVAL] The trid argument was not a valid trace type identifier. |

30262 TEF The posix_trace_trid_eventid_open() function may fail if: |

30263 [ENAMETOOLONG] |
30264 The size of the name pointed to by event_name argument was longer than the |
30265 implementation-defined value {TRACE_EVENT_NAME_MAX}. |
30266 |

30267 The posix_trace_eventid_get_name() function may fail if: |

30268 [EINVAL] The trace event type identifier event was not associated with any name. |

30269 EXAMPLES |
30270 None. |

30271 APPLICATION USAGE |
30272 None. |

30273 RATIONALE |
30274 None. |

30275 FUTURE DIRECTIONS |
30276 None. |

30277 SEE ALSO |
30278 posix_trace_event(), <REFERENCE UNDEFINED>(posix_trace_eventid), |
30279 posix_trace_getnext_event(), the Base Definitions volume of IEEE Std. 1003.1-200x, <trace.h> |

30280 CHANGE HISTORY |
30281 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1449

posix_trace_eventset_add() System Interfaces

30282 NAME |
30283 posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty, |
30284 posix_trace_eventset_fill, posix_trace_eventset_ismember — manipulate trace event type sets |

30285 SYNOPSIS |
30286 TRC TEF #include <trace.h> |

30287 int posix_trace_eventset_add(trace_event_id_t event_id , |
30288 trace_event_set_t * set); |
30289 int posix_trace_eventset_del(trace_event_id_t event_id , |
30290 trace_event_set_t * set); |
30291 int posix_trace_eventset_empty(trace_event_set_t * set); |
30292 int posix_trace_eventset_fill(trace_event_set_t * set , int what); |
30293 int posix_trace_eventset_ismember(trace_event_id_t event_id , |
30294 const trace_event_set_t * set , int * ismember); |
30295 |

30296 DESCRIPTION |
30297 These primitives manipulate sets of trace event types. They operate on data objects addressable |
30298 by the application, not on the current trace event filter of any trace stream. |

30299 The posix_trace_eventset_add() and posix_trace_eventset_del() functions, respectively, add or |
30300 delete the individual trace event type specified by the value of the argument event_id to or from |
30301 the trace event type set pointed to by the argument set. Adding a trace event type already in the |
30302 set or deleting a trace event type not in the set shall not be considered an error. |

30303 The posix_trace_eventset_empty() function initializes the trace event type set pointed to by the set |
30304 argument such that all trace event types defined, both system and user, shall be excluded from |
30305 the set. |

30306 The posix_trace_eventset_fill() function initializes the trace event type set pointed to by the |
30307 argument set, such that the set of trace event types defined by the argument what shall be |
30308 included in the set. The value of the argument what shall consist of one of the following values, |
30309 as defined in the <trace.h> header: |

30310 POSIX_TRACE_WOPID_EVENTS |
30311 All the process-independent implementation-defined system trace event types are included |
30312 in the set. |

30313 POSIX_TRACE_SYSTEM_EVENTS All the implementation-defined system trace event types are |
30314 included in the set, as are those defined in IEEE Std. 1003.1-200x. |

30315 POSIX_TRACE_ALL_EVENTS All trace event types defined, both system and user, are included |
30316 in the set. |

30317 Applications shall call either posix_trace_eventset_empty() or posix_trace_eventset_fill() at least |
30318 once for each object of type trace_event_set_t prior to any other use of that object. If such an |
30319 object is not initialized in this way, but is nonetheless supplied as an argument to any of the |
30320 posix_trace_eventset_add(), posix_trace_eventset_del(), or posix_trace_eventset_ismember() functions, |
30321 the results are undefined. |

30322 The posix_trace_eventset_ismember() function tests whether the trace event type specified by the |
30323 value of the argument event_id is a member of the set pointed to by the argument set. The value |
30324 returned in the object pointed to by ismember argument is zero if the trace event type identifier is |
30325 not a member of the set and and a value different from zero if it is a member of the set. |

1450 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_eventset_add()

30326 RETURN VALUE |
30327 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30328 return the corresponding error number. |

30329 ERRORS |
30330 These functions may fail if: |

30331 [EINVAL] The value of one of the arguments is invalid. |

30332 EXAMPLES |
30333 None. |

30334 APPLICATION USAGE |
30335 None. |

30336 RATIONALE |
30337 None. |

30338 FUTURE DIRECTIONS |
30339 None. |

30340 SEE ALSO |
30341 posix_trace_set_filter(), posix_trace_trid_eventid_open(), the Base Definitions volume of |
30342 IEEE Std. 1003.1-200x, <trace.h> |

30343 CHANGE HISTORY |
30344 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1451

posix_trace_eventtypelist_getnext_id() System Interfaces

30345 NAME |
30346 posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind — iterate over a |
30347 mapping of trace event types |

30348 SYNOPSIS |
30349 TRC #include <trace.h> |

30350 int posix_trace_eventtypelist_getnext_id(trace_id_t trid , |
30351 trace_eventid_t * event , int * unavailable); |
30352 int posix_trace_eventtypelist_rewind(trace_id_t trid); |
30353 |

30354 DESCRIPTION |
30355 The first time posix_trace_eventtypelist_getnext_id() is called, the function shall return in the |
30356 variable pointed to by event the first trace event type identifier of the list of trace events of the |
30357 trace stream identified by the trid argument. Successive calls to |
30358 posix_trace_eventtypelist_getnext_id() return in the variable pointed to by event the next trace |
30359 event type identifier in that same list. Each time a trace event type identifier is successfully |
30360 written into the variable pointed to by the event argument, the variable pointed to by the |
30361 unavailable argument shall be set to zero. When no more trace event type identifiers are |
30362 available, and so none is returned, the variable pointed to by the unavailable argument shall be |
30363 set to a value different from zero. |

30364 The posix_trace_eventtypelist_rewind() function shall reset the next trace event type identifier to |
30365 be read to the first trace event type identifier from the list of trace events used in the trace stream |
30366 identified by trid. |

30367 RETURN VALUE |
30368 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30369 return the corresponding error number. |

30370 The posix_trace_eventtypelist_getnext_id() function stores the trace event type identifier value in |
30371 the object pointed to by event, if successful. |

30372 ERRORS |
30373 These functions may fail if: |

30374 [EINVAL] The trid argument was not a valid trace stream identifier. |

30375 EXAMPLES |
30376 None. |

30377 APPLICATION USAGE |
30378 None. |

30379 RATIONALE |
30380 None. |

30381 FUTURE DIRECTIONS |
30382 None. |

30383 SEE ALSO |
30384 posix_trace_event(), <REFERENCE UNDEFINED>(posix_trace_eventid), |
30385 posix_trace_getnext_event(), posix_trace_trid_eventid_open(), the Base Definitions volume of |
30386 IEEE Std. 1003.1-200x, <trace.h> |

1452 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_eventtypelist_getnext_id()

30387 CHANGE HISTORY |
30388 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

System Interfaces, Issue 6 1453

posix_trace_flush() System Interfaces

30389 NAME |
30390 posix_trace_flush — trace stream flush from a process |

30391 SYNOPSIS |
30392 TRC #include <sys/types.h> |
30393 #include <trace.h> |

30394 int posix_trace_flush(trace_id_t trid); |
30395 |

30396 DESCRIPTION |
30397 Refer to posix_trace_create(). |

|

1454 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_get_attr()

30398 NAME |
30399 posix_trace_get_attr, posix_trace_get_status — retrieve the trace attributes or trace statuses |

30400 SYNOPSIS |
30401 TRC #include <trace.h> |

30402 int posix_trace_get_attr(trace_id_t trid , trace_attr_t * attr); |
30403 int posix_trace_get_status(trace_id_t trid , |
30404 struct posix_trace_status_info * statusinfo); |
30405 |

30406 DESCRIPTION |
30407 The posix_trace_get_attr() function shall copy the attributes of the active trace stream identified |
30408 TRL by trid into the object pointed to by the attr argument. If the Trace Log option is supported, trid |
30409 may represent a pre-recorded trace log. |

30410 The posix_trace_get_status() function returns, in the structure pointed to by the statusinfo |
30411 argument, the current trace status for the trace stream identified by the trid argument. These |
30412 status values returned in the structure pointed to by statusinfo shall have been appropriately |
30413 TRL read to ensure that the returned values are consistent. If the Trace Log option is supported and |
30414 the trid argument refers to a pre-recorded trace stream, the status shall be the status of the |
30415 completed trace stream. |

30416 Each time the posix_trace_get_status() function is used, the overrun status of the trace stream |
30417 TRL shall be reset to POSIX_TRACE_NO_OVERRUN immediately after the call completes. If the |
30418 Trace Log option is supported, the posix_trace_get_status() function shall behave the same as |
30419 when the option is not supported except for the following differences: |

30420 • If the trid argument refers to a trace stream with log, each time the posix_trace_get_status() |
30421 function is used, the log overrun status of the trace stream shall be reset to |
30422 POSIX_TRACE_NO_OVERRUN and the flush_error status shall be reset to zero immediately |
30423 after the call completes. |

30424 • If the trid argument refers to a pre-recorded trace stream, the status returned shall be the |
30425 status of the completed trace stream and the status values of the trace stream shall not be |
30426 reset. |
30427 |

30428 RETURN VALUE |
30429 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30430 return the corresponding error number. |

30431 The posix_trace_get_attr() function stores the trace attributes in the object pointed to by attr, if |
30432 successful. |

30433 The posix_trace_get_status() function stores the trace status in the object pointed to by statusinfo, |
30434 if successful. |

30435 ERRORS |
30436 These functions may fail if: |

30437 [EINVAL] The trace stream argument trid does not correspond to a valid active trace |
30438 stream or a valid trace log. |

System Interfaces, Issue 6 1455

posix_trace_get_attr() System Interfaces

30439 EXAMPLES |
30440 None. |

30441 APPLICATION USAGE |
30442 None. |

30443 RATIONALE |
30444 None. |

30445 FUTURE DIRECTIONS |
30446 None. |

30447 SEE ALSO |
30448 posix_trace_attr_destroy(), posix_trace_attr_init(), posix_trace_create(), posix_trace_open(), the Base |
30449 Definitions volume of IEEE Std. 1003.1-200x, <trace.h> |

30450 CHANGE HISTORY |
30451 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1456 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_get_filter()

30452 NAME |
30453 posix_trace_get_filter, posix_trace_set_filter — retrieve and set filter of an initialized trace |
30454 stream |

30455 SYNOPSIS |
30456 TRC TEF #include <trace.h> |

30457 int posix_trace_get_filter(trace_id_t trid , trace_event_set_t * set); |
30458 int posix_trace_set_filter(trace_id_t trid , |
30459 const trace_event_set_t * set , int how); |
30460 |

30461 DESCRIPTION |
30462 The posix_trace_get_filter() function shall be used to retrieve, into the argument pointed to by set, |
30463 the actual trace event filter from the trace stream specified by trid. |

30464 The posix_trace_set_filter() function shall be used to change the set of filtered trace event types |
30465 after a trace stream identified by the trid argument is created. This function may be called prior |
30466 to starting the trace stream, or while the trace stream is active. By default, if no call is made to |
30467 posix_trace_set_filter(), all trace events shall be recorded (that is, none of the trace event types are |
30468 filtered out). |

30469 If this function is called while the trace is in progress, a special system trace event, |
30470 POSIX_TRACE_FILTER, shall be recorded in the trace indicating both the old and the new sets |
30471 of filtered trace event types (see Table 2-7 (on page 580) and Table 2-9 (on page 581)). |

30472 If the posix_trace_set_filter() function is interrupted by a signal, an error is returned and the filter |
30473 is not changed. In this case, the state of the trace stream shall not be changed. |

30474 The value of the argument how indicates the manner in which the set is to be changed and shall |
30475 have one of the following values, as defined in the <trace.h> header: |

30476 POSIX_TRACE_SET_EVENTSET |
30477 The resulting set of trace event types to be filtered shall be the trace event type set pointed |
30478 to by the argument set. |

30479 POSIX_TRACE_ADD_EVENTSET |
30480 The resulting set of trace event types to be filtered shall be the union of the current set and |
30481 the trace event type set pointed to by the argument set. |

30482 POSIX_TRACE_SUB_EVENTSET |
30483 The resulting set of trace event types to be filtered shall be all trace event types in the |
30484 current set that are not in the set pointed to by the argument set; that is, remove each |
30485 element of the specified set from the current filter. |

30486 RETURN VALUE |
30487 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30488 return the corresponding error number. |

30489 The posix_trace_get_filter() function stores the set of filtered trace event types in set, if successful. |

30490 ERRORS |
30491 These functions may fail if: |

30492 [EINVAL] The value of the trid argument does not correspond to an active trace stream |
30493 or the value of the argument pointed to by set is invalid. |

30494 [EINTR] The operation was interrupted by a signal. |

System Interfaces, Issue 6 1457

posix_trace_get_filter() System Interfaces

30495 EXAMPLES |
30496 None. |

30497 APPLICATION USAGE |
30498 None. |

30499 RATIONALE |
30500 None. |

30501 FUTURE DIRECTIONS |
30502 None. |

30503 SEE ALSO |
30504 posix_trace_eventset_add(), the Base Definitions volume of IEEE Std. 1003.1-200x, <trace.h> |

30505 CHANGE HISTORY |
30506 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1458 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_get_status()

30507 NAME |
30508 posix_trace_get_status — retrieve the trace statuses |

30509 SYNOPSIS |
30510 TRC #include <trace.h> |

30511 int posix_trace_get_status(trace_id_t trid , |
30512 struct posix_trace_status_info * statusinfo); |
30513 |

30514 DESCRIPTION |
30515 Refer to posix_trace_get_attr(). |

|

System Interfaces, Issue 6 1459

posix_trace_getnext_event() System Interfaces

30516 NAME |
30517 posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event — |
30518 retrieve a trace event |

30519 SYNOPSIS |
30520 TRC #include <sys/types.h> |
30521 #include <trace.h> |

30522 int posix_trace_getnext_event(trace_id_t trid , |
30523 struct posix_trace_event_info * event , void * data , |
30524 size_t num_bytes , size_t * data_len , int * unavailable); |
30525 TRC TMO int posix_trace_timedgetnext_event(trace_id_t trid , |
30526 struct posix_trace_event_info * event , void * data , |
30527 size_t num_bytes , size_t * data_len , int * unavailable , |
30528 const struct timespec * abs_timeout); |
30529 int posix_trace_trygetnext_event(trace_id_t trid , |
30530 struct posix_trace_event_info * event , void * data , |
30531 size_t num_bytes , size_t * data_len , int * unavailable); |
30532 |

30533 DESCRIPTION |
30534 The posix_trace_getnext_event() function shall be used to report a recorded trace event either |
30535 TRL from an active trace stream without log or a pre-recorded trace stream identified by the trid |
30536 argument. The posix_trace_trygetnext_event() function shall be used to report a recorded trace |
30537 event from an active trace stream without log identified by the trid argument. |

30538 The trace event information associated with the recorded trace event shall be copied by the |
30539 function into the structure pointed to by the argument event and the data associated with the |
30540 trace event shall be copied into the buffer pointed to by the data argument. |

30541 The posix_trace_getnext_event() function shall block if the trid argument identifies an active trace |
30542 stream and there is currently no trace event ready to be retrieved. When returning, if a recorded |
30543 trace event was reported, the variable pointed to by the unavailable argument shall be set to zero. |
30544 Otherwise, the variable pointed to by the unavailable argument shall be set to a value different |
30545 from zero. |

30546 TMO The posix_trace_timedgetnext_event() function attempts to get another trace event from an active |
30547 trace stream without log, as in the posix_trace_getnext_event() function. However, if no trace |
30548 event is available from the trace stream, this wait shall be terminated when the timeout specified |
30549 by the argument abs_timeout expires, and the function shall return the error [ETIMEDOUT]. |

30550 The timeout expires when the absolute time specified by abs_timeout passes, as measured by the |
30551 clock upon which timeouts are based (that is, when the value of that clock equals or exceeds |
30552 abs_timeout), or if the absolute time specified by abs_timeout has already passed at the time of the |
30553 call. |

30554 TMO TMR If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the |
30555 Timers option is not supported, the timeout is based on the system clock as returned by the |
30556 time() function. The resolution of the timeout is the resolution of the clock on which it is based. |
30557 The timespec data type is defined as a structure in the header <time.h>. |

30558 Under no circumstance will the function fail with a timeout if a trace event is immediately |
30559 available from the trace stream. The validity of the abs_timeout argument need not be checked if |
30560 a trace event is immediately available from the trace stream. |

30561 TMO TMR TRLThe behavior of this function for a pre-recorded trace stream is unspecified. |

1460 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_getnext_event()

30562 TRL The posix_trace_trygetnext_event() function shall not block. This function shall return an error if |
30563 the trid argument identifies a pre-recorded trace stream. If a recorded trace event was reported, |
30564 the variable pointed to by the unavailable argument shall be set to zero. Otherwise, if no trace |
30565 event was reported, the variable pointed to by the unavailable argument shall be set to a value |
30566 different from zero. |

30567 The argument num_bytes shall be the size of the buffer pointed to by the data argument. The |
30568 argument data_len reports to the application the length in bytes of the data record just |
30569 transferred. If num_bytes is greater than or equal to the size of the data associated with the trace |
30570 event pointed to by the event argument, all the recorded data shall be transferred. In this case, the |
30571 truncation-status member of the trace event structure shall be either |
30572 POSIX_TRACE_NOT_TRUNCATED, if the trace event data was recorded without truncation |
30573 while tracing, or POSIX_TRACE_TRUNCATED_RECORD, if the trace event data was truncated |
30574 when it was recorded. If the num_bytes argument is less than the length of recorded trace event |
30575 data, the data transferred shall be truncated to a length of num_bytes, the value stored in the |
30576 variable pointed to by data_len shall be equal to num_bytes, and the truncation-status member of |
30577 the event structure argument shall be set to POSIX_TRACE_TRUNCATED_READ (see the |
30578 posix_trace_event_info() function). |

30579 The report of a trace event shall be sequential starting from the oldest recorded trace event. Trace |
30580 events shall be reported in the order in which they were generated, up to an implementation- |
30581 defined time resolution that causes the ordering of trace events occurring very close to each |
30582 other to be unknown. Once reported, a trace event cannot be reported again from an active trace |
30583 stream. Once a trace event is reported from an active trace stream without log, the trace stream |
30584 shall make the resources associated with that trace event available to record future generated |
30585 trace events. |

30586 RETURN VALUE |
30587 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30588 return the corresponding error number. |

30589 If successful, these functions store: |

30590 • The recorded trace event in the object pointed to by event |

30591 • The trace event information associated with the recorded trace event in the object pointed to |
30592 by data |

30593 • The length of this trace event information in the object pointed to by data_len |

30594 • The value of zero in the object pointed to by unavailable |

30595 ERRORS |
30596 These functions may fail if: |

30597 [EINVAL] The trace stream identifier argument trid is invalid. |

30598 The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions may fail if: |

30599 [EINTR] The operation was interrupted by a signal, and so the call had no effect. |

30600 The posix_trace_trygetnext_event() function may fail if: |

30601 [EINVAL] The trace stream identifier argument trid does not correspond to an active |
30602 trace stream. |

30603 TMO The posix_trace_timedgetnext_event() function may fail if: |

30604 [EINVAL] There is no trace event immediately available from the trace stream, and the |
30605 timeout argument is invalid. |

System Interfaces, Issue 6 1461

posix_trace_getnext_event() System Interfaces

30606 [ETIMEDOUT] No trace event was available from the trace stream before the specified |
30607 timeout timeout expired. |
30608 |

30609 EXAMPLES |
30610 None. |

30611 APPLICATION USAGE |
30612 None. |

30613 RATIONALE |
30614 None. |

30615 FUTURE DIRECTIONS |
30616 None. |

30617 SEE ALSO |
30618 posix_trace_create(), posix_trace_event_info Structure, posix_trace_open(), the Base Definitions |
30619 volume of IEEE Std. 1003.1-200x, <sys/types.h>, <trace.h> |

30620 CHANGE HISTORY |
30621 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1462 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_open()

30622 NAME |
30623 posix_trace_open — trace log management |

30624 SYNOPSIS |
30625 TCT TRL #include <trace.h> |

30626 int posix_trace_open(int file_desc , trace_id_t * trid); |
30627 |

30628 DESCRIPTION |
30629 Refer to posix_trace_close(). |

|

System Interfaces, Issue 6 1463

posix_trace_rewind() System Interfaces

30630 NAME |
30631 posix_trace_rewind — trace log management |

30632 SYNOPSIS |
30633 TCT TRL #include <trace.h> |

30634 int posix_trace_rewind(trace_id_t trid); |
30635 |

30636 DESCRIPTION |
30637 Refer to posix_trace_close(). |

|

1464 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_set_filter()

30638 NAME |
30639 posix_trace_set_filter — set filter of an initialized trace stream |

30640 SYNOPSIS |
30641 TRC TEF #include <trace.h> |

30642 int posix_trace_set_filter(trace_id_t trid , |
30643 const trace_event_set_t * set , int how); |
30644 |

30645 DESCRIPTION |
30646 Refer to posix_trace_get_filter(). |

|

System Interfaces, Issue 6 1465

posix_trace_shutdown() System Interfaces

30647 NAME |
30648 posix_trace_shutdown — trace stream shutdown from a process |

30649 SYNOPSIS |
30650 TRC #include <sys/types.h> |
30651 #include <trace.h> |

30652 int posix_trace_shutdown(trace_id_t trid); |
30653 |

30654 DESCRIPTION |
30655 Refer to posix_trace_create(). |

|

1466 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_start()

30656 NAME |
30657 posix_trace_start, posix_trace_stop — trace start and stop |

30658 SYNOPSIS |
30659 TRC #include <trace.h> |

30660 int posix_trace_start(trace_id_t trid); |
30661 int posix_trace_stop (trace_id_t trid); |
30662 |

30663 DESCRIPTION |
30664 The posix_trace_start() and posix_trace_stop() functions, respectively, start and stop the trace |
30665 stream identified by the argument trid. |

30666 The effect of calling the posix_trace_start() function shall be recorded in the trace stream as the |
30667 POSIX_TRACE_START system trace event and the status of the trace stream shall become |
30668 POSIX_TRACE_RUNNING. If the trace stream is in progress when this function is called, the |
30669 POSIX_TRACE_START system trace event shall not be recorded and the trace stream shall |
30670 continue to run. If the trace stream is full, the POSIX_TRACE_START system trace event shall |
30671 not be recorded and the status of the trace stream shall not be changed. |

30672 The effect of calling the posix_trace_stop() function shall be recorded in the trace stream as the |
30673 POSIX_TRACE_STOP system trace event and the status of the trace stream shall become |
30674 POSIX_TRACE_SUSPENDED. If the trace stream is suspended when this function is called, the |
30675 POSIX_TRACE_STOP system trace event shall not be recorded and the trace stream shall remain |
30676 suspended. If the trace stream is full, the POSIX_TRACE_STOP system trace event shall not be |
30677 recorded and the status of the trace stream shall not be changed. |

30678 RETURN VALUE |
30679 Upon successful completion, these functions shall return a value of zero. Otherwise, they shall |
30680 return the corresponding error number. |

30681 ERRORS |
30682 These functions may fail if: |

30683 [EINVAL] The value of the argument trid does not correspond to an active trace stream |
30684 and thus no trace stream was started or stopped. |

30685 [EINTR] The operation was interrupted by a signal and thus the trace stream was not |
30686 necessarily started or stopped. |

30687 EXAMPLES |
30688 None. |

30689 APPLICATION USAGE |
30690 None. |

30691 RATIONALE |
30692 None. |

30693 FUTURE DIRECTIONS |
30694 None. |

30695 SEE ALSO |
30696 posix_trace_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <trace.h> |

System Interfaces, Issue 6 1467

posix_trace_start() System Interfaces

30697 CHANGE HISTORY |
30698 First released in Issue 6. Derived from IEEE Std. 1003.1q-2000. |

|

1468 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_timedgetnext_event()

30699 NAME |
30700 posix_trace_timedgetnext_event, — retrieve a trace event |

30701 SYNOPSIS |
30702 TRC TMO #include <sys/types.h> |
30703 #include <trace.h> |

30704 int posix_trace_timedgetnext_event(trace_id_t trid , |
30705 struct posix_trace_event_info * event , void * data , |
30706 size_t num_bytes , size_t * data_len , int * unavailable , |
30707 const struct timespec * abs_timeout); |
30708 |

30709 DESCRIPTION |
30710 Refer to posix_trace_getnext_event(). |

|

System Interfaces, Issue 6 1469

posix_trace_trid_eventid_open() System Interfaces

30711 NAME |
30712 posix_trace_trid_eventid_open — manipulate trace event type identifier |

30713 SYNOPSIS |
30714 TRC TEF #include <trace.h> |

30715 int posix_trace_trid_eventid_open(trace_id_t trid , |
30716 const char * event_name , trace_eventid_t * event); |
30717 |

30718 DESCRIPTION |
30719 Refer to posix_trace_eventid_equal(). |

|

1470 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_trace_trygetnext_event()

30720 NAME |
30721 posix_trace_trygetnext_event — retrieve a trace event |

30722 SYNOPSIS |
30723 TRC TMO #include <sys/types.h> |
30724 #include <trace.h> |

30725 int posix_trace_trygetnext_event(trace_id_t trid , |
30726 struct posix_trace_event_info * event , void * data , |
30727 size_t num_bytes , size_t * data_len , int * unavailable); |
30728 |

30729 DESCRIPTION |
30730 Refer to posix_trace_getnext_event(). |

|

System Interfaces, Issue 6 1471

posix_typed_mem_get_info() System Interfaces

30731 NAME
30732 posix_typed_mem_get_info — query typed memory information

30733 SYNOPSIS
30734 TYM #include <sys/mman.h>

30735 int posix_typed_mem_get_info(int fildes ,
30736 struct posix_typed_mem_info * info);
30737

30738 DESCRIPTION
30739 The posix_typed_mem_get_info() function returns, in the posix_tmi_length field of the
30740 posix_typed_mem_info structure pointed to by info , the maximum length which may be
30741 successfully allocated by the typed memory object designated by fildes . This maximum length
30742 shall take into account the flag POSIX_TYPED_MEM_ALLOCATE or
30743 POSIX_TYPED_MEM_ALLOCATE_CONTIG specified when the typed memory object
30744 represented by fildes was opened. The maximum length is dynamic; therefore, the value returned
30745 is valid only while the current mapping of the corresponding typed memory pool remains
30746 unchanged.

30747 If fildes represents a typed memory object opened with neither the
30748 POSIX_TYPED_MEM_ALLOCATE flag nor the POSIX_TYPED_MEM_ALLOCATE_CONTIG |
30749 flag specified, the returned value of info->posix_tmi_length is unspecified. |

30750 The posix_typed_mem_get_info() function may return additional implementation-defined |
30751 information in other fields of the posix_typed_mem_info structure pointed to by info . |

30752 If the memory object specified by fildes is not a typed memory object, then the behavior of this
30753 function is undefined.

30754 RETURN VALUE
30755 Upon successful completion, the posix_typed_mem_get_info() function shall return zero;
30756 otherwise, the corresponding error status value shall be returned.

30757 ERRORS
30758 The posix_typed_mem_get_info() function shall fail if:

30759 [EBADF] The fildes argument is not a valid open file descriptor.

30760 [ENODEV] The fildes argument is not connected to a memory object supported by this
30761 function.

30762 This function shall not return an error code of [EINTR]. |

30763 EXAMPLES
30764 None.

30765 APPLICATION USAGE
30766 None.

30767 RATIONALE
30768 An application that needs to allocate a block of typed memory with length dependent upon the
30769 amount of memory currently available must either query the typed memory object to obtain the
30770 amount available, or repeatedly invoke mmap() attempting to guess an appropriate length.
30771 While the latter method is existing practice with malloc (), it is awkward and imprecise. The
30772 posix_typed_mem_get_info() function allows an application to immediately determine available
30773 memory. This is particularly important for typed memory objects that may in some cases be
30774 scarce resources. Note that when a typed memory pool is a shared resource, some form of
30775 mutual exclusion or synchronization may be required while typed memory is being queried and

1472 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_typed_mem_get_info()

30776 allocated to prevent race conditions.

30777 The existing fstat() function is not suitable for this purpose. We realize that implementations
30778 may wish to provide other attributes of typed memory objects (for example, alignment
30779 requirements, page size, and so on). The fstat() function returns a structure which is not
30780 extensible and, furthermore, contains substantial information that is inappropriate for typed
30781 memory objects.

30782 FUTURE DIRECTIONS
30783 None.

30784 SEE ALSO
30785 fstat(), mmap(), posix_typed_mem_open(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
30786 <sys/mman.h>

CHANGE30787 HISTORY
30788 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

System Interfaces, Issue 6 1473

posix_typed_mem_open() System Interfaces

30789 NAME
30790 posix_typed_mem_open — open a typed memory object

30791 SYNOPSIS
30792 TYM #include <sys/mman.h>

30793 int posix_typed_mem_open(const char * name, int oflag , int tflag);
30794

30795 DESCRIPTION
30796 The posix_typed_mem_open() function establishes a connection between the typed memory object
30797 specified by the string pointed to by name and a file descriptor. It creates an open file description
30798 that refers to the typed memory object and a file descriptor that refers to that open file
30799 description. The file descriptor is used by other functions to refer to that typed memory object. It
30800 is unspecified whether the name appears in the file system and is visible to other functions that
30801 take path names as arguments. The name argument shall conform to the construction rules for a
30802 path name. If name begins with the slash character, then processes calling
30803 posix_typed_mem_open() with the same value of name shall refer to the same typed memory
30804 object. If name does not begin with the slash character, the effect is implementation-defined. The |
30805 interpretation of slash characters other than the leading slash character in name is |
30806 implementation-defined. |

30807 Each typed memory object supported in a system is identified by a name which specifies not
30808 only its associated typed memory pool, but also the path or port by which it is accessed. That is,
30809 the same typed memory pool accessed via several different ports has several different
30810 corresponding names. The binding between names and typed memory objects is established in |
30811 an implementation-defined manner. Unlike shared memory objects, there is ordinarily no way |
30812 for a program to create a typed memory object.

30813 The value of tflag determines how the typed memory object behaves when subsequently
30814 mapped by calls to mmap(). At most, one of the following flags defined in <sys/mman.h> may
30815 be specified:

30816 POSIX_TYPED_MEM_ALLOCATE
30817 Allocate on mmap().

30818 POSIX_TYPED_MEM_ALLOCATE_CONTIG
30819 Allocate contiguously on mmap().

30820 POSIX_TYPED_MEM_MAP_ALLOCATABLE
30821 Map on mmap(), without affecting allocatability.

30822 If tflag has the flag POSIX_TYPED_MEM_ALLOCATE specified, any subsequent call to mmap()
30823 using the returned file descriptor shall result in allocation and mapping of typed memory from
30824 the specified typed memory pool. The allocated memory may be a contiguous previously
30825 unallocated area of the typed memory pool or several non-contiguous previously unallocated
30826 areas (mapped to a contiguous portion of the process address space). If tflag has the flag
30827 POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
30828 returned file descriptor shall result in allocation and mapping of a single contiguous previously
30829 unallocated area of the typed memory pool (also mapped to a contiguous portion of the process
30830 address space). If tflag has none of the flags POSIX_TYPED_MEM_ALLOCATE or
30831 POSIX_TYPED_MEM_ALLOCATE_CONTIG specified, any subsequent call to mmap() using the
30832 returned file descriptor shall map an application-chosen area from the specified typed memory
30833 pool such that this mapped area becomes unavailable for allocation until unmapped by all
30834 processes. If tflag has the flag POSIX_TYPED_MEM_MAP_ALLOCATABLE specified, any
30835 subsequent call to mmap() using the returned file descriptor shall map an application-chosen
30836 area from the specified typed memory pool without an effect on the availability of that area for

1474 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces posix_typed_mem_open()

30837 allocation; that is, mapping such an object leaves each byte of the mapped area unallocated if it
30838 was unallocated prior to the mapping or allocated if it was allocated prior to the mapping. The
30839 appropriate privilege to specify the POSIX_TYPED_MEM_MAP_ALLOCATABLE flag is |
30840 implementation-defined. |

30841 If successful, posix_typed_mem_open() returns a file descriptor for the typed memory object that
30842 is the lowest numbered file descriptor not currently open for that process. The open file
30843 description is new, and therefore the file descriptor does not share it with any other processes. It
30844 is unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated
30845 with the new file descriptor shall be cleared.

30846 The behavior of msync(), ftruncate(), and all file operations other than mmap(),
30847 posix_mem_offset(), posix_typed_mem_get_info(), fstat(), dup(), dup2(), and close(), is unspecified
30848 when passed a file descriptor connected to a typed memory object by this function.

30849 The file status flags of the open file description shall be set according to the value of oflag .
30850 Applications shall specify exactly one of the three access mode values described below and
30851 defined in the header <fcntl.h>, as the value of oflag .

30852 O_RDONLY Open for read access only.

30853 O_WRONLY Open for write access only.

30854 O_RDWR Open for read or write access.

30855 RETURN VALUE
30856 Upon successful completion, the posix_typed_mem_open() function shall return a non-negative
30857 integer representing the lowest numbered unused file descriptor. Otherwise, it shall return −1
30858 and set errno to indicate the error.

30859 ERRORS
30860 The posix_typed_mem_open() function shall fail if:

30861 [EACCES] The typed memory object exists and the permissions specified by oflag are
30862 denied.

30863 [EINTR] The posix_typed_mem_open() operation was interrupted by a signal.

30864 [EINVAL] The flags specified in tflag are invalid (more than one of
30865 POSIX_TYPED_MEM_ALLOCATE,
30866 POSIX_TYPED_MEM_ALLOCATE_CONTIG, or
30867 POSIX_TYPED_MEM_MAP_ALLOCATABLE is specified).

30868 [EMFILE] Too many file descriptors are currently in use by this process.

30869 [ENAMETOOLONG]
30870 The length of the name argument exceeds {PATH_MAX} or a path name |
30871 component is longer than {NAME_MAX}. |

30872 [ENFILE] Too many file descriptors are currently open in the system.

30873 [ENOENT] The named typed memory object does not exist.

30874 [EPERM] The caller lacks the appropriate privilege to specify the flag
30875 POSIX_TYPED_MEM_MAP_ALLOCATABLE in argument tflag .

System Interfaces, Issue 6 1475

posix_typed_mem_open() System Interfaces

30876 EXAMPLES
30877 None.

30878 APPLICATION USAGE
30879 None.

30880 RATIONALE
30881 None.

30882 FUTURE DIRECTIONS
30883 None.

30884 SEE ALSO
30885 close(), dup(), exec, fcntl(), fstat(), ftruncate(), mmap(), msync(), posix_mem_offset(),
30886 posix_typed_mem_get_info(), umask(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
30887 <fcntl.h,> <sys/mman.h>

CHANGE30888 HISTORY
30889 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

1476 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pow()

30890 NAME
30891 pow, powf, powl — power function |

30892 SYNOPSIS
30893 #include <math.h>

30894 double pow(double x, double y);
30895 float powf(float x, float y); |
30896 long double powl(long double x, long double y); |

30897 DESCRIPTION |
30898 CX The functionality described on this reference page is aligned with the ISO C standard. Any
30899 conflict between the requirements described here and the ISO C standard is unintentional. This
30900 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

30901 These functions shall compute the value of x raised to the power y , xy . If x is negative, the |
30902 application shall ensure that y is an integer value.

30903 An application wishing to check for error situations should set errno to 0 before calling pow(). If
30904 errno is non-zero on return, or the return value is NaN, an error has occurred.

30905 RETURN VALUE
30906 Upon successful completion, these functions shall return the value of x raised to the power y . |

30907 If x is 0 and y is 0, 1.0 shall be returned.

30908 XSI If y is NaN, or y is non-zero and x is NaN, NaN shall be returned and errno may be set to
30909 [EDOM]. If y is 0.0 and x is NaN, either 1.0 shall be returned, or NaN shall be returned and errno
30910 may be set to [EDOM].

30911 XSI If x is 0.0 and y is negative, −HUGE_VAL shall be returned and errno may be set to [EDOM] or
30912 [ERANGE].

30913 If the correct value would cause overflow, ±HUGE_VAL shall be returned, and errno set to
30914 [ERANGE].

30915 If the correct value would cause underflow, 0 is returned and errno may be set to [ERANGE].

30916 ERRORS
30917 These functions shall fail if: |

30918 [EDOM] The value of x is negative and y is non-integral. |

30919 [ERANGE] The value to be returned would have caused overflow. |

30920 These functions may fail if: |

30921 XSI [EDOM] The value of x is 0.0 and y is negative, or y is NaN. |

30922 [ERANGE] The correct value would cause underflow. |

30923 XSI No other errors shall occur.

System Interfaces, Issue 6 1477

pow() System Interfaces

30924 EXAMPLES
30925 None.

30926 APPLICATION USAGE
30927 None.

30928 RATIONALE
30929 None.

30930 FUTURE DIRECTIONS
30931 None.

30932 SEE ALSO
30933 exp(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

30934 CHANGE HISTORY
30935 First released in Issue 1. Derived from Issue 1 of the SVID. |

30936 Issue 4
30937 References to matherr() are removed.

30938 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
30939 ISO C standard and to rationalize error handling in the mathematics functions.

30940 The return value specified for [EDOM] is marked as an extension.

30941 Issue 5
30942 The DESCRIPTION is updated to indicate how an application should check for an error. This
30943 text was previously published in the APPLICATION USAGE section.

30944 Issue 6
30945 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

30946 The powf() and powl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

1478 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pread()

30947 NAME
30948 pread — read from a file

30949 SYNOPSIS
30950 XSI #include <unistd.h>

30951 ssize_t pread(int fildes , void * buf , size_t nbyte , off_t offset);
30952

30953 DESCRIPTION
30954 Refer to read().

System Interfaces, Issue 6 1479

printf() System Interfaces

30955 NAME
30956 printf — print formatted output

30957 SYNOPSIS
30958 #include <stdio.h>

30959 int printf(const char *restrict format , ...); |

30960 DESCRIPTION |
30961 Refer to fprintf ().

|

1480 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pselect()

30962 NAME |
30963 pselect, select — synchronous I/O multiplexing |

30964 SYNOPSIS |
30965 #include <sys/select.h> |

30966 int pselect(int nfds , fd_set * readfds , fd_set * writefds , |
30967 fd_set * errorfds , const struct timespec * timeout , |
30968 const sigset_t * sigmask); |
30969 int select(int nfds , fd_set *restrict readfds , |
30970 fd_set *restrict writefds , fd_set *restrict errorfds , |
30971 struct timeval *restrict timeout); |
30972 void FD_CLR(int fd , fd_set * fdset); |
30973 int FD_ISSET(int fd , fd_set * fdset); |
30974 void FD_SET(int fd , fd_set * fdset); |
30975 void FD_ZERO(fd_set * fdset); |

30976 DESCRIPTION |
30977 The pselect() function shall examine the file descriptor sets whose addresses are passed in the |
30978 readfds , writefds , and errorfds parameters to see if some of their descriptors are ready for reading, |
30979 are ready for writing, or have an exceptional condition pending, respectively. |

30980 The select() function shall be equivalent to the pselect() function, except as follows: |

30981 • For the select() function, the timeout period is given in seconds and microseconds in an |
30982 argument of type struct timeval, whereas for the pselect() function the timeout period is |
30983 given in seconds and nanoseconds in an argument of type struct timespec. |

30984 • The select() function has no sigmask argument; it shall behave as pselect() does when sigmask |
30985 is a null pointer. |

30986 • Upon successful completion, the select() function may modify the object pointed to by the |
30987 timeout argument. |

30988 The pselect() and select() functions shall support regular files, terminal and pseudo-terminal |
30989 XSR devices, STREAMS-based files, FIFOs, pipes, and sockets. The behavior of pselect() and select() |
30990 on file descriptors that refer to other types of file is unspecified. |

30991 The nfds argument specifies the range of descriptors to be tested. The first nfds descriptors shall |
30992 be checked in each set; that is, the descriptors from zero through nfds−1 in the descriptor sets |
30993 shall be examined. |

30994 If the readfds argument is not a null pointer, it points to an object of type fd_set that on input |
30995 specifies the file descriptors to be checked for being ready to read, and on output indicates |
30996 which file descriptors are ready to read. |

30997 If the writefds argument is not a null pointer, it points to an object of type fd_set that on input |
30998 specifies the file descriptors to be checked for being ready to write, and on output indicates |
30999 which file descriptors are ready to write. |

31000 If the errorfds argument is not a null pointer, it points to an object of type fd_set that on input |
31001 specifies the file descriptors to be checked for error conditions pending, and on output indicates |
31002 which file descriptors have error conditions pending. |

31003 Upon successful completion, the pselect() function shall modify the objects pointed to by the |
31004 readfds, writefds, and errorfds arguments to indicate which file descriptors are ready for reading, |
31005 ready for writing, or have an error condition pending, respectively, and shall return the total |
31006 number of ready descriptors in all the output sets. For each file descriptor less than nfds , the |
31007 corresponding bit shall be set on successful completion if it was set on input and the associated |

System Interfaces, Issue 6 1481

pselect() System Interfaces

31008 condition is true for that file descriptor. |

31009 If none of the selected descriptors are ready for the requested operation, the pselect() function |
31010 may block until at least one of the requested operations becomes ready. The parameter timeout |
31011 controls how long the pselect() function may take to complete. If the timeout parameter is not a |
31012 null pointer, it specifies a maximum interval to wait for the selection to complete. If the specified |
31013 time interval expires without any requested operation becoming ready, the function shall return. |
31014 If the timeout parameter is a null pointer, then the call to pselect() shall block indefinitely until at |
31015 least one descriptor meets the specified criteria. To effect a poll, the timeout parameter should not |
31016 be a null pointer, and should point to a zero-valued timespec structure. |

31017 The use of a timeout does not affect any pending timers set up by alarm(), ualarm(), or |
31018 setitimer(). |

31019 Implementations may place limitations on the maximum timeout interval supported. All |
31020 implementations shall support a maximum timeout interval of at least 31 days. If the timeout |
31021 argument specifies a timeout interval greater than the implementation-defined maximum value, |
31022 the maximum value shall be used as the actual timeout value. Implementations may also place |
31023 limitations on the granularity of timeout intervals. If the requested timeout interval requires a |
31024 finer granularity than the implementation supports, the actual timeout interval shall be rounded |
31025 up to the next supported value. |

31026 If sigmask is not a null pointer, then the pselect() function shall replace the signal mask of the |
31027 process by the set of signals pointed to by sigmask before examining the descriptors, and shall |
31028 restore the signal mask of the process before returning. |

31029 A descriptor shall be considered ready for reading when a call to an input function with |
31030 O_NONBLOCK clear would not block, whether or not the function would transfer data |
31031 successfully. (The function might return data, an end-of-file indication, or an error other than |
31032 one indicating that it is blocked, and in each of these cases the descriptor shall be considered |
31033 ready for reading.) |

31034 A descriptor shall be considered ready for writing when a call to an output function with |
31035 O_NONBLOCK clear would not block, whether or not the function would transfer data |
31036 successfully. |

31037 If a socket has a pending error, it shall be considered to have an exceptional condition pending. |
31038 Otherwise, what constitutes an exceptional condition is file type-specific. For a file descriptor for |
31039 use with a socket, it is protocol-specific except as noted below. For other file types it is |
31040 implementation-defined. If the operation is meaningless for a particular file type, pselect() shall |
31041 indicate that the descriptor is ready for read or write operations, and shall indicate that the |
31042 descriptor has no exceptional condition pending. |

31043 If a descriptor refers to a socket, the implied input function is the recvmsg() function with |
31044 parameters requesting normal and ancillary data, such that the presence of either type shall |
31045 cause the socket to be marked as readable. The presence of out-of-band data will be checked if |
31046 the socket option SO_OOBINLINE has been enabled, as out-of-band data is enqueued with |
31047 normal data. If the socket is currently listening, then it will be marked as readable if an incoming |
31048 connection request has been received, and a call to the accept() function is guaranteed to |
31049 complete without blocking. |

31050 If a descriptor refers to a socket, the implied output function is the sendmsg() function supplying |
31051 an amount of normal data equal to the current value of the SO_SNDLOWAT option for the |
31052 socket. If a non-blocking call to the connect() function has been made for a socket, and the |
31053 connection attempt has either succeeded or failed leaving a pending error, the socket shall be |
31054 marked as writable. |

1482 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pselect()

31055 A socket shall be considered to have an exceptional condition pending if a receive operation |
31056 with O_NONBLOCK clear for the open file description and with the MSG_OOB flag set would |
31057 return out-of-band data without blocking. (It is protocol-specific whether the MSG_OOB flag |
31058 would be used to read out-of-band data.) A socket shall also be considered to have an |
31059 exceptional condition pending if an out-of-band data mark is present in the receive queue. Other |
31060 circumstances under which a socket may be considered to have an exceptional condition |
31061 pending are protocol-specific and implementation-defined. |

31062 If the readfds, writefds, and errorfds arguments are all null pointers and the timeout argument is not |
31063 a null pointer, select() blocks for the time specified, or until interrupted by a signal. If the readfds, |
31064 writefds, and errorfds arguments are all null pointers and the timeout argument is a null pointer, |
31065 pselect() blocks until interrupted by a signal. |

31066 File descriptors associated with regular files shall always select true for ready to read, ready to |
31067 write, and error conditions. |

31068 On failure, the objects pointed to by the readfds, writefds, and errorfds arguments are not modified. |
31069 If the timeout interval expires without the specified condition being true for any of the specified |
31070 file descriptors, the objects pointed to by the readfds, writefds, and errorfds arguments have all bits |
31071 set to 0. |

31072 File descriptor masks of type fd_set can be initialized and tested with FD_CLR(), FD_ISSET(), |
31073 FD_SET(), and FD_ZERO(). It is unspecified whether each of these is a macro or a function. If a |
31074 macro definition is suppressed in order to access an actual function, or a program defines an |
31075 external identifier with any of these names, the behavior is undefined. |

31076 The macro FD_CLR(fd, fdsetp) shall remove the file descriptor fd from the set pointed to by fdsetp . |
31077 If fd is not a member of this set, there shall be no effect on the set, nor will an error be returned. |

31078 The macro FD_ISSET(fd, fdsetp) shall evaluate to non-zero if the file descriptor fd is a member of |
31079 the set pointed to by fdsetp , and shall evaluate to zero otherwise. |

31080 The macro FD_SET(fd, fdsetp) shall add the file descriptor fd to the set pointed to by fdsetp . If the |
31081 file descriptor fd is already in this set, there shall be no effect on the set, nor will an error be |
31082 returned. |

31083 The macro FD_ZERO(fdsetp) shall initialize the descriptor set pointed to by fdsetp to the null set. |
31084 No error is returned if the set is not empty at the time FD_ZERO() is invoked. |

31085 The behavior of these macros is undefined if the fd argument is less than 0 or greater than or |
31086 equal to FD_SETSIZE, or if fd is not a valid file descriptor, or if any of the arguments are |
31087 expressions with side effects. |

31088 RETURN VALUE |
31089 Upon successful completion, the pselect() and select() functions shall return the total number of |
31090 bits set in the bit masks. Otherwise, −1 shall be returned, and shall set errno to indicate the error. |

31091 FD_CLR(), FD_SET(), and FD_ZERO() return no value. FD_ISSET() returns a non-zero value if |
31092 the bit for the file descriptor fd is set in the file descriptor set pointed to by fdset , and 0 otherwise. |

31093 ERRORS |
31094 Under the following conditions, pselect() and select() shall fail and set errno to: |

31095 [EBADF] One or more of the file descriptor sets specified a file descriptor that is not a |
31096 valid open file descriptor. |

31097 [EINTR] The function was interrupted before any of the selected events occurred and |
31098 before the timeout interval expired. |

System Interfaces, Issue 6 1483

pselect() System Interfaces

31099 XSI If SA_RESTART has been set for the interrupting signal, it is implementation- |
31100 defined whether the function restarts or returns with [EINTR]. |

31101 [EINVAL] An invalid timeout interval was specified. |

31102 [EINVAL] The nfds argument is less than 0 or greater than FD_SETSIZE. |

31103 XSR [EINVAL] One of the specified file descriptors refers to a STREAM or multiplexer that is |
31104 linked (directly or indirectly) downstream from a multiplexer. |

31105 EXAMPLES |
31106 None. |

31107 APPLICATION USAGE |
31108 None. |

31109 RATIONALE |
31110 In previous versions of the Single UNIX Specification, the select() function was defined in the |
31111 <sys/time.h> header. This is now changed to <sys/select.h>. The rationale for this change was |
31112 as follows: the introduction of the pselect() function included the <sys/select.h> header and the |
31113 <sys/select.h> header defines all the related definitions for the pselect() and select() functions. |
31114 Backwards-compatibility to existing XSI implementations is handled by allowing <sys/time.h> |
31115 to include <sys/select.h>. |

31116 FUTURE DIRECTIONS |
31117 None. |

31118 SEE ALSO |
31119 accept(), alarm(), connect(), fcntl(), poll (), read(), recvmsg(), sendmsg(), setitimer(), ualarm(), |
31120 write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/select.h>, <sys/time.h> |

31121 CHANGE HISTORY |
31122 First released in Issue 4, Version 2. |

31123 Issue 5 |
31124 Moved from X/OPEN UNIX extension to BASE. |

31125 In the ERRORS section, the text has been changed to indicate that [EINVAL] is returned when |
31126 nfds is less than 0 or greater than FD_SETSIZE. It previously stated less than 0, or greater than or |
31127 equal to FD_SETSIZE. |

31128 Text about timeout is moved from the APPLICATION USAGE section to the DESCRIPTION. |

31129 Issue 6 |
31130 The Open Group corrigenda item U026/6 has been applied, changing the occurrences of readfs |
31131 and writefs in the select() DESCRIPTION to be readfds and writefds . |

31132 Text referring to sockets is added to the DESCRIPTION. |

31133 The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are |
31134 marked as part of the XSI STREAMS Option Group. |

31135 The following new requirements on POSIX implementations derive from alignment with the |
31136 Single UNIX Specification: |

31137 • These functions are now mandatory. |

31138 The pselect() function is added for alignment with IEEE Std. 1003.1g-2000 and additional detail |
31139 related to sockets semantics is added to the DESCRIPTION. |

31140 The select() function now requires inclusion of <sys/select.h>. |

1484 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pselect()

31141 The restrict keyword is added to the select() prototype for alignment with the |
31142 ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1485

pthread_atfork() System Interfaces

31143 NAME
31144 pthread_atfork — register fork handlers

31145 SYNOPSIS
31146 THR #include <pthread.h>
31147 #include <sys/types.h>
31148 #include <unistd.h>

31149 int pthread_atfork(void (* prepare)(void), void (* parent)(void),
31150 void (* child)(void));
31151

31152 DESCRIPTION
31153 The pthread_atfork() function shall declare fork handlers to be called before and after fork (), in
31154 the context of the thread that called fork (). The prepare fork handler shall be called before fork ()
31155 processing commences. The parent fork handle shall be called after fork () processing completes
31156 in the parent process. The child fork handler shall be called after fork () processing completes in
31157 the child process. If no handling is desired at one or more of these three points, the
31158 corresponding fork handler address(es) may be set to NULL.

31159 The order of calls to pthread_atfork() is significant. The parent and child fork handlers shall be
31160 called in the order in which they were established by calls to pthread_atfork(). The prepare fork
31161 handlers shall be called in the opposite order.

31162 RETURN VALUE
31163 Upon successful completion, pthread_atfork() shall return a value of zero; otherwise, an error
31164 number shall be returned to indicate the error.

31165 ERRORS
31166 The pthread_atfork() function shall fail if:

31167 [ENOMEM] Insufficient table space exists to record the fork handler addresses. |

31168 The pthread_atfork() function shall not return an error code of [EINTR]. |

31169 EXAMPLES
31170 None.

31171 APPLICATION USAGE
31172 None.

31173 RATIONALE
31174 There are at least two serious problems with the semantics of fork () in a multi-threaded
31175 program. One problem has to do with state (for example, memory) covered by mutexes.
31176 Consider the case where one thread has a mutex locked and the state covered by that mutex is
31177 inconsistent while another thread calls fork (). In the child, the mutex is in the locked state
31178 (locked by a nonexistent thread and thus can never be unlocked). Having the child simply
31179 reinitialize the mutex is unsatisfactory since this approach does not resolve the question about
31180 how to correct or otherwise deal with the inconsistent state in the child.

31181 It is suggested that programs that use fork () call an exec function very soon afterwards in the
31182 child process, thus resetting all states. In the meantime, only a short list of async-signal-safe
31183 library routines are promised to be available.

31184 Unfortunately, this solution does not address the needs of multi-threaded libraries. Application
31185 programs may not be aware that a multi-threaded library is in use, and they feel free to call any
31186 number of library routines between the fork () and exec calls, just as they always have. Indeed,
31187 they may be extant single-threaded programs and cannot, therefore, be expected to obey new
31188 restrictions imposed by the threads library.

1486 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_atfork()

31189 On the other hand, the multi-threaded library needs a way to protect its internal state during
31190 fork () in case it is re-entered later in the child process. The problem arises especially in multi-
31191 threaded I/O libraries, which are almost sure to be invoked between the fork () and exec calls to
31192 effect I/O redirection. The solution may require locking mutex variables during fork (), or it may
31193 entail simply resetting the state in the child after the fork () processing completes.

31194 The pthread_atfork() function provides multi-threaded libraries with a means to protect
31195 themselves from innocent application programs that call fork (), and it provides multi-threaded
31196 application programs with a standard mechanism for protecting themselves from fork () calls in
31197 a library routine or the application itself.

31198 The expected usage is that the prepare handler acquires all mutex locks and the other two fork
31199 handlers release them.

31200 For example, an application can supply a prepare routine that acquires the necessary mutexes the
31201 library maintains and supply child and parent routines that release those mutexes, thus ensuring
31202 that the child gets a consistent snapshot of the state of the library (and that no mutexes are left
31203 stranded). Alternatively, some libraries might be able to supply just a child routine that re-
31204 initializes the mutexes in the library and all associated states to some known value (for example,
31205 what it was when the image was originally executed).

31206 When fork () is called, only the calling thread is duplicated in the child process. Synchronization
31207 variables remain in the same state in the child as they were in the parent at the time fork () was
31208 called. Thus, for example, mutex locks may be held by threads that no longer exist in the child
31209 process, and any associated states may be inconsistent. The parent process may avoid this by
31210 explicit code that acquires and releases locks critical to the child via pthread_atfork(). In addition,
31211 any critical threads need to be recreated and re-initialized to the proper state in the child (also
31212 via pthread_atfork()).

31213 A higher-level package may acquire locks on its own data structures before invoking lower-level
31214 packages. Under this scenario, the order specified for fork handler calls allows a simple rule of
31215 initialization for avoiding package deadlock: a package initializes all packages on which it
31216 depends before it calls the pthread_atfork() function for itself.

31217 FUTURE DIRECTIONS
31218 None.

31219 SEE ALSO
31220 atexit(), fork (), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h> |

31221 CHANGE HISTORY
31222 First released in Issue 5. Derived from the POSIX Threads Extension. |

31223 IEEE PASC Interpretation 1003.1c #4 is included. |

31224 Issue 6
31225 The pthread_atfork() function is marked as part of the Threads option. |

31226 The <pthread.h> header is added to the SYNOPSIS.

System Interfaces, Issue 6 1487

pthread_attr_destroy() System Interfaces

31227 NAME
31228 pthread_attr_destroy, pthread_attr_init — destroy and initialize threads attributes object

31229 SYNOPSIS
31230 THR #include <pthread.h>

31231 int pthread_attr_destroy(pthread_attr_t * attr);
31232 int pthread_attr_init(pthread_attr_t * attr);
31233

31234 DESCRIPTION
31235 The pthread_attr_destroy() function is used to destroy a thread attributes object. An
31236 implementation may cause pthread_attr_destroy() to set attr to an implementation-defined |
31237 invalid value. The behavior of using the attribute after it has been destroyed is undefined. |

31238 The pthread_attr_init() function initializes a thread attributes object attr with the default value
31239 for all of the individual attributes used by a given implementation.

31240 The resulting attributes object (possibly modified by setting individual attribute values), when |
31241 used by pthread_create() defines the attributes of the thread created. A single attributes object can |
31242 be used in multiple simultaneous calls to pthread_create(). The effect of initializing an already |
31243 initialized thread attributes object is undefined. |

31244 RETURN VALUE
31245 Upon successful completion, pthread_attr_destroy() and pthread_attr_init() shall return a value of
31246 0; otherwise, an error number shall be returned to indicate the error.

31247 ERRORS
31248 The pthread_attr_init() function shall fail if:

31249 [ENOMEM] Insufficient memory exists to initialize the thread attributes object. |

31250 These functions shall not return an error code of [EINTR]. |

31251 EXAMPLES
31252 None.

31253 APPLICATION USAGE
31254 None.

31255 RATIONALE
31256 Attributes objects are provided for threads, mutexes, and condition variables as a mechanism to
31257 support probable future standardization in these areas without requiring that the function itself
31258 be changed.

31259 Attributes objects provide clean isolation of the configurable aspects of threads. For example,
31260 ‘‘stack size’’ is an important attribute of a thread, but it cannot be expressed portably. When
31261 porting a threaded program, stack sizes often need to be adjusted. The use of attributes objects
31262 can help by allowing the changes to be isolated in a single place, rather than being spread across
31263 every instance of thread creation.

31264 Attributes objects can be used to set up ‘‘classes’ of threads with similar attributes; for example,
31265 ‘‘threads with large stacks and high priority’’ or ‘‘threads with minimal stacks’’. These classes
31266 can be defined in a single place and then referenced wherever threads need to be created.
31267 Changes to ‘‘class’’ decisions become straightforward, and detailed analysis of each
31268 pthread_create() call is not required.

31269 The attributes objects are defined as opaque types as an aid to extensibility. If these objects had
31270 been specified as structures, adding new attributes would force recompilation of all multi-
31271 threaded programs when the attributes objects are extended; this might not be possible if

1488 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_destroy()

31272 different program components were supplied by different vendors.

31273 Additionally, opaque attributes objects present opportunities for improving performance.
31274 Argument validity can be checked once when attributes are set, rather than each time a thread is
31275 created. Implementations often need to cache kernel objects that are expensive to create.
31276 Opaque attributes objects provide an efficient mechanism to detect when cached objects become
31277 invalid due to attribute changes.

31278 Because assignment is not necessarily defined on a given opaque type, implementation-defined |
31279 default values cannot be defined in a portable way. The solution to this problem is to allow |
31280 attributes objects to be initialized dynamically by attributes object initialization functions, so
31281 that default values can be supplied automatically by the implementation.

31282 The following proposal was provided as a suggested alternative to the supplied attributes:

31283 1. Maintain the style of passing a parameter formed by the bitwise-inclusive OR of flags to
31284 the initialization routines (pthread_create(), pthread_mutex_init(), pthread_cond_init()). The
31285 parameter containing the flags should be an opaque type for extensibility. If no flags are
31286 set in the parameter, then the objects are created with default characteristics. An
31287 implementation may specify implementation-defined flag values and associated behavior. |

31288 2. If further specialization of mutexes and condition variables is necessary, implementations
31289 may specify additional procedures that operate on the pthread_mutex_t and
31290 pthread_cond_t objects (instead of on attributes objects).

31291 The difficulties with this solution are:

31292 1. A bitmask is not opaque if bits have to be set into bitvector attributes objects using
31293 explicitly-coded bitwise-inclusive OR operations. If the set of options exceeds an int,
31294 application programmers need to know the location of each bit. If bits are set or read by
31295 encapsulation (that is, get or set functions), then the bitmask is merely an implementation
31296 of attributes objects as currently defined and should not be exposed to the programmer.

31297 2. Many attributes are not Boolean or very small integral values. For example, scheduling
31298 policy may be placed in 3-bit or 4-bit, but priority requires 5-bit or more, thereby taking up
31299 at least 8-bit out of a possible 16-bit on machines with 16-bit integers. Because of this, the
31300 bitmask can only reasonably control whether particular attributes are set or not, and it
31301 cannot serve as the repository of the value itself. The value needs to be specified as a
31302 function parameter (which is non-extensible), or by setting a structure field (which is non-
31303 opaque), or by get and set functions (making the bitmask a redundant addition to the
31304 attributes objects).

31305 Stack size is defined as an optional attribute because the very notion of a stack is inherently
31306 machine-dependent. Some implementations may not be able to change the size of the stack, for
31307 example, and others may not need to because stack pages may be discontiguous and can be
31308 allocated and released on demand.

31309 The attribute mechanism has been designed in large measure for extensibility. Future extensions
31310 to the attribute mechanism or to any attributes object defined in this volume of
31311 IEEE Std. 1003.1-200x has to be done with care so as not to affect binary-compatibility.

31312 Attributes objects, even if allocated by means of dynamic allocation functions such as malloc (),
31313 may have their size fixed at compile time. This means, for example, a pthread_create() in an
31314 implementation with extensions to the pthread_attr_t cannot look beyond the area that the
31315 binary application assumes is valid. This suggests that implementations should maintain a size
31316 field in the attributes object, as well as possibly version information, if extensions in different
31317 directions (possibly by different vendors) are to be accommodated.

System Interfaces, Issue 6 1489

pthread_attr_destroy() System Interfaces

31318 FUTURE DIRECTIONS
31319 None.

31320 SEE ALSO
31321 pthread_attr_getstackaddr(), pthread_attr_getstacksize(), pthread_attr_getdetachstate(),
31322 pthread_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

31323 CHANGE HISTORY
31324 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31325 Issue 6
31326 The pthread_attr_destroy() and pthread_attr_init() functions marked as part of the Threads |
31327 option. |

31328 IEEE PASC Interpretation 1003.1 #107 is applied, noting that the effect of initializing an already |
31329 initialized thread attributes object is undefined. |

1490 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getdetachstate()

31330 NAME
31331 pthread_attr_getdetachstate, pthread_attr_setdetachstate — get or set detachstate attribute

31332 SYNOPSIS
31333 THR #include <pthread.h>

31334 int pthread_attr_getdetachstate(const pthread_attr_t * attr ,
31335 int * detachstate);
31336 int pthread_attr_setdetachstate(pthread_attr_t * attr , int detachstate);
31337

31338 DESCRIPTION
31339 The detachstate attribute controls whether the thread is created in a detached state. If the thread
31340 is created detached, then use of the ID of the newly created thread by the pthread_detach() or
31341 pthread_join () function is an error.

31342 The pthread_attr_getdetachstate() and pthread_attr_setdetachstate() functions, respectively, get and
31343 set the detachstate attribute in the attr object.

31344 For pthread_attr_getdetachstate(), detachstate shall be set to either
31345 PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

31346 For pthread_attr_setdetachstate(), the application shall set detachstate to either
31347 PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

31348 A value of PTHREAD_CREATE_DETACHED causes all threads created with attr to be in the
31349 detached state, whereas using a value of PTHREAD_CREATE_JOINABLE shall cause all threads
31350 created with attr to be in the joinable state. The default value of the detachstate attribute is
31351 PTHREAD_CREATE_JOINABLE.

31352 RETURN VALUE
31353 Upon successful completion, pthread_attr_getdetachstate() and pthread_attr_setdetachstate() shall
31354 return a value of 0; otherwise, an error number shall be returned to indicate the error.

31355 The pthread_attr_getdetachstate() function stores the value of the detachstate attribute in detachstate
31356 if successful.

31357 ERRORS
31358 The pthread_attr_setdetachstate() function shall fail if:

31359 [EINVAL] The value of detachstate was not valid |

31360 These functions shall not return an error code of [EINTR]. |

31361 EXAMPLES
31362 None.

31363 APPLICATION USAGE
31364 None.

31365 RATIONALE
31366 None.

31367 FUTURE DIRECTIONS
31368 None.

31369 SEE ALSO
31370 pthread_attr_destroy(), pthread_attr_getstackaddr(), pthread_attr_getstacksize(), pthread_create(), the |
31371 Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

System Interfaces, Issue 6 1491

pthread_attr_getdetachstate() System Interfaces

31372 CHANGE HISTORY
31373 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31374 Issue 6
31375 The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are marked as part of |
31376 the Threads option. |

31377 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1492 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getguardsize()

31378 NAME
31379 pthread_attr_getguardsize, pthread_attr_setguardsize — get or set the thread guardsize
31380 attribute |

31381 SYNOPSIS
31382 XSI #include <pthread.h>

31383 int pthread_attr_getguardsize(const pthread_attr_t *restrict attr , |
31384 size_t *restrict guardsize); |
31385 int pthread_attr_setguardsize(pthread_attr_t *attr , |
31386 size_t guardsize);
31387

31388 DESCRIPTION
31389 The guardsize attribute controls the size of the guard area for the created thread’s stack. The
31390 guardsize attribute provides protection against overflow of the stack pointer. If a thread’s stack is
31391 created with guard protection, the implementation allocates extra memory at the overflow end
31392 of the stack as a buffer against stack overflow of the stack pointer. If an application overflows
31393 into this buffer an error results (possibly in a SIGSEGV signal being delivered to the thread).

31394 The pthread_attr_getguardsize() function gets the guardsize attribute in the attr object. This
31395 attribute is returned in the guardsize parameter.

31396 The pthread_attr_setguardsize() function sets the guardsize attribute in the attr object. The new
31397 value of this attribute is obtained from the guardsize parameter. If guardsize is zero, a guard area
31398 shall not be provided for threads created with attr . If guardsize is greater than zero, a guard area
31399 of at least size guardsize bytes is provided for each thread created with attr .

31400 A conforming implementation is permitted to round up the value contained in guardsize to a
31401 multiple of the configurable system variable {PAGESIZE} (see <sys/mman.h>). If an
31402 implementation rounds up the value of guardsize to a multiple of {PAGESIZE}, a call to
31403 pthread_attr_getguardsize() specifying attr shall store in the guardsize parameter the guard size
31404 specified by the previous pthread_attr_setguardsize() function call.

31405 The default value of the guardsize attribute is {PAGESIZE} bytes. The actual value of {PAGESIZE} |
31406 is implementation-defined and may not be the same on all implementations. |

31407 If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread
31408 stacks), the guardsize attribute is ignored and no protection shall be provided by the
31409 implementation. It is the responsibility of the application to manage stack overflow along with
31410 stack allocation and management in this case.

31411 RETURN VALUE
31412 If successful, the pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall return
31413 zero; otherwise, an error number shall be returned to indicate the error.

31414 ERRORS
31415 The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions shall fail if:

31416 [EINVAL] The attribute attr is invalid. |

31417 [EINVAL] The parameter guardsize is invalid.

31418 These functions shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1493

pthread_attr_getguardsize() System Interfaces

31419 EXAMPLES
31420 None.

31421 APPLICATION USAGE
31422 None.

31423 RATIONALE
31424 The guardsize attribute is provided to the application for two reasons:

31425 1. Overflow protection can potentially result in wasted system resources. An application
31426 that creates a large number of threads, and which knows its threads never overflow their
31427 stack, can save system resources by turning off guard areas.

31428 2. When threads allocate large data structures on the stack, large guard areas may be needed
31429 to detect stack overflow.

31430 FUTURE DIRECTIONS
31431 None.

31432 SEE ALSO
31433 The Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h>, <sys/mman.h> |

31434 CHANGE HISTORY
31435 First released in Issue 5.

31436 Issue 6
31437 In the ERRORS section, a third [EINVAL] error condition is removed as it is covered by the
31438 second error condition. |

31439 The restrict keyword is added to the pthread_attr_getguardsize() prototype for alignment with the |
31440 ISO/IEC 9899: 1999 standard. |

1494 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getinheritsched()

31441 NAME
31442 pthread_attr_getinheritsched, pthread_attr_setinheritsched — get and set inheritsched attribute
31443 (REALTIME THREADS)

31444 SYNOPSIS
31445 TPS #include <pthread.h>

31446 int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr , |
31447 int *restrict inheritsched); |
31448 int pthread_attr_setinheritsched(pthread_attr_t * attr , |
31449 int inheritsched);
31450

31451 DESCRIPTION
31452 The pthread_attr_getinheritsched(), and pthread_attr_setinheritsched() functions, respectively, get
31453 and set the inheritsched attribute in the attr argument.

31454 When the attributes objects are used by pthread_create(), the inheritsched attribute determines
31455 how the other scheduling attributes of the created thread shall be set:

31456 PTHREAD_INHERIT_SCHED
31457 Specifies that the scheduling policy and associated attributes shall be inherited from the
31458 creating thread, and the scheduling attributes in this attr argument shall be ignored.

31459 PTHREAD_EXPLICIT_SCHED
31460 Specifies that the scheduling policy and associated attributes shall be set to the
31461 corresponding values from this attributes object.

31462 The symbols PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED are defined in
31463 the header <pthread.h>.

31464 RETURN VALUE
31465 If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions shall
31466 return zero; otherwise, an error number shall be returned to indicate the error.

31467 ERRORS
31468 The pthread_attr_setinheritsched() function may fail if:

31469 [EINVAL] The value of inheritsched is not valid. |

31470 [ENOTSUP] An attempt was made to set the attribute to an unsupported value. |

31471 These functions shall not return an error code of [EINTR]. |

31472 EXAMPLES
31473 None.

31474 APPLICATION USAGE
31475 After these attributes have been set, a thread can be created with the specified attributes using
31476 pthread_create(). Using these routines does not affect the current running thread.

31477 RATIONALE
31478 None.

31479 FUTURE DIRECTIONS
31480 None.

System Interfaces, Issue 6 1495

pthread_attr_getinheritsched() System Interfaces

31481 SEE ALSO
31482 pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getschedpolicy(),
31483 pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of |
31484 IEEE Std. 1003.1-200x, <pthread.h>, <sched.h> |

31485 CHANGE HISTORY
31486 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31487 Marked as part of the Realtime Threads Feature Group.

31488 Issue 6
31489 The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are marked as part |
31490 of the Thread Execution Scheduling option. |

31491 The [ENOSYS] error condition has been removed as stubs need not be provided if an
31492 implementation does not support the Thread Execution Scheduling option. |

31493 The restrict keyword is added to the pthread_attr_getinheritsched() prototype for alignment with |
31494 the ISO/IEC 9899: 1999 standard. |

1496 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getschedparam()

31495 NAME
31496 pthread_attr_getschedparam, pthread_attr_setschedparam — get and set schedparam attribute

31497 SYNOPSIS
31498 THR #include <pthread.h>

31499 int pthread_attr_getschedparam(const pthread_attr_t *restrict attr , |
31500 struct sched_param *restrict param); |
31501 int pthread_attr_setschedparam(pthread_attr_t *restrict attr , |
31502 const struct sched_param *restrict param); |
31503 |

31504 DESCRIPTION
31505 The pthread_attr_getschedparam(), and pthread_attr_setschedparam() functions, respectively, get
31506 and set the scheduling parameter attributes in the attr argument. The contents of the param
31507 structure are defined in <sched.h>. For the SCHED_FIFO and SCHED_RR policies, the only
31508 required member of param is sched_priority.

31509 TSP For the SCHED_SPORADIC policy, the required members of the param structure are
31510 sched_priority, sched_ss_low_priority , sched_ss_repl_period , sched_ss_init_budget, and
31511 sched_ss_max_repl . The specified sched_ss_repl_period must be greater than or equal to the
31512 specified sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.
31513 The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
31514 function to succeed; if not, the function shall fail.

31515 RETURN VALUE
31516 If successful, the pthread_attr_getschedparam() and pthread_attr_setschedparam() functions shall
31517 return zero; otherwise, an error number shall be returned to indicate the error.

31518 ERRORS
31519 The pthread_attr_setschedparam() function may fail if:

31520 [EINVAL] The value of param is not valid. |

31521 [ENOTSUP] An attempt was made to set the attribute to an unsupported value. |

31522 These functions shall not return an error code of [EINTR]. |

31523 EXAMPLES
31524 None.

31525 APPLICATION USAGE
31526 After these attributes have been set, a thread can be created with the specified attributes using
31527 pthread_create(). Using these routines does not affect the current running thread.

31528 RATIONALE
31529 None.

31530 FUTURE DIRECTIONS
31531 None.

31532 SEE ALSO
31533 pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
31534 pthread_attr_getschedpolicy(), pthread_create(), the Base Definitions volume of |
31535 IEEE Std. 1003.1-200x, <pthread.h>, <sched.h> |

System Interfaces, Issue 6 1497

pthread_attr_getschedparam() System Interfaces

31536 CHANGE HISTORY
31537 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31538 Issue 6
31539 The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are marked as part |
31540 of the Threads option. |

31541 The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std. 1003.1d-1999. |

31542 The restrict keyword is added to the pthread_attr_getschedparam() and |
31543 pthread_attr_setschedparam() prototypes for alignment with the ISO/IEC 9899: 1999 standard. |

1498 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getschedpolicy()

31544 NAME
31545 pthread_attr_getschedpolicy, pthread_attr_setschedpolicy — get and set schedpolicy attribute
31546 (REALTIME THREADS)

31547 SYNOPSIS
31548 TPS #include <pthread.h>

31549 int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr , |
31550 int *restrict policy); |
31551 int pthread_attr_setschedpolicy(pthread_attr_t * attr , int policy); |
31552

31553 DESCRIPTION
31554 The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, get and
31555 set the schedpolicy attribute in the attr argument.

31556 The supported values of policy shall include SCHED_FIFO, SCHED_RR, and SCHED_OTHER,
31557 which are defined by the header <sched.h>. When threads executing with the scheduling policy
31558 TSP SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they acquire the
31559 mutex in priority order when the mutex is unlocked.

31560 RETURN VALUE
31561 If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions shall
31562 return zero; otherwise, an error number shall be returned to indicate the error.

31563 ERRORS
31564 The pthread_attr_setschedpolicy() function may fail if:

31565 [EINVAL] The value of policy is not valid. |

31566 [ENOTSUP] An attempt was made to set the attribute to an unsupported value. |

31567 These functions shall not return an error code of [EINTR]. |

31568 EXAMPLES
31569 None.

31570 APPLICATION USAGE
31571 After these attributes have been set, a thread can be created with the specified attributes using
31572 pthread_create(). Using these routines does not affect the current running thread.

31573 RATIONALE
31574 None.

31575 FUTURE DIRECTIONS
31576 None.

31577 SEE ALSO
31578 pthread_attr_destroy(), pthread_attr_getscope(), pthread_attr_getinheritsched(),
31579 pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of |
31580 IEEE Std. 1003.1-200x, <pthread.h>, <sched.h> |

31581 CHANGE HISTORY
31582 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31583 Marked as part of the Realtime Threads Feature Group.

System Interfaces, Issue 6 1499

pthread_attr_getschedpolicy() System Interfaces

31584 Issue 6
31585 The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are marked as part of |
31586 the Thread Execution Scheduling option. |

31587 The [ENOSYS] error condition has been removed as stubs need not be provided if an
31588 implementation does not support the Thread Execution Scheduling option. |

31589 The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std. 1003.1d-1999. |

31590 The restrict keyword is added to the pthread_attr_getschedpolicy() prototype for alignment with |
31591 the ISO/IEC 9899: 1999 standard. |

1500 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getscope()

31592 NAME
31593 pthread_attr_getscope, pthread_attr_setscope — get and set contentionscope attribute
31594 (REALTIME THREADS)

31595 SYNOPSIS
31596 TPS #include <pthread.h>

31597 int pthread_attr_getscope(const pthread_attr_t *restrict attr , |
31598 int *restrict contentionscope); |
31599 int pthread_attr_setscope(pthread_attr_t * attr , int contentionscope); |
31600

31601 DESCRIPTION
31602 The pthread_attr_getscope() and pthread_attr_setscope() functions, respectively, are used to get
31603 and set the contentionscope attribute in the attr object.

31604 The contentionscope attribute may have the values PTHREAD_SCOPE_SYSTEM, signifying
31605 system scheduling contention scope, or PTHREAD_SCOPE_PROCESS, signifying process
31606 scheduling contention scope. The symbols PTHREAD_SCOPE_SYSTEM and
31607 PTHREAD_SCOPE_PROCESS are defined by the header <pthread.h>.

31608 RETURN VALUE
31609 If successful, the pthread_attr_getscope() and pthread_attr_setscope() functions shall return zero;
31610 otherwise, an error number shall be returned to indicate the error.

31611 ERRORS
31612 The pthread_attr_setscope() function may fail if:

31613 [EINVAL] The value of contentionscope is not valid. |

31614 [ENOTSUP] An attempt was made to set the attribute to an unsupported value. |

31615 These functions shall not return an error code of [EINTR]. |

31616 EXAMPLES
31617 None.

31618 APPLICATION USAGE
31619 After these attributes have been set, a thread can be created with the specified attributes using
31620 pthread_create(). Using these routines does not affect the current running thread.

31621 RATIONALE
31622 None.

31623 FUTURE DIRECTIONS
31624 None.

31625 SEE ALSO
31626 pthread_attr_destroy(), pthread_attr_getinheritsched(), pthread_attr_getschedpolicy(),
31627 pthread_attr_getschedparam(), pthread_create(), the Base Definitions volume of |
31628 IEEE Std. 1003.1-200x, <pthread.h>, <sched.h> |

31629 CHANGE HISTORY
31630 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31631 Marked as part of the Realtime Threads Feature Group.

System Interfaces, Issue 6 1501

pthread_attr_getscope() System Interfaces

31632 Issue 6
31633 The pthread_attr_getscope() and pthread_attr_setscope() functions are marked as part of the |
31634 Thread Execution Scheduling option. |

31635 The [ENOSYS] error condition has been removed as stubs need not be provided if an
31636 implementation does not support the Thread Execution Scheduling option. |

31637 The restrict keyword is added to the pthread_attr_getscope() prototype for alignment with the |
31638 ISO/IEC 9899: 1999 standard. |

|

1502 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getstack()

31639 NAME |
31640 pthread_attr_getstack, pthread_attr_setstack — get and set stack attribute |

31641 SYNOPSIS |
31642 XSI #include <pthread.h> |

31643 int pthread_attr_getstack(const pthread_attr_t * attr , void **stackaddr, |
31644 size_t * stacksize); |
31645 int pthread_attr_setstack(pthread_attr_t * attr , void * stackaddr , |
31646 size_t stacksize); |
31647 |

31648 DESCRIPTION |
31649 The pthread_attr_getstack() and pthread_attr_setstack() functions, respectively, shall get and set |
31650 the thread creation stack attribute in the attr object. |

31651 The stack attribute specifies the area of storage to be used for the created thread’s stack. The base |
31652 (lowest addressable byte) of the storage is stackaddr , and the size of the storage is stacksize bytes. |
31653 The stacksize shall be at least {PTHREAD_STACK_MIN}. The stackaddr shall be aligned |
31654 appropriately to be used as a stack; for example, pthread_attr_setstack() may fail with [EINVAL] |
31655 if (stackaddr 0x7) is not 0. All pages within the stack described by stackaddr and stacksize shall be |
31656 both readable and writable by the thread. |

31657 RETURN VALUE |
31658 Upon successful completion, these functions shall return a value of 0; otherwise, an error |
31659 number shall be returned to indicate the error. |

31660 The pthread_attr_getstack() function shall store the stack attribute values in stackaddr and stacksize |
31661 if successful. |

31662 ERRORS |
31663 The pthread_attr_setstack() function shall fail if: |

31664 [EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds an |
31665 implementation-defined limit. |

31666 The pthread_attr_setstack() function may fail if: |

31667 [EINVAL] The value of stackaddr does not have proper alignment to be used as a stack, or |
31668 if (stackaddr + stacksize) lacks proper alignment. |

31669 [EACCES] The stack page(s) described by stackaddr and stacksize are not both readable |
31670 and writable by the thread. |

31671 These functions shall not return an error code of [EINTR]. |

31672 EXAMPLES |
31673 None. |

31674 APPLICATION USAGE |
31675 These functions are appropriate for use by applications in an environment where the stack for a |
31676 thread must be placed in some particular region of memory. |

31677 While it might seem that an application could detect stack overflow by providing a protected |
31678 page outside the specified stack region, this cannot be done portably. Implementations are free |
31679 to place the thread’s initial stack pointer anywhere within the specified region to accommodate |
31680 the machine’s stack pointer behavior and allocation requirements. Furthermore, on some |
31681 architectures, such as the IA-64, ‘‘overflow’’ might mean that two separate stack pointers |
31682 allocated within the region will overlap somewhere in the middle of the region. |

System Interfaces, Issue 6 1503

pthread_attr_getstack() System Interfaces

31683 RATIONALE |
31684 None. |

31685 FUTURE DIRECTIONS |
31686 None. |

31687 SEE ALSO |
31688 pthread_attr_init(), pthread_attr_setdetachstate(), pthread_attr_setstacksize(), pthread_create(), the |
31689 Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <pthread.h> |

31690 CHANGE HISTORY |
31691 First released in Issue 6. |

|

1504 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_getstackaddr()

31692 NAME
31693 pthread_attr_getstackaddr, pthread_attr_setstackaddr — get and set stackaddr attribute

31694 SYNOPSIS
31695 THR TSA #include <pthread.h>

31696 int pthread_attr_getstackaddr(const pthread_attr_t *restrict attr , |
31697 void **restrict stackaddr); |
31698 int pthread_attr_setstackaddr(pthread_attr_t * attr , void * stackaddr); |
31699

31700 DESCRIPTION
31701 The pthread_attr_getstackaddr() and pthread_attr_setstackaddr() functions, respectively, get and set
31702 the thread creation stackaddr attribute in the attr object.

31703 The stackaddr attribute specifies the location of storage to be used for the created thread’s stack.
31704 The size of the storage is at least {PTHREAD_STACK_MIN}. |

31705 RETURN VALUE
31706 Upon successful completion, pthread_attr_getstackaddr() and pthread_attr_setstackaddr() shall
31707 return a value of 0; otherwise, an error number shall be returned to indicate the error.

31708 The pthread_attr_getstackaddr() function stores the stackaddr attribute value in stackaddr if
31709 successful.

31710 ERRORS
31711 No errors are defined.

31712 These functions shall not return an error code of [EINTR]. |

31713 EXAMPLES
31714 None.

31715 APPLICATION USAGE
31716 None.

31717 RATIONALE
31718 None.

31719 FUTURE DIRECTIONS
31720 None.

31721 SEE ALSO
31722 pthread_attr_destroy(), pthread_attr_getdetachstate(), pthread_attr_getstacksize(), pthread_create(), |
31723 the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <pthread.h> |

31724 CHANGE HISTORY
31725 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31726 Issue 6
31727 The pthread_attr_getstackaddr() and pthread_attr_setstackaddr() functions are marked as part of |
31728 the Threads and Thread Stack Address Attribute options. |

31729 The restrict keyword is added to the pthread_attr_getstackaddr() prototype for alignment with the |
31730 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1505

pthread_attr_getstacksize() System Interfaces

31731 NAME
31732 pthread_attr_getstacksize, pthread_attr_setstacksize — get and set stacksize attribute

31733 SYNOPSIS
31734 THR TSA #include <pthread.h>

31735 int pthread_attr_getstacksize(const pthread_attr_t *restrict attr , |
31736 size_t *restrict stacksize); |
31737 int pthread_attr_setstacksize(pthread_attr_t * attr , size_t stacksize); |
31738

31739 DESCRIPTION
31740 The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions, respectively, get and set
31741 the thread creation stacksize attribute in the attr object.

31742 The stacksize attribute defines the minimum stack size (in bytes) allocated for the created threads
31743 stack.

31744 RETURN VALUE
31745 Upon successful completion, pthread_attr_getstacksize() and pthread_attr_setstacksize() shall
31746 return a value of 0; otherwise, an error number shall be returned to indicate the error.

31747 The pthread_attr_getstacksize() function stores the stacksize attribute value in stacksize if
31748 successful.

31749 ERRORS
31750 The pthread_attr_setstacksize() function shall fail if:

31751 [EINVAL] The value of stacksize is less than {PTHREAD_STACK_MIN} or exceeds a |
31752 system-imposed limit. |

31753 These functions shall not return an error code of [EINTR]. |

31754 EXAMPLES
31755 None.

31756 APPLICATION USAGE
31757 None.

31758 RATIONALE
31759 None.

31760 FUTURE DIRECTIONS
31761 None.

31762 SEE ALSO
31763 pthread_attr_destroy(), pthread_attr_getstackaddr(), pthread_attr_getdetachstate(), pthread_create(), |
31764 the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, <pthread.h> |

31765 CHANGE HISTORY
31766 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

31767 Issue 6
31768 The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are marked as part of the |
31769 Threads and Thread Stack Address Attribute options. |

31770 The restrict keyword is added to the pthread_attr_getstacksize() prototype for alignment with the |
31771 ISO/IEC 9899: 1999 standard. |

1506 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_init()

31772 NAME
31773 pthread_attr_init — initialize threads attributes object

31774 SYNOPSIS
31775 THR #include <pthread.h>

31776 int pthread_attr_init(pthread_attr_t * attr);
31777

31778 DESCRIPTION
31779 Refer to pthread_attr_destroy().

System Interfaces, Issue 6 1507

pthread_attr_setdetachstate() System Interfaces

31780 NAME
31781 pthread_attr_setdetachstate — set detachstate attribute

31782 SYNOPSIS
31783 THR #include <pthread.h>

31784 int pthread_attr_setdetachstate(pthread_attr_t * attr , int detachstate);
31785

31786 DESCRIPTION
31787 Refer to pthread_attr_getdetachstate().

1508 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_setguardsize()

31788 NAME
31789 pthread_attr_setguardsize — set thread guardsize attribute

31790 SYNOPSIS
31791 XSI #include <pthread.h>

31792 int pthread_attr_setguardsize(pthread_attr_t *attr ,
31793 size_t guardsize);
31794

31795 DESCRIPTION
31796 Refer to pthread_attr_getguardsize().

System Interfaces, Issue 6 1509

pthread_attr_setinheritsched() System Interfaces

31797 NAME
31798 pthread_attr_setinheritsched — set inheritsched attribute (REALTIME THREADS)

31799 SYNOPSIS
31800 TPS #include <pthread.h>

31801 int pthread_attr_setinheritsched(pthread_attr_t * attr ,
31802 int inheritsched);
31803

31804 DESCRIPTION
31805 Refer to pthread_attr_getinheritsched().

1510 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_setschedparam()

31806 NAME
31807 pthread_attr_setschedparam — set schedparam attribute

31808 SYNOPSIS
31809 THR #include <pthread.h>

31810 int pthread_attr_setschedparam(pthread_attr_t *restrict attr , |
31811 const struct sched_param *restrict param); |
31812 |

31813 DESCRIPTION
31814 Refer to pthread_attr_getschedparam().

System Interfaces, Issue 6 1511

pthread_attr_setschedpolicy() System Interfaces

31815 NAME
31816 pthread_attr_setschedpolicy — set schedpolicy attribute (REALTIME THREADS)

31817 SYNOPSIS
31818 TPS #include <pthread.h>

31819 int pthread_attr_setschedpolicy(pthread_attr_t * attr , int policy);
31820

31821 DESCRIPTION
31822 Refer to pthread_attr_getschedpolicy().

1512 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_setscope()

31823 NAME
31824 pthread_attr_setscope — set contentionscope attribute (REALTIME THREADS)

31825 SYNOPSIS
31826 TPS #include <pthread.h>

31827 int pthread_attr_setscope(pthread_attr_t * attr , int contentionscope);
31828

31829 DESCRIPTION
31830 Refer to pthread_attr_getscope().

|

System Interfaces, Issue 6 1513

pthread_attr_setstack() System Interfaces

31831 NAME |
31832 pthread_attr_setstack — set stack attribute |

31833 SYNOPSIS |
31834 XSI #include <pthread.h> |

31835 int pthread_attr_setstack(pthread_attr_t * attr , void * stackaddr , |
31836 size_t stacksize); |
31837 |

31838 DESCRIPTION |
31839 Refer to pthread_attr_getstack(). |

|

1514 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_attr_setstackaddr()

31840 NAME
31841 pthread_attr_setstackaddr — set stackaddr attribute

31842 SYNOPSIS
31843 THR TSA #include <pthread.h>

31844 int pthread_attr_setstackaddr(pthread_attr_t * attr , void * stackaddr);
31845

31846 DESCRIPTION
31847 Refer to pthread_attr_getstackaddr().

System Interfaces, Issue 6 1515

pthread_attr_setstacksize() System Interfaces

31848 NAME
31849 pthread_attr_setstacksize — set stacksize attribute

31850 SYNOPSIS
31851 THR TSA #include <pthread.h>

31852 int pthread_attr_setstacksize(pthread_attr_t * attr , size_t stacksize);
31853

31854 DESCRIPTION
31855 Refer to pthread_attr_getstacksize().

1516 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrier_destroy()

31856 NAME
31857 pthread_barrier_destroy, pthread_barrier_init — destroy and initialize a barrier object |

31858 SYNOPSIS
31859 BAR #include <pthread.h>

31860 int pthread_barrier_destroy(pthread_barrier_t * barrier);
31861 int pthread_barrier_init(pthread_barrier_t *restrict barrier , |
31862 const pthread_barrierattr_t *restrict attr , unsigned count); |
31863 |

31864 DESCRIPTION
31865 The pthread_barrier_destroy() function destroys the barrier referenced by barrier and releases any
31866 resources used by the barrier. The effect of subsequent use of the barrier is undefined until the
31867 barrier is reinitialized by another call to pthread_barrier_init(). An implementation may use this
31868 function to set barrier to an invalid value. The results are undefined if pthread_barrier_destroy() is
31869 called when any thread is blocked on the barrier, or if this function is called with an uninitialized
31870 barrier.

31871 The pthread_barrier_init() function shall allocate any resources required to use the barrier
31872 referenced by barrier and initializes the barrier with attributes referenced by attr . If attr is NULL,
31873 the default barrier attributes are used; the effect is the same as passing the address of a default
31874 barrier attributes object. The results are undefined if pthread_barrier_init() is called when any
31875 thread is blocked on the barrier (that is, has not returned from the pthread_barrier_wait() call).
31876 The results are undefined if a barrier is used without first being initialized. The results are
31877 undefined if pthread_barrier_init() is called specifying an already initialized barrier.

31878 The count argument specifies the number of threads that must call pthread_barrier_wait() before
31879 any of them successfully return from the call. The value specified by count must be greater than
31880 zero.

31881 If the pthread_barrier_init() function fails, the barrier is not initialized and the contents of barrier
31882 are undefined.

31883 Only the object referenced by barrier may be used for performing synchronization. The result of
31884 referring to copies of that object in calls to pthread_barrier_destroy() or pthread_barrier_wait() is
31885 undefined.

31886 RETURN VALUE
31887 Upon successful completion, these functions shall return zero; otherwise, an error number shall
31888 be returned to indicate the error.

31889 ERRORS
31890 The pthread_barrier_destroy() function may fail if:

31891 [EBUSY] The implementation has detected an attempt to destroy a barrier while it is in
31892 use (for example, while being used in a pthread_barrier_wait() call) by another
31893 thread.

31894 [EINVAL] The value specified by barrier is invalid.

31895 The pthread_barrier_init() function shall fail if:

31896 [EAGAIN] The system lacks the necessary resources to initialize another barrier.

31897 [EINVAL] The value specified by count is equal to zero.

31898 [ENOMEM] Insufficient memory exists to initialize the barrier.

System Interfaces, Issue 6 1517

pthread_barrier_destroy() System Interfaces

31899 The pthread_barrier_init() function may fail if:

31900 [EBUSY] The implementation has detected an attempt to reinitialize a barrier while it is
31901 in use (for example, while being used in a pthread_barrier_wait() call) by
31902 another thread.

31903 [EINVAL] The value specified by attr is invalid.

31904 These functions shall not return an error code of [EINTR]. |

31905 EXAMPLES
31906 None.

31907 APPLICATION USAGE
31908 The pthread_barrier_destroy() and pthread_barrier_init() functions are part of the Barriers option |
31909 and need not be provided on all implementations. |

31910 RATIONALE
31911 None.

31912 FUTURE DIRECTIONS
31913 None.

31914 SEE ALSO
31915 pthread_barrier_wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

31916 CHANGE HISTORY
31917 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000. |

1518 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrier_init()

31918 NAME
31919 pthread_barrier_init — initialize a barrier object

31920 SYNOPSIS
31921 BAR #include <pthread.h>

31922 int pthread_barrier_init(pthread_barrier_t *restrict barrier , |
31923 const pthread_barrierattr_t *restrict attr , unsigned count); |
31924 |

31925 DESCRIPTION
31926 Refer to pthread_barrier_destroy().

System Interfaces, Issue 6 1519

pthread_barrier_wait() System Interfaces

31927 NAME
31928 pthread_barrier_wait — synchronize at a barrier

31929 SYNOPSIS
31930 BAR #include <pthread.h>

31931 int pthread_barrier_wait(pthread_barrier_t * barrier);
31932

31933 DESCRIPTION
31934 The pthread_barrier_wait() function synchronizes participating threads at the barrier referenced
31935 by barrier. The calling thread blocks (that is, does not return from the pthread_barrier_wait() call)
31936 until the required number of threads have called pthread_barrier_wait() specifying the barrier.

31937 When the required number of threads have called pthread_barrier_wait() specifying the barrier,
31938 the constant PTHREAD_BARRIER_SERIAL_THREAD is is returned to one unspecified thread
31939 and zero is returned to each of the remaining threads. At this point, the barrier is reset to the
31940 state it had as a result of the most recent pthread_barrier_init() function that referenced it.

31941 The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h> and its value
31942 is distinct from any other value returned by pthread_barrier_wait().

31943 The results are undefined if this function is called with an uninitialized barrier.

31944 If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler the
31945 thread shall resume waiting at the barrier if the barrier wait has not completed (that is, if the
31946 required number of threads have not arrived at the barrier during the execution of the signal
31947 handler); otherwise, the thread shall continue as normal from the completed barrier wait. Until
31948 the thread in the signal handler returns from it, it is unspecified whether other threads may
31949 proceed past the barrier once they have all reached it.

31950 A thread that has blocked on a barrier shall not prevent any unblocked thread that is eligible to
31951 use the same processing resources from eventually making forward progress in its execution.
31952 Eligibility for processing resources shall be determined by the scheduling policy.

31953 RETURN VALUE
31954 Upon successful completion, the pthread_barrier_wait() function shall return
31955 PTHREAD_BARRIER_SERIAL_THREAD for a single (arbitrary) thread synchronized at the
31956 barrier and zero for each of the other threads. Otherwise, an error number shall be returned to
31957 indicate the error.

31958 ERRORS
31959 The pthread_barrier_wait() function may fail if:

31960 [EINVAL] The value specified by barrier does not refer to an initialized barrier object.

31961 This function shall not return an error code of [EINTR]. |

31962 EXAMPLES
31963 None.

31964 APPLICATION USAGE
31965 Applications using this function may be subject to priority inversion, as discussed in the Base |
31966 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

31967 The pthread_barrier_wait() function is part of the Barriers option and need not be provided on all |
31968 implementations.

1520 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrier_wait()

31969 RATIONALE
31970 None.

31971 FUTURE DIRECTIONS
31972 None.

31973 SEE ALSO
31974 pthread_barrier_destroy(), pthread_barrier_init(), the Base Definitions volume of |
31975 IEEE Std. 1003.1-200x, <pthread.h> |

31976 CHANGE HISTORY
31977 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

31978 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1521

pthread_barrierattr_destroy() System Interfaces

31979 NAME
31980 pthread_barrierattr_destroy, pthread_barrierattr_init — destroy and initialize barrier attributes
31981 object

31982 SYNOPSIS
31983 BAR #include <pthread.h>

31984 int pthread_barrierattr_destroy(pthread_barrierattr_t * attr);
31985 int pthread_barrierattr_init(pthread_barrierattr_t * attr);
31986

31987 DESCRIPTION
31988 The pthread_barrierattr_destroy() function destroys a barrier attributes object. The effect of
31989 subsequent use of the object is undefined until the object is reinitialized by another call to
31990 pthread_barrierattr_init(). An implementation may cause pthread_barrierattr_destroy() to set the
31991 object referenced by attr to an invalid value.

31992 The pthread_barrierattr_init() function initializes a barrier attributes object attr with the default
31993 value for all of the attributes defined by the implementation.

31994 The results are undefined if pthread_barrierattr_init() is called specifying an already initialized
31995 barrier attributes object.

31996 After a barrier attributes object has been used to initialize one or more barriers, any function
31997 affecting the attributes object (including destruction) does not affect any previously initialized
31998 barrier.

31999 RETURN VALUE
32000 If successful, the pthread_barrierattr_destroy() and pthread_barrierattr_init() functions shall return
32001 zero; otherwise, an error number shall be returned to indicate the error.

32002 ERRORS
32003 The pthread_barrierattr_destroy() function may fail if:

32004 [EINVAL] The value specified by attr is invalid.

32005 The pthread_barrierattr_init() function shall fail if:

32006 [ENOMEM] Insufficient memory exists to initialize the barrier attributes object.

32007 These functions shall not return an error code of [EINTR]. |

32008 EXAMPLES
32009 None.

32010 APPLICATION USAGE
32011 The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are part of the Barriers |
32012 option and need not be provided on all implementations. |

32013 RATIONALE
32014 None.

32015 FUTURE DIRECTIONS
32016 None.

32017 SEE ALSO
32018 pthread_barrierattr_getpshared(), pthread_barrierattr_setpshared(), the Base Definitions volume of |
32019 IEEE Std. 1003.1-200x, <pthread.h>. |

1522 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrierattr_destroy()

32020 CHANGE HISTORY
32021 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

32022 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1523

pthread_barrierattr_getpshared() System Interfaces

32023 NAME
32024 pthread_barrierattr_getpshared, pthread_barrierattr_setpshared — get and set process-shared
32025 attribute of barrier attributes object

32026 SYNOPSIS
32027 BAR TSH #include <pthread.h>

32028 int pthread_barrierattr_getpshared(const pthread_barrierattr_t *restrict attr ,|
32029 int *restrict pshared); |
32030 int pthread_barrierattr_setpshared(pthread_barrierattr_t * attr , |
32031 int pshared);
32032

32033 DESCRIPTION
32034 The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be
32035 operated upon by any thread that has access to the memory where the barrier is allocated. If the
32036 process-shared attribute is PTHREAD_PROCESS_PRIVATE, the barrier shall only be operated
32037 upon by threads created within the same process as the thread that initialized the barrier; if
32038 threads of different processes attempt to operate on such a barrier, the behavior is undefined.
32039 The default value of the attribute shall be PTHREAD_PROCESS_PRIVATE. Both constants
32040 PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE are defined in
32041 <pthread.h>.

32042 The pthread_barrierattr_getpshared() function obtains the value of the process-shared attribute
32043 from the attributes object referenced by attr . The pthread_barrierattr_setpshared() function is used
32044 to set the process-shared attribute in an initialized attributes object referenced by attr .

32045 Additional attributes, their default values, and the names of the associated functions to get and
32046 set those attribute values are implementation-defined. |

32047 RETURN VALUE
32048 If successful, the pthread_barrierattr_getpshared() function shall return zero and store the value of
32049 the process-shared attribute of attr into the object referenced by the pshared parameter.
32050 Otherwise, an error number shall be returned to indicate the error.

32051 If successful, the pthread_barrierattr_setpshared() function shall return zero; otherwise, an error
32052 number shall be returned to indicate the error.

32053 ERRORS
32054 These functions may fail if:

32055 [EINVAL] The value specified by attr is invalid.

32056 The pthread_barrierattr_setpshared() function may fail if:

32057 [EINVAL] The new value specified for the process-shared attribute is not one of the legal
32058 values PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

32059 These functions shall not return an error code of [EINTR]. |

1524 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrierattr_getpshared()

32060 EXAMPLES
32061 None.

32062 APPLICATION USAGE
32063 The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions are part of the |
32064 Barriers option and need not be provided on all implementations. |

32065 RATIONALE
32066 None.

32067 FUTURE DIRECTIONS
32068 None.

32069 SEE ALSO
32070 pthread_barrier_init(), pthread_barrierattr_destroy(), pthread_barrierattr_init(), the Base Definitions |
32071 volume of IEEE Std. 1003.1-200x, <pthread.h> |

32072 CHANGE HISTORY
32073 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000 |

System Interfaces, Issue 6 1525

pthread_barrierattr_init() System Interfaces

32074 NAME
32075 pthread_barrierattr_init — initialize barrier attributes object

32076 SYNOPSIS
32077 BAR #include <pthread.h>

32078 int pthread_barrierattr_init(pthread_barrierattr_t * attr);
32079

32080 DESCRIPTION
32081 Refer to pthread_barrierattr_destroy().

1526 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_barrierattr_setpshared()

32082 NAME
32083 pthread_barrierattr_setpshared — set process-shared attribute of barrier attributes object

32084 SYNOPSIS
32085 BAR TSH #include <pthread.h>

32086 int pthread_barrierattr_setpshared(pthread_barrierattr_t * attr ,
32087 int pshared);
32088

32089 DESCRIPTION
32090 Refer to pthread_barrierattr_getpshared().

System Interfaces, Issue 6 1527

pthread_cancel() System Interfaces

32091 NAME
32092 pthread_cancel — cancel execution of a thread

32093 SYNOPSIS
32094 THR #include <pthread.h>

32095 int pthread_cancel(pthread_t thread);
32096

32097 DESCRIPTION
32098 The pthread_cancel() function requests that thread be canceled. The target thread’s cancelability
32099 state and type determines when the cancelation takes effect. When the cancelation is acted on,
32100 the cancelation cleanup handlers for thread are called. When the last cancelation cleanup handler
32101 returns, the thread-specific data destructor functions shall be called for thread . When the last
32102 destructor function returns, thread shall be terminated.

32103 The cancelation processing in the target thread runs asynchronously with respect to the calling
32104 thread returning from pthread_cancel().

32105 RETURN VALUE
32106 If successful, the pthread_cancel() function shall return zero; otherwise, an error number shall be
32107 returned to indicate the error.

32108 ERRORS
32109 The pthread_cancel() function may fail if:

32110 [ESRCH] No thread could be found corresponding to that specified by the given thread |
32111 ID.

32112 The pthread_cancel() function shall not return an error code of [EINTR]. |

32113 EXAMPLES
32114 None.

32115 APPLICATION USAGE
32116 None.

32117 RATIONALE
32118 Two alternative functions were considered to sending the cancelation notification to a thread.
32119 One would be to define a new SIGCANCEL signal that had the cancelation semantics when
32120 delivered; the other was to define the new pthread_cancel() function, which would trigger the
32121 cancelation semantics.

32122 The advantage of a new signal was that so much of the delivery criteria were identical to that
32123 used when trying to deliver a signal that making cancelation notification a signal was seen as
32124 consistent. Indeed, many implementations implement cancelation using a special signal. On the
32125 other hand, there would be no signal functions that could be used with this signal except
32126 pthread_kill (), and the behavior of the delivered cancelation signal would be unlike any
32127 previously existing defined signal.

32128 The benefits of a special function include the recognition that this signal would be defined
32129 because of the similar delivery criteria and that this is the only common behavior between a
32130 cancelation request and a signal. In addition, the cancelation delivery mechanism does not have
32131 to be implemented as a signal. There are also strong, if not stronger, parallels with language
32132 exception mechanisms than with signals that are potentially obscured if the delivery mechanism
32133 is visibly closer to signals.

32134 In the end, it was considered that as there were so many exceptions to the use of the new signal
32135 with existing signals functions that it would be misleading. A special function has resolved this

1528 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cancel()

32136 problem. This function was carefully defined so that an implementation wishing to provide the
32137 cancelation functions on top of signals could do so. The special function also means that
32138 implementations are not obliged to implement cancelation with signals.

32139 FUTURE DIRECTIONS
32140 None.

32141 SEE ALSO
32142 pthread_exit (), pthread_cond_wait(), pthread_cond_timedwait(), pthread_join (),
32143 pthread_setcancelstate(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

32144 CHANGE HISTORY
32145 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32146 Issue 6
32147 The pthread_cancel() function is marked as part of the Threads option. |

System Interfaces, Issue 6 1529

pthread_cleanup_pop() System Interfaces

32148 NAME
32149 pthread_cleanup_pop, pthread_cleanup_push — establish cancelation handlers

32150 SYNOPSIS
32151 THR #include <pthread.h>

32152 void pthread_cleanup_pop(int execute);
32153 void pthread_cleanup_push(void (* routine)(void*), void * arg);
32154

32155 DESCRIPTION
32156 The pthread_cleanup_pop() function shall remove the routine at the top of the calling thread’s
32157 cancelation cleanup stack and optionally invoke it (if execute is non-zero).

32158 The pthread_cleanup_push() function shall push the specified cancelation cleanup handler routine
32159 onto the calling thread’s cancelation cleanup stack. The cancelation cleanup handler shall be
32160 popped from the cancelation cleanup stack and invoked with the argument arg when:

32161 • The thread exits (that is, calls pthread_exit ()).

32162 • The thread acts upon a cancelation request.

32163 • The thread calls pthread_cleanup_pop() with a non-zero execute argument.

32164 These functions may be implemented as macros. The application shall ensure that they appear
32165 as statements, and in pairs within the same lexical scope (that is, the pthread_cleanup_push()
32166 macro may be thought to expand to a token list whose first token is ’{’ with
32167 pthread_cleanup_pop() expanding to a token list whose last token is the corresponding ’}’).

32168 The effect of calling longjmp() or siglongjmp () is undefined if there have been any calls to
32169 pthread_cleanup_push() or pthread_cleanup_pop() made without the matching call since the jump
32170 buffer was filled. The effect of calling longjmp() or siglongjmp () from inside a cancelation
32171 cleanup handler is also undefined unless the jump buffer was also filled in the cancelation
32172 cleanup handler.

32173 RETURN VALUE
32174 The pthread_cleanup_push() and pthread_cleanup_pop() functions shall return no value.

32175 ERRORS
32176 No errors are defined.

32177 These functions shall not return an error code of [EINTR]. |

32178 EXAMPLES
32179 The following is an example using thread primitives to implement a cancelable, writers-priority |
32180 read-write lock: |

32181 typedef struct {
32182 pthread_mutex_t lock;
32183 pthread_cond_t rcond,
32184 wcond;
32185 int lock_count; / * < 0 .. Held by writer. */
32186 /* > 0 .. Held by lock_count readers. */
32187 /* = 0 .. Held by nobody. */
32188 int waiting_writers; /* Count of waiting writers. */
32189 } rwlock;

32190 void
32191 waiting_reader_cleanup(void *arg)
32192 {

1530 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cleanup_pop()

32193 rwlock *l;

32194 l = (rwlock *) arg;
32195 pthread_mutex_unlock(&l->lock);
32196 }

32197 void
32198 lock_for_read(rwlock *l)
32199 {
32200 pthread_mutex_lock(&l->lock);
32201 pthread_cleanup_push(waiting_reader_cleanup, l);
32202 while ((l->lock_count < 0) && (l->waiting_writers != 0))
32203 pthread_cond_wait(&l->rcond, &l->lock);
32204 l->lock_count++;
32205 /*
32206 * Note the pthread_cleanup_pop executes
32207 * waiting_reader_cleanup.
32208 */
32209 pthread_cleanup_pop(1);
32210 }

32211 void
32212 release_read_lock(rwlock *l)
32213 {
32214 pthread_mutex_lock(&l->lock);
32215 if (--l->lock_count == 0)
32216 pthread_cond_signal(&l->wcond);
32217 pthread_mutex_unlock(l);
32218 }

32219 void
32220 waiting_writer_cleanup(void *arg)
32221 {
32222 rwlock *l;

32223 l = (rwlock *) arg;
32224 if ((--l->waiting_writers == 0) && (l->lock_count >= 0)) {
32225 /*
32226 * This only happens if we have been canceled.
32227 */
32228 pthread_cond_broadcast(&l->wcond);
32229 }
32230 pthread_mutex_unlock(&l->lock);
32231 }

32232 void
32233 lock_for_write(rwlock *l)
32234 {
32235 pthread_mutex_lock(&l->lock);
32236 l->waiting_writers++;
32237 pthread_cleanup_push(waiting_writer_cleanup, l);
32238 while (l->lock_count != 0)
32239 pthread_cond_wait(&l->wcond, &l->lock);
32240 l->lock_count = −1;
32241 /*

System Interfaces, Issue 6 1531

pthread_cleanup_pop() System Interfaces

32242 * Note the pthread_cleanup_pop executes
32243 * waiting_writer_cleanup.
32244 */
32245 pthread_cleanup_pop(1);
32246 }

32247 void
32248 release_write_lock(rwlock *l)
32249 {
32250 pthread_mutex_lock(&l->lock);
32251 l->lock_count = 0;
32252 if (l->waiting_writers == 0)
32253 pthread_cond_broadcast(&l->rcond)
32254 else
32255 pthread_cond_signal(&l->wcond);
32256 pthread_mutex_unlock(&l->lock);
32257 }

32258 /*
32259 * This function is called to initialize the read/write lock.
32260 */
32261 void
32262 initialize_rwlock(rwlock *l)
32263 {
32264 pthread_mutex_init(&l->lock, pthread_mutexattr_default);
32265 pthread_cond_init(&l->wcond, pthread_condattr_default);
32266 pthread_cond_init(&l->rcond, pthread_condattr_default);
32267 l->lock_count = 0;
32268 l->waiting_writers = 0;
32269 }

32270 reader_thread()
32271 {
32272 lock_for_read(&lock);
32273 pthread_cleanup_push(release_read_lock, &lock);
32274 /*
32275 * Thread has read lock.
32276 */
32277 pthread_cleanup_pop(1);
32278 }

32279 writer_thread()
32280 {
32281 lock_for_write(&lock);
32282 pthread_cleanup_push(release_write_lock, &lock);
32283 /*
32284 * Thread has write lock.
32285 */
32286 pthread_cleanup_pop(1);
32287 }

1532 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cleanup_pop()

32288 APPLICATION USAGE
32289 The two routines that push and pop cancelation cleanup handlers, pthread_cleanup_push() and
32290 pthread_cleanup_pop(), can be thought of as left and right parentheses. They always need to be
32291 matched.

32292 RATIONALE
32293 The restriction that the two routines that push and pop cancelation cleanup handlers,
32294 pthread_cleanup_push() and pthread_cleanup_pop(), have to appear in the same lexical scope
32295 allows for efficient macro or compiler implementations and efficient storage management. A
32296 sample implementation of these routines as macros might look like this:

32297 #define pthread_cleanup_push(rtn,arg) { \
32298 struct _pthread_handler_rec __cleanup_handler, **__head; \
32299 __cleanup_handler.rtn = rtn; \
32300 __cleanup_handler.arg = arg; \
32301 (void) pthread_getspecific(_pthread_handler_key, &__head); \
32302 __cleanup_handler.next = *__head; \
32303 *__head = &__cleanup_handler;

32304 #define pthread_cleanup_pop(ex) \
32305 *__head = __cleanup_handler.next; \
32306 if (ex) (*__cleanup_handler.rtn)(__cleanup_handler.arg); \
32307 }

32308 A more ambitious implementation of these routines might do even better by allowing the
32309 compiler to note that the cancelation cleanup handler is a constant and can be expanded inline.

32310 This volume of IEEE Std. 1003.1-200x currently leaves unspecified the effect of calling longjmp()
32311 from a signal handler executing in a POSIX System Interfaces function. If an implementation
32312 wants to allow this and give the programmer reasonable behavior, the longjmp() function has to
32313 call all cancelation cleanup handlers that have been pushed but not popped since the time
32314 setjmp() was called.

32315 Consider a multi-threaded function called by a thread that uses signals. If a signal were
32316 delivered to a signal handler during the operation of qsort() and that handler were to call
32317 longjmp() (which, in turn, did not call the cancelation cleanup handlers) the helper threads
32318 created by the qsort() function would not be canceled. Instead, they would continue to execute
32319 and write into the argument array even though the array might have been popped off of the
32320 stack.

32321 Note that the specified cleanup handling mechanism is especially tied to the C language and,
32322 while the requirement for a uniform mechanism for expressing cleanup is language-
32323 independent, the mechanism used in other languages may be quite different. In addition, this
32324 mechanism is really only necessary due to the lack of a real exception mechanism in the C
32325 language, which would be the ideal solution.

32326 There is no notion of a cancelation cleanup-safe function. If an application has no cancelation
32327 points in its signal handlers, blocks any signal whose handler may have cancelation points while
32328 calling async-unsafe functions, or disables cancelation while calling async-unsafe functions, all
32329 functions may be safely called from cancelation cleanup routines.

32330 FUTURE DIRECTIONS
32331 None.

System Interfaces, Issue 6 1533

pthread_cleanup_pop() System Interfaces

32332 SEE ALSO
32333 pthread_cancel(), pthread_setcancelstate(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
32334 <pthread.h>

CHANGE32335 HISTORY
32336 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32337 Issue 6
32338 The pthread_cleanup_pop() and pthread_cleanup_push() functions are marked as part of the |
32339 Threads option. |

32340 The APPLICATION USAGE section is added.

32341 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1534 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_broadcast()

32342 NAME
32343 pthread_cond_broadcast, pthread_cond_signal — broadcast or signal a condition

32344 SYNOPSIS
32345 THR #include <pthread.h>

32346 int pthread_cond_broadcast(pthread_cond_t * cond);
32347 int pthread_cond_signal(pthread_cond_t * cond);
32348

32349 DESCRIPTION
32350 These functions are used to unblock threads blocked on a condition variable.

32351 The pthread_cond_broadcast() function shall unblock all threads currently blocked on the
32352 specified condition variable cond .

32353 The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on
32354 the specified condition variable cond (if any threads are blocked on cond).

32355 If more than one thread is blocked on a condition variable, the scheduling policy determines the
32356 order in which threads are unblocked. When each thread unblocked as a result of a
32357 pthread_cond_broadcast() or pthread_cond_signal() returns from its call to pthread_cond_wait() or
32358 pthread_cond_timedwait(), the thread owns the mutex with which it called pthread_cond_wait() or
32359 pthread_cond_timedwait(). The thread(s) that are unblocked shall contend for the mutex
32360 according to the scheduling policy (if applicable), and as if each had called pthread_mutex_lock().

32361 The pthread_cond_broadcast() or pthread_cond_signal() functions may be called by a thread
32362 whether or not it currently owns the mutex that threads calling pthread_cond_wait() or
32363 pthread_cond_timedwait() have associated with the condition variable during their waits;
32364 however, if predictable scheduling behavior is required, then that mutex shall be locked by the
32365 thread calling pthread_cond_broadcast() or pthread_cond_signal().

32366 The pthread_cond_broadcast() and pthread_cond_signal() functions have no effect if there are no
32367 threads currently blocked on cond .

32368 RETURN VALUE
32369 If successful, the pthread_cond_broadcast() and pthread_cond_signal() functions shall return zero;
32370 otherwise, an error number shall be returned to indicate the error.

32371 ERRORS
32372 The pthread_cond_broadcast() and pthread_cond_signal() function may fail if:

32373 [EINVAL] The value cond does not refer to an initialized condition variable. |

32374 These functions shall not return an error code of [EINTR]. |

32375 EXAMPLES
32376 None.

32377 APPLICATION USAGE
32378 The pthread_cond_broadcast() function is used whenever the shared-variable state has been
32379 changed in a way that more than one thread can proceed with its task. Consider a single
32380 producer/multiple consumer problem, where the producer can insert multiple items on a list
32381 that is accessed one item at a time by the consumers. By calling the pthread_cond_broadcast()
32382 function, the producer would notify all consumers that might be waiting, and thereby the
32383 application would receive more throughput on a multiprocessor. In addition,
32384 pthread_cond_broadcast() makes it easier to implement a read-write lock. The |
32385 pthread_cond_broadcast() function is needed in order to wake up all waiting readers when a
32386 writer releases its lock. Finally, the two-phase commit algorithm can use this broadcast function

System Interfaces, Issue 6 1535

pthread_cond_broadcast() System Interfaces

32387 to notify all clients of an impending transaction commit.

32388 It is not safe to use the pthread_cond_signal() function in a signal handler that is invoked
32389 asynchronously. Even if it were safe, there would still be a race between the test of the Boolean
32390 pthread_cond_wait() that could not be efficiently eliminated.

32391 Mutexes and condition variables are thus not suitable for releasing a waiting thread by signaling
32392 from code running in a signal handler.

32393 RATIONALE

32394 Multiple Awakenings by Condition Signal

32395 On a multiprocessor, it may be impossible for an implementation of pthread_cond_signal() to
32396 avoid the unblocking of more than one thread blocked on a condition variable. For example,
32397 consider the following partial implementation of pthread_cond_wait() and pthread_cond_signal(),
32398 executed by two threads in the order given. One thread is trying to wait on the condition
32399 variable, another is concurrently executing pthread_cond_signal(), while a third thread is already
32400 waiting.

32401 pthread_cond_wait(mutex, cond):
32402 value = cond->value; /* 1 */
32403 pthread_mutex_unlock(mutex); /* 9 */
32404 pthread_mutex_lock(cond->mutex); /* 10 */
32405 if (value == cond->value) { /* 11 */
32406 me->next_cond = cond->waiter;
32407 cond->waiter = me;
32408 pthread_mutex_unlock(cond->mutex);
32409 unable_to_run(me);
32410 } else
32411 pthread_mutex_unlock(cond->mutex); /* 12 */
32412 pthread_mutex_lock(mutex); /* 13 */

32413 pthread_cond_signal(cond):
32414 pthread_mutex_lock(cond->mutex); /* 2 */
32415 cond->value++; /* 3 */
32416 if (cond->waiter) { /* 4 */
32417 sleeper = cond->waiter; /* 5 */
32418 cond->waiter = sleeper->next_cond; /* 6 */
32419 able_to_run(sleeper); /* 7 */
32420 }
32421 pthread_mutex_unlock(cond->mutex); /* 8 */

32422 The effect is that more than one thread can return from its call to pthread_cond_wait() or
32423 pthread_cond_timedwait() as a result of one call to pthread_cond_signal(). This effect is called
32424 ‘‘spurious wakeup’’. Note that the situation is self-correcting in that the number of threads that
32425 are so awakened is finite; for example, the next thread to call pthread_cond_wait() after the
32426 sequence of events above blocks.

32427 While this problem could be resolved, the loss of efficiency for a fringe condition that occurs
32428 only rarely is unacceptable, especially given that one has to check the predicate associated with a
32429 condition variable anyway. Correcting this problem would unnecessarily reduce the degree of
32430 concurrency in this basic building block for all higher-level synchronization operations.

32431 An added benefit of allowing spurious wakeups is that applications are forced to code a
32432 predicate-testing-loop around the condition wait. This also makes the application tolerate
32433 superfluous condition broadcasts or signals on the same condition variable that may be coded in

1536 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_broadcast()

32434 some other part of the application. The resulting applications are thus more robust. Therefore,
32435 IEEE Std. 1003.1-200x explicitly documents that spurious wakeups may occur.

32436 FUTURE DIRECTIONS
32437 None.

32438 SEE ALSO
32439 pthread_cond_destroy(), pthread_cond_timedwait(), pthread_cond_wait(), the Base Definitions |
32440 volume of IEEE Std. 1003.1-200x, <pthread.h> |

32441 CHANGE HISTORY
32442 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32443 Issue 6
32444 The pthread_cond_broadcast() and pthread_cond_signal() functions are marked as part of the |
32445 Threads option. |

32446 The APPLICATION USAGE section is added.

System Interfaces, Issue 6 1537

pthread_cond_destroy() System Interfaces

32447 NAME
32448 pthread_cond_destroy, pthread_cond_init — destroy and initialize condition variables

32449 SYNOPSIS
32450 THR #include <pthread.h>

32451 int pthread_cond_destroy(pthread_cond_t * cond);
32452 int pthread_cond_init(pthread_cond_t *restrict cond , |
32453 const pthread_condattr_t *restrict attr); |
32454 pthread_cond_t cond = PTHREAD_COND_INITIALIZER; |
32455

32456 DESCRIPTION
32457 The pthread_cond_destroy() function destroys the given condition variable specified by cond ; the
32458 object becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy() to
32459 set the object referenced by cond to an invalid value. A destroyed condition variable object can be
32460 re-initialized using pthread_cond_init(); the results of otherwise referencing the object after it has
32461 been destroyed are undefined.

32462 It shall be safe to destroy an initialized condition variable upon which no threads are currently
32463 blocked. Attempting to destroy a condition variable upon which other threads are currently
32464 blocked results in undefined behavior.

32465 The pthread_cond_init() function initializes the condition variable referenced by cond with
32466 attributes referenced by attr . If attr is NULL, the default condition variable attributes are used;
32467 the effect is the same as passing the address of a default condition variable attributes object.
32468 Upon successful initialization, the state of the condition variable becomes initialized.

32469 Only cond itself may be used for performing synchronization. The result of referring to copies of |
32470 cond in calls to pthread_cond_wait(), pthread_cond_timedwait(), pthread_cond_signal(), |
32471 pthread_cond_broadcast(), and pthread_cond_destroy() is undefined. |

32472 Attempting to initialize an already initialized condition variable results in undefined behavior. |

32473 In cases where default condition variable attributes are appropriate, the macro
32474 PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically
32475 allocated. The effect shall be equivalent to dynamic initialization by a call to pthread_cond_init()
32476 with parameter attr specified as NULL, except that no error checks are performed.

32477 RETURN VALUE
32478 If successful, the pthread_cond_destroy() and pthread_cond_init() functions shall return zero;
32479 otherwise, an error number shall be returned to indicate the error.

32480 The [EBUSY] and [EINVAL] error checks, if implemented, shall act as if they were performed
32481 immediately at the beginning of processing for the function and caused an error return prior to
32482 modifying the state of the condition variable specified by cond .

32483 ERRORS
32484 The pthread_cond_destroy() function may fail if:

32485 [EBUSY] The implementation has detected an attempt to destroy the object referenced |
32486 by cond while it is referenced (for example, while being used in a
32487 pthread_cond_wait() or pthread_cond_timedwait()) by another thread.

32488 [EINVAL] The value specified by cond is invalid. |

32489 The pthread_cond_init() function shall fail if:

32490 [EAGAIN] The system lacked the necessary resources (other than memory) to initialize |
32491 another condition variable.

1538 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_destroy()

32492 [ENOMEM] Insufficient memory exists to initialize the condition variable. |

32493 The pthread_cond_init() function may fail if:

32494 [EBUSY] The implementation has detected an attempt to re-initialize the object |
32495 referenced by cond , a previously initialized, but not yet destroyed, condition
32496 variable.

32497 [EINVAL] The value specified by attr is invalid. |

32498 These functions shall not return an error code of [EINTR]. |

32499 EXAMPLES
32500 A condition variable can be destroyed immediately after all the threads that are blocked on it are
32501 awakened. For example, consider the following code:

32502 struct list {
32503 pthread_mutex_t lm;
32504 ...
32505 }

32506 struct elt {
32507 key k;
32508 int busy;
32509 pthread_cond_t notbusy;
32510 ...
32511 }

32512 /* Find a list element and reserve it. */
32513 struct elt *
32514 list_find(struct list *lp, key k)
32515 {
32516 struct elt *ep;

32517 pthread_mutex_lock(&lp->lm);
32518 while ((ep = find_elt(l, k) != NULL) && ep->busy)
32519 pthread_cond_wait(&ep->notbusy, &lp->lm);
32520 if (ep != NULL)
32521 ep->busy = 1;
32522 pthread_mutex_unlock(&lp->lm);
32523 return(ep);
32524 }

32525 delete_elt(struct list *lp, struct elt *ep)
32526 {
32527 pthread_mutex_lock(&lp->lm);
32528 assert(ep->busy);
32529 ... remove ep from list ...
32530 ep->busy = 0; /* Paranoid. */
32531 (A) pthread_cond_broadcast(&ep->notbusy);
32532 pthread_mutex_unlock(&lp->lm);
32533 (B) pthread_cond_destroy(&rp->notbusy);
32534 free(ep);
32535 }

32536 In this example, the condition variable and its list element may be freed (line B) immediately
32537 after all threads waiting for it are awakened (line A), since the mutex and the code ensure that no
32538 other thread can touch the element to be deleted.

System Interfaces, Issue 6 1539

pthread_cond_destroy() System Interfaces

32539 APPLICATION USAGE
32540 None.

32541 RATIONALE
32542 See pthread_mutex_init(); a similar rationale applies to condition variables.

32543 FUTURE DIRECTIONS
32544 None.

32545 SEE ALSO
32546 pthread_cond_broadcast(), pthread_cond_signal(), pthread_cond_timedwait(), pthread_cond_wait(), |
32547 the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

32548 CHANGE HISTORY
32549 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32550 Issue 6
32551 The pthread_cond_destroy() and pthread_cond_init() functions are marked as part of the Threads |
32552 option. |

32553 IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION. |

32554 The restrict keyword is added to the pthread_cond_init() prototype for alignment with the |
32555 ISO/IEC 9899: 1999 standard. |

1540 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_init()

32556 NAME
32557 pthread_cond_init — initialize condition variables

32558 SYNOPSIS
32559 THR #include <pthread.h>

32560 int pthread_cond_init(pthread_cond_t *restrict cond , |
32561 const pthread_condattr_t *restrict attr); |
32562 pthread_cond_t cond = PTHREAD_COND_INITIALIZER; |
32563

32564 DESCRIPTION
32565 Refer to pthread_cond_destroy().

System Interfaces, Issue 6 1541

pthread_cond_signal() System Interfaces

32566 NAME
32567 pthread_cond_signal — signal a condition

32568 SYNOPSIS
32569 THR #include <pthread.h>

32570 int pthread_cond_signal(pthread_cond_t * cond);
32571

32572 DESCRIPTION
32573 Refer to pthread_cond_broadcast().

1542 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_timedwait()

32574 NAME
32575 pthread_cond_timedwait, pthread_cond_wait — wait on a condition

32576 SYNOPSIS
32577 THR #include <pthread.h>

32578 int pthread_cond_timedwait(pthread_cond_t *restrict cond , |
32579 pthread_mutex_t *restrict mutex , |
32580 const struct timespec *restrict abstime); |
32581 int pthread_cond_wait(pthread_cond_t *restrict cond , |
32582 pthread_mutex_t *restrict mutex); |
32583 |

32584 DESCRIPTION
32585 The pthread_cond_timedwait() and pthread_cond_wait() functions are used to block on a condition
32586 variable. They shall be called with mutex locked by the calling thread or undefined behavior
32587 results.

32588 These functions atomically release mutex and cause the calling thread to block on the condition
32589 variable cond ; atomically here means ‘‘atomically with respect to access by another thread to the
32590 mutex and then the condition variable’’. That is, if another thread is able to acquire the mutex
32591 after the about-to-block thread has released it, then a subsequent call to pthread_cond_broadcast()
32592 or pthread_cond_signal() in that thread shall behave as if it were issued after the about-to-block
32593 thread has blocked.

32594 Upon successful return, the mutex has been locked and is owned by the calling thread.

32595 When using condition variables there is always a Boolean predicate involving shared variables
32596 associated with each condition wait that is true if the thread should proceed. Spurious wakeups
32597 from the pthread_cond_timedwait() or pthread_cond_wait() functions may occur. Since the return
32598 from pthread_cond_timedwait() or pthread_cond_wait() does not imply anything about the value
32599 of this predicate, the predicate should be re-evaluated upon such return.

32600 The effect of using more than one mutex for concurrent pthread_cond_timedwait() or
32601 pthread_cond_wait() operations on the same condition variable is undefined; that is, a condition
32602 variable becomes bound to a unique mutex when a thread waits on the condition variable, and
32603 this (dynamic) binding ends when the wait returns.

32604 A condition wait (whether timed or not) is a cancelation point. When the cancelability enable
32605 state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a
32606 cancelation request while in a condition wait is that the mutex is (in effect) re-acquired before
32607 calling the first cancelation cleanup handler. The effect is as if the thread were unblocked,
32608 allowed to execute up to the point of returning from the call to pthread_cond_timedwait() or
32609 pthread_cond_wait(), but at that point notices the cancelation request and instead of returning to
32610 the caller of pthread_cond_timedwait() or pthread_cond_wait(), starts the thread cancelation
32611 activities, which includes calling cancelation cleanup handlers.

32612 A thread that has been unblocked because it has been canceled while blocked in a call to
32613 pthread_cond_timedwait() or pthread_cond_wait() shall not consume any condition signal that
32614 may be directed concurrently at the condition variable if there are other threads blocked on the
32615 condition variable.

32616 The pthread_cond_timedwait() function is the same as pthread_cond_wait() except that an error is
32617 returned if the absolute time specified by abstime passes (that is, system time equals or exceeds
32618 abstime) before the condition cond is signaled or broadcasted, or if the absolute time specified by
32619 CS abstime has already been passed at the time of the call. If the Clock Selection option is supported,
32620 the condition variable shall have a clock attribute which specifies the clock that shall be used to

System Interfaces, Issue 6 1543

pthread_cond_timedwait() System Interfaces

32621 measure the time specified by the abstime argument. When such timeouts occur,
32622 pthread_cond_timedwait() shall nonetheless release and re-acquire the mutex referenced by mutex.
32623 The pthread_cond_timedwait() function is also a cancelation point.

32624 If a signal is delivered to a thread waiting for a condition variable, upon return from the signal
32625 handler the thread resumes waiting for the condition variable as if it was not interrupted, or it
32626 shall return zero due to spurious wakeup.

32627 RETURN VALUE
32628 Except in the case of [ETIMEDOUT], all these error checks shall act as if they were performed |
32629 immediately at the beginning of processing for the function and shall cause an error return, in
32630 effect, prior to modifying the state of the mutex specified by mutex or the condition variable
32631 specified by cond .

32632 Upon successful completion, a value of zero shall be returned; otherwise, an error number shall
32633 be returned to indicate the error.

32634 ERRORS
32635 The pthread_cond_timedwait() function shall fail if:

32636 [ETIMEDOUT] The time specified by abstime to pthread_cond_timedwait() has passed. |

32637 The pthread_cond_timedwait() and pthread_cond_wait() functions may fail if:

32638 [EINVAL] The value specified by cond , mutex, or abstime is invalid. |

32639 [EINVAL] Different mutexes were supplied for concurrent pthread_cond_timedwait() or
32640 pthread_cond_wait() operations on the same condition variable. |

32641 [EPERM] The mutex was not owned by the current thread at the time of the call. |

32642 These functions shall not return an error code of [EINTR]. |

32643 EXAMPLES
32644 None.

32645 APPLICATION USAGE
32646 None.

32647 RATIONALE

32648 Condition Wait Semantics

32649 It is important to note that when pthread_cond_wait() and pthread_cond_timedwait() return
32650 without error, the associated predicate may still be false. Similarly, when
32651 pthread_cond_timedwait() returns with the timeout error, the associated predicate may be true
32652 due to an unavoidable race between the expiration of the timeout and the predicate state change.

32653 Some implementations, particularly on a multiprocessor, may sometimes cause multiple threads
32654 to wake up when the condition variable is signaled simultaneously on different processors.

32655 In general, whenever a condition wait returns, the thread has to re-evaluate the predicate
32656 associated with the condition wait to determine whether it can safely proceed, should wait
32657 again, or should declare a timeout. A return from the wait does not imply that the associated
32658 predicate is either true or false.

32659 It is thus recommended that a condition wait be enclosed in the equivalent of a ‘‘while loop’’
32660 that checks the predicate.

1544 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_timedwait()

32661 Timed Wait Semantics

32662 An absolute time measure was chosen for specifying the timeout parameter for two reasons.
32663 First, a relative time measure can be easily implemented on top of a function that specifies
32664 absolute time, but there is a race condition associated with specifying an absolute timeout on top
32665 of a function that specifies relative timeouts. For example, assume that clock_gettime() returns
32666 the current time and cond_relative_timed_wait() uses relative timeouts:

32667 clock_gettime(CLOCK_REALTIME, &now)
32668 reltime = sleep_til_this_absolute_time -now;
32669 cond_relative_timed_wait(c, m, &reltime);

32670 If the thread is preempted between the first statement and the last statement, the thread blocks
32671 for too long. Blocking, however, is irrelevant if an absolute timeout is used. An absolute timeout
32672 also need not be recomputed if it is used multiple times in a loop, such as that enclosing a
32673 condition wait.

32674 For cases when the system clock is advanced discontinuously by an operator, it is expected that
32675 implementations process any timed wait expiring at an intervening time as if that time had
32676 actually occurred.

32677 Cancelation and Condition Wait

32678 A condition wait, whether timed or not, is a cancelation point. That is, the functions
32679 pthread_cond_wait() or pthread_cond_timedwait() are points where a pending (or concurrent)
32680 cancelation request is noticed. The reason for this is that an indefinite wait is possible at these
32681 points—whatever event is being waited for, even if the program is totally correct, might never
32682 occur; for example, some input data being awaited might never be sent. By making condition
32683 wait a cancelation point, the thread can be canceled and perform its cancelation cleanup handler
32684 even though it may be stuck in some indefinite wait.

32685 A side effect of acting on a cancelation request while a thread is blocked on a condition variable
32686 is to re-acquire the mutex before calling any of the cancelation cleanup handlers. This is done in
32687 order to ensure that the cancelation cleanup handler is executed in the same state as the critical
32688 code that lies both before and after the call to the condition wait function. This rule is also
32689 required when interfacing to POSIX threads from languages, such as Ada or C++, which may
32690 choose to map cancelation onto a language exception; this rule ensures that each exception
32691 handler guarding a critical section can always safely depend upon the fact that the associated
32692 mutex has already been locked regardless of exactly where within the critical section the
32693 exception was raised. Without this rule, there would not be a uniform rule that exception
32694 handlers could follow regarding the lock, and so coding would become very cumbersome.

32695 Therefore, since some statement has to be made regarding the state of the lock when a
32696 cancelation is delivered during a wait, a definition has been chosen that makes application
32697 coding most convenient and error free.

32698 When acting on a cancelation request while a thread is blocked on a condition variable, the
32699 implementation is required to ensure that the thread does not consume any condition signals
32700 directed at that condition variable if there are any other threads waiting on that condition
32701 variable. This rule is specified in order to avoid deadlock conditions that could occur if these two
32702 independent requests (one acting on a thread and the other acting on the condition variable)
32703 were not processed independently.

System Interfaces, Issue 6 1545

pthread_cond_timedwait() System Interfaces

32704 Performance of Mutexes and Condition Variables

32705 Mutexes are expected to be locked only for a few instructions. This practice is almost
32706 automatically enforced by the desire of programmers to avoid long serial regions of execution
32707 (which would reduce total effective parallelism).

32708 When using mutexes and condition variables, one tries to ensure that the usual case is to lock the
32709 mutex, access shared data, and unlock the mutex. Waiting on a condition variable should be a
32710 relatively rare situation. For example, when implementing a read-write lock, code that acquires a |
32711 read-lock typically needs only to increment the count of readers (under mutual-exclusion) and
32712 return. The calling thread would actually wait on the condition variable only when there is
32713 already an active writer. So the efficiency of a synchronization operation is bounded by the cost
32714 of mutex lock/unlock and not by condition wait. Note that in the usual case there is no context
32715 switch.

32716 This is not to say that the efficiency of condition waiting is unimportant. Since there needs to be
32717 at least one context switch per Ada rendezvous, the efficiency of waiting on a condition variable
32718 is important. The cost of waiting on a condition variable should be little more than the minimal
32719 cost for a context switch plus the time to unlock and lock the mutex.

32720 Features of Mutexes and Condition Variables

32721 It had been suggested that the mutex acquisition and release be decoupled from condition wait.
32722 This was rejected because it is the combined nature of the operation that, in fact, facilitates
32723 realtime implementations. Those implementations can atomically move a high-priority thread
32724 between the condition variable and the mutex in a manner that is transparent to the caller. This
32725 can prevent extra context switches and provide more deterministic acquisition of a mutex when
32726 the waiting thread is signaled. Thus, fairness and priority issues can be dealt with directly by the
32727 scheduling discipline. Furthermore, the current condition wait operation matches existing
32728 practice.

32729 Scheduling Behavior of Mutexes and Condition Variables

32730 Synchronization primitives that attempt to interfere with scheduling policy by specifying an
32731 ordering rule are considered undesirable. Threads waiting on mutexes and condition variables
32732 are selected to proceed in an order dependent upon the scheduling policy rather than in some
32733 fixed order (for example, FIFO or priority). Thus, the scheduling policy determines which
32734 thread(s) are awakened and allowed to proceed.

32735 Timed Condition Wait

32736 The pthread_cond_timedwait() function allows an application to give up waiting for a particular
32737 condition after a given amount of time. An example of its use follows:

32738 (void) pthread_mutex_lock(&t.mn);
32739 t.waiters++;
32740 clock_gettime(CLOCK_REALTIME, &ts);
32741 ts.tv_sec += 5;
32742 rc = 0;
32743 while (! mypredicate(&t) && rc == 0)
32744 rc = pthread_cond_timedwait(&t.cond, &t.mn, &ts);
32745 t.waiters--;
32746 if (rc == 0) setmystate(&t);
32747 (void) pthread_mutex_unlock(&t.mn);

1546 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_cond_timedwait()

32748 By making the timeout parameter absolute, it does not need to be recomputed each time the
32749 program checks its blocking predicate. If the timeout was relative, it would have to be
32750 recomputed before each call. This would be especially difficult since such code would need to
32751 take into account the possibility of extra wakeups that result from extra broadcasts or signals on
32752 the condition variable that occur before either the predicate is true or the timeout is due.

32753 FUTURE DIRECTIONS
32754 None.

32755 SEE ALSO
32756 pthread_cond_signal(), pthread_cond_broadcast(), the Base Definitions volume of |
32757 IEEE Std. 1003.1-200x, <pthread.h> |

32758 CHANGE HISTORY
32759 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32760 Issue 6
32761 The pthread_cond_timedwait() and pthread_cond_wait() functions are marked as part of the |
32762 Threads option. |

32763 The Open Group corrigenda item U021/9 has been applied, correcting the prototype for the
32764 pthread_cond_wait() function.

32765 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding semantics
32766 for the Clock Selection option. |

32767 The ERRORS section has an additional case for [EPERM] in response to IEEE PASC |
32768 Interpretation 1003.1c #28. |

32769 The restrict keyword is added to the pthread_cond_timedwait() and pthread_cond_wait() |
32770 prototypes for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1547

pthread_cond_wait() System Interfaces

32771 NAME
32772 pthread_cond_wait — wait on a condition

32773 SYNOPSIS
32774 THR #include <pthread.h>

32775 int pthread_cond_wait(pthread_cond_t *restrict cond , |
32776 pthread_mutex_t *restrict mutex); |
32777 |

32778 DESCRIPTION
32779 Refer to pthread_cond_timedwait().

1548 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_condattr_destroy()

32780 NAME
32781 pthread_condattr_destroy, pthread_condattr_init — destroy and initialize condition variable
32782 attributes object

32783 SYNOPSIS
32784 THR #include <pthread.h>

32785 int pthread_condattr_destroy(pthread_condattr_t * attr);
32786 int pthread_condattr_init(pthread_condattr_t * attr);
32787

32788 DESCRIPTION
32789 The pthread_condattr_destroy() function destroys a condition variable attributes object; the object
32790 becomes, in effect, uninitialized. An implementation may cause pthread_condattr_destroy() to set
32791 the object referenced by attr to an invalid value. A destroyed condition variable attributes object
32792 can be re-initialized using pthread_condattr_init(); the results of otherwise referencing the object
32793 after it has been destroyed are undefined.

32794 The pthread_condattr_init() function initializes a condition variable attributes object attr with the
32795 default value for all of the attributes defined by the implementation.

32796 Attempting to initialize an already initialized condition variable attributes object results in
32797 undefined behavior.

32798 After a condition variable attributes object has been used to initialize one or more condition
32799 variables, any function affecting the attributes object (including destruction) does not affect any
32800 previously initialized condition variables.

32801 Additional attributes, their default values, and the names of the associated functions to get and
32802 set those attribute values are implementation-defined. |

32803 RETURN VALUE
32804 If successful, the pthread_condattr_destroy() and pthread_condattr_init() functions shall return
32805 zero; otherwise, an error number shall be returned to indicate the error.

32806 ERRORS
32807 The pthread_condattr_destroy() function may fail if:

32808 [EINVAL] The value specified by attr is invalid. |

32809 The pthread_condattr_init() function shall fail if:

32810 [ENOMEM] Insufficient memory exists to initialize the condition variable attributes object. |

32811 These functions shall not return an error code of [EINTR]. |

32812 EXAMPLES
32813 None.

32814 APPLICATION USAGE
32815 None.

32816 RATIONALE
32817 See pthread_attr_init() and pthread_mutex_init().

32818 A process-shared attribute has been defined for condition variables for the same reason it has been
32819 defined for mutexes.

System Interfaces, Issue 6 1549

pthread_condattr_destroy() System Interfaces

32820 FUTURE DIRECTIONS
32821 None.

32822 SEE ALSO
32823 pthread_cond_destroy(), pthread_condattr_getpshared(), pthread_create(), pthread_mutex_destroy(), |
32824 the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

32825 CHANGE HISTORY
32826 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32827 Issue 6
32828 The pthread_condattr_destroy() and pthread_condattr_init() functions are marked as part of the |
32829 Threads option. |

1550 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_condattr_getclock()

32830 NAME
32831 pthread_condattr_getclock, pthread_condattr_setclock — get and set the clock selection
32832 condition variable attribute

32833 SYNOPSIS
32834 THR CS #include <pthread.h>

32835 int pthread_condattr_getclock(const pthread_condattr_t *restrict attr , |
32836 clockid_t *restrict clock_id); |
32837 int pthread_condattr_setclock(pthread_condattr_t * attr , |
32838 clockid_t clock_id);
32839

32840 DESCRIPTION
32841 The pthread_condattr_getclock() function obtains the value of the clock attribute from the
32842 attributes object referenced by attr . The pthread_condattr_setclock() function is used to set the
32843 clock attribute in an initialized attributes object referenced by attr . If pthread_condattr_setclock()
32844 is called with a clock_id argument that refers to a CPU-time clock, the call shall fail.

32845 The clock attribute is the clock ID of the clock that shall be used to measure the timeout service
32846 of pthread_cond_timedwait(). The default value of the clock attribute shall refer to the system
32847 clock.

32848 RETURN VALUE
32849 If successful, the pthread_condattr_getclock() function shall return zero and store the value of the
32850 clock attribute of attr into the object referenced by the clock_id argument. Otherwise, an error
32851 number shall be returned to indicate the error.

32852 If successful, the pthread_condattr_setclock() function shall return zero; otherwise, an error
32853 number shall be returned to indicate the error.

32854 ERRORS
32855 These functions may fail if:

32856 [EINVAL] The value specified by attr is invalid.

32857 The pthread_condattr_setclock() function may fail if:

32858 [EINVAL] The value specified by clock_id does not refer to a known clock, or is a CPU-
32859 time clock.

32860 These functions shall not return an error code of [EINTR]. |

32861 EXAMPLES
32862 None.

32863 APPLICATION USAGE
32864 None.

32865 RATIONALE
32866 None.

32867 FUTURE DIRECTIONS
32868 None.

32869 SEE ALSO
32870 pthread_cond_init(), pthread_cond_timedwait(), pthread_condattr_destroy(),
32871 pthread_condattr_getpshared() (on page 1553),1 pthread_condattr_init(),
32872 pthread_condattr_setpshared() (on page 1557),1 pthread_create(), pthread_mutex_init(), the Base |
32873 Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

System Interfaces, Issue 6 1551

pthread_condattr_getclock() System Interfaces

32874 CHANGE HISTORY
32875 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000. |

1552 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_condattr_getpshared()

32876 NAME
32877 pthread_condattr_getpshared, pthread_condattr_setpshared — get and set the process-shared
32878 condition variable attributes

32879 SYNOPSIS
32880 THR TSH #include <pthread.h>

32881 int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr , |
32882 int *restrict pshared); |
32883 int pthread_condattr_setpshared(pthread_condattr_t * attr , |
32884 int pshared);
32885

32886 DESCRIPTION
32887 The pthread_condattr_getpshared() function obtains the value of the process-shared attribute from
32888 the attributes object referenced by attr . The pthread_condattr_setpshared() function is used to set
32889 the process-shared attribute in an initialized attributes object referenced by attr .

32890 The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a condition
32891 variable to be operated upon by any thread that has access to the memory where the condition
32892 variable is allocated, even if the condition variable is allocated in memory that is shared by
32893 multiple processes. If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the
32894 condition variable is only operated upon by threads created within the same process as the
32895 thread that initialized the condition variable; if threads of differing processes attempt to operate
32896 on such a condition variable, the behavior is undefined. The default value of the attribute is
32897 PTHREAD_PROCESS_PRIVATE.

32898 Additional attributes, their default values, and the names of the associated functions to get and
32899 set those attribute values are implementation-defined. |

32900 RETURN VALUE
32901 If successful, the pthread_condattr_setpshared() function shall return zero; otherwise, an error
32902 number shall be returned to indicate the error.

32903 If successful, the pthread_condattr_getpshared() function shall return zero and store the value of
32904 the process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise,
32905 an error number shall be returned to indicate the error.

32906 ERRORS
32907 The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions may fail if:

32908 [EINVAL] The value specified by attr is invalid. |

32909 The pthread_condattr_setpshared() function may fail if:

32910 [EINVAL] The new value specified for the attribute is outside the range of legal values
32911 for that attribute.

32912 These functions shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1553

pthread_condattr_getpshared() System Interfaces

32913 EXAMPLES
32914 None.

32915 APPLICATION USAGE
32916 None.

32917 RATIONALE
32918 None.

32919 FUTURE DIRECTIONS
32920 None.

32921 SEE ALSO
32922 pthread_create(), pthread_cond_destroy(), pthread_condattr_destroy(), pthread_mutex_destroy(), the |
32923 Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

32924 CHANGE HISTORY
32925 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

32926 Issue 6
32927 The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are marked as part |
32928 of the Threads and Thread Process-Shared Synchronization options. |

32929 The restrict keyword is added to the pthread_condattr_getpshared() prototype for alignment with |
32930 the ISO/IEC 9899: 1999 standard. |

1554 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_condattr_init()

32931 NAME
32932 pthread_condattr_init — initialize condition variable attributes object

32933 SYNOPSIS
32934 THR #include <pthread.h>

32935 int pthread_condattr_init(pthread_condattr_t * attr);
32936

32937 DESCRIPTION
32938 Refer to pthread_condattr_destroy().

System Interfaces, Issue 6 1555

pthread_condattr_setclock() System Interfaces

32939 NAME
32940 pthread_condattr_setclock — set the clock selection condition variable attribute

32941 SYNOPSIS
32942 THR CS #include <pthread.h>

32943 int pthread_condattr_setclock(pthread_condattr_t * attr , |
32944 clockid_t clock_id); |
32945 |

32946 DESCRIPTION
32947 Refer to pthread_condattr_getclock().

1556 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_condattr_setpshared()

32948 NAME
32949 pthread_condattr_setpshared — set the process-shared condition variable attributes

32950 SYNOPSIS
32951 THR TSH #include <pthread.h>

32952 int pthread_condattr_setpshared(pthread_condattr_t * attr ,
32953 int pshared);
32954

32955 DESCRIPTION
32956 Refer to pthread_condattr_getpshared().

System Interfaces, Issue 6 1557

pthread_create() System Interfaces

32957 NAME
32958 pthread_create — thread creation

32959 SYNOPSIS
32960 THR #include <pthread.h>

32961 int pthread_create(pthread_t *restrict thread , |
32962 const pthread_attr_t *restrict attr , |
32963 void *(* start_routine)(void*), void * arg); |
32964

32965 DESCRIPTION
32966 The pthread_create() function is used to create a new thread, with attributes specified by attr ,
32967 within a process. If attr is NULL, the default attributes are used. If the attributes specified by attr
32968 are modified later, the thread’s attributes are not affected. Upon successful completion,
32969 pthread_create() shall store the ID of the created thread in the location referenced by thread .

32970 The thread is created executing start_routine with arg as its sole argument. If the start_routine
32971 returns, the effect shall be as if there was an implicit call to pthread_exit () using the return value
32972 of start_routine as the exit status. Note that the thread in which main() was originally invoked
32973 differs from this. When it returns from main(), the effect shall be as if there was an implicit call
32974 to exit() using the return value of main() as the exit status.

32975 The signal state of the new thread shall be initialized as follows:

32976 • The signal mask shall be inherited from the creating thread.

32977 • The set of signals pending for the new thread shall be empty.

32978 If pthread_create() fails, no new thread is created and the contents of the location referenced by
32979 thread are undefined.

32980 TCT If _POSIX_THREAD_CPUTIME is defined, the new thread shall have a CPU-time clock
32981 accessible, and the initial value of this clock shall be set to zero.

32982 RETURN VALUE
32983 If successful, the pthread_create() function shall return zero; otherwise, an error number shall be
32984 returned to indicate the error.

32985 ERRORS
32986 The pthread_create() function shall fail if:

32987 [EAGAIN] The system lacked the necessary resources to create another thread, or the |
32988 system-imposed limit on the total number of threads in a process
32989 PTHREAD_THREADS_MAX would be exceeded.

32990 [EINVAL] The value specified by attr is invalid. |

32991 [EPERM] The caller does not have appropriate permission to set the required |
32992 scheduling parameters or scheduling policy. |

32993 The pthread_create() function shall not return an error code of [EINTR]. |

1558 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_create()

32994 EXAMPLES
32995 None.

32996 APPLICATION USAGE
32997 None.

32998 RATIONALE
32999 A suggested alternative to pthread_create() would be to define two separate operations: create
33000 and start. Some applications would find such behavior more natural. Ada, in particular,
33001 separates the ‘‘creation’’ of a task from its ‘‘activation’’.

33002 Splitting the operation was rejected by the standard developers for many reasons:

33003 • The number of calls required to start a thread would increase from one to two and thus place
33004 an additional burden on applications that do not require the additional synchronization. The
33005 second call, however, could be avoided by the additional complication of a start-up state
33006 attribute.

33007 • An extra state would be introduced: ‘‘created but not started’’. This would require the
33008 standard to specify the behavior of the thread operations when the target has not yet started
33009 executing.

33010 • For those applications that require such behavior, it is possible to simulate the two separate
33011 steps with the facilities that are currently provided. The start_routine() can synchronize by
33012 waiting on a condition variable that is signaled by the start operation.

33013 An Ada implementor can choose to create the thread at either of two points in the Ada program:
33014 when the task object is created, or when the task is activated (generally at a ‘‘begin’’). If the first
33015 approach is adopted, the start_routine() needs to wait on a condition variable to receive the
33016 order to begin ‘‘activation’’. The second approach requires no such condition variable or extra
33017 synchronization. In either approach, a separate Ada task control block would need to be created
33018 when the task object is created to hold rendezvous queues, and so on.

33019 An extension of the preceding model would be to allow the state of the thread to be modified
33020 between the create and start. This would allow the thread attributes object to be eliminated. This
33021 has been rejected because:

33022 • All state in the thread attributes object has to be able to be set for the thread. This would
33023 require the definition of functions to modify thread attributes. There would be no reduction
33024 in the number of function calls required to set up the thread. In fact, for an application that
33025 creates all threads using identical attributes, the number of function calls required to set up
33026 the threads would be dramatically increased. Use of a thread attributes object permits the
33027 application to make one set of attribute setting function calls. Otherwise, the set of attribute
33028 setting function calls needs to be made for each thread creation.

33029 • Depending on the implementation architecture, functions to set thread state would require
33030 kernel calls, or for other implementation reasons would not be able to be implemented as
33031 macros, thereby increasing the cost of thread creation.

33032 • The ability for applications to segregate threads by class would be lost.

33033 Another suggested alternative uses a model similar to that for process creation, such as ‘‘thread
33034 fork’’. The fork semantics would provide more flexibility and the ‘‘create’’ function can be
33035 implemented simply by doing a thread fork followed immediately by a call to the desired ‘‘start
33036 routine’’ for the thread. This alternative has these problems:

33037 • For many implementations, the entire stack of the calling thread would need to be
33038 duplicated, since in many architectures there is no way to determine the size of the calling
33039 frame.

System Interfaces, Issue 6 1559

pthread_create() System Interfaces

33040 • Efficiency is reduced since at least some part of the stack has to be copied, even though in
33041 most cases the thread never needs the copied context, since it merely calls the desired start
33042 routine.

33043 FUTURE DIRECTIONS
33044 None.

33045 SEE ALSO
33046 fork (), pthread_exit (), pthread_join (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33047 <pthread.h>

CHANGE33048 HISTORY
33049 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33050 Issue 6
33051 The pthread_create() function is marked as part of the Threads option. |

33052 The following new requirements on POSIX implementations derive from alignment with the
33053 Single UNIX Specification:

33054 • The [EPERM] mandatory error condition is added.

33055 The thread CPU-time clock semantics are added for alignment with IEEE Std. 1003.1d-1999. |

33056 The restrict keyword is added to the pthread_create() prototype for alignment with the |
33057 ISO/IEC 9899: 1999 standard. |

1560 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_detach()

33058 NAME
33059 pthread_detach — detach a thread

33060 SYNOPSIS
33061 THR #include <pthread.h>

33062 int pthread_detach(pthread_t thread);
33063

33064 DESCRIPTION
33065 The pthread_detach() function is used to indicate to the implementation that storage for the
33066 thread thread can be reclaimed when that thread terminates. If thread has not terminated,
33067 pthread_detach() shall not cause it to terminate. The effect of multiple pthread_detach() calls on
33068 the same target thread is unspecified.

33069 RETURN VALUE
33070 If the call succeeds, pthread_detach() shall return 0; otherwise, an error number shall be returned
33071 to indicate the error.

33072 ERRORS
33073 The pthread_detach() function shall fail if:

33074 [EINVAL] The implementation has detected that the value specified by thread does not |
33075 refer to a joinable thread.

33076 [ESRCH] No thread could be found corresponding to that specified by the given thread |
33077 ID.

33078 The pthread_detach() function shall not return an error code of [EINTR]. |

33079 EXAMPLES
33080 None.

33081 APPLICATION USAGE
33082 None.

33083 RATIONALE
33084 The pthread_join () or pthread_detach() functions should eventually be called for every thread that
33085 is created so that storage associated with the thread may be reclaimed.

33086 It has been suggested that a ‘‘detach’’ function is not necessary; the detachstate thread creation
33087 attribute is sufficient, since a thread need never be dynamically detached. However, need arises
33088 in at least two cases:

33089 1. In a cancelation handler for a pthread_join () it is nearly essential to have a pthread_detach()
33090 function in order to detach the thread on which pthread_join () was waiting. Without it, it
33091 would be necessary to have the handler do another pthread_join () to attempt to detach the
33092 thread, which would both delay the cancelation processing for an unbounded period and
33093 introduce a new call to pthread_join (), which might itself need a cancelation handler. A
33094 dynamic detach is nearly essential in this case.

33095 2. In order to detach the ‘‘initial thread’’ (as may be desirable in processes that set up server
33096 threads).

33097 FUTURE DIRECTIONS
33098 None.

System Interfaces, Issue 6 1561

pthread_detach() System Interfaces

33099 SEE ALSO
33100 pthread_join (), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

33101 CHANGE HISTORY
33102 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33103 Issue 6
33104 The pthread_detach() function is marked as part of the Threads option. |

1562 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_equal()

33105 NAME
33106 pthread_equal — compare thread IDs

33107 SYNOPSIS
33108 THR #include <pthread.h>

33109 int pthread_equal(pthread_t t1 , pthread_t t2);
33110

33111 DESCRIPTION
33112 This function compares the thread IDs t1 and t2 .

33113 RETURN VALUE
33114 The pthread_equal() function shall return a non-zero value if t1 and t2 are equal; otherwise, zero
33115 shall be returned.

33116 If either t1 or t2 are not valid thread IDs, the behavior is undefined.

33117 ERRORS
33118 No errors are defined.

33119 The pthread_equal() function shall not return an error code of [EINTR]. |

33120 EXAMPLES
33121 None.

33122 APPLICATION USAGE
33123 None.

33124 RATIONALE
33125 Implementations may choose to define a thread ID as a structure. This allows additional
33126 flexibility and robustness over using an int. For example, a thread ID could include a sequence
33127 number that allows detection of ‘‘dangling IDs’’ (copies of a thread ID that has been detached).
33128 Because the C language does not support comparison on structure types, the pthread_equal()
33129 function is provided to compare thread IDs.

33130 FUTURE DIRECTIONS
33131 None.

33132 SEE ALSO
33133 pthread_create(), pthread_self (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33134 <pthread.h>

CHANGE33135 HISTORY
33136 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33137 Issue 6
33138 The pthread_equal() function is marked as part of the Threads option. |

System Interfaces, Issue 6 1563

pthread_exit() System Interfaces

33139 NAME
33140 pthread_exit — thread termination

33141 SYNOPSIS
33142 THR #include <pthread.h>

33143 void pthread_exit(void * value_ptr);
33144

33145 DESCRIPTION
33146 The pthread_exit () function shall terminate the calling thread and make the value value_ptr
33147 available to any successful join with the terminating thread. Any cancelation cleanup handlers
33148 that have been pushed and not yet popped shall be popped in the reverse order that they were
33149 pushed and then executed. After all cancelation cleanup handlers have been executed, if the
33150 thread has any thread-specific data, appropriate destructor functions shall be called in an
33151 unspecified order. Thread termination does not release any application visible process resources,
33152 including, but not limited to, mutexes and file descriptors, nor does it perform any process-level
33153 cleanup actions, including, but not limited to, calling any atexit() routines that may exist.

33154 An implicit call to pthread_exit () is made when a thread other than the thread in which main()
33155 was first invoked returns from the start routine that was used to create it. The function’s return
33156 value serves as the thread’s exit status.

33157 The behavior of pthread_exit () is undefined if called from a cancelation cleanup handler or
33158 destructor function that was invoked as a result of either an implicit or explicit call to
33159 pthread_exit ().

33160 After a thread has terminated, the result of access to local (auto) variables of the thread is
33161 undefined. Thus, references to local variables of the exiting thread should not be used for the
33162 pthread_exit () value_ptr parameter value.

33163 The process shall exit with an exit status of 0 after the last thread has been terminated. The
33164 behavior shall be as if the implementation called exit() with a zero argument at thread
33165 termination time.

33166 RETURN VALUE
33167 The pthread_exit () function cannot return to its caller.

33168 ERRORS
33169 No errors are defined.

33170 The pthread_exit () function shall not return an error code of [EINTR]. |

33171 EXAMPLES
33172 None.

33173 APPLICATION USAGE
33174 None.

33175 RATIONALE
33176 The normal mechanism by which a thread terminates is to return from the routine that was
33177 specified in the pthread_create() call that started it. The pthread_exit () function provides the
33178 capability for a thread to terminate without requiring a return from the start routine of that
33179 thread, thereby providing a function analogous to exit().

33180 Regardless of the method of thread termination, any cancelation cleanup handlers that have
33181 been pushed and not yet popped are executed, and the destructors for any existing thread-
33182 specific data are executed. This volume of IEEE Std. 1003.1-200x requires that cancelation
33183 cleanup handlers be popped and called in order. After all cancelation cleanup handlers have

1564 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_exit()

33184 been executed, thread-specific data destructors are called, in an unspecified order, for each item
33185 of thread-specific data that exists in the thread. This ordering is necessary because cancelation
33186 cleanup handlers may rely on thread-specific data.

33187 As the meaning of the status is determined by the application (except when the thread has been
33188 canceled, in which case it is PTHREAD_CANCELED), the implementation has no idea what an
33189 illegal status value is, which is why no address error checking is done.

33190 FUTURE DIRECTIONS
33191 None.

33192 SEE ALSO
33193 exit(), pthread_create(), pthread_join (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33194 <pthread.h>

CHANGE33195 HISTORY
33196 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33197 Issue 6
33198 The pthread_exit () function is marked as part of the Threads option. |

System Interfaces, Issue 6 1565

pthread_getconcurrency() System Interfaces

33199 NAME
33200 pthread_getconcurrency, pthread_setconcurrency — get or set level of concurrency |

33201 SYNOPSIS
33202 XSI #include <pthread.h>

33203 int pthread_getconcurrency(void);
33204 int pthread_setconcurrency(int new_level);
33205

33206 DESCRIPTION
33207 Unbound threads in a process may or may not be required to be simultaneously active. By
33208 default, the threads implementation ensures that a sufficient number of threads are active so that
33209 the process can continue to make progress. While this conserves system resources, it may not
33210 produce the most effective level of concurrency.

33211 The pthread_setconcurrency() function allows an application to inform the threads
33212 implementation of its desired concurrency level, new_level . The actual level of concurrency
33213 provided by the implementation as a result of this function call is unspecified.

33214 If new_level is zero, it causes the implementation to maintain the concurrency level at its
33215 discretion as if pthread_setconcurrency() had never been called.

33216 The pthread_getconcurrency() function shall return the value set by a previous call to the
33217 pthread_setconcurrency() function. If the pthread_setconcurrency() function was not previously
33218 called, this function shall return zero to indicate that the implementation is maintaining the
33219 concurrency level.

33220 When an application calls pthread_setconcurrency() it is informing the implementation of its
33221 desired concurrency level. The implementation uses this as a hint, not a requirement.

33222 If an implementation does not support multiplexing of user threads on top of several kernel- |
33223 scheduled entities, the pthread_setconcurrency() and pthread_getconcurrency() functions are |
33224 provided for source code compatibility but they have no effect when called. To maintain the
33225 function semantics, the new_level parameter is saved when pthread_setconcurrency() is called so
33226 that a subsequent call to pthread_getconcurrency() returns the same value.

33227 RETURN VALUE
33228 If successful, the pthread_setconcurrency() function shall return zero; otherwise, an error number
33229 shall be returned to indicate the error.

33230 The pthread_getconcurrency() function shall always return the concurrency level set by a previous
33231 call to pthread_setconcurrency(). If the pthread_setconcurrency() function has never been called,
33232 pthread_getconcurrency() shall return zero.

33233 ERRORS
33234 The pthread_setconcurrency() function shall fail if:

33235 [EINVAL] The value specified by new_level is negative. |

33236 [EAGAIN] The value specific by new_level would cause a system resource to be exceeded. |

33237 These functions shall not return an error code of [EINTR]. |

1566 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_getconcurrency()

33238 EXAMPLES
33239 None.

33240 APPLICATION USAGE
33241 Use of these functions changes the state of the underlying concurrency upon which the
33242 application depends. Library developers are advised to not use the pthread_getconcurrency() and
33243 pthread_setconcurrency() functions since their use may conflict with an applications use of these
33244 functions.

33245 RATIONALE
33246 None.

33247 FUTURE DIRECTIONS
33248 None.

33249 SEE ALSO
33250 The Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

33251 CHANGE HISTORY
33252 First released in Issue 5.

System Interfaces, Issue 6 1567

pthread_getcpuclockid() System Interfaces

33253 NAME
33254 pthread_getcpuclockid — access a thread CPU-time clock (REALTIME)

33255 SYNOPSIS
33256 TCT #include <pthread.h>
33257 #include <time.h>

33258 int pthread_getcpuclockid(pthread_t thread_id , clockid_t * clock_id);
33259

33260 DESCRIPTION
33261 The pthread_getcpuclockid() function shall return in clock_id the clock ID of the CPU-time clock of
33262 the thread specified by thread_id , if the thread specified by thread_id exists.

33263 RETURN VALUE
33264 Upon successful completion, pthread_getcpuclockid() shall return zero; otherwise, an error
33265 number shall be returned to indicate the error.

33266 ERRORS
33267 The pthread_getcpuclockid() function may fail if:

33268 [ESRCH] The value specified by thread_id does not refer to an existing thread.

33269 EXAMPLES
33270 None.

33271 APPLICATION USAGE
33272 The pthread_getcpuclockid() function is part of the Thread CPU-Time Clocks option and need not |
33273 be provided on all implementations. |

33274 RATIONALE
33275 None.

33276 FUTURE DIRECTIONS
33277 None.

33278 SEE ALSO
33279 clock_getcpuclockid(), clock_getres(), timer_create(), the Base Definitions volume of |
33280 IEEE Std. 1003.1-200x, <pthread.h>, <time.h> |

33281 CHANGE HISTORY
33282 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

33283 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

1568 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_getschedparam()

33284 NAME
33285 pthread_getschedparam, pthread_setschedparam — dynamic thread scheduling parameters
33286 access (REALTIME THREADS)

33287 SYNOPSIS
33288 TPS #include <pthread.h>

33289 int pthread_getschedparam(pthread_t thread , int *restrict policy , |
33290 struct sched_param *restrict param); |
33291 int pthread_setschedparam(pthread_t thread , int policy , |
33292 const struct sched_param * param);
33293

33294 DESCRIPTION
33295 The pthread_getschedparam() and pthread_setschedparam() functions allow the scheduling policy
33296 and scheduling parameters of individual threads within a multi-threaded process to be retrieved
33297 and set. For SCHED_FIFO and SCHED_RR, the only required member of the sched_param
33298 structure is the priority sched_priority . For SCHED_OTHER, the affected scheduling parameters |
33299 are implementation-defined. |

33300 The pthread_getschedparam() function shall retrieve the scheduling policy and scheduling
33301 parameters for the thread whose thread ID is given by thread and shall store those values in
33302 policy and param , respectively. The priority value returned from pthread_getschedparam() shall be
33303 the value specified by the most recent pthread_setschedparam() or pthread_create() call affecting |
33304 the target thread. It shall not reflect any temporary adjustments to its priority as a result of any |
33305 priority inheritance or ceiling functions. The pthread_setschedparam() function sets the scheduling
33306 policy and associated scheduling parameters for the thread whose thread ID is given by thread to
33307 the policy and associated parameters provided in policy and param , respectively.

33308 The policy parameter may have the value SCHED_OTHER, SCHED_FIFO, or SCHED_RR. The
33309 scheduling parameters for the SCHED_OTHER policy are implementation-defined. The |
33310 SCHED_FIFO and SCHED_RR policies shall have a single scheduling parameter, priority . |

33311 TSP If _POSIX_THREAD_SPORADIC_SERVER is defined, then the policy argument may have the |
33312 value SCHED_SPORADIC, with the exception for the pthread_setschedparam() function that if the |
33313 scheduling policy was not SCHED_SPORADIC at the time of the call, it is implementation- |
33314 defined whether the function is supported; in other words, the implementation need not allow |
33315 the application to dynamically change the scheduling policy to SCHED_SPORADIC. The |
33316 sporadic server scheduling policy has the associated parameters sched_ss_low_priority,
33317 sched_ss_repl_period , sched_ss_init_budget, sched_priority, and sched_ss_max_repl . The specified
33318 sched_ss_repl_period shall be greater than or equal to the specified sched_ss_init_budget for the |
33319 function to succeed; if it is not, then the function shall fail. The value of sched_ss_max_repl shall
33320 be within the inclusive range [1,{SS_REPL_MAX}] for the function to succeed; if not, the function
33321 shall fail.

33322 If the pthread_setschedparam() function fails, no scheduling parameters are changed for the target
33323 thread.

33324 RETURN VALUE
33325 If successful, the pthread_getschedparam() and pthread_setschedparam() functions shall return zero;
33326 otherwise, an error number shall be returned to indicate the error.

33327 ERRORS
33328 The pthread_getschedparam() function may fail if:

33329 [ESRCH] The value specified by thread does not refer to a existing thread. |

System Interfaces, Issue 6 1569

pthread_getschedparam() System Interfaces

33330 The pthread_setschedparam() function may fail if:

33331 [EINVAL] The value specified by policy or one of the scheduling parameters associated |
33332 with the scheduling policy policy is invalid.

33333 [ENOTSUP] An attempt was made to set the policy or scheduling parameters to an |
33334 unsupported value.

33335 TSP [ENOTSUP] An attempt was made to dynamically change the scheduling policy to
33336 SCHED_SPORADIC, and the implementation does not support this change.

33337 [EPERM] The caller does not have the appropriate permission to set either the |
33338 scheduling parameters or the scheduling policy of the specified thread.

33339 [EPERM] The implementation does not allow the application to modify one of the
33340 parameters to the value specified.

33341 [ESRCH] The value specified by thread does not refer to a existing thread. |

33342 These functions shall not return an error code of [EINTR]. |

33343 EXAMPLES
33344 None.

33345 APPLICATION USAGE
33346 None.

33347 RATIONALE
33348 None.

33349 FUTURE DIRECTIONS
33350 None.

33351 SEE ALSO
33352 sched_getparam(), sched_getscheduler(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33353 <pthread.h>, <sched.h>

CHANGE33354 HISTORY
33355 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33356 Issue 6
33357 The pthread_getschedparam() and pthread_setschedparam() functions are marked as part of the |
33358 Thread Execution Scheduling option. |

33359 The [ENOSYS] error condition has been removed as stubs need not be provided if an
33360 implementation does not support the Thread Execution Scheduling option. |

33361 The Open Group corrigenda item U026/2 has been applied correcting the prototype for the
33362 pthread_setschedparam() function so that its second argument is of type int.

33363 The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std. 1003.1d-1999. |

33364 The restrict keyword is added to the pthread_getschedparam() prototype for alignment with the |
33365 ISO/IEC 9899: 1999 standard. |

33366 The Open Group corrigenda item U047/1 has been applied. |

1570 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_getspecific()

33367 NAME
33368 pthread_getspecific, pthread_setspecific — thread-specific data management

33369 SYNOPSIS
33370 THR #include <pthread.h>

33371 void *pthread_getspecific(pthread_key_t key);
33372 int pthread_setspecific(pthread_key_t key , const void * value);
33373

33374 DESCRIPTION
33375 The pthread_getspecific() function shall return the value currently bound to the specified key on
33376 behalf of the calling thread.

33377 The pthread_setspecific() function shall associate a thread-specific value with a key obtained via a
33378 previous call to pthread_key_create(). Different threads may bind different values to the same
33379 key. These values are typically pointers to blocks of dynamically allocated memory that have
33380 been reserved for use by the calling thread.

33381 The effect of calling pthread_getspecific() or pthread_setspecific() with a key value not obtained
33382 from pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

33383 Both pthread_getspecific() and pthread_setspecific() may be called from a thread-specific data |
33384 destructor function. A call to pthread_getspecific() for the thread-specific data key being |
33385 destroyed shall return the value NULL, unless the value is changed (after the destructor starts) |
33386 by a call to pthread_setspecific.() Calling pthread_setspecific() thread-specific data destructor |
33387 routine may result either in lost storage (after at least PTHREAD_DESTRUCTOR_ITERATIONS) |
33388 or an infinite loop. |

33389 Both functions may be implemented as macros.

33390 RETURN VALUE
33391 The pthread_getspecific() function shall return the thread-specific data value associated with the
33392 given key . If no thread-specific data value is associated with key , then the value NULL shall be
33393 returned.

33394 If successful, the pthread_setspecific() function shall return zero; otherwise, an error number shall
33395 be returned to indicate the error.

33396 ERRORS
33397 No errors are returned from pthread_getspecific().

33398 The pthread_setspecific() function shall fail if:

33399 [ENOMEM] Insufficient memory exists to associate the value with the key. |

33400 The pthread_setspecific() function may fail if:

33401 [EINVAL] The key value is invalid. |

33402 These functions shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1571

pthread_getspecific() System Interfaces

33403 EXAMPLES
33404 None.

33405 APPLICATION USAGE
33406 None.

33407 RATIONALE
33408 Performance and ease-of-use of pthread_getspecific() is critical for functions that rely on
33409 maintaining state in thread-specific data. Since no errors are required to be detected by it, and
33410 since the only error that could be detected is the use of an invalid key, the function to
33411 pthread_getspecific() has been designed to favor speed and simplicity over error reporting.

33412 FUTURE DIRECTIONS
33413 None.

33414 SEE ALSO
33415 pthread_key_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

33416 CHANGE HISTORY
33417 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33418 Issue 6
33419 The pthread_getspecific() and pthread_setspecific() functions are marked as part of the Threads |
33420 option. |

1572 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_join()

33421 NAME
33422 pthread_join — wait for thread termination

33423 SYNOPSIS
33424 THR #include <pthread.h>

33425 int pthread_join(pthread_t thread , void ** value_ptr);
33426

33427 DESCRIPTION
33428 The pthread_join () function shall suspend execution of the calling thread until the target thread
33429 terminates, unless the target thread has already terminated. On return from a successful
33430 pthread_join () call with a non-NULL value_ptr argument, the value passed to pthread_exit () by
33431 the terminating thread shall be made available in the location referenced by value_ptr. When a
33432 pthread_join () returns successfully, the target thread has been terminated. The results of multiple
33433 simultaneous calls to pthread_join () specifying the same target thread are undefined. If the
33434 thread calling pthread_join () is canceled, then the target thread shall not be detached.

33435 It is unspecified whether a thread that has exited but remains unjoined counts against
33436 _PTHREAD_THREADS_MAX.

33437 RETURN VALUE
33438 If successful, the pthread_join () function shall return zero; otherwise, an error number shall be
33439 returned to indicate the error.

33440 ERRORS
33441 The pthread_join () function shall fail if:

33442 [EINVAL] The implementation has detected that the value specified by thread does not |
33443 refer to a joinable thread.

33444 [ESRCH] No thread could be found corresponding to that specified by the given thread |
33445 ID.

33446 The pthread_join () function may fail if:

33447 [EDEADLK] A deadlock was detected or the value of thread specifies the calling thread.

33448 The pthread_join () function shall not return an error code of [EINTR]. |

33449 EXAMPLES
33450 An example of thread creation and deletion follows:

33451 typedef struct {
33452 int *ar;
33453 long n;
33454 } subarray;

33455 void *
33456 incer(void *arg)
33457 {
33458 long i;

33459 for (i = 0; i < ((subarray *)arg)->n; i++)
33460 ((subarray *)arg)->ar[i]++;
33461 }

33462 main()
33463 {
33464 int ar[1000000];

System Interfaces, Issue 6 1573

pthread_join() System Interfaces

33465 pthread_t th1, th2;
33466 subarray sb1, sb2;

33467 sb1.ar = &ar[0];
33468 sb1.n = 500000;
33469 (void) pthread_create(&th1, NULL, incer, &sb1);

33470 sb2.ar = &ar[500000];
33471 sb2.n = 500000;
33472 (void) pthread_create(&th2, NULL, incer, &sb2);

33473 (void) pthread_join(th1, NULL);
33474 (void) pthread_join(th2, NULL);
33475 }

33476 APPLICATION USAGE
33477 None.

33478 RATIONALE
33479 The pthread_join () function is a convenience that has proven useful in multi-threaded
33480 applications. It is true that a programmer could simulate this function if it were not provided by
33481 passing extra state as part of the argument to the start_routine(). The terminating thread would
33482 set a flag to indicate termination and broadcast a condition that is part of that state; a joining
33483 thread would wait on that condition variable. While such a technique would allow a thread to
33484 wait on more complex conditions (for example, waiting for multiple threads to terminate),
33485 waiting on individual thread termination is considered widely useful. Also, including the
33486 pthread_join () function in no way precludes a programmer from coding such complex waits.
33487 Thus, while not a primitive, including pthread_join () in this volume of IEEE Std. 1003.1-200x was
33488 considered valuable.

33489 The pthread_join () function provides a simple mechanism allowing an application to wait for a
33490 thread to terminate. After the thread terminates, the application may then choose to clean up
33491 resources that were used by the thread. For instance, after pthread_join () returns, any
33492 application-provided stack storage could be reclaimed.

33493 The pthread_join () or pthread_detach() function should eventually be called for every thread that
33494 is created with the detachstate attribute set to PTHREAD_CREATE_JOINABLE so that storage
33495 associated with the thread may be reclaimed.

33496 The interaction between pthread_join () and cancelation is well-defined for the following reasons:

33497 • The pthread_join () function, like all other non-async-cancel-safe functions, can only be called
33498 with deferred cancelability type.

33499 • Cancelation cannot occur in the disabled cancelability state.

33500 Thus, only the default cancelability state need be considered. As specified, either the
33501 pthread_join () call is canceled, or it succeeds, but not both. The difference is obvious to the
33502 application, since either a cancelation handler is run or pthread_join () returns. There are no race
33503 conditions since pthread_join () was called in the deferred cancelability state.

33504 FUTURE DIRECTIONS
33505 None.

33506 SEE ALSO
33507 pthread_create(), wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

1574 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_join()

33508 CHANGE HISTORY
33509 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33510 Issue 6
33511 The pthread_join () function is marked as part of the Threads option. |

System Interfaces, Issue 6 1575

pthread_key_create() System Interfaces

33512 NAME
33513 pthread_key_create — thread-specific data key creation

33514 SYNOPSIS
33515 THR #include <pthread.h>

33516 int pthread_key_create(pthread_key_t * key , void (* destructor)(void*));
33517

33518 DESCRIPTION
33519 The pthread_key_create() function shall create a thread-specific data key visible to all threads in
33520 the process. Key values provided by pthread_key_create() are opaque objects used to locate
33521 thread-specific data. Although the same key value may be used by different threads, the values
33522 bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist for the
33523 life of the calling thread.

33524 Upon key creation, the value NULL shall be associated with the new key in all active threads.
33525 Upon thread creation, the value NULL shall be associated with all defined keys in the new
33526 thread.

33527 An optional destructor function may be associated with each key value. At thread exit, if a key
33528 value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with |
33529 that key, the value of the key is set to NULL, and then the function pointed to is called with the |
33530 previously associated value as its sole argument. The order of destructor calls is unspecified if |
33531 more than one destructor exists for a thread when it exits. |

33532 If, after all the destructors have been called for all non-NULL values with associated destructors,
33533 there are still some non-NULL values with associated destructors, then the process is repeated.
33534 If, after at least {PTHREAD_DESTRUCTOR_ITERATIONS} iterations of destructor calls for
33535 outstanding non-NULL values, there are still some non-NULL values with associated
33536 destructors, implementations may stop calling destructors, or they may continue calling
33537 destructors until no non-NULL values with associated destructors exist, even though this might
33538 result in an infinite loop.

33539 RETURN VALUE
33540 If successful, the pthread_key_create() function shall store the newly created key value at *key and
33541 shall return zero. Otherwise, an error number shall be returned to indicate the error.

33542 ERRORS
33543 The pthread_key_create() function shall fail if:

33544 [EAGAIN] The system lacked the necessary resources to create another thread-specific |
33545 data key, or the system-imposed limit on the total number of keys per process
33546 PTHREAD_KEYS_MAX has been exceeded.

33547 [ENOMEM] Insufficient memory exists to create the key. |

33548 The pthread_key_create() function shall not return an error code of [EINTR]. |

1576 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_key_create()

33549 EXAMPLES
33550 The following example demonstrates a function that initializes a thread-specific data key when
33551 it is first called, and associates a thread-specific object with each calling thread, initializing this
33552 object when necessary.

33553 static pthread_key_t key;
33554 static pthread_once_t key_once = PTHREAD_ONCE_INIT;

33555 static void
33556 make_key()
33557 {
33558 (void) pthread_key_create(&key, NULL);
33559 }

33560 func()
33561 {
33562 void *ptr;

33563 (void) pthread_once(&key_once, make_key);
33564 if ((ptr = pthread_getspecific(key)) == NULL) {
33565 ptr = malloc(OBJECT_SIZE);
33566 ...
33567 (void) pthread_setspecific(key, ptr);
33568 }
33569 ...
33570 }

33571 Note that the key has to be initialized before pthread_getspecific() or pthread_setspecific() can be
33572 used. The pthread_key_create() call could either be explicitly made in a module initialization
33573 routine, or it can be done implicitly by the first call to a module as in this example. Any attempt
33574 to use the key before it is initialized is a programming error, making the code below incorrect.

33575 static pthread_key_t key;

33576 func()
33577 {
33578 void *ptr;

33579 /* KEY NOT INITIALIZED!!! THIS WON’T WORK!!! */
33580 if ((ptr = pthread_getspecific(key)) == NULL &&
33581 pthread_setspecific(key, NULL) != 0) {
33582 pthread_key_create(&key, NULL);
33583 ...
33584 }
33585 }

33586 APPLICATION USAGE
33587 None.

System Interfaces, Issue 6 1577

pthread_key_create() System Interfaces

33588 RATIONALE

33589 Destructor Functions

33590 Normally, the value bound to a key on behalf of a particular thread is a pointer to storage
33591 allocated dynamically on behalf of the calling thread. The destructor functions specified with
33592 pthread_key_create() are intended to be used to free this storage when the thread exits. Thread
33593 cancelation cleanup handlers cannot be used for this purpose because thread-specific data may
33594 persist outside the lexical scope in which the cancelation cleanup handlers operate.

33595 If the value associated with a key needs to be updated during the lifetime of the thread, it may
33596 be necessary to release the storage associated with the old value before the new value is bound.
33597 Although the pthread_setspecific() function could do this automatically, this feature is not needed
33598 often enough to justify the added complexity. Instead, the programmer is responsible for freeing
33599 the stale storage:

33600 pthread_getspecific(key, &old);
33601 new = allocate();
33602 destructor(old);
33603 pthread_setspecific(key, new);

33604 Note: The above example could leak storage if run with asynchronous cancelation enabled.
33605 No such problems occur in the default cancelation state if no cancelation points
33606 occur between the get and set.

33607 There is no notion of a destructor-safe function. If an application does not call pthread_exit ()
33608 from a signal handler, or if it blocks any signal whose handler may call pthread_exit () while
33609 calling async-unsafe functions, all functions may be safely called from destructors.

33610 Non-Idempotent Data Key Creation

33611 There were requests to make pthread_key_create() idempotent with respect to a given key address
33612 parameter. This would allow applications to call pthread_key_create() multiple times for a given
33613 key address and be guaranteed that only one key would be created. Doing so would require the
33614 key value to be previously initialized (possibly at compile time) to a known null value and
33615 would require that implicit mutual-exclusion be performed based on the address and contents of
33616 the key parameter in order to guarantee that exactly one key would be created.

33617 Unfortunately, the implicit mutual-exclusion would not be limited to only pthread_key_create().
33618 On many implementations, implicit mutual-exclusion would also have to be performed by
33619 pthread_getspecific() and pthread_setspecific() in order to guard against using incompletely stored
33620 or not-yet-visible key values. This could significantly increase the cost of important operations,
33621 particularly pthread_getspecific().

33622 Thus, this proposal was rejected. The pthread_key_create() function performs no implicit
33623 synchronization. It it the responsibility of the programmer to ensure that it is called exactly once
33624 per key before use of the key. Several straightforward mechanisms can already be used to
33625 accomplish this, including calling explicit module initialization functions, using mutexes, and
33626 using pthread_once(). This places no significant burden on the programmer, introduces no
33627 possibly confusing ad hoc implicit synchronization mechanism, and potentially allows
33628 commonly used thread-specific data operations to be more efficient.

33629 FUTURE DIRECTIONS
33630 None.

1578 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_key_create()

33631 SEE ALSO
33632 pthread_getspecific(), pthread_key_delete(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33633 <pthread.h>

CHANGE33634 HISTORY
33635 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33636 Issue 6
33637 The pthread_key_create() function is marked as part of the Threads option. |

33638 IEEE PASC Interpretation 1003.1c #8 is applied, updating the DESCRIPTION. |

System Interfaces, Issue 6 1579

pthread_key_delete() System Interfaces

33639 NAME
33640 pthread_key_delete — thread-specific data key deletion

33641 SYNOPSIS
33642 THR #include <pthread.h>

33643 int pthread_key_delete(pthread_key_t key);
33644

33645 DESCRIPTION
33646 The pthread_key_delete() function shall delete a thread-specific data key previously returned by
33647 pthread_key_create(). The thread-specific data values associated with key need not be NULL at
33648 the time pthread_key_delete() is called. It is the responsibility of the application to free any
33649 application storage or perform any cleanup actions for data structures related to the deleted key
33650 or associated thread-specific data in any threads; this cleanup can be done either before or after
33651 pthread_key_delete() is called. Any attempt to use key following the call to pthread_key_delete()
33652 results in undefined behavior.

33653 The pthread_key_delete() function shall be callable from within destructor functions. No
33654 destructor functions shall be invoked by pthread_key_delete(). Any destructor function that may
33655 have been associated with key shall no longer be called upon thread exit.

33656 RETURN VALUE
33657 If successful, the pthread_key_delete() function shall return zero; otherwise, an error number shall
33658 be returned to indicate the error.

33659 ERRORS
33660 The pthread_key_delete() function may fail if:

33661 [EINVAL] The key value is invalid. |

33662 The pthread_key_delete() function shall not return an error code of [EINTR]. |

33663 EXAMPLES
33664 None.

33665 APPLICATION USAGE
33666 None.

33667 RATIONALE
33668 A thread-specific data key deletion function has been included in order to allow the resources
33669 associated with an unused thread-specific data key to be freed. Unused thread-specific data keys
33670 can arise, among other scenarios, when a dynamically loaded module that allocated a key is
33671 unloaded.

33672 Portable applications are responsible for performing any cleanup actions needed for data
33673 structures associated with the key to be deleted, including data referenced by thread-specific
33674 data values. No such cleanup is done by pthread_key_delete(). In particular, destructor functions
33675 are not called. There are several reasons for this division of responsibility:

33676 1. The associated destructor functions used to free thread-specific data at thread exit time are
33677 only guaranteed to work correctly when called in the thread that allocated the thread-
33678 specific data. (Destructors themselves may utilize thread-specific data.) Thus, they cannot
33679 be used to free thread-specific data in other threads at key deletion time. Attempting to
33680 have them called by other threads at key deletion time would require other threads to be
33681 asynchronously interrupted. But since interrupted threads could be in an arbitrary state,
33682 including holding locks necessary for the destructor to run, this approach would fail. In
33683 general, there is no safe mechanism whereby an implementation could free thread-specific
33684 data at key deletion time.

1580 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_key_delete()

33685 2. Even if there were a means of safely freeing thread-specific data associated with keys to be
33686 deleted, doing so would require that implementations be able to enumerate the threads
33687 with non-NULL data and potentially keep them from creating more thread-specific data
33688 while the key deletion is occurring. This special case could cause extra synchronization in
33689 the normal case, which would otherwise be unnecessary.

33690 For an application to know that it is safe to delete a key, it has to know that all the threads that
33691 might potentially ever use the key do not attempt to use it again. For example, it could know this
33692 if all the client threads have called a cleanup procedure declaring that they are through with the
33693 module that is being shut down, perhaps by zero’ing a reference count.

33694 FUTURE DIRECTIONS
33695 None.

33696 SEE ALSO
33697 pthread_key_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

33698 CHANGE HISTORY
33699 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33700 Issue 6
33701 The pthread_key_delete() function is marked as part of the Threads option. |

System Interfaces, Issue 6 1581

pthread_kill() System Interfaces

33702 NAME
33703 pthread_kill — send a signal to a thread

33704 SYNOPSIS
33705 THR #include <signal.h>

33706 int pthread_kill(pthread_t thread , int sig);
33707

33708 DESCRIPTION
33709 The pthread_kill () function is used to request that a signal be delivered to the specified thread.

33710 As in kill (), if sig is zero, error checking is performed but no signal is actually sent.

33711 RETURN VALUE
33712 Upon successful completion, the function shall return a value of zero. Otherwise, the function
33713 shall return an error number. If the pthread_kill () function fails, no signal shall be sent.

33714 ERRORS
33715 The pthread_kill () function shall fail if:

33716 [ESRCH] No thread could be found corresponding to that specified by the given thread |
33717 ID.

33718 [EINVAL] The value of the sig argument is an invalid or unsupported signal number. |

33719 The pthread_kill () function shall not return an error code of [EINTR]. |

33720 EXAMPLES
33721 None.

33722 APPLICATION USAGE
33723 The pthread_kill () function provides a mechanism for asynchronously directing a signal at a
33724 thread in the calling process. This could be used, for example, by one thread to affect broadcast
33725 delivery of a signal to a set of threads.

33726 Note that pthread_kill () only causes the signal to be handled in the context of the given thread;
33727 the signal action (termination or stopping) affects the process as a whole.

33728 RATIONALE
33729 None.

33730 FUTURE DIRECTIONS
33731 None.

33732 SEE ALSO
33733 kill (), pthread_self (), raise(), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h> |

33734 CHANGE HISTORY
33735 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33736 Issue 6
33737 The pthread_kill () function is marked as part of the Threads option. |

33738 The APPLICATION USAGE section is added.

1582 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_destroy()

33739 NAME
33740 pthread_mutex_destroy, pthread_mutex_init — destroy and initialize a mutex

33741 SYNOPSIS
33742 THR #include <pthread.h>

33743 int pthread_mutex_destroy(pthread_mutex_t * mutex);
33744 int pthread_mutex_init(pthread_mutex_t *restrict mutex , |
33745 const pthread_mutexattr_t *restrict attr); |
33746 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
33747

33748 DESCRIPTION
33749 The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the mutex
33750 object becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy() to
33751 set the object referenced by mutex to an invalid value. A destroyed mutex object can be re-
33752 initialized using pthread_mutex_init(); the results of otherwise referencing the object after it has
33753 been destroyed are undefined.

33754 It shall be safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked
33755 mutex results in undefined behavior.

33756 The pthread_mutex_init() function initializes the mutex referenced by mutex with attributes
33757 specified by attr . If attr is NULL, the default mutex attributes are used; the effect shall be the
33758 same as passing the address of a default mutex attributes object. Upon successful initialization,
33759 the state of the mutex becomes initialized and unlocked.

33760 Only mutex itself may be used for performing synchronization. The result of referring to copies |
33761 of mutex in calls to pthread_mutex_lock(), pthread_mutex_trylock(), pthread_mutex_unlock(), and |
33762 pthread_mutex_destroy() is undefined. |

33763 Attempting to initialize an already initialized mutex results in undefined behavior. |

33764 In cases where default mutex attributes are appropriate, the macro
33765 PTHREAD_MUTEX_INITIALIZER can be used to initialize mutexes that are statically allocated. |
33766 The effect shall be equivalent to dynamic initialization by a call to pthread_mutex_init() with |
33767 parameter attr specified as NULL, except that no error checks are performed.

33768 RETURN VALUE
33769 If successful, the pthread_mutex_destroy() and pthread_mutex_init() functions shall return zero;
33770 otherwise, an error number shall be returned to indicate the error.

33771 The [EBUSY] and [EINVAL] error checks, if implemented, act as if they were performed
33772 immediately at the beginning of processing for the function and shall cause an error return prior
33773 to modifying the state of the mutex specified by mutex.

33774 ERRORS
33775 The pthread_mutex_destroy() function may fail if:

33776 [EBUSY] The implementation has detected an attempt to destroy the object referenced |
33777 by mutex while it is locked or referenced (for example, while being used in a
33778 pthread_cond_timedwait() or pthread_cond_wait()) by another thread.

33779 [EINVAL] The value specified by mutex is invalid. |

33780 The pthread_mutex_init() function shall fail if:

33781 [EAGAIN] The system lacked the necessary resources (other than memory) to initialize |
33782 another mutex.

System Interfaces, Issue 6 1583

pthread_mutex_destroy() System Interfaces

33783 [ENOMEM] Insufficient memory exists to initialize the mutex. |

33784 [EPERM] The caller does not have the privilege to perform the operation. |

33785 The pthread_mutex_init() function may fail if:

33786 [EBUSY] The implementation has detected an attempt to re-initialize the object |
33787 referenced by mutex, a previously initialized, but not yet destroyed, mutex.

33788 [EINVAL] The value specified by attr is invalid. |

33789 These functions shall not return an error code of [EINTR]. |

33790 EXAMPLES
33791 None.

33792 APPLICATION USAGE
33793 None.

33794 RATIONALE

33795 Alternate Implementations Possible

33796 This volume of IEEE Std. 1003.1-200x supports several alternative implementations of mutexes.
33797 An implementation may store the lock directly in the object of type pthread_mutex_t.
33798 Alternatively, an implementation may store the lock in the heap and merely store a pointer,
33799 handle, or unique ID in the mutex object. Either implementation has advantages or may be
33800 required on certain hardware configurations. So that portable code can be written that is
33801 invariant to this choice, this volume of IEEE Std. 1003.1-200x does not define assignment or
33802 equality for this type, and it uses the term ‘‘initialize’’ to reinforce the (more restrictive) notion
33803 that the lock may actually reside in the mutex object itself.

33804 Note that this precludes an over-specification of the type of the mutex or condition variable and
33805 motivates the opacity of the type.

33806 An implementation is permitted, but not required, to have pthread_mutex_destroy() store an
33807 illegal value into the mutex. This may help detect erroneous programs that try to lock (or
33808 otherwise reference) a mutex that has already been destroyed.

33809 Tradeoff Between Error Checks and Performance Supported

33810 Many of the error checks were made optional in order to let implementations trade off
33811 performance versus degree of error checking according to the needs of their specific applications
33812 and execution environment. As a general rule, errors or conditions caused by the system (such as
33813 insufficient memory) always need to be reported, but errors due to an erroneously coded
33814 application (such as failing to provide adequate synchronization to prevent a mutex from being
33815 deleted while in use) are made optional.

33816 A wide range of implementations is thus made possible. For example, an implementation
33817 intended for application debugging may implement all of the error checks, but an
33818 implementation running a single, provably correct application under very tight performance
33819 constraints in an embedded computer might implement minimal checks. An implementation
33820 might even be provided in two versions, similar to the options that compilers provide: a full-
33821 checking, but slower version; and a limited-checking, but faster version. To forbid this
33822 optionality would be a disservice to users.

33823 By carefully limiting the use of ‘‘undefined behavior’’ only to things that an erroneous (badly
33824 coded) application might do, and by defining that resource-not-available errors are mandatory,
33825 this volume of IEEE Std. 1003.1-200x ensures that a fully-conforming application is portable

1584 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_destroy()

33826 across the full range of implementations, while not forcing all implementations to add overhead
33827 to check for numerous things that a correct program never does.

33828 Why No Limits Defined

33829 Defining symbols for the maximum number of mutexes and condition variables was considered
33830 but rejected because the number of these objects may change dynamically. Furthermore, many
33831 implementations place these objects into application memory; thus, there is no explicit
33832 maximum.

33833 Static Initializers for Mutexes and Condition Variables

33834 Providing for static initialization of statically allocated synchronization objects allows modules
33835 with private static synchronization variables to avoid runtime initialization tests and overhead.
33836 Furthermore, it simplifies the coding of self-initializing modules. Such modules are common in
33837 C libraries, where for various reasons the design calls for self-initialization instead of requiring
33838 an explicit module initialization function to be called. An example use of static initialization
33839 follows.

33840 Without static initialization, a self-initializing routine foo () might look as follows:

33841 static pthread_once_t foo_once = PTHREAD_ONCE_INIT;
33842 static pthread_mutex_t foo_mutex;

33843 void foo_init()
33844 {
33845 pthread_mutex_init(&foo_mutex, NULL);
33846 }

33847 void foo()
33848 {
33849 pthread_once(&foo_once, foo_init);
33850 pthread_mutex_lock(&foo_mutex);
33851 /* Do work. */
33852 pthread_mutex_unlock(&foo_mutex);
33853 }

33854 With static initialization, the same routine could be coded as follows:

33855 static pthread_mutex_t foo_mutex = PTHREAD_MUTEX_INITIALIZER;

33856 void foo()
33857 {
33858 pthread_mutex_lock(&foo_mutex);
33859 /* Do work. */
33860 pthread_mutex_unlock(&foo_mutex);
33861 }

33862 Note that the static initialization both eliminates the need for the initialization test inside
33863 pthread_once() and the fetch of &foo_mutex to learn the address to be passed to
33864 pthread_mutex_lock() or pthread_mutex_unlock().

33865 Thus, the C code written to initialize static objects is simpler on all systems and is also faster on a
33866 large class of systems; those where the (entire) synchronization object can be stored in
33867 application memory.

33868 Yet the locking performance question is likely to be raised for machines that require mutexes to
33869 be allocated out of special memory. Such machines actually have to have mutexes and possibly

System Interfaces, Issue 6 1585

pthread_mutex_destroy() System Interfaces

33870 condition variables contain pointers to the actual hardware locks. For static initialization to work
33871 on such machines, pthread_mutex_lock() also has to test whether or not the pointer to the actual
33872 lock has been allocated. If it has not, pthread_mutex_lock() has to initialize it before use. The
33873 reservation of such resources can be made when the program is loaded, and hence return codes
33874 have not been added to mutex locking and condition variable waiting to indicate failure to
33875 complete initialization.

33876 This runtime test in pthread_mutex_lock() would at first seem to be extra work; an extra test is
33877 required to see whether the pointer has been initialized. On most machines this would actually
33878 be implemented as a fetch of the pointer, testing the pointer against zero, and then using the
33879 pointer if it has already been initialized. While the test might seem to add extra work, the extra
33880 effort of testing a register is usually negligible since no extra memory references are actually
33881 done. As more and more machines provide caches, the real expenses are memory references, not
33882 instructions executed.

33883 Alternatively, depending on the machine architecture, there are often ways to eliminate all
33884 overhead in the most important case: on the lock operations that occur after the lock has been
33885 initialized. This can be done by shifting more overhead to the less frequent operation:
33886 initialization. Since out-of-line mutex allocation also means that an address has to be
33887 dereferenced to find the actual lock, one technique that is widely applicable is to have static
33888 initialization store a bogus value for that address; in particular, an address that causes a machine
33889 fault to occur. When such a fault occurs upon the first attempt to lock such a mutex, validity
33890 checks can be done, and then the correct address for the actual lock can be filled in. Subsequent
33891 lock operations incur no extra overhead since they do not ‘‘fault’’. This is merely one technique
33892 that can be used to support static initialization, while not adversely affecting the performance of
33893 lock acquisition. No doubt there are other techniques that are highly machine-dependent.

33894 The locking overhead for machines doing out-of-line mutex allocation is thus similar for
33895 modules being implicitly initialized, where it is improved for those doing mutex allocation
33896 entirely inline. The inline case is thus made much faster, and the out-of-line case is not
33897 significantly worse.

33898 Besides the issue of locking performance for such machines, a concern is raised that it is possible
33899 that threads would serialize contending for initialization locks when attempting to finish
33900 initializing statically allocated mutexes. (Such finishing would typically involve taking an
33901 internal lock, allocating a structure, storing a pointer to the structure in the mutex, and releasing
33902 the internal lock.) First, many implementations would reduce such serialization by hashing on
33903 the mutex address. Second, such serialization can only occur a bounded number of times. In
33904 particular, it can happen at most as many times as there are statically allocated synchronization
33905 objects. Dynamically allocated objects would still be initialized via pthread_mutex_init() or
33906 pthread_cond_init().

33907 Finally, if none of the above optimization techniques for out-of-line allocation yields sufficient
33908 performance for an application on some implementation, the application can avoid static
33909 initialization altogether by explicitly initializing all synchronization objects with the
33910 corresponding pthread_*_init() functions, which are supported by all implementations. An
33911 implementation can also document the tradeoffs and advise which initialization technique is
33912 more efficient for that particular implementation.

1586 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_destroy()

33913 Destroying Mutexes

33914 A mutex can be destroyed immediately after it is unlocked. For example, consider the following
33915 code:

33916 struct obj {
33917 pthread_mutex_t om;
33918 int refcnt;
33919 ...
33920 };

33921 obj_done(struct obj *op)
33922 {
33923 pthread_mutex_lock(&op->om);
33924 if (--op->refcnt == 0) {
33925 pthread_mutex_unlock(&op->om);
33926 (A) pthread_mutex_destroy(&op->om);
33927 (B) free(op);
33928 } else
33929 (C) pthread_mutex_unlock(&op->om);
33930 }

33931 In this case obj is reference counted and obj_done() is called whenever a reference to the object is
33932 dropped. Implementations are required to allow an object to be destroyed and freed and
33933 potentially unmapped (for example, lines A and B) immediately after the object is unlocked (line
33934 C).

33935 FUTURE DIRECTIONS
33936 None.

33937 SEE ALSO
33938 pthread_mutex_getprioceiling(), pthread_mutex_lock(), pthread_mutex_timedlock(),
33939 pthread_mutexattr_getpshared(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
33940 <pthread.h>

CHANGE33941 HISTORY
33942 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33943 Issue 6
33944 The pthread_mutex_destroy() and pthread_mutex_init() functions are marked as part of the |
33945 Threads option. |

33946 The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
33947 IEEE Std. 1003.1d-1999. |

33948 IEEE PASC Interpretation 1003.1c #34 is applied, updating the DESCRIPTION. |

33949 The restrict keyword is added to the pthread_mutex_init() prototype for alignment with the |
33950 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1587

pthread_mutex_getprioceiling() System Interfaces

33951 NAME
33952 pthread_mutex_getprioceiling, pthread_mutex_setprioceiling — change the priority ceiling of a
33953 mutex (REALTIME THREADS)

33954 SYNOPSIS
33955 TPP #include <pthread.h>

33956 int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex , |
33957 int *restrict prioceiling); |
33958 int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex , |
33959 int prioceiling , int *restrict old_ceiling); |
33960 |

33961 DESCRIPTION
33962 The pthread_mutex_getprioceiling() function shall return the current priority ceiling of the mutex.

33963 The pthread_mutex_setprioceiling() function either locks the mutex if it is unlocked, or blocks until
33964 it can successfully lock the mutex, then it changes the mutex’s priority ceiling and releases the
33965 mutex. When the change is successful, the previous value of the priority ceiling is returned in
33966 old_ceiling . The process of locking the mutex need not adhere to the priority protect protocol.

33967 If the pthread_mutex_setprioceiling() function fails, the mutex priority ceiling shall not be
33968 changed.

33969 RETURN VALUE
33970 If successful, the pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions shall
33971 return zero; otherwise, an error number shall be returned to indicate the error.

33972 ERRORS
33973 The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions may fail if:

33974 [EINVAL] The priority requested by prioceiling is out of range. |

33975 [EINVAL] The value specified by mutex does not refer to a currently existing mutex.

33976 [EPERM] The caller does not have the privilege to perform the operation. |

33977 These functions shall not return an error code of [EINTR]. |

33978 EXAMPLES
33979 None.

33980 APPLICATION USAGE
33981 None.

33982 RATIONALE
33983 None.

33984 FUTURE DIRECTIONS
33985 None.

33986 SEE ALSO
33987 pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_timedlock(), the Base Definitions |
33988 volume of IEEE Std. 1003.1-200x, <pthread.h> |

33989 CHANGE HISTORY
33990 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

33991 Marked as part of the Realtime Threads Feature Group.

1588 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_getprioceiling()

33992 Issue 6
33993 The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are marked as |
33994 part of the Thread Priority Protection option. |

33995 The [ENOSYS] error condition has been removed as stubs need not be provided if an
33996 implementation does not support the Thread Priority Protection option. |

33997 The [ENOSYS] error denoting non-support of the priority ceiling protocol for mutexes has been
33998 removed. This is since if the implementation provides the functions (regardless of whether
33999 _POSIX_PTHREAD_PRIO_PROTECT is defined), they must function as in the DESCRIPTION
34000 and therefore the priority ceiling protocol for mutexes is supported.

34001 The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
34002 IEEE Std. 1003.1d-1999. |

34003 The restrict keyword is added to the pthread_mutex_getprioceiling() and |
34004 pthread_mutex_setprioceiling() prototypes for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1589

pthread_mutex_init() System Interfaces

34005 NAME
34006 pthread_mutex_init — initialize a mutex

34007 SYNOPSIS
34008 THR #include <pthread.h>

34009 int pthread_mutex_init(pthread_mutex_t *restrict mutex , |
34010 const pthread_mutexattr_t *restrict attr); |
34011 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
34012

34013 DESCRIPTION
34014 Refer to pthread_mutex_destroy().

1590 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_lock()

34015 NAME
34016 pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a
34017 mutex |

34018 SYNOPSIS
34019 THR #include <pthread.h>

34020 int pthread_mutex_lock(pthread_mutex_t * mutex);
34021 int pthread_mutex_trylock(pthread_mutex_t * mutex);
34022 int pthread_mutex_unlock(pthread_mutex_t * mutex);
34023

34024 DESCRIPTION
34025 The mutex object referenced by mutex shall be locked by calling pthread_mutex_lock(). If the
34026 mutex is already locked, the calling thread shall block until the mutex becomes available. This
34027 operation shall return with the mutex object referenced by mutex in the locked state with the
34028 calling thread as its owner.

34029 XSI If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection shall not be provided.
34030 Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it
34031 has not locked or a mutex which is unlocked, undefined behavior results.

34032 If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking shall be provided.
34033 If a thread attempts to relock a mutex that it has already locked, an error is returned. If a thread
34034 attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error is
34035 returned.

34036 If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex shall maintain the
34037 concept of a lock count. When a thread successfully acquires a mutex for the first time, the lock
34038 count is set to one. Every time a thread relocks this mutex, the lock count is incremented by one.
34039 Each time the thread unlocks the mutex, the lock count is decremented by one. When the lock
34040 count reaches zero, the mutex becomes available for other threads to acquire. If a thread
34041 attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an error is
34042 returned.

34043 If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
34044 results in undefined behavior. Attempting to unlock the mutex if it was not locked by the calling
34045 thread results in undefined behavior. Attempting to unlock the mutex if it is not locked results in
34046 undefined behavior.

34047 The pthread_mutex_trylock() function is identical to pthread_mutex_lock() except that if the mutex
34048 object referenced by mutex is currently locked (by any thread, including the current thread), the
34049 call shall return immediately.

34050 XSI The pthread_mutex_unlock() function releases the mutex object referenced by mutex. The manner
34051 in which a mutex is released is dependent upon the mutex’s type attribute. If there are threads
34052 blocked on the mutex object referenced by mutex when pthread_mutex_unlock() is called,
34053 resulting in the mutex becoming available, the scheduling policy is used to determine which
34054 thread shall acquire the mutex.

34055 XSI (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex shall become available
34056 when the count reaches zero and the calling thread no longer has any locks on this mutex).

34057 If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the
34058 thread shall resume waiting for the mutex as if it was not interrupted.

System Interfaces, Issue 6 1591

pthread_mutex_lock() System Interfaces

34059 RETURN VALUE
34060 If successful, the pthread_mutex_lock() and pthread_mutex_unlock() functions shall return zero;
34061 otherwise, an error number shall be returned to indicate the error.

34062 The pthread_mutex_trylock() function shall return zero if a lock on the mutex object referenced by
34063 mutex is acquired. Otherwise, an error number is returned to indicate the error.

34064 ERRORS
34065 The pthread_mutex_lock() and pthread_mutex_trylock() functions shall fail if:

34066 [EINVAL] The mutex was created with the protocol attribute having the value |
34067 PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
34068 the mutex’s current priority ceiling.

34069 The pthread_mutex_trylock() function shall fail if:

34070 [EBUSY] The mutex could not be acquired because it was already locked. |

34071 The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions may
34072 fail if:

34073 [EINVAL] The value specified by mutex does not refer to an initialized mutex object. |

34074 XSI [EAGAIN] The mutex could not be acquired because the maximum number of recursive |
34075 locks for mutex has been exceeded.

34076 The pthread_mutex_lock() function may fail if:

34077 [EDEADLK] The current thread already owns the mutex. |

34078 The pthread_mutex_unlock() function may fail if:

34079 [EPERM] The current thread does not own the mutex. |

34080 These functions shall not return an error code of [EINTR]. |

34081 EXAMPLES
34082 None.

34083 APPLICATION USAGE
34084 None.

34085 RATIONALE
34086 Mutex objects are intended to serve as a low-level primitive from which other thread
34087 synchronization functions can be built. As such, the implementation of mutexes should be as
34088 efficient as possible, and this has ramifications on the features available at the interface.

34089 The mutex functions and the particular default settings of the mutex attributes have been
34090 motivated by the desire to not preclude fast, inlined implementations of mutex locking and
34091 unlocking.

34092 For example, deadlocking on a double-lock is explicitly allowed behavior in order to avoid
34093 requiring more overhead in the basic mechanism than is absolutely necessary. (More ‘‘friendly’’
34094 mutexes that detect deadlock or that allow multiple locking by the same thread are easily
34095 constructed by the user via the other mechanisms provided. For example, pthread_self () can be
34096 used to record mutex ownership.) Implementations might also choose to provide such extended
34097 features as options via special mutex attributes.

34098 Since most attributes only need to be checked when a thread is going to be blocked, the use of
34099 attributes does not slow the (common) mutex-locking case.

1592 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_lock()

34100 Likewise, while being able to extract the thread ID of the owner of a mutex might be desirable, it
34101 would require storing the current thread ID when each mutex is locked, and this could incur
34102 unacceptable levels of overhead. Similar arguments apply to a mutex_tryunlock operation.

34103 FUTURE DIRECTIONS
34104 None.

34105 SEE ALSO
34106 pthread_mutex_destroy(), pthread_mutex_timedlock(), the Base Definitions volume of |
34107 IEEE Std. 1003.1-200x, <pthread.h> |

34108 CHANGE HISTORY
34109 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34110 Issue 6
34111 The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock() functions are |
34112 marked as part of the Threads option. |

34113 The following new requirements on POSIX implementations derive from alignment with the
34114 Single UNIX Specification:

34115 • The behavior when attempting to relock a mutex is defined.

34116 The pthread_mutex_timedlock() function is added to the SEE ALSO section for alignment with
34117 IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1593

pthread_mutex_setprioceiling() System Interfaces

34118 NAME
34119 pthread_mutex_setprioceiling — change the priority ceiling of a mutex (REALTIME
34120 THREADS)

34121 SYNOPSIS
34122 TPP #include <pthread.h>

34123 int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex , |
34124 int prioceiling , int *restrict old_ceiling); |
34125 |

34126 DESCRIPTION
34127 Refer to pthread_mutex_getprioceiling().

|

1594 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_timedlock()

34128 NAME
34129 pthread_mutex_timedlock — lock a mutex (REALTIME THREADS)

34130 SYNOPSIS
34131 THR TMO #include <pthread.h>
34132 #include <time.h>

34133 int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex , |
34134 const struct timespec *restrict abs_timeout); |
34135 |

34136 DESCRIPTION
34137 The pthread_mutex_timedlock() function is called to lock the mutex object referenced by mutex. If
34138 the mutex is already locked, the calling thread blocks until the mutex becomes available as in the
34139 pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another thread
34140 to unlock the mutex, this wait shall be terminated when the specified timeout expires.

34141 The timeout expires when the absolute time specified by abs_timeout passes, as measured by the
34142 clock on which timeouts are based (that is, when the value of that clock equals or exceeds
34143 abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
34144 of the call. If the Timers option is supported, the timeout is based on the CLOCK_REALTIME
34145 clock; if the Timers option is not supported, the timeout is based on the system clock as returned
34146 by the time() function. The resolution of the timeout is the resolution of the clock on which it is
34147 based. The timespec datatype is defined as a structure in the <time.h> header.

34148 Under no circumstance will the function fail with a timeout if the mutex can be locked
34149 immediately. The validity of the abs_timeout parameter need not be checked if the mutex can be
34150 locked immediately.

34151 As a consequence of the priority inheritance rules (for mutexes initialized with the
34152 PRIO_INHERIT protocol), if a timed mutex wait is terminated because its timeout expires, the
34153 priority of the owner of the mutex will be adjusted as necessary to reflect the fact that this thread
34154 is no longer among the threads waiting for the mutex.

34155 RETURN VALUE
34156 If successful, the pthread_mutex_timedlock() function shall return zero; otherwise, an error
34157 number shall be returned to indicate the error.

34158 ERRORS
34159 The pthread_mutex_timedlock() function shall fail if:

34160 [EINVAL] The mutex was created with the protocol attribute having the value
34161 PTHREAD_PRIO_PROTECT and the calling thread’s priority is higher than
34162 the mutex’ current priority ceiling.

34163 [EINVAL] The process or thread would have blocked, and the abs_timeout parameter
34164 specified a nanoseconds field value less than zero or greater than or equal to
34165 1 000 million.

34166 [ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

34167 The pthread_mutex_timedlock() function may fail if:

34168 [EINVAL] The value specified by mutex does not refer to an initialized mutex object.

34169 XSI [EAGAIN] The mutex could not be acquired because the maximum number of recursive
34170 locks for mutex has been exceeded.

34171 [EDEADLK] The current thread already owns the mutex.

System Interfaces, Issue 6 1595

pthread_mutex_timedlock() System Interfaces

34172 This function shall not return an error code of [EINTR]. |

34173 EXAMPLES
34174 None.

34175 APPLICATION USAGE
34176 The pthread_mutex_timedlock() function is part of the Threads and Timeouts options and need |
34177 not be provided on all implementations. |

34178 RATIONALE
34179 None.

34180 FUTURE DIRECTIONS
34181 None.

34182 SEE ALSO
34183 pthread_mutex_destroy(), pthread_mutex_lock(), pthread_mutex_trylock(), time(), the Base |
34184 Definitions volume of IEEE Std. 1003.1-200x, <pthread.h>, <time.h> |

34185 CHANGE HISTORY
34186 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999. |

1596 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutex_trylock()

34187 NAME
34188 pthread_mutex_trylock, pthread_mutex_unlock — lock and unlock a mutex

34189 SYNOPSIS
34190 THR #include <pthread.h>

34191 int pthread_mutex_trylock(pthread_mutex_t * mutex);
34192 int pthread_mutex_unlock(pthread_mutex_t * mutex);
34193

34194 DESCRIPTION
34195 Refer to pthread_mutex_lock().

System Interfaces, Issue 6 1597

pthread_mutexattr_destroy() System Interfaces

34196 NAME
34197 pthread_mutexattr_destroy, pthread_mutexattr_init — destroy and initialize mutex attributes
34198 object

34199 SYNOPSIS
34200 THR #include <pthread.h>

34201 int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);
34202 int pthread_mutexattr_init(pthread_mutexattr_t * attr);
34203

34204 DESCRIPTION
34205 The pthread_mutexattr_destroy() function destroys a mutex attributes object; the object becomes,
34206 in effect, uninitialized. An implementation may cause pthread_mutexattr_destroy() to set the
34207 object referenced by attr to an invalid value. A destroyed mutex attributes object can be re-
34208 initialized using pthread_mutexattr_init(); the results of otherwise referencing the object after it
34209 has been destroyed are undefined.

34210 The pthread_mutexattr_init() function initializes a mutex attributes object attr with the default
34211 value for all of the attributes defined by the implementation.

34212 The effect of initializing an already initialized mutex attributes object is undefined.

34213 After a mutex attributes object has been used to initialize one or more mutexes, any function
34214 affecting the attributes object (including destruction) does not affect any previously initialized
34215 mutexes.

34216 RETURN VALUE
34217 Upon successful completion, pthread_mutexattr_destroy() and pthread_mutexattr_init() shall
34218 return zero; otherwise, an error number shall be returned to indicate the error.

34219 ERRORS
34220 The pthread_mutexattr_destroy() function may fail if:

34221 [EINVAL] The value specified by attr is invalid. |

34222 The pthread_mutexattr_init() function shall fail if: |

34223 [ENOMEM] Insufficient memory exists to initialize the mutex attributes object. |

34224 These functions shall not return an error code of [EINTR]. |

34225 EXAMPLES
34226 None.

34227 APPLICATION USAGE
34228 None.

34229 RATIONALE
34230 See pthread_attr_init() for a general explanation of attributes. Attributes objects allow
34231 implementations to experiment with useful extensions and permit extension of this volume of
34232 IEEE Std. 1003.1-200x without changing the existing functions. Thus, they provide for future
34233 extensibility of this volume of IEEE Std. 1003.1-200x and reduce the temptation to standardize
34234 prematurely on semantics that are not yet widely implemented or understood.

34235 Examples of possible additional mutex attributes that have been discussed are spin_only ,
34236 limited_spin , no_spin , recursive, and metered. (To explain what the latter attributes might mean:
34237 recursive mutexes would allow for multiple re-locking by the current owner; metered mutexes
34238 would transparently keep records of queue length, wait time, and so on.) Since there is not yet
34239 wide agreement on the usefulness of these resulting from shared implementation and usage

1598 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_destroy()

34240 experience, they are not yet specified in this volume of IEEE Std. 1003.1-200x. Mutex attributes
34241 objects, however, make it possible to test out these concepts for possible standardization at a
34242 later time.

34243 Mutex Attributes and Performance

34244 Care has been taken to ensure that the default values of the mutex attributes have been defined
34245 such that mutexes initialized with the defaults have simple enough semantics so that the locking
34246 and unlocking can be done with the equivalent of a test-and-set instruction (plus possibly a few
34247 other basic instructions).

34248 There is at least one implementation method that can be used to reduce the cost of testing at
34249 lock-time if a mutex has non-default attributes. One such method that an implementation can
34250 employ (and this can be made fully transparent to fully conforming POSIX applications) is to
34251 secretly pre-lock any mutexes that are initialized to non-default attributes. Any later attempt to
34252 lock such a mutex causes the implementation to branch to the ‘‘slow path’’ as if the mutex were
34253 unavailable; then, on the slow path, the implementation can do the ‘‘real work’’ to lock a non-
34254 default mutex. The underlying unlock operation is more complicated since the implementation
34255 never really wants to release the pre-lock on this kind of mutex. This illustrates that, depending
34256 on the hardware, there may be certain optimizations that can be used so that whatever mutex
34257 attributes are considered ‘‘most frequently used’’ can be processed most efficiently.

34258 Process Shared Memory and Synchronization

34259 The existence of memory mapping functions in this volume of IEEE Std. 1003.1-200x leads to the
34260 possibility that an application may allocate the synchronization objects from this section in
34261 memory that is accessed by multiple processes (and therefore, by threads of multiple processes).

34262 In order to permit such usage, while at the same time keeping the usual case (that is, usage
34263 within a single process) efficient, a process-shared option has been defined.

34264 If an implementation supports the _POSIX_THREAD_PROCESS_SHARED option, then the
34265 process-shared attribute can be used to indicate that mutexes or condition variables may be
34266 accessed by threads of multiple processes.

34267 The default setting of PTHREAD_PROCESS_PRIVATE has been chosen for the process-shared
34268 attribute so that the most efficient forms of these synchronization objects are created by default.

34269 Synchronization variables that are initialized with the PTHREAD_PROCESS_PRIVATE process-
34270 shared attribute may only be operated on by threads in the process that initialized them.
34271 Synchronization variables that are initialized with the PTHREAD_PROCESS_SHARED process-
34272 shared attribute may be operated on by any thread in any process that has access to it. In
34273 particular, these processes may exist beyond the lifetime of the initializing process. For example,
34274 the following code implements a simple counting semaphore in a mapped file that may be used
34275 by many processes.

34276 /* sem.h */
34277 struct semaphore {
34278 pthread_mutex_t lock;
34279 pthread_cond_t nonzero;
34280 unsigned count;
34281 };
34282 typedef struct semaphore semaphore_t;

34283 semaphore_t *semaphore_create(char *semaphore_name);
34284 semaphore_t *semaphore_open(char *semaphore_name);
34285 void semaphore_post(semaphore_t *semap);

System Interfaces, Issue 6 1599

pthread_mutexattr_destroy() System Interfaces

34286 void semaphore_wait(semaphore_t *semap);
34287 void semaphore_close(semaphore_t *semap);

34288 /* sem.c */
34289 #include <sys/types.h>
34290 #include <sys/stat.h>
34291 #include <sys/mman.h>
34292 #include <fcntl.h>
34293 #include <pthread.h>
34294 #include "sem.h"

34295 semaphore_t *
34296 semaphore_create(char *semaphore_name)
34297 {
34298 int fd;
34299 semaphore_t *semap;
34300 pthread_mutexattr_t psharedm;
34301 pthread_condattr_t psharedc;

34302 fd = open(semaphore_name, O_RDWR | O_CREAT | O_EXCL, 0666);
34303 if (fd < 0)
34304 return (NULL);
34305 (void) ftruncate(fd, sizeof(semaphore_t));
34306 (void) pthread_mutexattr_init(&psharedm);
34307 (void) pthread_mutexattr_setpshared(&psharedm,
34308 PTHREAD_PROCESS_SHARED);
34309 (void) pthread_condattr_init(&psharedc);
34310 (void) pthread_condattr_setpshared(&psharedc,
34311 PTHREAD_PROCESS_SHARED);
34312 semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),
34313 PROT_READ | PROT_WRITE, MAP_SHARED,
34314 fd, 0);
34315 close (fd);
34316 (void) pthread_mutex_init(&semap->lock, &psharedm);
34317 (void) pthread_cond_init(&semap->nonzero, &psharedc);
34318 semap->count = 0;
34319 return (semap);
34320 }

34321 semaphore_t *
34322 semaphore_open(char *semaphore_name)
34323 {
34324 int fd;
34325 semaphore_t *semap;

34326 fd = open(semaphore_name, O_RDWR, 0666);
34327 if (fd < 0)
34328 return (NULL);
34329 semap = (semaphore_t *) mmap(NULL, sizeof(semaphore_t),
34330 PROT_READ | PROT_WRITE, MAP_SHARED,
34331 fd, 0);
34332 close (fd);
34333 return (semap);
34334 }

1600 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_destroy()

34335 void
34336 semaphore_post(semaphore_t *semap)
34337 {
34338 pthread_mutex_lock(&semap->lock);
34339 if (semap->count == 0)
34340 pthread_cond_signal(&semapx->nonzero);
34341 semap->count++;
34342 pthread_mutex_unlock(&semap->lock);
34343 }

34344 void
34345 semaphore_wait(semaphore_t *semap)
34346 {
34347 pthread_mutex_lock(&semap->lock);
34348 while (semap->count == 0)
34349 pthread_cond_wait(&semap->nonzero, &semap->lock);
34350 semap->count--;
34351 pthread_mutex_unlock(&semap->lock);
34352 }

34353 void
34354 semaphore_close(semaphore_t *semap)
34355 {
34356 munmap((void *) semap, sizeof(semaphore_t));
34357 }

34358 The following code is for three separate processes that create, post, and wait on a semphore in
34359 the file /tmp/semaphore. Once the file is created, the post and wait programs increment and
34360 decrement the counting semaphore (waiting and waking as required) even though they did not
34361 initialize the semaphore.

34362 /* create.c */
34363 #include "pthread.h"
34364 #include "sem.h"

34365 int
34366 main()
34367 {
34368 semaphore_t *semap;

34369 semap = semaphore_create("/tmp/semaphore");
34370 if (semap == NULL)
34371 exit(1);
34372 semaphore_close(semap);
34373 return (0);
34374 }

34375 /* post */
34376 #include "pthread.h"
34377 #include "sem.h"

34378 int
34379 main()
34380 {
34381 semaphore_t *semap;

System Interfaces, Issue 6 1601

pthread_mutexattr_destroy() System Interfaces

34382 semap = semaphore_open("/tmp/semaphore");
34383 if (semap == NULL)
34384 exit(1);
34385 semaphore_post(semap);
34386 semaphore_close(semap);
34387 return (0);
34388 }

34389 /* wait */
34390 #include "pthread.h"
34391 #include "sem.h"

34392 int
34393 main()
34394 {
34395 semaphore_t *semap;

34396 semap = semaphore_open("/tmp/semaphore");
34397 if (semap == NULL)
34398 exit(1);
34399 semaphore_wait(semap);
34400 semaphore_close(semap);
34401 return (0);
34402 }

34403 FUTURE DIRECTIONS
34404 None.

34405 SEE ALSO
34406 pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy(), the |
34407 Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

34408 CHANGE HISTORY
34409 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34410 Issue 6
34411 The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are marked as part of the |
34412 Threads option. |

34413 IEEE PASC Interpretation 1003.1c #27 is applied, updating the ERRORS section. |

1602 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_getprioceiling()

34414 NAME
34415 pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling — get and set prioceiling
34416 attribute of mutex attributes object (REALTIME THREADS)

34417 SYNOPSIS
34418 TPP #include <pthread.h>

34419 int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *restrict attr ,|
34420 int *restrict prioceiling); |
34421 int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr , |
34422 int prioceiling);
34423

34424 DESCRIPTION
34425 The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions,
34426 respectively, get and set the priority ceiling attribute of a mutex attributes object pointed to by
34427 attr which was previously created by the function pthread_mutexattr_init().

34428 The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of
34429 prioceiling are within the maximum range of priorities defined by SCHED_FIFO.

34430 The prioceiling attribute defines the priority ceiling of initialized mutexes, which is the minimum
34431 priority level at which the critical section guarded by the mutex is executed. In order to avoid
34432 priority inversion, the priority ceiling of the mutex is set to a priority higher than or equal to the
34433 highest priority of all the threads that may lock that mutex. The values of prioceiling are within
34434 the maximum range of priorities defined under the SCHED_FIFO scheduling policy.

34435 RETURN VALUE
34436 Upon successful completion, the pthread_mutexattr_getprioceiling() and
34437 pthread_mutexattr_setprioceiling() functions shall return zero; otherwise, an error number shall be
34438 returned to indicate the error.

34439 ERRORS
34440 The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions may fail if:

34441 [EINVAL] The value specified by attr or prioceiling is invalid. |

34442 [EPERM] The caller does not have the privilege to perform the operation. |

34443 These functions shall not return an error code of [EINTR]. |

34444 EXAMPLES
34445 None.

34446 APPLICATION USAGE
34447 None.

34448 RATIONALE
34449 None.

34450 FUTURE DIRECTIONS
34451 None.

34452 SEE ALSO
34453 pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), the Base Definitions volume of |
34454 IEEE Std. 1003.1-200x, <pthread.h> |

System Interfaces, Issue 6 1603

pthread_mutexattr_getprioceiling() System Interfaces

34455 CHANGE HISTORY
34456 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34457 Marked as part of the Realtime Threads Feature Group.

34458 Issue 6
34459 The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling() functions are |
34460 marked as part of the Thread Priority Protection option. |

34461 The [ENOSYS] error condition has been removed as stubs need not be provided if an
34462 implementation does not support the Thread Priority Protection option. |

34463 The [ENOTSUP] error condition has been removed since these functions do not have a protocol
34464 argument. |

34465 The restrict keyword is added to the pthread_mutexattr_getprioceiling() prototype for alignment |
34466 with the ISO/IEC 9899: 1999 standard. |

1604 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_getprotocol()

34467 NAME
34468 pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol — get and set protocol attribute
34469 of mutex attributes object (REALTIME THREADS)

34470 SYNOPSIS
34471 TPP|TPI #include <pthread.h>

34472 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *restrict attr ,|
34473 int *restrict protocol); |
34474 int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr , |
34475 int protocol);
34476

34477 DESCRIPTION
34478 The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions, respectively,
34479 get and set the protocol attribute of a mutex attributes object pointed to by attr which was
34480 previously created by the function pthread_mutexattr_init().

34481 The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of
34482 TPITPP protocol may be one of PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT, or
34483 PTHREAD_PRIO_PROTECT,which are defined by the header <pthread.h>.

34484 When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority
34485 and scheduling are not affected by its mutex ownership.

34486 TPI When a thread is blocking higher priority threads because of owning one or more mutexes with
34487 the PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or the
34488 priority of the highest priority thread waiting on any of the mutexes owned by this thread and
34489 initialized with this protocol.

34490 TPP When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT
34491 protocol, it executes at the higher of its priority or the highest of the priority ceilings of all the
34492 mutexes owned by this thread and initialized with this attribute, regardless of whether other
34493 threads are blocked on any of these mutexes or not.

34494 While a thread is holding a mutex which has been initialized with the |
34495 PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it shall not be
34496 subject to being moved to the tail of the scheduling queue at its priority in the event that its
34497 original priority is changed, such as by a call to sched_setparam(). Likewise, when a thread
34498 unlocks a mutex that has been initialized with the PTHREAD_PRIO_INHERIT or
34499 PTHREAD_PRIO_PROTECT protocol attributes, it shall not be subject to being moved to the tail
34500 of the scheduling queue at its priority in the event that its original priority is changed. |

34501 If a thread simultaneously owns several mutexes initialized with different protocols, it shall
34502 execute at the highest of the priorities that it would have obtained by each of these protocols.

34503 TPI When a thread makes a call to pthread_mutex_lock(), the mutex was initialized with the protocol
34504 attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked
34505 because the mutex is owned by another thread, that owner thread shall inherit the priority level
34506 of the calling thread as long as it continues to own the mutex. The implementation shall update
34507 its execution priority to the maximum of its assigned priority and all its inherited priorities.
34508 Furthermore, if this owner thread itself becomes blocked on another mutex, the same priority
34509 inheritance effect shall be propagated to this other owner thread, in a recursive manner.

System Interfaces, Issue 6 1605

pthread_mutexattr_getprotocol() System Interfaces

34510 RETURN VALUE
34511 Upon successful completion, the pthread_mutexattr_getprotocol() and
34512 pthread_mutexattr_setprotocol() functions shall return zero; otherwise, an error number shall be
34513 returned to indicate the error.

34514 ERRORS
34515 The pthread_mutexattr_setprotocol() function shall fail if:

34516 [ENOTSUP] The value specified by protocol is an unsupported value. |

34517 The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions may fail if:

34518 [EINVAL] The value specified by attr or protocol is invalid. |

34519 [EPERM] The caller does not have the privilege to perform the operation. |

34520 These functions shall not return an error code of [EINTR]. |

34521 EXAMPLES
34522 None.

34523 APPLICATION USAGE
34524 None.

34525 RATIONALE
34526 None.

34527 FUTURE DIRECTIONS
34528 None.

34529 SEE ALSO
34530 pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), the Base Definitions volume of |
34531 IEEE Std. 1003.1-200x, <pthread.h> |

34532 CHANGE HISTORY
34533 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34534 Marked as part of the Realtime Threads Feature Group.

34535 Issue 6
34536 The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions are marked as |
34537 part of either the Thread Priority Protection or Threads Priority Inheritance options. |

34538 The [ENOSYS] error condition has been removed as stubs need not be provided if an
34539 implementation does not support the Thread Priority Protection or Threads Priority Inheritance |
34540 options. |

34541 The restrict keyword is added to the pthread_mutexattr_getprotocol() prototype for alignment |
34542 with the ISO/IEC 9899: 1999 standard. |

1606 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_getpshared()

34543 NAME
34544 pthread_mutexattr_getpshared, pthread_mutexattr_setpshared — get and set process-shared
34545 attribute

34546 SYNOPSIS
34547 THR TSH #include <pthread.h>

34548 int pthread_mutexattr_getpshared(const pthread_mutexattr_t *restrict attr ,|
34549 int *restrict pshared); |
34550 int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr , |
34551 int pshared);
34552

34553 DESCRIPTION
34554 The pthread_mutexattr_getpshared() function obtains the value of the process-shared attribute from
34555 the attributes object referenced by attr . The pthread_mutexattr_setpshared() function is used to set
34556 the process-shared attribute in an initialized attributes object referenced by attr .

34557 The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be
34558 operated upon by any thread that has access to the memory where the mutex is allocated, even if
34559 the mutex is allocated in memory that is shared by multiple processes. If the process-shared
34560 attribute is PTHREAD_PROCESS_PRIVATE, the mutex shall only be operated upon by threads
34561 created within the same process as the thread that initialized the mutex; if threads of differing
34562 processes attempt to operate on such a mutex, the behavior is undefined. The default value of
34563 the attribute shall be PTHREAD_PROCESS_PRIVATE.

34564 RETURN VALUE
34565 Upon successful completion, pthread_mutexattr_setpshared() shall return zero; otherwise, an error
34566 number shall be returned to indicate the error.

34567 Upon successful completion, pthread_mutexattr_getpshared() shall return zero and stores the
34568 value of the process-shared attribute of attr into the object referenced by the pshared parameter.
34569 Otherwise, an error number shall be returned to indicate the error.

34570 ERRORS
34571 The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions may fail if:

34572 [EINVAL] The value specified by attr is invalid. |

34573 The pthread_mutexattr_setpshared() function may fail if:

34574 [EINVAL] The new value specified for the attribute is outside the range of legal values
34575 for that attribute.

34576 These functions shall not return an error code of [EINTR]. |

34577 EXAMPLES
34578 None.

34579 APPLICATION USAGE
34580 None.

34581 RATIONALE
34582 None.

34583 FUTURE DIRECTIONS
34584 None.

System Interfaces, Issue 6 1607

pthread_mutexattr_getpshared() System Interfaces

34585 SEE ALSO
34586 pthread_cond_destroy(), pthread_create(), pthread_mutex_destroy(), pthread_mutexattr_destroy(), the |
34587 Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

34588 CHANGE HISTORY
34589 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34590 Issue 6
34591 The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are marked as |
34592 part of the Threads and Thread Process-Shared Synchronization options. |

34593 The restrict keyword is added to the pthread_mutexattr_getpshared() prototype for alignment |
34594 with the ISO/IEC 9899: 1999 standard. |

1608 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_gettype()

34595 NAME
34596 pthread_mutexattr_gettype, pthread_mutexattr_settype — get or set a mutex type |

34597 SYNOPSIS
34598 XSI #include <pthread.h>

34599 int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr , |
34600 int *restrict type); |
34601 int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type); |
34602

34603 DESCRIPTION
34604 The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions, respectively, get and
34605 set the mutex type attribute. This attribute is set in the type parameter to these functions. The
34606 default value of the type attribute is PTHREAD_MUTEX_DEFAULT.

34607 The type of mutex is contained in the type attribute of the mutex attributes. Valid mutex types
34608 include:

34609 PTHREAD_MUTEX_NORMAL
34610 This type of mutex does not detect deadlock. A thread attempting to relock this mutex
34611 without first unlocking it shall deadlock. Attempting to unlock a mutex locked by a
34612 different thread results in undefined behavior. Attempting to unlock an unlocked mutex
34613 results in undefined behavior.

34614 PTHREAD_MUTEX_ERRORCHECK
34615 This type of mutex provides error checking. A thread attempting to relock this mutex
34616 without first unlocking it shall return with an error. A thread attempting to unlock a mutex
34617 which another thread has locked shall return with an error. A thread attempting to unlock
34618 an unlocked mutex shall return with an error.

34619 PTHREAD_MUTEX_RECURSIVE
34620 A thread attempting to relock this mutex without first unlocking it shall succeed in locking
34621 the mutex. The relocking deadlock which can occur with mutexes of type
34622 PTHREAD_MUTEX_NORMAL cannot occur with this type of mutex. Multiple locks of this
34623 mutex require the same number of unlocks to release the mutex before another thread can
34624 acquire the mutex. A thread attempting to unlock a mutex which another thread has locked
34625 shall return with an error. A thread attempting to unlock an unlocked mutex shall return
34626 with an error.

34627 PTHREAD_MUTEX_DEFAULT
34628 Attempting to recursively lock a mutex of this type results in undefined behavior.
34629 Attempting to unlock a mutex of this type which was not locked by the calling thread
34630 results in undefined behavior. Attempting to unlock a mutex of this type which is not
34631 locked results in undefined behavior. An implementation is allowed to map this mutex to
34632 one of the other mutex types.

34633 RETURN VALUE
34634 Upon successful completion, the pthread_mutexattr_gettype() function shall return zero and store
34635 the value of the type attribute of attr into the object referenced by the type parameter. Otherwise,
34636 an error shall be returned to indicate the error.

34637 If successful, the pthread_mutexattr_settype() function shall return zero; otherwise, an error
34638 number shall be returned to indicate the error.

System Interfaces, Issue 6 1609

pthread_mutexattr_gettype() System Interfaces

34639 ERRORS
34640 The pthread_mutexattr_settype() function shall fail if:

34641 [EINVAL] The value type is invalid. |

34642 The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions may fail if:

34643 [EINVAL] The value specified by attr is invalid.

34644 These functions shall not return an error code of [EINTR]. |

34645 EXAMPLES
34646 None.

34647 APPLICATION USAGE
34648 It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with
34649 condition variables because the implicit unlock performed for a pthread_cond_timedwait() or
34650 pthread_cond_wait() may not actually release the mutex (if it had been locked multiple times). If
34651 this happens, no other thread can satisfy the condition of the predicate.

34652 RATIONALE
34653 None.

34654 FUTURE DIRECTIONS
34655 None.

34656 SEE ALSO
34657 pthread_cond_timedwait(), pthread_cond_wait(), the Base Definitions volume of |
34658 IEEE Std. 1003.1-200x, <pthread.h> |

34659 CHANGE HISTORY
34660 First released in Issue 5.

34661 Issue 6
34662 The Open Group corrigenda item U033/3 has been applied. The SYNOPSIS for
34663 pthread_mutexattr_gettype() is updated so that the first argument is of type
34664 constpthread_mutexattr_t*. |

34665 The restrict keyword is added to the pthread_mutexattr_gettype() prototype for alignment with |
34666 the ISO/IEC 9899: 1999 standard. |

1610 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_init()

34667 NAME
34668 pthread_mutexattr_init — initialize mutex attributes object

34669 SYNOPSIS
34670 THR #include <pthread.h>

34671 int pthread_mutexattr_init(pthread_mutexattr_t * attr);
34672

34673 DESCRIPTION
34674 Refer to pthread_mutexattr_destroy().

System Interfaces, Issue 6 1611

pthread_mutexattr_setprioceiling() System Interfaces

34675 NAME
34676 pthread_mutexattr_setprioceiling — set prioceiling attribute of mutex attributes object
34677 (REALTIME THREADS)

34678 SYNOPSIS
34679 TPP #include <pthread.h>

34680 int pthread_mutexattr_setprioceiling(pthread_mutexattr_t * attr ,
34681 int prioceiling);
34682

34683 DESCRIPTION
34684 Refer to pthread_mutexattr_getprioceiling().

1612 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_setprotocol()

34685 NAME
34686 pthread_mutexattr_setprotocol — set protocol attribute of mutex attributes object (REALTIME
34687 THREADS)

34688 SYNOPSIS
34689 TPP|TPI #include <pthread.h>

34690 int pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr ,
34691 int protocol);
34692

34693 DESCRIPTION
34694 Refer to pthread_mutexattr_setprotocol().

System Interfaces, Issue 6 1613

pthread_mutexattr_setpshared() System Interfaces

34695 NAME
34696 pthread_mutexattr_setpshared — set process-shared attribute

34697 SYNOPSIS
34698 THR TSH #include <pthread.h>

34699 int pthread_mutexattr_setpshared(pthread_mutexattr_t * attr ,
34700 int pshared);
34701

34702 DESCRIPTION
34703 Refer to pthread_mutexattr_getpshared().

1614 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_mutexattr_settype()

34704 NAME
34705 pthread_mutexattr_settype — set a mutex type

34706 SYNOPSIS
34707 XSI #include <pthread.h>

34708 int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);
34709

34710 DESCRIPTION
34711 Refer to pthread_mutexattr_gettype().

System Interfaces, Issue 6 1615

pthread_once() System Interfaces

34712 NAME
34713 pthread_once — dynamic package initialization

34714 SYNOPSIS
34715 THR #include <pthread.h>

34716 int pthread_once(pthread_once_t * once_control ,
34717 void (* init_routine)(void));
34718 pthread_once_t once_control = PTHREAD_ONCE_INIT;
34719

34720 DESCRIPTION
34721 The first call to pthread_once() by any thread in a process, with a given once_control , shall call the
34722 init_routine with no arguments. Subsequent calls of pthread_once() with the same once_control
34723 shall not call the init_routine . On return from pthread_once(), it is guaranteed that init_routine has
34724 completed. The once_control parameter is used to determine whether the associated initialization
34725 routine has been called.

34726 The pthread_once() function is not a cancelation point. However, if init_routine is a cancelation
34727 point and is canceled, the effect on once_control shall be as if pthread_once() was never called.

34728 The constant PTHREAD_ONCE_INIT is defined by the header <pthread.h>.

34729 The behavior of pthread_once() is undefined if once_control has automatic storage duration or is
34730 not initialized by PTHREAD_ONCE_INIT.

34731 RETURN VALUE
34732 Upon successful completion, pthread_once() shall return zero; otherwise, an error number shall
34733 be returned to indicate the error.

34734 ERRORS

34735 Notes to Reviewers
34736 This section with side shading will not appear in the final copy. - Ed.

34737 D1, XSH, ERN 255 notes that no error is returned for invalid parameters and proposes the
34738 following:

34739 [EINVAL] If either once_control or init_routine is invalid.

34740 No errors are defined.

34741 The pthread_once() function shall not return an error code of [EINTR]. |

34742 EXAMPLES
34743 None.

34744 APPLICATION USAGE
34745 None.

34746 RATIONALE
34747 Some C libraries are designed for dynamic initialization. That is, the global initialization for the
34748 library is performed when the first procedure in the library is called. In a single-threaded
34749 program, this is normally implemented using a static variable whose value is checked on entry
34750 to a routine, as follows:

34751 static int random_is_initialized = 0;
34752 extern int initialize_random();

1616 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_once()

34753 int random_function()
34754 {
34755 if (random_is_initialized == 0) {
34756 initialize_random();
34757 random_is_initialized = 1;
34758 }
34759 ... /* Operations performed after initialization. */
34760 }

34761 To keep the same structure in a multi-threaded program, a new primitive is needed. Otherwise,
34762 library initialization has to be accomplished by an explicit call to a library-exported initialization
34763 function prior to any use of the library.

34764 For dynamic library initialization in a multi-threaded process, a simple initialization flag is not
34765 sufficient; the flag needs to be protected against modification by multiple threads
34766 simultaneously calling into the library. Protecting the flag requires the use of a mutex; however,
34767 mutexes have to be initialized before they are used. Ensuring that the mutex is only initialized
34768 once requires a recursive solution to this problem.

34769 The use of pthread_once() not only supplies an implementation-guaranteed means of dynamic
34770 initialization, it provides an aid to the reliable construction of multi-threaded and realtime
34771 systems. The preceding example then becomes:

34772 #include <pthread.h>
34773 static pthread_once_t random_is_initialized = PTHREAD_ONCE_INIT;
34774 extern int initialize_random();

34775 int random_function()
34776 {
34777 (void) pthread_once(&random_is_initialized, initialize_random);
34778 ... /* Operations performed after initialization. */
34779 }

34780 Note that a pthread_once_t cannot be an array because some compilers do not accept the
34781 construct &<array_name>.

34782 FUTURE DIRECTIONS
34783 None.

34784 SEE ALSO
34785 The Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

34786 CHANGE HISTORY
34787 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

34788 Issue 6
34789 The pthread_once() function is marked as part of the Threads option. |

System Interfaces, Issue 6 1617

pthread_rwlock_destroy() System Interfaces

34790 NAME
34791 pthread_rwlock_destroy, pthread_rwlock_init — destroy and initialize a read-write lock object |

34792 SYNOPSIS
34793 THR #include <pthread.h> |

34794 int pthread_rwlock_destroy(pthread_rwlock_t * rwlock); |
34795 int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock , |
34796 const pthread_rwlockattr_t *restrict attr); |
34797 |

34798 DESCRIPTION |
34799 The pthread_rwlock_destroy() function shall destroy the read-write lock object referenced by
34800 rwlock and release any resources used by the lock. The effect of subsequent use of the lock is
34801 undefined until the lock is re-initialized by another call to pthread_rwlock_init(). An
34802 implementation may cause pthread_rwlock_destroy() to set the object referenced by rwlock to an
34803 invalid value. Results are undefined if pthread_rwlock_destroy() is called when any thread holds
34804 rwlock . Attempting to destroy an uninitialized read-write lock results in undefined behavior.

34805 The pthread_rwlock_init() function shall allocate any resources required to use the read-write
34806 lock referenced by rwlock and initializes the lock to an unlocked state with attributes referenced
34807 by attr . If attr is NULL, the default read-write lock attributes are used; the effect is the same as
34808 passing the address of a default read-write lock attributes object. Once initialized, the lock can be
34809 used any number of times without being re-initialized. Results are undefined if
34810 pthread_rwlock_init() is called specifying an already initialized read-write lock. Results are
34811 undefined if a read-write lock is used without first being initialized.

34812 If the pthread_rwlock_init() function fails, rwlock is not initialized and the contents of rwlock are
34813 undefined.

34814 Only the object referenced by rwlock may be used for performing synchronization. The result of
34815 referring to copies of that object in calls to pthread_rwlock_destroy(), pthread_rwlock_rdlock(),
34816 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
34817 pthread_rwlock_trywrlock(), pthread_rwlock_unlock(), or pthread_rwlock_wrlock() is undefined.

34818 RETURN VALUE
34819 If successful, the pthread_rwlock_destroy() and pthread_rwlock_init() functions shall return zero;
34820 otherwise, an error number shall be returned to indicate the error.

34821 The [EBUSY] and [EINVAL] error checks, if implemented, act as if they were performed
34822 immediately at the beginning of processing for the function and caused an error return prior to
34823 modifying the state of the read-write lock specified by rwlock .

34824 ERRORS
34825 The pthread_rwlock_destroy() function may fail if:

34826 [EBUSY] The implementation has detected an attempt to destroy the object referenced |
34827 by rwlock while it is locked. |

34828 [EINVAL] The value specified by rwlock is invalid. |

34829 The pthread_rwlock_init() function shall fail if:

34830 [EAGAIN] The system lacked the necessary resources (other than memory) to initialize |
34831 another read-write lock. |

34832 [ENOMEM] Insufficient memory exists to initialize the read-write lock. |

34833 MAN [EPERM] The caller does not have the privilege to perform the operation. |

1618 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_destroy()

34834 The pthread_rwlock_init() function may fail if:

34835 [EBUSY] The implementation has detected an attempt to re-initialize the object |
34836 referenced by rwlock , a previously initialized but not yet destroyed read-write
34837 lock. |

34838 [EINVAL] The value specified by attr is invalid. |

34839 Notes to Reviewers
34840 This section with side shading will not appear in the final copy. - Ed.

34841 D1, XSH, ERN 259 noted that no error return is described for when the argument rwlock is
34842 invalid and proposes adding as a may fail case:

34843 [EINVAL] The value specified by rwlock is invalid.

34844 These functions shall not return an error code of [EINTR]. |

34845 EXAMPLES
34846 None.

34847 APPLICATION USAGE
34848 None.

34849 RATIONALE
34850 None.

34851 FUTURE DIRECTIONS
34852 None.

34853 SEE ALSO
34854 pthread_rwlock_rdlock(), pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(),
34855 pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
34856 pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

34857 CHANGE HISTORY
34858 First released in Issue 5.

34859 Issue 6
34860 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

34861 • The margin code in the SYNOPSIS s changed to RWL and the initializer macro is deleted.

34862 • The DESCRIPTION is updated as follows:

34863 — It explicitly notes allocation of resources upon initialization of a read-write lock object.

34864 — A paragraph is added specifying that copies of read-write lock objects may not be used.

34865 • An [EINVAL] error is added to the ERRORS section for pthread_rwlock_init(), indicating that
34866 the rwlock value is invalid.

34867 • The SEE ALSO section is updated.

34868 The restrict keyword is added to the pthread_rwlock_init() prototype for alignment with the |
34869 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1619

pthread_rwlock_init() System Interfaces

34870 NAME
34871 pthread_rwlock_init — initialize a read-write lock object

34872 SYNOPSIS
34873 THR #include <pthread.h> |

34874 int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock , |
34875 const pthread_rwlockattr_t *restrict attr); |
34876 |

34877 DESCRIPTION |
34878 Refer to pthread_rwlock_destroy().

1620 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_rdlock()

34879 NAME
34880 pthread_rwlock_rdlock, pthread_rwlock_tryrdlock — lock a read-write lock object for reading |

34881 SYNOPSIS
34882 THR #include <pthread.h> |

34883 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
34884 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
34885

34886 DESCRIPTION
34887 The pthread_rwlock_rdlock() function shall apply a read lock to the read-write lock referenced by
34888 rwlock . The calling thread acquires the read lock if a writer does not hold the lock and there are
34889 TPS no writers blocked on the lock. If the Thread Execution Scheduling option is supported, and the
34890 threads involved in the lock are executing with the scheduling policies SCHED_FIFO,
34891 SCHED_RR, or SCHED_SPORADIC, the calling thread shall not acquire the lock if a writer
34892 holds the lock or if writers of higher or equal priority are blocked on the lock; otherwise, the
34893 calling thread shall acquire the lock. If the Thread Execution Scheduling option is not supported,
34894 it is implementation-defined whether the calling thread acquires the lock when a writer does not |
34895 hold the lock and there are writers blocked on the lock. If a writer holds the lock, the calling
34896 thread shall not acquire the read lock. If the read lock is not acquired, the calling thread blocks
34897 (that is, it does not return from the pthread_rwlock_rdlock() call) until it can acquire the lock. The |
34898 calling thread may deadlock if at the time the call is made it holds a write lock. |

34899 A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
34900 pthread_rwlock_rdlock() function n times). If so, the application shall ensure that the thread
34901 performs matching unlocks (that is, it calls the pthread_rwlock_unlock() function n times).

34902 The maximum number of simultaneous read locks that an implementation guarantees can be |
34903 applied to a read-write lock shall be implementation-defined. The pthread_rwlock_rdlock() |
34904 function may fail if this maximum would be exceeded.

34905 The pthread_rwlock_tryrdlock() function shall apply a read lock as in the pthread_rwlock_rdlock()
34906 function, with the exception that the function shall fail if the equivalent pthread_rwlock_rdlock()
34907 call would have blocked the calling thread. In no case does the pthread_rwlock_tryrdlock()
34908 function ever block; it always either acquires the lock or fails and returns immediately.

34909 Results are undefined if any of these functions are called with an uninitialized read-write lock.

34910 If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the
34911 signal handler the thread resumes waiting for the read-write lock for reading as if it was not
34912 interrupted.

34913 RETURN VALUE
34914 If successful, the pthread_rwlock_rdlock() function shall return zero; otherwise, an error number
34915 shall be returned to indicate the error.

34916 The pthread_rwlock_tryrdlock() function shall return zero if the lock for reading on the read-write
34917 lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
34918 indicate the error.

34919 ERRORS
34920 The pthread_rwlock_tryrdlock() function shall fail if:

34921 [EBUSY] The read-write lock could not be acquired for reading because a writer holds |
34922 the lock or a writer with the appropriate priority was blocked on it.

34923 The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions may fail if:

System Interfaces, Issue 6 1621

pthread_rwlock_rdlock() System Interfaces

34924 [EINVAL] The value specified by rwlock does not refer to an initialized read-write lock |
34925 object.

34926 [EAGAIN] The read lock could not be acquired because the maximum number of read |
34927 locks for rwlock has been exceeded.

34928 The pthread_rwlock_rdlock() function may fail if: |

34929 [EDEADLK] The current thread already owns the read-write lock for writing. |

34930 These functions shall not return an error code of [EINTR]. |

34931 EXAMPLES
34932 None.

34933 APPLICATION USAGE
34934 Applications using these functions may be subject to priority inversion, as discussed in the Base |
34935 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

34936 RATIONALE
34937 None.

34938 FUTURE DIRECTIONS
34939 None.

34940 SEE ALSO
34941 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_timedrdlock(),
34942 pthread_rwlock_timedwrlock(), pthread_rwlock_trywrlock(), pthread_rwlock_unlock(),
34943 pthread_rwlock_wrlock(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

34944 CHANGE HISTORY
34945 First released in Issue 5.

34946 Issue 6
34947 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

34948 • The margin code in the SYNOPSIS is changed to RWL.

34949 • The DESCRIPTION is updated as follows:

34950 — Conditions under which writers have precedence over readers are specified.

34951 — Failure of pthread_rwlock_tryrdlock() is clarified.

34952 — A paragraph on the maximum number of read locks is added.

34953 • In the ERRORS sections, [EBUSY] is modified to take into account write priority, and
34954 [EDEADLK] is deleted as a pthread_rwlock_tryrdlock() error.

34955 • The SEE ALSO section is updated.

1622 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_timedrdlock()

34956 NAME
34957 pthread_rwlock_timedrdlock — lock a read-write lock for reading

34958 SYNOPSIS
34959 THR TMO #include <pthread.h> |
34960 #include <time.h>

34961 int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock , |
34962 const struct timespec *restrict abs_timeout); |
34963 |

34964 DESCRIPTION
34965 The pthread_rwlock_timedrdlock() function applies a read lock to the read-write lock referenced
34966 by rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be acquired
34967 without waiting for other threads to unlock the lock, this wait shall be terminated when the
34968 specified timeout expires. The timeout expires when the absolute time specified by abs_timeout
34969 passes, as measured by the clock on which timeouts are based (that is, when the value of that
34970 clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already
34971 been passed at the time of the call.

34972 TMR If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the
34973 Timers option is not supported, the timeout is based on the system clock as returned by the
34974 time() function. The resolution of the timeout is the resolution of the clock on which it is based.
34975 The timespec data type is defined as a structure in the <time.h> header. Under no circumstances
34976 shall the function fail with a timeout if the lock can be acquired immediately. The validity of the
34977 abs_timeout parameter need not be checked if the lock can be immediately acquired.

34978 If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read-
34979 write lock via a call to pthread_rwlock_timedrdlock(), upon return from the signal handler the
34980 thread shall resume waiting for the lock as if it was not interrupted.

34981 The calling thread may deadlock if at the time the call is made it holds a write lock on rwlock .
34982 The results are undefined if this function is called with an uninitialized read-write lock.

34983 RETURN VALUE
34984 The pthread_rwlock_timedrdlock() function shall return zero if the lock for reading on the read-
34985 write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
34986 to indicate the error.

34987 ERRORS
34988 The pthread_rwlock_timedrdlock() function shall fail if:

34989 [ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

34990 The pthread_rwlock_timedrdlock() function may fail if:

34991 [EAGAIN] The read lock could not be acquired because the maximum number of read
34992 locks for lock would be exceeded.

34993 [EDEADLK] The calling thread already holds a write lock on rwlock .

34994 [EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
34995 object, or the abs_timeout nanosecond value is less than zero or greater than or
34996 equal to 1 000 million.

34997 This function shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1623

pthread_rwlock_timedrdlock() System Interfaces

34998 EXAMPLES
34999 None.

35000 APPLICATION USAGE
35001 Applications using this function may be subject to priority inversion, as discussed in the Base |
35002 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

35003 The pthread_rwlock_timedrdlock() function is part of the Threads and Timeouts options and need |
35004 not be provided on all implementations. |

35005 RATIONALE
35006 None.

35007 FUTURE DIRECTIONS
35008 None.

35009 SEE ALSO
35010 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
35011 pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
35012 pthread_rwlock_unlock(), pthread_rwlock_wrlock(), the Base Definitions volume of |
35013 IEEE Std. 1003.1-200x, <pthread.h>, <time.h> |

35014 CHANGE HISTORY
35015 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000. |

1624 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_timedwrlock()

35016 NAME
35017 pthread_rwlock_timedwrlock — lock a read-write lock for writing

35018 SYNOPSIS
35019 THR TMO #include <pthread.h> |
35020 #include <time.h>

35021 int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock , |
35022 const struct timespec *restrict abs_timeout); |
35023 |

35024 DESCRIPTION
35025 The pthread_rwlock_timedwrlock() function applies a write lock to the read-write lock referenced
35026 by rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be acquired
35027 without waiting for other threads to unlock the lock, this wait shall be terminated when the
35028 specified timeout expires. The timeout expires when the absolute time specified by abs_timeout
35029 passes, as measured by the clock on which timeouts are based (that is, when the value of that
35030 clock equals or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already
35031 been passed at the time of the call.

35032 TMR If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the
35033 Timers option is not supported, the timeout is based on the system clock as returned by the
35034 time() function. The resolution of the timeout is the resolution of the clock on which it is based.
35035 The timespec data type is defined as a structure in the <time.h> header. Under no circumstances
35036 shall the function fail with a timeout if the lock can be acquired immediately. The validity of the
35037 abs_timeout parameter need not be checked if the lock can be immediately acquired.

35038 If a signal that causes a signal handler to be executed is delivered to a thread blocked on a read- |
35039 write lock via a call to pthread_rwlock_timedwrlock(), upon return from the signal handler the |
35040 thread shall resume waiting for the lock as if it was not interrupted.

35041 The calling thread may deadlock if at the time the call is made it holds the read-write lock. The
35042 results are undefined if this function is called with an uninitialized read-write lock.

35043 RETURN VALUE
35044 The pthread_rwlock_timedwrlock() function shall return zero if the lock for writing on the read-
35045 write lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned
35046 to indicate the error.

35047 ERRORS
35048 The pthread_rwlock_timedwrlock() function shall fail if:

35049 [ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

35050 The pthread_rwlock_timedwrlock() function may fail if:

35051 [EDEADLK] The calling thread already holds the rwlock .

35052 [EINVAL] The value specified by rwlock does not refer to an initialized read-write lock
35053 object, or the abs_timeout nanosecond value is less than zero or greater than or
35054 equal to 1 000 million.

35055 This function shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1625

pthread_rwlock_timedwrlock() System Interfaces

35056 EXAMPLES
35057 None.

35058 APPLICATION USAGE
35059 Applications using this function may be subject to priority inversion, as discussed in the Base |
35060 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

35061 The pthread_rwlock_timedwrlock() function is part of the Threads and Timeouts options and need |
35062 not be provided on all implementations. |

35063 RATIONALE
35064 None.

35065 FUTURE DIRECTIONS
35066 None.

35067 SEE ALSO
35068 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
35069 pthread_rwlock_timedrdlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
35070 pthread_rwlock_unlock(), pthread_rwlock_wrlock(), the Base Definitions volume of |
35071 IEEE Std. 1003.1-200x, <pthread.h>, <time.h> |

35072 CHANGE HISTORY
35073 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000. |

1626 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_tryrdlock()

35074 NAME
35075 pthread_rwlock_tryrdlock — lock a read-write lock object for reading

35076 SYNOPSIS
35077 THR #include <pthread.h> |

35078 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
35079

35080 DESCRIPTION
35081 Refer to pthread_rwlock_rdlock().

System Interfaces, Issue 6 1627

pthread_rwlock_trywrlock() System Interfaces

35082 NAME
35083 pthread_rwlock_trywrlock, pthread_rwlock_wrlock — lock a read-write lock object for writing

35084 SYNOPSIS
35085 THR #include <pthread.h> |

35086 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
35087 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
35088

35089 DESCRIPTION
35090 The pthread_rwlock_trywrlock() function shall apply a write lock like the pthread_rwlock_wrlock()
35091 function, with the exception that the function shall fail if any thread currently holds rwlock (for
35092 reading or writing).

35093 The pthread_rwlock_wrlock() function shall apply a write lock to the read-write lock referenced
35094 by rwlock . The calling thread acquires the write lock if no other thread (reader or writer) holds
35095 the read-write lock rwlock . Otherwise, the thread blocks (that is, does not return from the
35096 pthread_rwlock_wrlock() call) until it can acquire the lock. The calling thread may deadlock if at |
35097 the time the call is made it holds the read-write lock (whether a read or write lock). |

35098 Implementations are allowed to favor writers over readers to avoid writer starvation.

35099 Results are undefined if any of these functions are called with an uninitialized read-write lock.

35100 If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the
35101 signal handler the thread resumes waiting for the read-write lock for writing as if it was not
35102 interrupted.

35103 RETURN VALUE
35104 The pthread_rwlock_trywrlock() function shall return zero if the lock for writing on the read-write
35105 lock object referenced by rwlock is acquired. Otherwise, an error number shall be returned to
35106 indicate the error.

35107 If successful, the pthread_rwlock_wrlock() function shall return zero; otherwise, an error number
35108 shall be returned to indicate the error.

35109 ERRORS
35110 The pthread_rwlock_trywrlock() function shall fail if:

35111 [EBUSY] The read-write lock could not be acquired for writing because it was already |
35112 locked for reading or writing.

35113 The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions may fail if:

35114 [EINVAL] The value specified by rwlock does not refer to an initialized read-write lock |
35115 object.

35116 The pthread_rwlock_wrlock() function may fail if:

35117 [EDEADLK] The current thread already owns the read-write lock for writing or reading. |

35118 These functions shall not return an error code of [EINTR]. |

1628 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_trywrlock()

35119 EXAMPLES
35120 None.

35121 APPLICATION USAGE
35122 Applications using these functions may be subject to priority inversion, as discussed in the Base |
35123 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

35124 RATIONALE
35125 None.

35126 FUTURE DIRECTIONS
35127 None.

35128 SEE ALSO
35129 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
35130 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
35131 pthread_rwlock_unlock(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

35132 CHANGE HISTORY
35133 First released in Issue 5.

35134 Issue 6
35135 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

35136 • The margin code in the SYNOPSIS is changed to RWL.

35137 • The [EDEADLK] error is deleted as a pthread_rwlock_trywrlock() error.

35138 • The SEE ALSO section is updated.

System Interfaces, Issue 6 1629

pthread_rwlock_unlock() System Interfaces

35139 NAME
35140 pthread_rwlock_unlock — unlock a read-write lock object

35141 SYNOPSIS
35142 THR #include <pthread.h> |

35143 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
35144

35145 DESCRIPTION
35146 The pthread_rwlock_unlock() function is called to release a lock held on the read-write lock object
35147 referenced by rwlock . Results are undefined if the read-write lock rwlock is not held by the
35148 calling thread.

35149 If this function is called to release a read lock from the read-write lock object and there are other
35150 read locks currently held on this read-write lock object, the read-write lock object remains in the
35151 read locked state. If this function releases the last read lock for this read-write lock object, the
35152 read-write lock object shall be put in the unlocked state with no owners.

35153 If this function is called to release a write lock for this read-write lock object, the read-write lock
35154 object shall be put in the unlocked state.

35155 If there are threads blocked on the lock when it becomes available, the scheduling policy is used
35156 TPS to determine which thread(s) shall acquire the lock. If the Thread Execution Scheduling option is
35157 supported, when threads executing with the scheduling policies SCHED_FIFO, SCHED_RR, or
35158 SCHED_SPORADIC are waiting on the lock, they will acquire the lock in priority order when
35159 the lock becomes available. For equal priority threads, write locks take precedence over read
35160 locks. If the Thread Execution Scheduling option is not supported, it is implementation-defined |
35161 whether write locks take precedence over read locks. |

35162 Results are undefined if any of these functions are called with an uninitialized read-write lock.

35163 RETURN VALUE
35164 If successful, the pthread_rwlock_unlock() function shall return zero; otherwise, an error number
35165 shall be returned to indicate the error.

35166 ERRORS
35167 The pthread_rwlock_unlock() function may fail if:

35168 [EINVAL] The value specified by rwlock does not refer to an initialized read-write lock |
35169 object.

35170 [EPERM] The current thread does not hold a lock on the read-write lock. |

35171 The pthread_rwlock_unlock() function shall not return an error code of [EINTR]. |

35172 EXAMPLES
35173 None.

35174 APPLICATION USAGE
35175 None.

35176 RATIONALE
35177 None.

35178 FUTURE DIRECTIONS
35179 None.

1630 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlock_unlock()

35180 SEE ALSO
35181 pthread_rwlock_destroy(), pthread_rwlock_init(), pthread_rwlock_rdlock(),
35182 pthread_rwlock_timedrdlock(), pthread_rwlock_timedwrlock(), pthread_rwlock_tryrdlock(),
35183 pthread_rwlock_trywrlock(), pthread_rwlock_wrlock(), the Base Definitions volume of |
35184 IEEE Std. 1003.1-200x, <pthread.h> |

35185 CHANGE HISTORY
35186 First released in Issue 5.

35187 Issue 6
35188 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

35189 • The margin code in the SYNOPSIS is changed to RWL.

35190 • The DESCRIPTION is updated as follows:

35191 — The conditions under which writers have precedence over readers are specified.

35192 — The concept of read-write lock owner is deleted.

35193 • The SEE ALSO section is updated.

System Interfaces, Issue 6 1631

pthread_rwlock_wrlock() System Interfaces

35194 NAME
35195 pthread_rwlock_wrlock — lock a read-write lock object for writing

35196 SYNOPSIS
35197 THR #include <pthread.h> |

35198 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
35199

35200 DESCRIPTION
35201 Refer to pthread_rwlock_trywrlock().

1632 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlockattr_destroy()

35202 NAME
35203 pthread_rwlockattr_destroy, pthread_rwlockattr_init — destroy and initialize read-write lock
35204 attributes object

35205 SYNOPSIS
35206 THR #include <pthread.h> |

35207 int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
35208 int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
35209

35210 DESCRIPTION
35211 The pthread_rwlockattr_destroy() function shall destroy a read-write lock attributes object. The
35212 effect of subsequent use of the object is undefined until the object is re-initialized by another call
35213 to pthread_rwlockattr_init(). An implementation may cause pthread_rwlockattr_destroy() to set
35214 the object referenced by attr to an invalid value.

35215 The pthread_rwlockattr_init() function shall initialize a read-write lock attributes object attr with
35216 the default value for all of the attributes defined by the implementation.

35217 Results are undefined if pthread_rwlockattr_init() is called specifying an already initialized read-
35218 write lock attributes object.

35219 After a read-write lock attributes object has been used to initialize one or more read-write locks,
35220 any function affecting the attributes object (including destruction) does not affect any previously
35221 initialized read-write locks.

35222 RETURN VALUE
35223 If successful, the pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions shall return
35224 zero; otherwise, an error number shall be returned to indicate the error.

35225 ERRORS
35226 The pthread_rwlockattr_destroy() function may fail if:

35227 [EINVAL] The value specified by attr is invalid. |

35228 The pthread_rwlockattr_init() function shall fail if:

35229 [ENOMEM] Insufficient memory exists to initialize the read-write lock attributes object. |

35230 These functions shall not return an error code of [EINTR]. |

35231 EXAMPLES
35232 None.

35233 APPLICATION USAGE
35234 None.

35235 RATIONALE
35236 None.

35237 FUTURE DIRECTIONS
35238 None.

35239 SEE ALSO
35240 pthread_rwlock_init(), pthread_rwlockattr_getpshared(), pthread_rwlockattr_setpshared(), the Base |
35241 Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

System Interfaces, Issue 6 1633

pthread_rwlockattr_destroy() System Interfaces

35242 CHANGE HISTORY
35243 First released in Issue 5.

35244 Issue 6
35245 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

35246 • The margin code in the SYNOPSIS is changed to RWL.

35247 • The SEE ALSO section is updated.

1634 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlockattr_getpshared()

35248 NAME
35249 pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared — get and set process-shared
35250 attribute of read-write lock attributes object

35251 SYNOPSIS
35252 THR TSH #include <pthread.h> |

35253 int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *restrict attr ,|
35254 int *restrict pshared); |
35255 int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr , |
35256 int pshared);
35257

35258 DESCRIPTION
35259 The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock
35260 to be operated upon by any thread that has access to the memory where the read-write lock is
35261 allocated, even if the read-write lock is allocated in memory that is shared by multiple processes.
35262 If the process-shared attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock shall only
35263 be operated upon by threads created within the same process as the thread that initialized the
35264 read-write lock; if threads of differing processes attempt to operate on such a read-write lock,
35265 the behavior is undefined. The default value of the process-shared attribute is
35266 PTHREAD_PROCESS_PRIVATE.

35267 The pthread_rwlockattr_getpshared() function obtains the value of the process-shared attribute from
35268 the initialized attributes object referenced by attr . The pthread_rwlockattr_setpshared() function is
35269 used to set the process-shared attribute in an initialized attributes object referenced by attr .

35270 Additional attributes, their default values, and the names of the associated functions to get and
35271 set those attribute values are implementation-defined. |

35272 RETURN VALUE
35273 Upon successful completion, the pthread_rwlockattr_getpshared() shall return zero and store the
35274 value of the process-shared attribute of attr into the object referenced by the pshared parameter.
35275 Otherwise, an error number shall be returned to indicate the error.

35276 If successful, the pthread_rwlockattr_setpshared() function shall return zero; otherwise, an error
35277 number shall be returned to indicate the error.

35278 ERRORS
35279 The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions may fail if:

35280 [EINVAL] The value specified by attr is invalid. |

35281 The pthread_rwlockattr_setpshared() function may fail if:

35282 [EINVAL] The new value specified for the attribute is outside the range of legal values
35283 for that attribute.

35284 These functions shall not return an error code of [EINTR]. |

System Interfaces, Issue 6 1635

pthread_rwlockattr_getpshared() System Interfaces

35285 EXAMPLES
35286 None.

35287 APPLICATION USAGE
35288 None.

35289 RATIONALE
35290 None.

35291 FUTURE DIRECTIONS
35292 None.

35293 SEE ALSO
35294 pthread_rwlock_init(), pthread_rwlockattr_destroy(), pthread_rwlockattr_init(), the Base Definitions |
35295 volume of IEEE Std. 1003.1-200x, <pthread.h> |

35296 CHANGE HISTORY
35297 First released in Issue 5.

35298 Issue 6
35299 The following changes are made for alignment with IEEE Std. 1003.1j-2000:

35300 • The margin code in the SYNOPSIS is changed to RWL TSH.

35301 • The DESCRIPTION notes that additional attributes are implementation-defined. |

35302 • The SEE ALSO section is updated.

35303 The restrict keyword is added to the pthread_rwlockattr_getpshared() prototype for alignment |
35304 with the ISO/IEC 9899: 1999 standard. |

1636 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_rwlockattr_init()

35305 NAME
35306 pthread_rwlockattr_init — initialize read-write lock attributes object

35307 SYNOPSIS
35308 XSI #include <pthread.h>

35309 int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
35310

35311 DESCRIPTION
35312 Refer to pthread_rwlockattr_destroy().

System Interfaces, Issue 6 1637

pthread_rwlockattr_setpshared() System Interfaces

35313 NAME
35314 pthread_rwlockattr_setpshared — set process-shared attribute of read-write lock attributes
35315 object

35316 SYNOPSIS
35317 XSI #include <pthread.h>

35318 int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr ,
35319 int pshared);
35320

35321 DESCRIPTION
35322 Refer to pthread_rwlockattr_getpshared().

1638 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_self()

35323 NAME
35324 pthread_self — get calling thread’s ID

35325 SYNOPSIS
35326 THR #include <pthread.h>

35327 pthread_t pthread_self(void);
35328

35329 DESCRIPTION
35330 The pthread_self () function shall return the thread ID of the calling thread.

35331 RETURN VALUE
35332 Refer to the DESCRIPTION.

35333 ERRORS
35334 No errors are defined.

35335 The pthread_self () function shall not return an error code of [EINTR]. |

35336 EXAMPLES
35337 None.

35338 APPLICATION USAGE
35339 None.

35340 RATIONALE
35341 The pthread_self () function provides a capability similar to the getpid() function for processes
35342 and the rationale is the same: the creation call does not provide the thread ID to the created
35343 thread.

35344 FUTURE DIRECTIONS
35345 None.

35346 SEE ALSO
35347 pthread_create(), pthread_equal(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
35348 <pthread.h>

CHANGE35349 HISTORY
35350 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

35351 Issue 6
35352 The pthread_self () function is marked as part of the Threads option. |

System Interfaces, Issue 6 1639

pthread_setcancelstate() System Interfaces

35353 NAME
35354 pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel — set cancelability state

35355 SYNOPSIS
35356 THR #include <pthread.h>

35357 int pthread_setcancelstate(int state , int * oldstate);
35358 int pthread_setcanceltype(int type , int * oldtype);
35359 void pthread_testcancel(void);
35360

35361 DESCRIPTION
35362 The pthread_setcancelstate() function shall atomically both set the calling thread’s cancelability
35363 state to the indicated state and return the previous cancelability state at the location referenced
35364 by oldstate . Legal values for state are PTHREAD_CANCEL_ENABLE and
35365 PTHREAD_CANCEL_DISABLE.

35366 The pthread_setcanceltype() function shall atomically both set the calling thread’s cancelability
35367 type to the indicated type and return the previous cancelability type at the location referenced by
35368 oldtype . Legal values for type are PTHREAD_CANCEL_DEFERRED and
35369 PTHREAD_CANCEL_ASYNCHRONOUS.

35370 The cancelability state and type of any newly created threads, including the thread in which
35371 main() was first invoked, shall be PTHREAD_CANCEL_ENABLE and
35372 PTHREAD_CANCEL_DEFERRED respectively.

35373 The pthread_testcancel() function shall create a cancelation point in the calling thread. The
35374 pthread_testcancel() function shall have no effect if cancelability is disabled.

35375 RETURN VALUE
35376 If successful, the pthread_setcancelstate() and pthread_setcanceltype() functions shall return zero;
35377 otherwise, an error number shall be returned to indicate the error.

35378 ERRORS
35379 The pthread_setcancelstate() function may fail if:

35380 [EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or |
35381 PTHREAD_CANCEL_DISABLE.

35382 The pthread_setcanceltype() function may fail if:

35383 [EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or
35384 PTHREAD_CANCEL_ASYNCHRONOUS.

35385 These functions shall not return an error code of [EINTR]. |

35386 EXAMPLES
35387 None.

35388 APPLICATION USAGE
35389 None.

35390 RATIONALE
35391 The pthread_setcancelstate() and pthread_setcanceltype() functions are used to control the points at
35392 which a thread may be asynchronously canceled. For cancelation control to be usable in modular
35393 fashion, some rules need to be followed.

35394 An object can be considered to be a generalization of a procedure. It is a set of procedures and
35395 global variables written as a unit and called by clients not known by the object. Objects may
35396 depend on other objects.

1640 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_setcancelstate()

35397 First, cancelability should only be disabled on entry to an object, never explicitly enabled. On
35398 exit from an object, the cancelability state should always be restored to its value on entry to the
35399 object.

35400 This follows from a modularity argument: if the client of an object (or the client of an object that
35401 uses that object) has disabled cancelability, it is because the client does not want to be concerned
35402 about cleaning up if the thread is canceled while executing some sequence of actions. If an object
35403 is called in such a state and it enables cancelability and a cancelation request is pending for that
35404 thread, then the thread is canceled, contrary to the wish of the client that disabled.

35405 Second, the cancelability type may be explicitly set to either deferred or asynchronous upon entry
35406 to an object. But as with the cancelability state, on exit from an object the cancelability type
35407 should always be restored to its value on entry to the object.

35408 Finally, only functions that are cancel-safe may be called from a thread that is asynchronously
35409 cancelable.

35410 FUTURE DIRECTIONS
35411 None.

35412 SEE ALSO
35413 pthread_cancel(), the Base Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

35414 CHANGE HISTORY
35415 First released in Issue 5. Included for alignment with the POSIX Threads Extension.

35416 Issue 6
35417 The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel() functions are marked |
35418 as part of the Threads option. |

System Interfaces, Issue 6 1641

pthread_setconcurrency() System Interfaces

35419 NAME
35420 pthread_setconcurrency — set level of concurrency

35421 SYNOPSIS
35422 XSI #include <pthread.h>

35423 int pthread_setconcurrency(int new_level);
35424

35425 DESCRIPTION
35426 Refer to pthread_getconcurrency().

1642 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_setschedparam()

35427 NAME
35428 pthread_setschedparam — dynamic thread scheduling parameters access (REALTIME
35429 THREADS)

35430 SYNOPSIS
35431 TPS #include <pthread.h>

35432 int pthread_setschedparam(pthread_t thread , int policy , |
35433 const struct sched_param * param); |
35434

35435 DESCRIPTION
35436 Refer to pthread_getschedparam().

System Interfaces, Issue 6 1643

pthread_setspecific() System Interfaces

35437 NAME
35438 pthread_setspecific — thread-specific data management

35439 SYNOPSIS
35440 THR #include <pthread.h>

35441 int pthread_setspecific(pthread_key_t key , const void * value);
35442

35443 DESCRIPTION
35444 Refer to pthread_getspecific().

1644 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_sigmask()

35445 NAME
35446 pthread_sigmask, sigprocmask — examine and change blocked signals

35447 SYNOPSIS
35448 #include <signal.h>

35449 THR int pthread_sigmask(int how, const sigset_t *restrict set , |
35450 sigset_t *restrict oset); |
35451 int sigprocmask(int how, const sigset_t *restrict set , |
35452 sigset_t *restrict oset); |

35453 DESCRIPTION |
35454 THR The pthread_sigmask() function is used to examine or change (or both) the calling thread’s signal
35455 mask, regardless of the number of threads in the process. The effect shall be the same as
35456 described for sigprocmask (), without the restriction that the call be made in a single-threaded
35457 process.

35458 In a single-threaded process, the sigprocmask () function allows the calling process to examine or
35459 change (or both) the signal mask of the calling thread.

35460 If the argument set is not a null pointer, it points to a set of signals to be used to change the
35461 currently blocked set.

35462 The argument how indicates the way in which the set is changed, and the application shall
35463 ensure it consists of one of the following values:

35464 SIG_BLOCK The resulting set shall be the union of the current set and the signal set
35465 pointed to by set.

35466 SIG_SETMASK The resulting set shall be the signal set pointed to by set.

35467 SIG_UNBLOCK The resulting set shall be the intersection of the current set and the
35468 complement of the signal set pointed to by set.

35469 If the argument oset is not a null pointer, the previous mask is stored in the location pointed to
35470 by oset . If set is a null pointer, the value of the argument how is not significant and the process’
35471 signal mask is unchanged; thus the call can be used to enquire about currently blocked signals.

35472 If there are any pending unblocked signals after the call to sigprocmask (), at least one of those
35473 signals shall be delivered before the call to sigprocmask () returns.

35474 It is not possible to block those signals which cannot be ignored. This shall be enforced by the
35475 system without causing an error to be indicated.

35476 If any of the SIGFPE, SIGILL, SIGSEGV, or SIGBUS signals are generated while they are blocked,
35477 the result is undefined, unless the signal was generated by the kill () function, the sigqueue()
35478 function, or the raise() function.

35479 If sigprocmask () fails, the thread’s signal mask is not changed.

35480 The use of the sigprocmask () function is unspecified in a multi-threaded process.

35481 RETURN VALUE
35482 THR Upon successful completion pthread_sigmask() shall return 0; otherwise, it shall return the
35483 corresponding error number.

35484 Upon successful completion, sigprocmask () shall return 0; otherwise, −1 shall be returned, errno
35485 shall be set to indicate the error, and the process’ signal mask shall be unchanged.

System Interfaces, Issue 6 1645

pthread_sigmask() System Interfaces

35486 ERRORS
35487 THR The pthread_sigmask()and sigprocmask () functions shall fail if:

35488 [EINVAL] The value of the how argument is not equal to one of the defined values. |

35489 THR The pthread_sigmask() function shall not return an error code of [EINTR]. |

35490 EXAMPLES
35491 None.

35492 APPLICATION USAGE
35493 None.

35494 RATIONALE
35495 When a process’ signal mask is changed in a signal-catching function that is installed by
35496 sigaction (), the restoration of the signal mask on return from the signal-catching function
35497 overrides that change (see sigaction ()). If the signal-catching function was installed with
35498 signal(), it is unspecified whether this occurs.

35499 See kill () for a discussion of the requirement on delivery of signals.

35500 FUTURE DIRECTIONS
35501 None.

35502 SEE ALSO
35503 sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigfillset (), sigismember(), sigpending(),
35504 sigqueue(), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h> |

35505 CHANGE HISTORY
35506 First released in Issue 3.

35507 Entry included for alignment with the POSIX.1-1988 standard.

35508 Issue 4
35509 The DESCRIPTION is changed to indicate that signals can also be generated by raise().

35510 The following change is incorporated for alignment with the ISO POSIX-1 standard:

35511 • The type of the arguments set and oset are changed from sigset_t* to const sigset_t*.

35512 Issue 5
35513 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

35514 The pthread_sigmask() function is added for alignment with the POSIX Threads Extension.

35515 Issue 6
35516 The pthread_sigmask() function is marked as part of the Threads option. |

35517 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

35518 • The DESCRIPTION is updated to explicitly state the functions which may generate the
35519 signal.

35520 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

35521 The restrict keyword is added to the pthread_sigmask() and sigprocmask () prototypes for |
35522 alignment with the ISO/IEC 9899: 1999 standard. |

1646 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_spin_destroy()

35523 NAME
35524 pthread_spin_destroy, pthread_spin_init — destroy or initialize a spin lock object |

35525 SYNOPSIS
35526 SPI #include <pthread.h>

35527 int pthread_spin_destroy(pthread_spinlock_t * lock);
35528 int pthread_spin_init(pthread_spinlock_t * lock , int pshared);
35529

35530 DESCRIPTION
35531 The pthread_spin_destroy() function destroys the spin lock referenced by lock and releases any
35532 resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is
35533 reinitialized by another call to pthread_spin_init(). The results are undefined if
35534 pthread_spin_destroy() is called when a thread holds the lock, or if this function is called with an
35535 uninitialized thread spin lock.

35536 The pthread_spin_init() function allocates any resources required to use the spin lock referenced
35537 by lock and initializes the lock to an unlocked state.

35538 TSH If the Thread Process-Shared Synchronization option is supported and the value of pshared is
35539 PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated
35540 upon by any thread that has access to the memory where the spin lock is allocated, even if it is
35541 allocated in memory that is shared by multiple processes.

35542 If the Thread Process-Shared Synchronization option is supported and the value of pshared is
35543 PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be
35544 operated upon by threads created within the same process as the thread that initialized the spin
35545 lock. If threads of differing processes attempt to operate on such a spin lock, the behavior is
35546 undefined.

35547 The results are undefined if pthread_spin_init() is called specifying an already initialized spin
35548 lock. The results are undefined if a spin lock is used without first being initialized.

35549 If the pthread_spin_init() function fails, the lock is not initialized and the contents of lock are
35550 undefined.

35551 Only the object referenced by lock may be used for performing synchronization.

35552 The result of referring to copies of that object in calls to pthread_spin_destroy(),
35553 pthread_spin_lock(), pthread_spin_trylock(), or pthread_spin_unlock() is undefined.

35554 RETURN VALUE
35555 Upon successful completion, these functions shall return zero; otherwise, an error number shall
35556 be returned to indicate the error.

35557 ERRORS
35558 These functions may fail if:

35559 [EBUSY] The implementation has detected an attempt to initialize or destroy a spin
35560 lock while it is in use (for example, while being used in a pthread_spin_lock()
35561 call) by another thread.

35562 [EINVAL] The value specified by lock is invalid.

35563 The pthread_spin_init() function shall fail if:

35564 [EAGAIN] The system lacks the necessary resources to initialize another spin lock.

35565 [ENOMEM] Insufficient memory exists to initialize the lock.

System Interfaces, Issue 6 1647

pthread_spin_destroy() System Interfaces

35566 These functions shall not return an error code of [EINTR]. |

35567 EXAMPLES
35568 None.

35569 APPLICATION USAGE
35570 The pthread_spin_destroy() and pthread_spin_init() functions are part of the Spin Locks option |
35571 and need not be provided on all implementations. |

35572 RATIONALE
35573 None.

35574 FUTURE DIRECTIONS
35575 None.

35576 SEE ALSO
35577 pthread_spin_lock(), pthread_spin_trylock(), pthread_spin_unlock(), the Base Definitions volume of |
35578 IEEE Std. 1003.1-200x, <<pthread.h>> |

35579 CHANGE HISTORY
35580 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

35581 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

1648 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_spin_init()

35582 NAME
35583 pthread_spin_init — initialize a spin lock object

35584 SYNOPSIS
35585 SPI #include <pthread.h>

35586 int pthread_spin_init(pthread_spinlock_t * lock , int pshared);
35587

35588 DESCRIPTION
35589 Refer to pthread_spin_destroy().

System Interfaces, Issue 6 1649

pthread_spin_lock() System Interfaces

35590 NAME
35591 pthread_spin_lock, pthread_spin_trylock — lock a spin lock object

35592 SYNOPSIS
35593 SPI #include <pthread.h>

35594 int pthread_spin_lock(pthread_spinlock_t * lock);
35595 int pthread_spin_trylock(pthread_spinlock_t * lock);
35596

35597 DESCRIPTION
35598 The pthread_spin_lock() function locks the spin lock referenced by lock . The calling thread
35599 acquires the lock if it is not held by another thread. Otherwise, the thread spins (that is, does not
35600 return from the pthread_spin_lock() call) until the lock becomes available. The results are
35601 undefined if the calling thread holds the lock at the time the call is made. The
35602 pthread_spin_trylock() function locks the spin lock referenced by lock if it is not held by any
35603 thread. Otherwise, the function fails.

35604 The results are undefined if any of these functions is called with an uninitialized spin lock.

35605 RETURN VALUE
35606 Upon successful completion, these functions shall return zero; otherwise, an error number shall
35607 be returned to indicate the error.

35608 ERRORS
35609 These functions may fail if:

35610 [EINVAL] The value specified by lock does not refer to an initialized spin lock object.

35611 The pthread_spin_lock() function may fail if:

35612 [EDEADLK] The calling thread already holds the lock.

35613 The pthread_spin_trylock() function shall fail if:

35614 [EBUSY] A thread currently holds the lock.

35615 These functions shall not return an error code of [EINTR]. |

35616 EXAMPLES
35617 None.

35618 APPLICATION USAGE
35619 Applications using this function may be subject to priority inversion, as discussed in the Base |
35620 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

35621 The pthread_spin_lock() and pthread_spin_trylock() functions are part of the Spin Locks option |
35622 and need not be provided on all implementations. |

35623 RATIONALE
35624 None.

35625 FUTURE DIRECTIONS
35626 None.

35627 SEE ALSO
35628 pthread_spin_init(), pthread_spin_destroy(), pthread_spin_unlock(), the Base Definitions volume of |
35629 IEEE Std. 1003.1-200x, <pthread.h> |

1650 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_spin_lock()

35630 CHANGE HISTORY
35631 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

35632 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1651

pthread_spin_trylock() System Interfaces

35633 NAME
35634 pthread_spin_trylock — lock a spin lock object

35635 SYNOPSIS
35636 SPI #include <pthread.h>

35637 int pthread_spin_trylock(pthread_spinlock_t * lock);
35638

35639 DESCRIPTION
35640 Refer to pthread_spin_lock().

1652 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pthread_spin_unlock()

35641 NAME
35642 pthread_spin_unlock — unlock a spin lock object

35643 SYNOPSIS
35644 SPI #include <pthread.h>

35645 int pthread_spin_unlock(pthread_spinlock_t * lock);
35646

35647 DESCRIPTION
35648 The pthread_spin_unlock() function releases the spin lock referenced by lock which was locked
35649 via the pthread_spin_lock() or pthread_spin_trylock() functions. The results are undefined if the
35650 lock is not held by the calling thread. If there are threads spinning on the lock when
35651 pthread_spin_unlock() is called, the lock becomes available and an unspecified spinning thread
35652 shall acquire the lock.

35653 The results are undefined if this function is called with an uninitialized thread spin lock.

35654 RETURN VALUE
35655 Upon successful completion, the pthread_spin_unlock() function shall return zero; otherwise, an
35656 error number shall be returned to indicate the error.

35657 ERRORS
35658 The pthread_spin_unlock() function may fail if:

35659 [EINVAL] An invalid argument was specified.

35660 [EPERM] The calling thread does not hold the lock.

35661 This function shall not return an error code of [EINTR]. |

35662 EXAMPLES
35663 None.

35664 APPLICATION USAGE
35665 The pthread_spin_unlock() function is part of the Spin Locks option and need not be provided on |
35666 all implementations.

35667 RATIONALE
35668 None.

35669 FUTURE DIRECTIONS
35670 None.

35671 SEE ALSO
35672 pthread_spin_init(), pthread_spin_destroy(), pthread_spin_lock(), pthread_spin_trylock(), the Base |
35673 Definitions volume of IEEE Std. 1003.1-200x, <pthread.h> |

35674 CHANGE HISTORY
35675 First released in Issue 6. Derived from IEEE Std. 1003.1j-2000.

35676 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

System Interfaces, Issue 6 1653

pthread_testcancel() System Interfaces

35677 NAME
35678 pthread_testcancel — set cancelability state

35679 SYNOPSIS
35680 THR #include <pthread.h>

35681 void pthread_testcancel(void);
35682

35683 DESCRIPTION
35684 Refer to pthread_setcancelstate().

1654 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ptsname()

35685 NAME
35686 ptsname — get name of the slave pseudo-terminal device

35687 SYNOPSIS
35688 XSI #include <stdlib.h>

35689 char *ptsname(int fildes);
35690

35691 DESCRIPTION
35692 The ptsname() function shall return the name of the slave pseudo-terminal device associated
35693 with a master pseudo-terminal device. The fildes argument is a file descriptor that refers to the
35694 master device. The ptsname() function shall return a pointer to a string containing the path name
35695 of the corresponding slave device.

35696 The ptsname() function need not be reentrant. A function that is not required to be reentrant is
35697 not required to be thread-safe.

35698 RETURN VALUE
35699 Upon successful completion, ptsname() shall return a pointer to a string which is the name of the
35700 pseudo-terminal slave device. Upon failure, ptsname() shall return a null pointer. This could
35701 occur if fildes is an invalid file descriptor or if the slave device name does not exist in the file
35702 system.

35703 ERRORS
35704 No errors are defined.

35705 EXAMPLES
35706 None.

35707 APPLICATION USAGE
35708 The value returned may point to a static data area that is overwritten by each call to ptsname().

35709 RATIONALE
35710 None.

35711 FUTURE DIRECTIONS
35712 None.

35713 SEE ALSO
35714 grantpt(), open(), ttyname(), unlockpt (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
35715 <stdlib.h>

CHANGE35716 HISTORY
35717 First released in Issue 4, Version 2.

35718 Issue 5
35719 Moved from X/OPEN UNIX extension to BASE.

35720 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

System Interfaces, Issue 6 1655

putc() System Interfaces

35721 NAME
35722 putc — put byte on a stream

35723 SYNOPSIS
35724 #include <stdio.h>

35725 int putc(int c, FILE * stream);

35726 DESCRIPTION
35727 CX The functionality described on this reference page is aligned with the ISO C standard. Any
35728 conflict between the requirements described here and the ISO C standard is unintentional. This
35729 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

35730 The putc() function shall be equivalent to fputc(), except that if it is implemented as a macro it
35731 may evaluate stream more than once, so the argument should never be an expression with side
35732 effects.

35733 RETURN VALUE
35734 Refer to fputc().

35735 ERRORS
35736 Refer to fputc().

35737 EXAMPLES
35738 None.

35739 APPLICATION USAGE
35740 Because it may be implemented as a macro, putc() may treat a stream argument with side effects
35741 incorrectly. In particular, putc(c,*f++) does not necessarily work correctly. Therefore, use of this
35742 function is not recommended in such situations; fputc() should be used instead.

35743 RATIONALE
35744 None.

35745 FUTURE DIRECTIONS
35746 None.

35747 SEE ALSO
35748 fputc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

35749 CHANGE HISTORY
35750 First released in Issue 1. Derived from Issue 1 of the SVID. |

35751 Issue 4
35752 The APPLICATION USAGE section now states that the use of this function is not recommended
35753 with a stream argument with side effects.

35754 The following change is incorporated for alignment with the ISO C standard:

35755 • The c argument is not allowed to be evaluated more than once.

1656 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putc_unlocked()

35756 NAME
35757 putc_unlocked — stdio with explicit client locking

35758 SYNOPSIS
35759 TSF #include <stdio.h>

35760 int putc_unlocked(int c, FILE * stream);
35761

35762 DESCRIPTION
35763 Refer to getc_unlocked().

System Interfaces, Issue 6 1657

putchar() System Interfaces

35764 NAME
35765 putchar — put byte on stdout stream

35766 SYNOPSIS
35767 #include <stdio.h>

35768 int putchar(int c);

35769 DESCRIPTION
35770 CX The functionality described on this reference page is aligned with the ISO C standard. Any
35771 conflict between the requirements described here and the ISO C standard is unintentional. This
35772 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

35773 The function call putchar(c) shall be equivalent to putc(c,stdout).

35774 RETURN VALUE
35775 Refer to fputc().

35776 ERRORS
35777 Refer to fputc().

35778 EXAMPLES
35779 None.

35780 APPLICATION USAGE
35781 None.

35782 RATIONALE
35783 None.

35784 FUTURE DIRECTIONS
35785 None.

35786 SEE ALSO
35787 putc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

35788 CHANGE HISTORY
35789 First released in Issue 1. Derived from Issue 1 of the SVID. |

1658 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putchar_unlocked()

35790 NAME
35791 putchar_unlocked — stdio with explicit client locking

35792 SYNOPSIS
35793 TSF #include <stdio.h>

35794 int putchar_unlocked(int c);
35795

35796 DESCRIPTION
35797 Refer to getc_unlocked().

System Interfaces, Issue 6 1659

putenv() System Interfaces

35798 NAME
35799 putenv — change or add a value to environment

35800 SYNOPSIS
35801 XSI #include <stdlib.h>

35802 int putenv(char * string);
35803

35804 DESCRIPTION
35805 The putenv() function uses the string argument to set environment variable values. The string
35806 argument should point to a string of the form "name=value . The putenv() function makes the
35807 value of the environment variable name equal to value by altering an existing variable or creating
35808 a new one. In either case, the string pointed to by string becomes part of the environment, so
35809 altering the string shall change the environment. The space used by string is no longer used once
35810 a new string-defining name is passed to putenv().

35811 The putenv() function need not be reentrant. A function that is not required to be reentrant is not
35812 required to be thread-safe.

35813 RETURN VALUE
35814 Upon successful completion, putenv() shall return 0; otherwise, it shall return a non-zero value
35815 and set errno to indicate the error.

35816 ERRORS
35817 The putenv() function may fail if:

35818 [ENOMEM] Insufficient memory was available. |

35819 EXAMPLES

35820 Changing the Value of an Environment Variable

35821 The following example changes the value of the HOME environment variable to the value
35822 /usr/home.

35823 #include <stdlib.h>
35824 ...
35825 static char *var = "HOME=/usr/home";
35826 int ret;

35827 ret = putenv(var);

35828 APPLICATION USAGE
35829 The putenv() function manipulates the environment pointed to by environ , and can be used in
35830 conjunction with getenv().

35831 This routine may use malloc () to enlarge the environment.

35832 A potential error is to call putenv() with an automatic variable as the argument, then return from
35833 the calling function while string is still part of the environment. |

35834 The setenv() function is preferred over this function. |

35835 RATIONALE
35836 None.

1660 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putenv()

35837 FUTURE DIRECTIONS
35838 None.

35839 SEE ALSO
35840 exec, getenv(), malloc (), setenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

35841 CHANGE HISTORY
35842 First released in Issue 1. Derived from Issue 1 of the SVID. |

35843 Issue 4
35844 The <stdlib.h> header is added to the SYNOPSIS section.

35845 The type of argument string is changed from char* to const char*.

35846 Issue 5
35847 The type of the argument to this function is changed from const char* to char*. This was
35848 indicated as a FUTURE DIRECTION in previous issues.

35849 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

System Interfaces, Issue 6 1661

putmsg() System Interfaces

35850 NAME
35851 putmsg, putpmsg — send a message on a STREAM (STREAMS)

35852 SYNOPSIS
35853 XSR #include <stropts.h>

35854 int putmsg(int fildes , const struct strbuf * ctlptr ,
35855 const struct strbuf * dataptr , int flags);
35856 int putpmsg(int fildes , const struct strbuf * ctlptr ,
35857 const struct strbuf * dataptr , int band , int flags);
35858

35859 DESCRIPTION
35860 The putmsg() function shall create a message from a process buffer(s) and send the message to a
35861 STREAMS file. The message may contain either a data part, a control part, or both. The data and
35862 control parts are distinguished by placement in separate buffers, as described below. The
35863 semantics of each part are defined by the STREAMS module that receives the message.

35864 The putpmsg() function does the same thing as putmsg(), but the process can send messages in
35865 different priority bands. Except where noted, all requirements on putmsg() also pertain to
35866 putpmsg().

35867 The fildes argument specifies a file descriptor referencing an open STREAM. The ctlptr and
35868 dataptr arguments each point to a strbuf structure.

35869 The ctlptr argument points to the structure describing the control part, if any, to be included in
35870 the message. The buf member in the strbuf structure points to the buffer where the control
35871 information resides, and the len member indicates the number of bytes to be sent. The maxlen
35872 member is not used by putmsg(). In a similar manner, the argument dataptr specifies the data, if
35873 any, to be included in the message. The flags argument indicates what type of message should be
35874 sent and is described further below.

35875 To send the data part of a message, the application shall ensure that dataptr is not a null pointer
35876 and the len member of dataptr is 0 or greater. To send the control part of a message, the
35877 application shall ensure that the corresponding values are set for ctlptr . No data (control) part
35878 shall be sent if either dataptr (ctlptr) is a null pointer or the len member of dataptr (ctlptr) is set to
35879 −1.

35880 For putmsg(), if a control part is specified and flags is set to RS_HIPRI, a high priority message is
35881 sent. If no control part is specified, and flags is set to RS_HIPRI, putmsg() fails and sets errno to
35882 [EINVAL]. If flags is set to 0, a normal message (priority band equal to 0) is sent. If a control part
35883 and data part are not specified and flags is set to 0, no message is sent and 0 is returned.

35884 For putpmsg(), the flags are different. The flags argument is a bitmask with the following
35885 mutually-exclusive flags defined: MSG_HIPRI and MSG_BAND. If flags is set to 0, putpmsg()
35886 fails and sets errno to [EINVAL]. If a control part is specified and flags is set to MSG_HIPRI and
35887 band is set to 0, a high-priority message is sent. If flags is set to MSG_HIPRI and either no control
35888 part is specified or band is set to a non-zero value, putpmsg() fails and sets errno to [EINVAL]. If
35889 flags is set to MSG_BAND, then a message is sent in the priority band specified by band . If a
35890 control part and data part are not specified and flags is set to MSG_BAND, no message is sent
35891 and 0 is returned.

35892 The putmsg() function blocks if the STREAM write queue is full due to internal flow control
35893 conditions, with the following exceptions:

35894 • For high-priority messages, putmsg() does not block on this condition and continues
35895 processing the message.

1662 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putmsg()

35896 • For other messages, putmsg() does not block but fails when the write queue is full and
35897 O_NONBLOCK is set.

35898 The putmsg() function also blocks, unless prevented by lack of internal resources, while waiting
35899 for the availability of message blocks in the STREAM, regardless of priority or whether
35900 O_NONBLOCK has been specified. No partial message is sent.

35901 RETURN VALUE
35902 Upon successful completion, putmsg() and putpmsg() shall return 0; otherwise, they shall return
35903 −1 and set errno to indicate the error.

35904 ERRORS
35905 The putmsg() and putpmsg() functions shall fail if:

35906 [EAGAIN] A non-priority message was specified, the O_NONBLOCK flag is set, and the |
35907 STREAM write queue is full due to internal flow control conditions; or buffers
35908 could not be allocated for the message that was to be created.

35909 [EBADF] fildes is not a valid file descriptor open for writing. |

35910 [EINTR] A signal was caught during putmsg(). |

35911 [EINVAL] An undefined value is specified in flags , or flags is set to RS_HIPRI or |
35912 MSG_HIPRI and no control part is supplied, or the STREAM or multiplexer
35913 referenced by fildes is linked (directly or indirectly) downstream from a
35914 multiplexer, or flags is set to MSG_HIPRI and band is non-zero (for putpmsg()
35915 only).

35916 [ENOSR] Buffers could not be allocated for the message that was to be created due to |
35917 insufficient STREAMS memory resources.

35918 [ENOSTR] A STREAM is not associated with fildes . |

35919 [ENXIO] A hangup condition was generated downstream for the specified STREAM. |

35920 [EPIPE] or [EIO] The fildes argument refers to a STREAMS-based pipe and the other end of the |
35921 pipe is closed. A SIGPIPE signal is generated for the calling thread.

35922 [ERANGE] The size of the data part of the message does not fall within the range |
35923 specified by the maximum and minimum packet sizes of the topmost
35924 STREAM module. This value is also returned if the control part of the message
35925 is larger than the maximum configured size of the control part of a message,
35926 or if the data part of a message is larger than the maximum configured size of
35927 the data part of a message.

35928 In addition, putmsg() and putpmsg() shall fail if the STREAM head had processed an
35929 asynchronous error before the call. In this case, the value of errno does not reflect the result of
35930 putmsg() or putpmsg(), but reflects the prior error.

System Interfaces, Issue 6 1663

putmsg() System Interfaces

35931 EXAMPLES

35932 Sending a High-Priority Message

35933 The value of fd is assumed to refer to an open STREAMS file. This call to putmsg() does the
35934 following:

35935 1. Creates a high-priority message with a control part and a data part, using the buffers
35936 pointed to by ctrlbuf and databuf , respectively.

35937 2. Sends the message to the STREAMS file identified by fd .

35938 #include <stropts.h>
35939 #include <string.h>
35940 ...
35941 int fd;
35942 char *ctrlbuf = "This is the control part";
35943 char *databuf = "This is the data part";
35944 struct strbuf ctrl;
35945 struct strbuf data;
35946 int ret;

35947 ctrl.buf = ctrlbuf;
35948 ctrl.len = strlen(ctrlbuf);

35949 data.buf = databuf;
35950 data.len = strlen(databuf);

35951 ret = putmsg(fd, &ctrl, &data, MSG_HIPRI);

35952 Using putpmsg()

35953 This example has the same effect as the previous example. In this example, however, the
35954 putpmsg() function is used to create and send the message to the STREAMS file.

35955 #include <stropts.h>
35956 #include <string.h>
35957 ...
35958 int fd;
35959 char *ctrlbuf = "This is the control part";
35960 char *databuf = "This is the data part";
35961 struct strbuf ctrl;
35962 struct strbuf data;
35963 int ret;

35964 ctrl.buf = ctrlbuf;
35965 ctrl.len = strlen(ctrlbuf);

35966 data.buf = databuf;
35967 data.len = strlen(databuf);

35968 ret = putpmsg(fd, &ctrl, &data, 0, MSG_HIPRI);

35969 APPLICATION USAGE
35970 None.

1664 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putmsg()

35971 RATIONALE
35972 None.

35973 FUTURE DIRECTIONS
35974 None.

35975 SEE ALSO
35976 getmsg(), poll (), read(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
35977 <stropts.h>, Section 2.6 (on page 539)

35978 CHANGE HISTORY
35979 First released in Issue 4, Version 2.

35980 Issue 5
35981 Moved from X/OPEN UNIX extension to BASE.

35982 The following text is removed from the DESCRIPTION: ‘‘The STREAM head guarantees that the
35983 control part of a message generated by putmsg() is at least 64 bytes in length’’.

35984 Issue 6
35985 This function is marked as part of the XSI STREAMS Option Group.

35986 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1665

puts() System Interfaces

35987 NAME
35988 puts — put a string on standard output

35989 SYNOPSIS
35990 #include <stdio.h>

35991 int puts(const char * s);

35992 DESCRIPTION
35993 CX The functionality described on this reference page is aligned with the ISO C standard. Any
35994 conflict between the requirements described here and the ISO C standard is unintentional. This
35995 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

35996 The puts() function shall write the string pointed to by s, followed by a <newline> character, to
35997 the standard output stream stdout . The terminating null byte shall not be written.

35998 CX The st_ctime and st_mtime fields of the file shall be marked for update between the successful
35999 execution of puts() and the next successful completion of a call to fflush() or fclose() on the same
36000 stream or a call to exit() or abort().

36001 RETURN VALUE
36002 Upon successful completion, puts() shall return a non-negative number. Otherwise, it shall
36003 CX return EOF, shall set an error indicator for the stream, and errno shall be set to indicate the error.

36004 ERRORS
36005 Refer to fputc().

36006 EXAMPLES

36007 Printing to Standard Output

36008 The following example gets the current time, converts it to a string using localtime () and
36009 asctime(), and prints it to standard output using puts(). It then prints the number of minutes to
36010 an event for which it is waiting.

36011 #include <time.h>
36012 #include <stdio.h>
36013 ...
36014 time_t now;
36015 int minutes_to_event;
36016 ...
36017 time(&now);
36018 printf("The time is ");
36019 puts(asctime(localtime(&now)));
36020 printf("There are %d minutes to the event.\n",
36021 minutes_to_event);
36022 ...

36023 APPLICATION USAGE
36024 The puts() function appends a <newline> character, while fputs() does not.

36025 RATIONALE
36026 None.

36027 FUTURE DIRECTIONS
36028 None.

1666 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces puts()

36029 SEE ALSO
36030 fopen(), fputs(), putc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

36031 CHANGE HISTORY
36032 First released in Issue 1. Derived from Issue 1 of the SVID. |

36033 Issue 4
36034 In the DESCRIPTION, the words ‘‘null character’’ are replaced by ‘‘null byte’’.

36035 The following change is incorporated for alignment with the ISO C standard:

36036 • The type of argument s is changed from char* to const char*.

36037 Issue 6
36038 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1667

pututxline() System Interfaces

36039 NAME
36040 pututxline — put an entry into user accounting database

36041 SYNOPSIS
36042 XSI #include <utmpx.h>

36043 struct utmpx *pututxline(const struct utmpx * utmpx);
36044

36045 DESCRIPTION
36046 Refer to endutxent().

1668 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces putwc()

36047 NAME
36048 putwc — put a wide character on a stream

36049 SYNOPSIS
36050 #include <stdio.h>
36051 #include <wchar.h>

36052 wint_t putwc(wchar_t wc, FILE * stream);

36053 DESCRIPTION
36054 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36055 conflict between the requirements described here and the ISO C standard is unintentional. This
36056 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36057 The putwc() function shall be equivalent to fputwc(), except that if it is implemented as a macro
36058 it may evaluate stream more than once, so the argument should never be an expression with side
36059 effects.

36060 RETURN VALUE
36061 Refer to fputwc().

36062 ERRORS
36063 Refer to fputwc().

36064 EXAMPLES
36065 None.

36066 APPLICATION USAGE
36067 Because it may be implemented as a macro, putwc() may treat a stream argument with side
36068 effects incorrectly. In particular, putwc(wc,*f++) need not work correctly. Therefore, use of this
36069 function is not recommended; fputwc() should be used instead.

36070 RATIONALE
36071 None.

36072 FUTURE DIRECTIONS
36073 None.

36074 SEE ALSO
36075 fputwc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h>, <wchar.h> |

36076 CHANGE HISTORY
36077 First released as a World-wide Portability Interface in Issue 4.

36078 Issue 5
36079 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
36080 is changed from wint_t to wchar_t.

36081 The Optional Header (OH) marking is removed from <stdio.h>.

System Interfaces, Issue 6 1669

putwchar() System Interfaces

36082 NAME
36083 putwchar — put a wide character on stdout stream

36084 SYNOPSIS
36085 #include <wchar.h>

36086 wint_t putwchar(wchar_t wc);

36087 DESCRIPTION
36088 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36089 conflict between the requirements described here and the ISO C standard is unintentional. This
36090 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36091 The function call putwchar(wc) shall be equivalent to putwc(wc,stdout).

36092 RETURN VALUE
36093 Refer to fputwc().

36094 ERRORS
36095 Refer to fputwc().

36096 EXAMPLES
36097 None.

36098 APPLICATION USAGE
36099 None.

36100 RATIONALE
36101 None.

36102 FUTURE DIRECTIONS
36103 None.

36104 SEE ALSO
36105 fputwc(), putwc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

36106 CHANGE HISTORY
36107 First released in Issue 4.

36108 Issue 5
36109 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of argument wc
36110 is changed from wint_t to wchar_t.

1670 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces pwrite()

36111 NAME
36112 pwrite, — write on a file

36113 SYNOPSIS
36114 #include <unistd.h>

36115 XSI ssize_t pwrite(int fildes , const void * buf , size_t nbyte ,
36116 off_t offset);
36117

36118 DESCRIPTION
36119 Refer to write().

System Interfaces, Issue 6 1671

qsort() System Interfaces

36120 NAME
36121 qsort — sort a table of data

36122 SYNOPSIS
36123 #include <stdlib.h>

36124 void qsort(void * base , size_t nel , size_t width
36125 int (* compar)(const void *, const void *));

36126 DESCRIPTION
36127 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36128 conflict between the requirements described here and the ISO C standard is unintentional. This
36129 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36130 The qsort() function sorts an array of nel objects, the initial element of which is pointed to by
36131 base. The size of each object, in bytes, is specified by the width argument.

36132 The contents of the array are sorted in ascending order according to a comparison function. The
36133 compar argument is a pointer to the comparison function, which is called with two arguments
36134 that point to the elements being compared. The application shall ensure that the function returns
36135 an integer less than, equal to, or greater than 0, if the first argument is considered respectively
36136 less than, equal to, or greater than the second. If two members compare as equal, their order in
36137 the sorted array is unspecified.

36138 RETURN VALUE
36139 The qsort() function shall return no value.

36140 ERRORS
36141 No errors are defined.

36142 EXAMPLES
36143 None.

36144 APPLICATION USAGE
36145 The comparison function need not compare every byte, so arbitrary data may be contained in
36146 the elements in addition to the values being compared.

36147 RATIONALE
36148 None.

36149 FUTURE DIRECTIONS
36150 None.

36151 SEE ALSO
36152 The Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

36153 CHANGE HISTORY
36154 First released in Issue 1. Derived from Issue 1 of the SVID. |

36155 Issue 4
36156 The following change is incorporated for alignment with the ISO C standard:

36157 • The arguments to compar are formally defined in the SYNOPSIS section.

36158 Issue 6
36159 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1672 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces raise()

36160 NAME
36161 raise — send a signal to the executing process

36162 SYNOPSIS
36163 #include <signal.h>

36164 int raise(int sig);

36165 DESCRIPTION
36166 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36167 conflict between the requirements described here and the ISO C standard is unintentional. This
36168 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36169 CX The raise() function shall send the signal sig to the executing thread or process. If a signal |
36170 handler is called, the raise() function shall not return until after the signal handler does. |

36171 THR If the implementation supports the Threads option, the effect of the raise() function is equivalent |
36172 to calling:

36173 pthread_kill(pthread_self(), sig);

36174 |

36175 CX Otherwise, the effect of the raise() function is equivalent to calling: |

36176 kill(getpid(), sig); |

36177 |

36178 RETURN VALUE
36179 CX Upon successful completion, 0 shall be returned. Otherwise, a non-zero value shall be returned
36180 and errno shall be set to indicate the error.

36181 ERRORS
36182 The raise() function shall fail if:

36183 CX [EINVAL] The value of the sig argument is an invalid signal number. |

36184 EXAMPLES
36185 None.

36186 APPLICATION USAGE
36187 None.

36188 RATIONALE
36189 The term ‘‘thread’’ is an extension to the ISO C standard.

36190 FUTURE DIRECTIONS
36191 None.

36192 SEE ALSO
36193 kill (), sigaction (), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, |
36194 <sys/types.h>

CHANGE36195 HISTORY
36196 First released in Issue 4. Derived from the ANSI C standard. |

36197 Issue 5
36198 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces, Issue 6 1673

raise() System Interfaces

36199 Issue 6
36200 Extensions beyond the ISO C standard are now marked.

36201 The following new requirements on POSIX implementations derive from alignment with the
36202 Single UNIX Specification:

36203 • In the RETURN VALUE section, the requirement to set errno on error is added.

36204 • The [EINVAL] error condition is added.

1674 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rand()

36205 NAME
36206 rand, rand_r, srand — pseudo-random number generator

36207 SYNOPSIS
36208 #include <stdlib.h>

36209 int rand(void); |
36210 TSF int rand_r(unsigned * seed); |
36211 void srand(unsigned seed); |

36212 DESCRIPTION |
36213 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36214 conflict between the requirements described here and the ISO C standard is unintentional. This
36215 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36216 The rand() function shall compute a sequence of pseudo-random integers in the range 0 to
36217 XSI {RAND_MAX} with a period of at least 232.

36218 CX The rand() function need not be reentrant. A function that is not required to be reentrant is not
36219 required to be thread-safe.

36220 TSF The rand_r() function shall compute a sequence of pseudo-random integers in the range 0 to
36221 {RAND_MAX}. (The value of the {RAND_MAX} macro shall be at least 32 767.)

36222 If rand_r() is called with the same initial value for the object pointed to by seed and that object is
36223 not modified between successive returns and calls to rand_r(), the same sequence shall be
36224 generated.

36225 The srand() function uses the argument as a seed for a new sequence of pseudo-random
36226 numbers to be returned by subsequent calls to rand(). If srand() is then called with the same
36227 seed value, the sequence of pseudo-random numbers shall be repeated. If rand() is called before
36228 any calls to srand() are made, the same sequence shall be generated as when srand() is first
36229 called with a seed value of 1.

36230 The implementation shall behave as if no function defined in this volume of
36231 IEEE Std. 1003.1-200x calls rand() or srand().

36232 RETURN VALUE
36233 The rand() function shall return the next pseudo-random number in the sequence.

36234 TSF The rand_r() function shall return a pseudo-random integer.

36235 The srand() function shall return no value.

36236 ERRORS
36237 No errors are defined.

36238 EXAMPLES

36239 Generating a Pseudo-Random Number Sequence

36240 The following example demonstrates how to generate a sequence of pseudo-random numbers.

36241 #include <stdio.h>
36242 #include <stdlib.h>
36243 ...
36244 long count, i;
36245 char *keystr;
36246 int elementlen, len;
36247 char c;

System Interfaces, Issue 6 1675

rand() System Interfaces

36248 ...
36249 /* Initial random number generator. */
36250 srand(1);

36251 /* Create keys using only lower case characters */
36252 len = 0;
36253 for (i=0; i<count; i++) {
36254 while (len < elementlen) {
36255 c = (char) (rand() % 128);
36256 if (islower(c))
36257 keystr[len++] = c;
36258 }

36259 keystr[len] = ’\0’;
36260 printf("%s Element%0*ld\n", keystr, elementlen, i);
36261 len = 0;
36262 }

36263 Generating the Same Sequence on Different Machines

36264 The following code defines a pair of functions that could be incorporated into applications
36265 wishing to ensure that the same sequence of numbers is generated across different machines.

36266 static unsigned long next = 1;
36267 int myrand(void) /* RAND_MAX assumed to be 32767. */
36268 {
36269 next = next * 1103515245 + 12345;
36270 return((unsigned)(next/65536) % 32768);
36271 }

36272 void mysrand(unsigned seed)
36273 {
36274 next = seed;
36275 }

36276 APPLICATION USAGE
36277 The drand48() function provides a much more elaborate random number generator.

36278 RATIONALE
36279 The ISO C standard rand() and srand() functions allow per-process pseudo-random streams
36280 shared by all threads. Those two functions need not change, but there has to be mutual-
36281 exclusion that prevents interference between two threads concurrently accessing the random
36282 number generator.

36283 With regard to rand(), there are two different behaviors that may be wanted in a multi-threaded
36284 program:

36285 1. A single per-process sequence of pseudo-random numbers that is shared by all threads
36286 that call rand()

36287 2. A different sequence of pseudo-random numbers for each thread that calls rand()

36288 This is provided by the modified thread-safe function based on whether the seed value is global
36289 to the entire process or local to each thread.

36290 This does not address the known deficiencies of the rand() function implementations, which
36291 have been approached by maintaining more state. In effect, this specifies new thread-safe forms
36292 of a deficient function. Since alternatives to rand() are not standardized, they are not modified as

1676 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rand()

36293 part of this volume of IEEE Std. 1003.1-200x.

36294 FUTURE DIRECTIONS
36295 None.

36296 SEE ALSO
36297 drand48(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

36298 CHANGE HISTORY
36299 First released in Issue 1. Derived from Issue 1 of the SVID. |

36300 Issue 4
36301 The definition of srand() is added to the SYNOPSIS section.

36302 In the DESCRIPTION, the text referring to the period of pseudo-random numbers is marked as
36303 an extension.

36304 The example in the APPLICATION USAGE section is updated as follows:

36305 • To use ISO C standard syntax.

36306 • To avoid name clashes with standard functions.

36307 The following changes are incorporated for alignment with the ISO C standard:

36308 • The argument list of rand() is explicitly defined as void.

36309 • The argument seed is explicitly defined as unsigned. |

36310 Issue 5
36311 The rand_r() function is included for alignment with the POSIX Threads Extension.

36312 A note indicating that the rand() function need not be reentrant is added to the DESCRIPTION.

36313 Issue 6
36314 Extensions beyond the ISO C standard are now marked.

36315 The rand_r() function is marked as part of the Thread-Safe Functions option. |

System Interfaces, Issue 6 1677

random() System Interfaces

36316 NAME
36317 random — generate pseudorandom number

36318 SYNOPSIS
36319 XSI #include <stdlib.h>

36320 long random(void);
36321

36322 DESCRIPTION
36323 Refer to initstate().

1678 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces read()

36324 NAME
36325 pread, read, readv — read from a file |

36326 SYNOPSIS
36327 #include <unistd.h>

36328 XSI ssize_t pread(int fildes , void * buf , size_t nbyte , off_t offset);
36329 ssize_t read(int fildes , void * buf , size_t nbyte);

36330 XSI #include <sys/uio.h>

36331 ssize_t readv(int fildes , const struct iovec * iov , int iovcnt);
36332

36333 DESCRIPTION
36334 The read() function attempts to read nbyte bytes from the file associated with the open file
36335 descriptor, fildes , into the buffer pointed to by buf. The behavior of multiple concurrent reads on
36336 the same pipe, FIFO, or terminal device is unspecified.

36337 If nbyte is zero, the read() function may detect and return errors as described below. In the
36338 absence of errors, or if error detection is not performed, the read() function shall return zero and
36339 have no other results.

36340 On files that support seeking (for example, a regular file), the read() starts at a position in the file
36341 given by the file offset associated with fildes . The file offset is incremented by the number of
36342 bytes actually read.

36343 Files that do not support seeking—for example, terminals—always read from the current
36344 position. The value of a file offset associated with such a file is undefined.

36345 No data transfer shall occur past the current end-of-file. If the starting position is at or after the
36346 end-of-file, 0 shall be returned. If the file refers to a device special file, the result of subsequent
36347 read() requests is implementation-defined. |

36348 If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined. |

36349 When attempting to read from an empty pipe or FIFO:

36350 • If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file.

36351 • If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return
36352 −1 and set errno to [EAGAIN].

36353 • If some process has the pipe open for writing and O_NONBLOCK is clear, read() shall block
36354 the calling thread until some data is written or the pipe is closed by all processes that had the
36355 pipe open for writing.

36356 When attempting to read a file (other than a pipe or FIFO) that supports non-blocking reads and
36357 has no data currently available:

36358 • If O_NONBLOCK is set, read() shall return −1 and set errno to [EAGAIN].

36359 • If O_NONBLOCK is clear, read() shall block the calling thread until some data becomes
36360 available.

36361 • The use of the O_NONBLOCK flag has no effect if there is some data available.

36362 The read() function reads data previously written to a file. If any portion of a regular file prior to
36363 the end-of-file has not been written, read() shall return bytes with value 0. For example, lseek()
36364 allows the file offset to be set beyond the end of existing data in the file. If data is later written at
36365 this point, subsequent reads in the gap between the previous end of data and the newly written
36366 data shall return bytes with value 0 until data is written into the gap.

System Interfaces, Issue 6 1679

read() System Interfaces

36367 Upon successful completion, where nbyte is greater than 0, read() shall mark for update the
36368 st_atime field of the file, and shall return the number of bytes read. This number shall never be
36369 greater than nbyte. The value returned may be less than nbyte if the number of bytes left in the
36370 file is less than nbyte, if the read() request was interrupted by a signal, or if the file is a pipe or
36371 FIFO or special file and has fewer than nbyte bytes immediately available for reading. For
36372 example, a read() from a file associated with a terminal may return one typed line of data.

36373 If a read() is interrupted by a signal before it reads any data, it shall return −1 with errno set to
36374 [EINTR].

36375 If a read() is interrupted by a signal after it has successfully read some data, it shall return the
36376 number of bytes read.

36377 XSR A read() from a STREAMS file can read data in three different modes: byte-stream mode,
36378 message-nondiscard mode, and message-discard mode. The default is byte-stream mode. This can
36379 be changed using the I_SRDOPT ioctl () request, and can be tested with the I_GRDOPT ioctl (). In
36380 byte-stream mode, read() retrieves data from the STREAM until as many bytes as were
36381 requested are transferred, or until there is no more data to be retrieved. Byte-stream mode
36382 ignores message boundaries.

36383 In STREAMS message-nondiscard mode, read() retrieves data until as many bytes as were
36384 requested are transferred, or until a message boundary is reached. If read() does not retrieve all
36385 the data in a message, the remaining data is left on the STREAM, and can be retrieved by the
36386 next read() call. Message-discard mode also retrieves data until as many bytes as were requested
36387 are transferred, or a message boundary is reached. However, unread data remaining in a
36388 message after the read() returns is discarded, and is not available for a subsequent read(),
36389 readv(), or getmsg() call.

36390 How read() handles zero-byte STREAMS messages is determined by the current read mode
36391 setting. In byte-stream mode, read() accepts data until it has read nbyte bytes, or until there is no
36392 more data to read, or until a zero-byte message block is encountered. The read() function shall
36393 then return the number of bytes read, and place the zero-byte message back on the STREAM to
36394 be retrieved by the next read(), readv(), or getmsg(). In message-nondiscard mode or message-
36395 discard mode, a zero-byte message shall return 0 and the message shall be removed from the
36396 STREAM. When a zero-byte message is read as the first message on a STREAM, the message
36397 shall be removed from the STREAM and 0 shall be returned, regardless of the read mode.

36398 A read() from a STREAMS file shall return the data in the message at the front of the STREAM
36399 head read queue, regardless of the priority band of the message.

36400 By default, STREAMs are in control-normal mode, in which a read() from a STREAMS file can
36401 only process messages that contain a data part but do not contain a control part. The read() shall
36402 fail if a message containing a control part is encountered at the STREAM head. This default
36403 action can be changed by placing the STREAM in either control-data mode or control-discard
36404 mode with the I_SRDOPT ioctl () command. In control-data mode, read() converts any control
36405 part to data and passes it to the application before passing any data part originally present in the
36406 same message. In control-discard mode, read() shall discard message control parts but return to
36407 the process any data part in the message.

36408 In addition, read() and readv() fail if the STREAM head had processed an asynchronous error
36409 before the call. In this case, the value of errno does not reflect the result of read() or readv(), but
36410 reflects the prior error. If a hangup occurs on the STREAM being read, read() continues to
36411 operate normally until the STREAM head read queue is empty. Thereafter, it shall return 0.

36412 XSI The readv() function is equivalent to read(), but places the input data into the iovcnt buffers
36413 specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt−1]. The iovcnt argument is
36414 valid if greater than 0 and less than or equal to {IOV_MAX}.

1680 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces read()

36415 Each iovec entry specifies the base address and length of an area in memory where data should
36416 be placed. The readv() function always fills an area completely before proceeding to the next.

36417 Upon successful completion, readv() shall mark for update the st_atime field of the file.

36418 SIO If the O_DSYNC and O_RSYNC bits have been set, read I/O operations on the file descriptor
36419 complete as defined by synchronized I/O data integrity completion. If the O_SYNC and
36420 O_RSYNC bits have been set, read I/O operations on the file descriptor complete as defined by
36421 synchronized I/O file integrity completion.

36422 SHM If fildes refers to a shared memory object, the result of the read() function is unspecified.

36423 TYM If fildes refers to a typed memory object, the result of the read() function is unspecified.

36424 For regular files, no data transfer shall occur past the offset maximum established in the open |
36425 file description associated with fildes . |

36426 XSI The pread() function performs the same action as read(), except that it reads from a given
36427 position in the file without changing the file pointer. The first three arguments to pread() are the
36428 same as read() with the addition of a fourth argument offset for the desired position inside the
36429 file. An attempt to perform a pread() on a file that is incapable of seeking results in an error.

36430 If fildes refers to a socket, read() is equivalent to recv() with no flags set.

36431 RETURN VALUE
36432 XSI Upon successful completion, read(), pread() and readv() shall return a non-negative integer
36433 indicating the number of bytes actually read. Otherwise, the functions shall return −1 and set
36434 errno to indicate the error.

36435 ERRORS
36436 XSI The read(),pread() and readv()functions shall fail if:

36437 [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the process would be |
36438 delayed.

36439 [EBADF] The fildes argument is not a valid file descriptor open for reading. |

36440 XSR [EBADMSG] The file is a STREAM file that is set to control-normal mode and the message |
36441 waiting to be read includes a control part.

36442 [EINTR] The read operation was terminated due to the receipt of a signal, and no data |
36443 was transferred.

36444 XSR [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or |
36445 indirectly) downstream from a multiplexer. |

36446 [EIO] The process is a member of a background process attempting to read from its |
36447 controlling terminal, the process is ignoring or blocking the SIGTTIN signal,
36448 or the process group is orphaned. This error may also be generated for |
36449 implementation-defined reasons. |

36450 XSI [EISDIR] The fildes argument refers to a directory and the implementation does not |
36451 allow the directory to be read using read(), pread(), or readv(). The readdir()
36452 function should be used instead. |

36453 [EOVERFLOW] The file is a regular file, nbyte is greater than 0, the starting position is before |
36454 the end-of-file, and the starting position is greater than or equal to the offset
36455 maximum established in the open file description associated with fildes . |

36456 MAN The read() function shall fail if: |

System Interfaces, Issue 6 1681

read() System Interfaces

36457 [EAGAIN] or [EWOULDBLOCK] |
36458 The file descriptor is for a connection-made socket, is marked |
36459 O_NONBLOCK, and no data is waiting to be received. |

36460 [ECONNRESET] A read was attempted on a connection-mode socket and the connection was |
36461 forcibly closed by its peer. |

36462 [ENOTCONN] A read was attempted on a connection-made socket that is not connected. |

36463 [ETIMEDOUT] A read was attempted on a connection-mode socket and a transmission |
36464 timeout occurred. |
36465 |

36466 The readv() function shall fail if: |

36467 [EINVAL] The sum of the iov_len values in the iov array overflowed an ssize_t. |

36468 XSI The read(),pread() and readv()functions may fail if:

36469 MAN [EIO] A physical I/O error has occurred. |

36470 MAN [ENOBUFS] Insufficient resources were available in the system to perform the operation. |

36471 MAN [ENOMEM] Insufficient memory was available to fulfill the request. |

36472 [ENXIO] A request was made of a nonexistent device, or the request was outside the |
36473 capabilities of the device. |

36474 The readv() function may fail if:

36475 XSI [EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}. |

36476 XSI The pread() function shall fail, and the file pointer shall remain unchanged, if:

36477 XSI [EINVAL] The offset argument is invalid. The value is negative. |

36478 XSI [EOVERFLOW] The file is a regular file and an attempt was made to read or write at or beyond |
36479 the offset maximum associated with the file.

36480 XSI [ENXIO] A request was outside the capabilities of the device. |

36481 XSI [ESPIPE] fildes is associated with a pipe or FIFO. |

36482 EXAMPLES

36483 Reading Data into a Buffer

36484 The following example reads data from the file associated with the file descriptor fd into the
36485 buffer pointed to by buf.

36486 #include <sys/types.h>
36487 #include <unistd.h>
36488 ...
36489 char buf[20];
36490 size_t nbytes;
36491 ssize_t bytes_read;
36492 int fd;
36493 ...
36494 nbytes = sizeof(buf);
36495 bytes_read = read(fd, buf, nbytes);
36496 ...

1682 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces read()

36497 Reading Data into an Array

36498 The following example reads data from the file associated with the file descriptor fd into the
36499 buffers specified by members of the iov array.

36500 #include <sys/types.h>
36501 #include <sys/uio.h>
36502 #include <unistd.h>
36503 ...
36504 ssize_t bytes_read;
36505 int fd;
36506 char buf0[20];
36507 char buf1[30];
36508 char buf2[40];
36509 int iovcnt;
36510 struct iovec iov[3];

36511 iov[0].iov_base = buf0;
36512 iov[0].iov_len = sizeof(buf0);
36513 iov[1].iov_base = buf1;
36514 iov[1].iov_len = sizeof(buf1);
36515 iov[2].iov_base = buf2;
36516 iov[2].iov_len = sizeof(buf2);
36517 ...
36518 iovcnt = sizeof(iov) / sizeof(struct iovec);

36519 bytes_read = readv(fd, iov, iovcnt);
36520 ...

36521 APPLICATION USAGE
36522 None.

36523 RATIONALE
36524 This volume of IEEE Std. 1003.1-200x does not specify the value of the file offset after an error is
36525 returned; there are too many cases. For programming errors, such as [EBADF], the concept is |
36526 meaningless since no file is involved. For errors that are detected immediately, such as
36527 [EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however, |
36528 an updated value would be very useful and is the behavior of many implementations.

36529 Note that a read() of zero bytes does not modify st_atime . A read() that requests more than zero
36530 bytes, but returns zero, shall modify st_atime .

36531 Implementations are allowed, but not required, to perform error checking for read() requests of
36532 zero bytes.

36533 Input and Output

36534 The use of I/O with large byte counts has always presented problems. Ideas such as lread() and
36535 lwrite() (using and returning longs) were considered at one time. The current solution is to use
36536 abstract types on the ISO C standard function to read() and write(). The abstract types can be
36537 declared so that existing functions work, but can also be declared so that larger types can be
36538 represented in future implementations. It is presumed that whatever constraints limit the
36539 maximum range of size_t also limit portable I/O requests to the same range. This volume of
36540 IEEE Std. 1003.1-200x also limits the range further by requiring that the byte count be limited so
36541 that a signed return value remains meaningful. Since the return type is also a (signed) abstract
36542 type, the byte count can be defined by the implementation to be larger than an int can hold.

System Interfaces, Issue 6 1683

read() System Interfaces

36543 The standard developers considered adding atomicity requirements to a pipe or FIFO, but
36544 recognized that due to the nature of pipes and FIFOs there could be no guarantee of atomicity of
36545 reads of {PIPE_BUF} or any other size that would be an aid to applications portability. |

36546 This volume of IEEE Std. 1003.1-200x requires that no action be taken when nbyte is zero. This is
36547 not intended to take precedence over detection of errors (such as invalid buffer pointers or file
36548 descriptors). This is consistent with the rest of this volume of IEEE Std. 1003.1-200x, but the
36549 phrasing here could be misread to require detection of the zero case before any other errors. A
36550 value of zero is to be considered a correct value, for which the semantics are a no-op.

36551 I/O is intended to be atomic to ordinary files and pipes and FIFOs. Atomic means that all the
36552 bytes from a single operation that started out together end up together, without interleaving
36553 from other I/O operations. It is a known attribute of terminals that this is not honored, and
36554 terminals are explicitly (and implicitly permanently) excepted, making the behavior unspecified.
36555 The behavior for other device types is also left unspecified, but the wording is intended to imply
36556 that future standards might choose to specify atomicity (or not).

36557 There were recommendations to add format parameters to read() and write() in order to handle
36558 networked transfers among heterogeneous file system and base hardware types. Such a facility
36559 may be required for support by the OSI presentation of layer services. However, it was
36560 determined that this should correspond with similar C-language facilities, and that is beyond the
36561 scope of this volume of IEEE Std. 1003.1-200x. The concept was suggested to the developers of
36562 the ISO C standard for their consideration as a possible area for future work.

36563 In 4.3 BSD, a read() or write() that is interrupted by a signal before transferring any data does not
36564 by default return an [EINTR] error, but is restarted. In 4.2 BSD, 4.3 BSD, and the Eighth Edition, |
36565 there is an additional function, select(), whose purpose is to pause until specified activity (data
36566 to read, space to write, and so on) is detected on specified file descriptors. It is common in
36567 applications written for those systems for select() to be used before read() in situations (such as
36568 keyboard input) where interruption of I/O due to a signal is desired.

36569 The issue of which files or file types are interruptible is considered an implementation design
36570 issue. This is often affected primarily by hardware and reliability issues.

36571 There are no references to actions taken following an ‘‘unrecoverable error’’. It is considered
36572 beyond the scope of this volume of IEEE Std. 1003.1-200x to describe what happens in the case of
36573 hardware errors.

36574 Previous versions of IEEE Std. 1003.1-200x allowed two very different behaviors with regard to
36575 the handling of interrupts. In order to minimize the resulting confusion, it was decided that
36576 IEEE Std. 1003.1-200x should support only one of these behaviors. Historical practice on AT&T-
36577 derived systems was to have read() and write() return −1 and set errno to [EINTR] when
36578 interrupted after some, but not all, of the data requested had been transferred. However, the U.S.
36579 Department of Commerce FIPS 151-1 and FIPS 151-2 require the historical BSD behavior, in
36580 which read() and write() return the number of bytes actually transferred before the interrupt. If
36581 −1 is returned when any data is transferred, it is difficult to recover from the error on a seekable
36582 device and impossible on a non-seekable device. Most new implementations support this
36583 behavior. The behavior required by IEEE Std. 1003.1-200x is to return the number of bytes
36584 transferred.

36585 IEEE Std. 1003.1-200x does not specify when an implementation that buffers read()s actually
36586 moves the data into the user-supplied buffer, so an implementation may chose to do this at the
36587 latest possible moment. Therefore, an interrupt arriving earlier may not cause read() to return a
36588 partial byte count, but rather to return −1 and set errno to [EINTR].

36589 Consideration was also given to combining the two previous options, and setting errno to
36590 [EINTR] while returning a short count. However, not only is there no existing practice that

1684 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces read()

36591 implements this, it is also contradictory to the idea that when errno is set, the function
36592 responsible shall return −1.

36593 FUTURE DIRECTIONS
36594 None.

36595 SEE ALSO
36596 fcntl(), ioctl (), lseek(), open(), pipe(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
36597 <stropts.h>, <sys/uio.h>, <unistd.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, |
36598 Chapter 11, General Terminal Interface |

36599 CHANGE HISTORY
36600 First released in Issue 1. Derived from Issue 1 of the SVID. |

36601 Issue 4
36602 The <unistd.h> header is added to the SYNOPSIS section.

36603 The DESCRIPTION is rearranged for clarity and to align more closely with the ISO POSIX-1
36604 standard. No functional changes are made other than as noted elsewhere in this CHANGE
36605 HISTORY section.

36606 In the ERRORS section in previous issues, generation of the [EIO] error depended on whether or
36607 not an implementation supported Job Control. This functionality is now defined as mandatory.

36608 The [ENXIO] error is marked as an extension.

36609 The APPLICATION USAGE section is removed.

36610 The description of [EINTR] is amended.

36611 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

36612 • The type of the argument buf is changed from char* to void*, and the type of the argument
36613 nbyte is changed from unsigned to size_t.

36614 • The DESCRIPTION now states that the result is implementation-defined if nbyte is greater |
36615 than {SSIZE_MAX}. This limit was defined by the constant {INT_MAX} in Issue 3.

36616 The following change is incorporated for alignment with the FIPS requirements:

36617 • The last paragraph of the DESCRIPTION now states that if read() is interrupted by a signal
36618 after it has successfully read some data, it returns the number of bytes read. In Issue 3, it was
36619 optional whether read() returned the number of bytes read, or whether it returned −1 with
36620 errno set to [EINTR].

36621 Issue 4, Version 2
36622 The following changes are incorporated for X/OPEN UNIX conformance:

36623 • The readv() function is added to the SYNOPSIS.

36624 • The DESCRIPTION is updated to describe the reading of data from STREAMS files. An
36625 operational description of the readv() function is also added.

36626 • References to the readv() function are added to the RETURN VALUE and ERRORS sections
36627 in appropriate places.

36628 • The ERRORS section has been restructured to describe errors that apply generally (that is, to
36629 both read() and readv()), and to describe those that apply to readv() specifically. The
36630 [EBADMSG], [EINVAL], and [EISDIR] errors are also added.

System Interfaces, Issue 6 1685

read() System Interfaces

36631 Issue 5
36632 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
36633 Threads Extension.

36634 Large File Summit extensions are added.

36635 The pread() function is added.

36636 Issue 6
36637 The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
36638 marked as part of the XSI STREAMS Option Group.

36639 The following new requirements on POSIX implementations derive from alignment with the
36640 Single UNIX Specification:

36641 • The DESCRIPTION now states that if read() is interrupted by a signal after it has successfully
36642 read some data, it returns the number of bytes read. In Issue 3, it was optional whether read()
36643 returned the number of bytes read, or whether it returned −1 with errno set to [EINTR]. This
36644 is a FIPS requirement.

36645 • In the DESCRIPTION, text is added to indicate that for regular files, no data transfer occurs
36646 past the offset maximum established in the open file description associated with fildes . This
36647 change is to support large files.

36648 • The [EOVERFLOW] mandatory error condition is added.

36649 • The [ENXIO] optional error condition is added.

36650 Text referring to sockets is added to the DESCRIPTION.

36651 The following changes were made to align with the IEEE P1003.1a draft standard:

36652 • The effect of reading zero bytes is clarified.

36653 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
36654 read() results are unspecified for typed memory objects.

36655 New RATIONALE is added to explain the atomicity requirements for input and output
36656 operations. |

36657 The following error conditions are added for operations on sockets: [EAGAIN], |
36658 [ECONNRESET], [ENOTCONN], and [ETIMEDOUT]. |

36659 The [EIO] error is changed to ‘‘may fail’’. |

36660 The following error conditions are added for operations on sockets: [ENOBUFS] and |
36661 [ENOMEM]. |

1686 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces readdir()

36662 NAME
36663 readdir, readdir_r — read directory

36664 SYNOPSIS
36665 #include <dirent.h>

36666 struct dirent *readdir(DIR * dirp);
36667 TSF int readdir_r(DIR *restrict dirp , struct dirent *restrict entry , |
36668 struct dirent **restrict result); |
36669 |

36670 DESCRIPTION
36671 The type DIR, which is defined in the header <dirent.h>, represents a directory stream, which is
36672 an ordered sequence of all the directory entries in a particular directory. Directory entries
36673 represent files; files may be removed from a directory or added to a directory asynchronously to
36674 the operation of readdir().

36675 The readdir() function shall return a pointer to a structure representing the directory entry at the
36676 current position in the directory stream specified by the argument dirp, and position the
36677 directory stream at the next entry. It shall return a null pointer upon reaching the end of the
36678 directory stream. The structure dirent defined by the <dirent.h> header describes a directory
36679 entry.

36680 The readdir() function shall not return directory entries containing empty names. If entries for
36681 dot or dot-dot exist, one entry shall be returned for dot and one entry shall be returned for dot-
36682 dot; otherwise, they shall not be returned.

36683 The pointer returned by readdir() points to data which may be overwritten by another call to
36684 readdir() on the same directory stream. This data is not overwritten by another call to readdir()
36685 on a different directory stream.

36686 If a file is removed from or added to the directory after the most recent call to opendir() or
36687 rewinddir(), whether a subsequent call to readdir() returns an entry for that file is unspecified.

36688 The readdir() function may buffer several directory entries per actual read operation; readdir()
36689 shall mark for update the st_atime field of the directory each time the directory is actually read.

36690 After a call to fork (), either the parent or child (but not both) may continue processing the
36691 XSI directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and child processes
36692 use these functions, the result is undefined.

36693 If the entry names a symbolic link, the value of the d_ino member is unspecified. |

36694 The readdir() function need not be reentrant. A function that is not required to be reentrant is not
36695 required to be thread-safe.

36696 TSF The readdir_r() function initializes the dirent structure referenced by entry to represent the
36697 directory entry at the current position in the directory stream referred to by dirp , store a pointer
36698 to this structure at the location referenced by result, and position the directory stream at the next
36699 entry.

36700 The storage pointed to by entry shall be large enough for a dirent with an array of char d_name
36701 members containing at least {NAME_MAX} plus one elements.

36702 Upon successful return, the pointer returned at *result shall have the same value as the argument
36703 entry. Upon reaching the end of the directory stream, this pointer shall have the value NULL.

36704 The readdir_r() function shall not return directory entries containing empty names. |

System Interfaces, Issue 6 1687

readdir() System Interfaces

36705 If a file is removed from or added to the directory after the most recent call to opendir() or |
36706 rewinddir(), whether a subsequent call to readdir_r() returns an entry for that file is unspecified.

36707 The readdir_r() function may buffer several directory entries per actual read operation; the
36708 readdir_r() function shall mark for update the st_atime field of the directory each time the
36709 directory is actually read.

36710 Applications wishing to check for error situations should set errno to 0 before calling readdir(). If
36711 errno is set to non-zero on return, an error occurred.

36712 RETURN VALUE
36713 Upon successful completion, readdir() shall return a pointer to an object of type struct dirent.
36714 When an error is encountered, a null pointer shall be returned and errno shall be set to indicate
36715 the error. When the end of the directory is encountered, a null pointer shall be returned and errno
36716 is not changed.

36717 TSF If successful, the readdir_r() function shall return zero; otherwise, an error number shall be
36718 returned to indicate the error.

36719 ERRORS
36720 The readdir() function shall fail if:

36721 [EOVERFLOW] One of the values in the structure to be returned cannot be represented |
36722 correctly. |

36723 The readdir() function may fail if:

36724 [EBADF] The dirp argument does not refer to an open directory stream. |

36725 [ENOENT] The current position of the directory stream is invalid. |

36726 The readdir_r() function may fail if:

36727 [EBADF] The dirp argument does not refer to an open directory stream. |

36728 EXAMPLES
36729 The following sample code searches the current directory for the entry name:

36730 dirp = opendir(".");

36731 while (dirp) {
36732 errno = 0;
36733 if ((dp = readdir(dirp)) != NULL) {
36734 if (strcmp(dp->d_name, name) == 0) {
36735 closedir(dirp);
36736 return FOUND;
36737 }
36738 } else {
36739 if (errno == 0) {
36740 closedir(dirp);
36741 return NOT_FOUND;
36742 }
36743 closedir(dirp);
36744 return READ_ERROR;
36745 }
36746 }

36747 return OPEN_ERROR;

1688 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces readdir()

36748 APPLICATION USAGE
36749 The readdir() function should be used in conjunction with opendir(), closedir(), and rewinddir() to
36750 examine the contents of the directory.

36751 The readdir_r() function is thread-safe and shall return values in a user-supplied buffer instead
36752 of possibly using a static data area that may be overwritten by each call.

36753 RATIONALE
36754 The returned value of readdir() merely represents a directory entry. No equivalence should be |
36755 inferred. |

36756 Historical implementations of readdir() obtain multiple directory entries on a single read |
36757 operation, which permits subsequent readdir() operations to operate from the buffered |
36758 information. Any wording that required each successful readdir() operation to mark the |
36759 directory st_atime field for update would militate against the historical performance-oriented |
36760 implementations. |

36761 Since readdir() returns NULL when it detects an error and when the end of the directory is |
36762 encountered, an application that needs to tell the difference must set errno to zero before the call |
36763 and check it if NULL is returned. Because the function must not change errno in the second case |
36764 and must set it to a non-zero value in the first case, a zero errno after a call returning NULL |
36765 indicates end of directory; otherwise, an error. |

36766 Routines to deal with this problem more directly were proposed: |

36767 int derror (dirp) |
36768 DIR * dirp ; |

36769 void clearderr (dirp) |
36770 DIR * dirp ; |

36771 The first would indicate whether an error had occurred, and the second would clear the error |
36772 indication. The simpler method involving errno was adopted instead by requiring that readdir() |
36773 not change errno when end-of-directory is encountered. |

36774 An error or signal indicating that a directory has changed while open was considered but |
36775 rejected. |

36776 The thread-safe version of the directory reading function shall return values in a user-supplied |
36777 buffer instead of possibly using a static data area that may be overwritten by each call. Either the |
36778 {NAME_MAX} compile-time constant or the corresponding pathconf () option can be used to |
36779 determine the maximum sizes of returned path names. |

36780 FUTURE DIRECTIONS
36781 None.

36782 SEE ALSO
36783 closedir(), lstat(), opendir(), rewinddir(), symlink(), the Base Definitions volume of |
36784 IEEE Std. 1003.1-200x, <dirent.h>, <sys/types.h> |

36785 CHANGE HISTORY
36786 First released in Issue 2.

36787 Issue 4
36788 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
36789 XSI-conformant systems.

36790 In the DESCRIPTION, the fact that XSI-conformant systems return entries for dot and dot-dot is
36791 marked as an extension. This functionality is not specified in the ISO POSIX-1 standard.

System Interfaces, Issue 6 1689

readdir() System Interfaces

36792 There is some rewording of the DESCRIPTION and RETURN VALUE sections. No functional
36793 changes are made other than as noted elsewhere in this CHANGE HISTORY section.

36794 The following change is incorporated for alignment with the ISO POSIX-1 standard:

36795 • The last paragraph of the DESCRIPTION describing a restriction after fork () is added.

36796 Issue 4, Version 2
36797 The following changes are incorporated for X/OPEN UNIX conformance:

36798 • A statement is added to the DESCRIPTION indicating the disposition of certain fields in
36799 struct dirent when an entry refers to a symbolic link.

36800 • The [ENOENT] optional error condition is added.

36801 Issue 5
36802 Large File Summit extensions are added.

36803 The readdir_r() function is included for alignment with the POSIX Threads Extension.

36804 A note indicating that the readdir() function need not be reentrant is added to the
36805 DESCRIPTION.

36806 Issue 6
36807 The readdir_r() function is marked as part of the Thread-Safe Functions option. |

36808 The Open Group corrigenda item U026/7 has been applied, correcting the prototype for
36809 readdir_r().

36810 The Open Group corrigenda item U026/8 has been applied, clarifying the wording of the
36811 successful return for the readdir_r() function.

36812 The following new requirements on POSIX implementations derive from alignment with the
36813 Single UNIX Specification:

36814 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
36815 required for conforming implementations of previous POSIX specifications, it was not
36816 required for UNIX applications.

36817 • A statement is added to the DESCRIPTION indicating the disposition of certain fields in
36818 struct dirent when an entry refers to a symbolic link.

36819 • The [EOVERFLOW] mandatory error condition is added. This change is to support large
36820 files.

36821 • The [ENOENT] optional error condition is added.

36822 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
36823 its avoidance of possibly using a static data area. |

36824 The restrict keyword is added to the readdir_r() prototype for alignment with the |
36825 ISO/IEC 9899: 1999 standard. |

1690 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces readlink()

36826 NAME
36827 readlink — read the contents of a symbolic link

36828 SYNOPSIS
36829 #include <unistd.h>

36830 ssize_t readlink(const char *restrict path , char *restrict buf , |
36831 size_t bufsize); |

36832 DESCRIPTION |
36833 The readlink () function shall place the contents of the symbolic link referred to by path in the
36834 buffer buf which has size bufsize . If the number of bytes in the symbolic link is less than bufsize ,
36835 the contents of the remainder of buf are unspecified. If the buf argument is not large enough to
36836 contain the link content, the first bufsize bytes shall be placed in buf.

36837 If the value of bufsize is greater than {SSIZE_MAX}, the result is implementation-defined. |

36838 RETURN VALUE
36839 Upon successful completion, readlink () shall return the count of bytes placed in the buffer.
36840 Otherwise, it shall return a value of −1, leave the buffer unchanged, and set errno to indicate the
36841 error.

36842 ERRORS
36843 The readlink () function shall fail if:

36844 [EACCES] Search permission is denied for a component of the path prefix of path . |

36845 [EINVAL] The path argument names a file that is not a symbolic link. |

36846 [EIO] An I/O error occurred while reading from the file system. |

36847 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
36848 argument.

36849 [ENAMETOOLONG] |
36850 The length of the path argument exceeds {PATH_MAX} or a path name |
36851 component is longer than {NAME_MAX}. |

36852 [ENOENT] A component of path does not name an existing file or path is an empty string. |

36853 [ENOTDIR] A component of the path prefix is not a directory. |

36854 The readlink () function may fail if:

36855 [EACCES] Read permission is denied for the directory. |

36856 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
36857 resolution of the path argument.

36858 [ENAMETOOLONG] |
36859 As a result of encountering a symbolic link in resolution of the path argument,
36860 the length of the substituted path name string exceeded {PATH_MAX}.

System Interfaces, Issue 6 1691

readlink() System Interfaces

36861 EXAMPLES

36862 Reading the Name of a Symbolic Link

36863 The following example shows how to read the name of a symbolic link named /modules/pass1.

36864 #include <unistd.h>

36865 char buf[1024];
36866 int len;
36867 ...
36868 if ((len = readlink("/modules/pass1", buf, sizeof(buf)-1)) != -1);
36869 buf[len] = ’\0’;

36870 APPLICATION USAGE
36871 Portable applications should not assume that the returned contents of the symbolic link are
36872 null-terminated.

36873 RATIONALE
36874 Since IEEE Std. 1003.1-200x does not require any association of file times with symbolic links,
36875 there is no requirement that file times be updated by readlink (). The type associated with bufsiz
36876 is a size_t in order to be consistent with both the ISO C standard and the definition of read().
36877 The behavior specified for readlink () when bufsiz is zero represents historical practice. For this
36878 case, the standard developers considered a change whereby readlink () would return the number
36879 of non-null bytes contained in the symbolic link with the buffer buf remaining unchanged;
36880 however, since the stat structure member st_size value can be used to determine the size of
36881 buffer necessary to contain the contents of the symbolic link as returned by readlink (), this
36882 proposal was rejected, and the historical practice retained.

36883 FUTURE DIRECTIONS
36884 None.

36885 SEE ALSO
36886 lstat(), stat(), symlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

36887 CHANGE HISTORY
36888 First released in Issue 4, Version 2.

36889 Issue 5
36890 Moved from X/OPEN UNIX extension to BASE.

36891 Issue 6
36892 The return type is changed to ssize_t, to align with the IEEE P1003.1a draft standard.

36893 The following new requirements on POSIX implementations derive from alignment with the
36894 Single UNIX Specification:

36895 • This function is made mandatory.

36896 • In this function it is possible for the return value to exceed the range of the type ssize_t (since
36897 size_t has a larger range of positive values than ssize_t). A sentence restricting the size of
36898 the size_t object is added to the description to resolve this conflict.

36899 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

36900 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
36901 This is since behavior may vary from one file system to another.

36902 • The FUTURE DIRECTIONS section is changed to None.

1692 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces readlink()

36903 The following changes were made to align with the IEEE P1003.1a draft standard:

36904 • The [ELOOP] optional error condition is added.

36905 The restrict keyword is added to the readlink () prototype for alignment with the |
36906 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1693

readv() System Interfaces

36907 NAME
36908 readv — vectored read from file

36909 SYNOPSIS
36910 XSI #include <sys/uio.h>

36911 ssize_t readv(int fildes , const struct iovec * iov , int iovcnt);
36912

36913 DESCRIPTION
36914 Refer to read().

1694 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces realloc()

36915 NAME
36916 realloc — memory reallocator

36917 SYNOPSIS
36918 #include <stdlib.h>

36919 void *realloc(void * ptr , size_t size);

36920 DESCRIPTION
36921 CX The functionality described on this reference page is aligned with the ISO C standard. Any
36922 conflict between the requirements described here and the ISO C standard is unintentional. This
36923 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

36924 The realloc () function shall change the size of the memory object pointed to by ptr to the size
36925 specified by size . The contents of the object shall remain unchanged up to the lesser of the new
36926 and old sizes. If the new size of the memory object would require movement of the object, the
36927 space for the previous instantiation of the object is freed. If the new size is larger, the contents of
36928 the newly allocated portion of the object are unspecified. If size is 0 and ptr is not a null pointer,
36929 the object pointed to is freed. If the space cannot be allocated, the object remains unchanged.

36930 If ptr is a null pointer, realloc () shall behave like malloc () for the specified size.

36931 If ptr does not match a pointer returned earlier by calloc (), malloc (), or realloc () or if the space has
36932 previously been deallocated by a call to free() or realloc (), the behavior is undefined.

36933 The order and contiguity of storage allocated by successive calls to realloc () is unspecified. The |
36934 pointer returned if the allocation succeeds is suitably aligned so that it may be assigned to a
36935 pointer to any type of object and then used to access such an object in the space allocated (until
36936 the space is explicitly freed or reallocated). Each such allocation shall yield a pointer to an object
36937 disjoint from any other object. The pointer returned points to the start (lowest byte address) of |
36938 the allocated space. If the space cannot be allocated, a null pointer shall be returned. |

36939 RETURN VALUE
36940 Upon successful completion with a size not equal to 0, realloc () shall return a pointer to the
36941 (possibly moved) allocated space. If size is 0, either a null pointer or a unique pointer that can be
36942 successfully passed to free() shall be returned. If there is not enough available memory, realloc ()
36943 CX shall return a null pointer and set errno to [ENOMEM].

36944 ERRORS
36945 The realloc () function shall fail if:

36946 CX [ENOMEM] Insufficient memory is available. |

36947 EXAMPLES
36948 None.

36949 APPLICATION USAGE
36950 None.

36951 RATIONALE
36952 None.

36953 FUTURE DIRECTIONS
36954 None.

36955 SEE ALSO
36956 calloc (), free(), malloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

System Interfaces, Issue 6 1695

realloc() System Interfaces

36957 CHANGE HISTORY
36958 First released in Issue 1. Derived from Issue 1 of the SVID. |

36959 Issue 4
36960 The setting of errno and the [ENOMEM] error are marked as extensions.

36961 The APPLICATION USAGE section is removed.

36962 The following changes are incorporated for alignment with the ISO C standard:

36963 • The DESCRIPTION is updated to indicate as follows:

36964 — The order and contiguity of storage allocated by successive calls to this function is
36965 unspecified.

36966 — Each allocation yields a pointer to an object disjoint from any other object.

36967 — The returned pointer points to the lowest byte address of the allocation.

36968 • The RETURN VALUE section is updated to indicate what is returned if size is 0.

36969 Issue 6
36970 Extensions beyond the ISO C standard are now marked.

36971 The following new requirements on POSIX implementations derive from alignment with the
36972 Single UNIX Specification:

36973 • In the RETURN VALUE section, if there is not enough available memory, the setting of errno
36974 to [ENOMEM] is added.

36975 • The [ENOMEM] error condition is added.

1696 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces realpath()

36976 NAME
36977 realpath — resolve a path name |

36978 SYNOPSIS
36979 XSI #include <stdlib.h>

36980 char *realpath(const char *restrict file_name , |
36981 char *restrict resolved_name); |
36982 |

36983 DESCRIPTION
36984 The realpath () function derives, from the path name pointed to by file_name , an absolute path
36985 name that names the same file, whose resolution does not involve ’.’ , ’..’ , or symbolic links.
36986 The generated path name is stored as a null-terminated string, up to a maximum of
36987 {PATH_MAX} bytes, in the buffer pointed to by resolved_name. |

36988 RETURN VALUE
36989 Upon successful completion, realpath () shall return a pointer to the resolved name. Otherwise,
36990 realpath () shall return a null pointer and set errno to indicate the error, and the contents of the
36991 buffer pointed to by resolved_name are undefined.

36992 ERRORS
36993 The realpath () function shall fail if:

36994 [EACCES] Read or search permission was denied for a component of file_name . |

36995 [EINVAL] Either the file_name or resolved_name argument is a null pointer. |

36996 [EIO] An error occurred while reading from the file system. |

36997 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
36998 argument. |

36999 [ENAMETOOLONG] |
37000 The length of the file_name argument exceeds {PATH_MAX} or a path name |
37001 component is longer than {NAME_MAX}. |

37002 [ENOENT] A component of file_name does not name an existing file or file_name points to |
37003 an empty string.

37004 [ENOTDIR] A component of the path prefix is not a directory. |

37005 The realpath () function may fail if:

37006 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
37007 resolution of the path argument. |

37008 [ENAMETOOLONG] |
37009 Path name resolution of a symbolic link produced an intermediate result
37010 whose length exceeds {PATH_MAX}.

37011 [ENOMEM] Insufficient storage space is available. |

System Interfaces, Issue 6 1697

realpath() System Interfaces

37012 EXAMPLES

37013 Generating an Absolute Path Name

37014 The following example generates an absolute path name for the file identified by the symlinkpath
37015 argument. The generated path name is stored in the actualpath array.

37016 #include <stdlib.h>
37017 ...
37018 char *symlinkpath = "/tmp/symlink/file";
37019 char actualpath [PATH_MAX+1];
37020 char *ptr;

37021 ptr = realpath(symlinkpath, actualpath);

37022 APPLICATION USAGE
37023 None.

37024 RATIONALE
37025 None.

37026 FUTURE DIRECTIONS
37027 None.

37028 SEE ALSO
37029 getcwd(), sysconf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

37030 CHANGE HISTORY
37031 First released in Issue 4, Version 2.

37032 Issue 5
37033 Moved from X/OPEN UNIX extension to BASE.

37034 Issue 6
37035 The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC. This
37036 is since behavior may vary from one file system to another. |

37037 The restrict keyword is added to the realpath () prototype for alignment with the |
37038 ISO/IEC 9899: 1999 standard. |

37039 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
37040 [ELOOP] error condition is added. |

1698 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces recv()

37041 NAME
37042 recv — receive a message from a connected socket

37043 SYNOPSIS
37044 #include <sys/socket.h>

37045 ssize_t recv(int socket , void * buffer , size_t length , int flags);

37046 DESCRIPTION
37047 The recv() function receives a message from a connection-mode or connectionless-mode socket.
37048 It is normally used with connected sockets because it does not permit the application to retrieve
37049 the source address of received data.

37050 The recv() function takes the following arguments:

37051 socket Specifies the socket file descriptor.

37052 buffer Points to a buffer where the message should be stored.

37053 length Specifies the length in bytes of the buffer pointed to by the buffer argument.

37054 flags Specifies the type of message reception. Values of this argument are formed by
37055 logically OR’ing zero or more of the following values:

37056 MSG_PEEK Peeks at an incoming message. The data is treated as unread and
37057 the next recv() or similar function shall still return this data.

37058 MSG_OOB Requests out-of-band data. The significance and semantics of
37059 out-of-band data are protocol-specific.

37060 MSG_WAITALL Requests that the function block until the full amount of data
37061 requested can be returned. The function may return a smaller
37062 amount of data if a signal is caught, if the connection is
37063 terminated, if MSG_PEEK was specified, or if an error is pending
37064 for the socket.

37065 The recv() function shall return the length of the message written to the buffer pointed to by the
37066 buffer argument. For message-based sockets, such as SOCK_DGRAM and SOCK_SEQPACKET,
37067 the entire message shall be read in a single operation. If a message is too long to fit in the
37068 supplied buffer, and MSG_PEEK is not set in the flags argument, the excess bytes shall be
37069 discarded. For stream-based sockets, such as SOCK_STREAM, message boundaries shall be
37070 ignored. In this case, data is returned to the user as soon as it becomes available, and no data
37071 shall be discarded.

37072 If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
37073 message.

37074 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
37075 descriptor, recv() shall block until a message arrives. If no messages are available at the socket
37076 and O_NONBLOCK is set on the socket’s file descriptor, recv() shall fail and set errno to
37077 [EAGAIN] or [EWOULDBLOCK].

37078 RETURN VALUE
37079 Upon successful completion, recv() shall return the length of the message in bytes. If no
37080 messages are available to be received and the peer has performed an orderly shutdown, recv()
37081 shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

System Interfaces, Issue 6 1699

recv() System Interfaces

37082 ERRORS
37083 The recv() function shall fail if:

37084 [EAGAIN] or [EWOULDBLOCK]
37085 The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
37086 to be received; or MSG_OOB is set and no out-of-band data is available and
37087 either the socket’s file descriptor is marked O_NONBLOCK or the socket does
37088 not support blocking to await out-of-band data.

37089 [EBADF] The socket argument is not a valid file descriptor.

37090 [ECONNRESET] A connection was forcibly closed by a peer. |

37091 [EINTR] The recv() function was interrupted by a signal that was caught, before any
37092 data was available.

37093 [EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

37094 [ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

37095 [ENOTSOCK] The socket argument does not refer to a socket.

37096 [EOPNOTSUPP] The specified flags are not supported for this socket type or protocol.

37097 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
37098 transmission timeout on active connection.

37099 The recv() function may fail if:

37100 [EIO] An I/O error occurred while reading from or writing to the file system.

37101 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

37102 [ENOMEM] Insufficient memory was available to fulfill the request. |

37103 EXAMPLES
37104 None.

37105 APPLICATION USAGE
37106 The recv() function is identical to recvfrom() with a zero address_len argument, and to read() if no
37107 flags are used.

37108 The select() and poll () functions can be used to determine when data is available to be received.

37109 RATIONALE
37110 None.

37111 FUTURE DIRECTIONS
37112 None.

37113 SEE ALSO
37114 poll (), read(), recvmsg(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(),
37115 write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

37116 CHANGE HISTORY
37117 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1700 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces recvfrom()

37118 NAME
37119 recvfrom — receive a message from a socket

37120 SYNOPSIS
37121 #include <sys/socket.h>

37122 ssize_t recvfrom(int socket , void *restrict buffer , size_t length , |
37123 int flags , struct sockaddr *restrict address , |
37124 socklen_t *restrict address_len); |

37125 DESCRIPTION |
37126 The recvfrom() function receives a message from a connection-mode or connectionless-mode
37127 socket. It is normally used with connectionless-mode sockets because it permits the application
37128 to retrieve the source address of received data.

37129 The recvfrom() function takes the following arguments:

37130 socket Specifies the socket file descriptor.

37131 buffer Points to the buffer where the message should be stored.

37132 length Specifies the length in bytes of the buffer pointed to by the buffer argument.

37133 flags Specifies the type of message reception. Values of this argument are formed
37134 by logically OR’ing zero or more of the following values:

37135 MSG_PEEK Peeks at an incoming message. The data is treated as unread
37136 and the next recvfrom() or similar function shall still return
37137 this data.

37138 MSG_OOB Requests out-of-band data. The significance and semantics
37139 of out-of-band data are protocol-specific.

37140 MSG_WAITALL Requests that the function block until the full amount of
37141 data requested can be returned. The function may return a
37142 smaller amount of data if a signal is caught, if the
37143 connection is terminated, if MSG_PEEK was specified, or if
37144 an error is pending for the socket.

37145 address A null pointer, or points to a sockaddr structure in which the sending address
37146 is to be stored. The length and format of the address depend on the address
37147 family of the socket.

37148 address_len Specifies the length of the sockaddr structure pointed to by the address
37149 argument.

37150 The recvfrom() function shall return the length of the message written to the buffer pointed to by
37151 the buffer argument. For message-based sockets, such as SOCK_DGRAM and
37152 SOCK_SEQPACKET, the entire message shall be read in a single operation. If a message is too
37153 long to fit in the supplied buffer, and MSG_PEEK is not set in the flags argument, the excess
37154 bytes shall be discarded. For stream-based sockets, such as SOCK_STREAM, message
37155 boundaries shall be ignored. In this case, data is returned to the user as soon as it becomes
37156 available, and no data shall be discarded.

37157 If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
37158 message.

37159 Not all protocols provide the source address for messages. If the address argument is not a null
37160 pointer and the protocol provides the source address of messages, the source address of the
37161 received message is stored in the sockaddr structure pointed to by the address argument, and the

System Interfaces, Issue 6 1701

recvfrom() System Interfaces

37162 length of this address is stored in the object pointed to by the address_len argument.

37163 If the actual length of the address is greater than the length of the supplied sockaddr structure,
37164 the stored address shall be truncated.

37165 If the address argument is not a null pointer and the protocol does not provide the source address
37166 of messages, the value stored in the object pointed to by address is unspecified.

37167 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
37168 descriptor, recvfrom() blocks until a message arrives. If no messages are available at the socket
37169 and O_NONBLOCK is set on the socket’s file descriptor, recvfrom() shall fail and set errno to
37170 [EAGAIN] or [EWOULDBLOCK].

37171 RETURN VALUE
37172 Upon successful completion, recvfrom() shall return the length of the message in bytes. If no
37173 messages are available to be received and the peer has performed an orderly shutdown,
37174 recvfrom() shall return 0. Otherwise, the function shall return −1 and set errno to indicate the
37175 error.

37176 ERRORS
37177 The recvfrom() function shall fail if:

37178 [EAGAIN] or [EWOULDBLOCK]
37179 The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
37180 to be received; or MSG_OOB is set and no out-of-band data is available and
37181 either the socket’s file descriptor is marked O_NONBLOCK or the socket does
37182 not support blocking to await out-of-band data.

37183 [EBADF] The socket argument is not a valid file descriptor.

37184 [ECONNRESET] A connection was forcibly closed by a peer. |

37185 [EINTR] A signal interrupted recvfrom() before any data was available.

37186 [EINVAL] The MSG_OOB flag is set and no out-of-band data is available.

37187 [ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

37188 [ENOTSOCK] The socket argument does not refer to a socket.

37189 [EOPNOTSUPP] The specified flags are not supported for this socket type.

37190 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
37191 transmission timeout on active connection.

37192 The recvfrom() function may fail if:

37193 [EIO] An I/O error occurred while reading from or writing to the file system.

37194 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

37195 [ENOMEM] Insufficient memory was available to fulfill the request. |

1702 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces recvfrom()

37196 EXAMPLES
37197 None.

37198 APPLICATION USAGE
37199 The select() and poll () functions can be used to determine when data is available to be received.

37200 RATIONALE
37201 None.

37202 FUTURE DIRECTIONS
37203 None.

37204 SEE ALSO
37205 poll (), read(), recv(), recvmsg(), select() (on page 1753)1 send(), sendmsg(), sendto(), shutdown(),
37206 socket(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

37207 CHANGE HISTORY
37208 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1703

recvmsg() System Interfaces

37209 NAME
37210 recvmsg — receive a message from a socket

37211 SYNOPSIS
37212 #include <sys/socket.h>

37213 ssize_t recvmsg(int socket , struct msghdr * message , int flags);

37214 DESCRIPTION
37215 The recvmsg() function receives a message from a connection-mode or connectionless-mode
37216 socket. It is normally used with connectionless-mode sockets because it permits the application
37217 to retrieve the source address of received data.

37218 The recvmsg() function takes the following arguments:

37219 socket Specifies the socket file descriptor.

37220 message Points to a msghdr structure, containing both the buffer to store the source
37221 address and the buffers for the incoming message. The length and format of
37222 the address depend on the address family of the socket. The msg_flags member
37223 is ignored on input, but may contain meaningful values on output.

37224 flags Specifies the type of message reception. Values of this argument are formed
37225 by logically OR’ing zero or more of the following values:

37226 MSG_OOB Requests out-of-band data. The significance and semantics
37227 of out-of-band data are protocol-specific.

37228 MSG_PEEK Peeks at the incoming message.

37229 MSG_WAITALL Requests that the function block until the full amount of
37230 data requested can be returned. The function may return a
37231 smaller amount of data if a signal is caught, if the
37232 connection is terminated, if MSG_PEEK was specified, or if
37233 an error is pending for the socket.

37234 The recvmsg() function receives messages from unconnected or connected sockets and shall
37235 return the length of the message.

37236 The recvmsg() function shall return the total length of the message. For message-based sockets,
37237 such as SOCK_DGRAM and SOCK_SEQPACKET, the entire message shall be read in a single
37238 operation. If a message is too long to fit in the supplied buffers, and MSG_PEEK is not set in the
37239 flags argument, the excess bytes shall be discarded, and MSG_TRUNC is set in the msg_flags
37240 member of the msghdr structure. For stream-based sockets, such as SOCK_STREAM, message
37241 boundaries shall be ignored. In this case, data is returned to the user as soon as it becomes
37242 available, and no data shall be discarded.

37243 If the MSG_WAITALL flag is not set, data shall be returned only up to the end of the first
37244 message.

37245 If no messages are available at the socket and O_NONBLOCK is not set on the socket’s file
37246 descriptor, recvmsg() shall block until a message arrives. If no messages are available at the |
37247 socket and O_NONBLOCK is set on the socket’s file descriptor, recvmsg() function shall fail and |
37248 set errno to [EAGAIN] or [EWOULDBLOCK].

37249 In the msghdr structure, the msg_name and msg_namelen members specify the source address if
37250 the socket is unconnected. If the socket is connected, the msg_name and msg_namelen members
37251 are ignored. The msg_name member may be a null pointer if no names are desired or required.
37252 The msg_iov and msg_iovlen fields are used to specify where the received data shall be stored.
37253 msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of this

1704 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces recvmsg()

37254 array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field gives
37255 its size in bytes. Each storage area indicated by msg_iov is filled with received data in turn until
37256 all of the received data is stored or all of the areas have been filled.

37257 Upon successful completion, the msg_flags member of the message header is the bitwise-
37258 inclusive OR of all of the following flags that indicate conditions detected for the received
37259 message:

37260 MSG_EOR End of record was received (if supported by the protocol).

37261 MSG_OOB Out-of-band data was received.

37262 MSG_TRUNC Normal data was truncated.

37263 MSG_CTRUNC Control data was truncated.

37264 RETURN VALUE
37265 Upon successful completion, recvmsg() shall return the length of the message in bytes. If no
37266 messages are available to be received and the peer has performed an orderly shutdown,
37267 recvmsg() shall return 0. Otherwise, −1 shall be returned and errno set to indicate the error.

37268 ERRORS
37269 The recvmsg() function shall fail if:

37270 [EAGAIN] or [EWOULDBLOCK]
37271 The socket’s file descriptor is marked O_NONBLOCK and no data is waiting
37272 to be received; or MSG_OOB is set and no out-of-band data is available and
37273 either the socket’s file descriptor is marked O_NONBLOCK or the socket does
37274 not support blocking to await out-of-band data.

37275 [EBADF] The socket argument is not a valid open file descriptor. |

37276 [ECONNRESET] A connection was forcibly closed by a peer. |

37277 [EINTR] This function was interrupted by a signal before any data was available.

37278 [EINVAL] The sum of the iov_len values overflows a ssize_t, or the MSG_OOB flag is set
37279 and no out-of-band data is available.

37280 [EMSGSIZE] The msg_iovlen member of the msghdr structure pointed to by message is less
37281 than or equal to 0, or is greater than {IOV_MAX}.

37282 [ENOTCONN] A receive is attempted on a connection-mode socket that is not connected.

37283 [ENOTSOCK] The socket argument does not refer to a socket.

37284 [EOPNOTSUPP] The specified flags are not supported for this socket type.

37285 [ETIMEDOUT] The connection timed out during connection establishment, or due to a
37286 transmission timeout on active connection.

37287 The recvmsg() function may fail if:

37288 [EIO] An I/O error occurred while reading from or writing to the file system.

37289 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

37290 [ENOMEM] Insufficient memory was available to fulfill the request. |

System Interfaces, Issue 6 1705

recvmsg() System Interfaces

37291 EXAMPLES
37292 None.

37293 APPLICATION USAGE
37294 The select() and poll () functions can be used to determine when data is available to be received.

37295 RATIONALE
37296 None.

37297 FUTURE DIRECTIONS
37298 None.

37299 SEE ALSO
37300 poll (), recv(), recvfrom(), select(), send(), sendmsg(), sendto(), shutdown(), socket(), the Base |
37301 Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

37302 CHANGE HISTORY
37303 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1706 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces regcomp()

37304 NAME
37305 regcomp, regerror, regexec, regfree — regular expression matching

37306 SYNOPSIS
37307 #include <regex.h>

37308 int regcomp(regex_t *restrict preg , const char *restrict pattern , int cflags);|
37309 size_t regerror(int errcode , const regex_t *restrict preg , |
37310 char *restrict errbuf , size_t errbuf_size); |
37311 int regexec(const regex_t *restrict preg , const char *restrict string , |
37312 size_t nmatch , regmatch_t pmatch [restrict], int eflags); |
37313 void regfree(regex_t * preg); |

37314 DESCRIPTION
37315 These functions interpret basic and extended regular expressions as described in the Base |
37316 Definitions volume of IEEE Std. 1003.1-200x, Chapter 9, Regular Expressions. |

37317 The regex_t structure contains at least the following member:
37318 __
37319 Member Type Member Name Description__
37320 size_t re_nsub Number of parenthesized subexpressions.__L

L
L

L
L
L

L
L
L

L
L
L

37321 The regmatch_t structure contains at least the following members:
37322 ___
37323 Member Type Member Name Description___
37324 regoff_t rm_so Byte offset from start of string to start of substring.
37325 Byte offset from start of string of the first character
37326 after the end of substring.

regoff_t rm_eo

___LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

37327 The regcomp() function shall compile the regular expression contained in the string pointed to by
37328 the pattern argument and places the results in the structure pointed to by preg. The cflags
37329 argument is the bitwise-inclusive OR of zero or more of the following flags, which are defined in
37330 the header <regex.h>:

37331 REG_EXTENDED Use Extended Regular Expressions.

37332 REG_ICASE Ignore case in match. (See the Base Definitions volume of |
37333 IEEE Std. 1003.1-200x, Chapter 9, Regular Expressions.) |

37334 REG_NOSUB Report only success/fail in regexec().

37335 REG_NEWLINE Change the handling of <newline> characters, as described in the text.

37336 The default regular expression type for pattern is a Basic Regular Expression. The application can
37337 specify Extended Regular Expressions using the REG_EXTENDED cflags flag.

37338 If the REG_NOSUB flag was not set in cflags, then regcomp() shall set re_nsub to the number of
37339 parenthesized subexpressions (delimited by "\(\)" in basic regular expressions or "()" in
37340 extended regular expressions) found in pattern.

37341 The regexec() function compares the null-terminated string specified by string with the compiled
37342 regular expression preg initialized by a previous call to regcomp(). If it finds a match, regexec()
37343 shall return 0; otherwise, it shall return non-zero indicating either no match or an error. The
37344 eflags argument is the bitwise-inclusive OR of zero or more of the following flags, which are
37345 defined in the header <regex.h>:

System Interfaces, Issue 6 1707

regcomp() System Interfaces

37346 REG_NOTBOL The first character of the string pointed to by string is not the beginning of the
37347 line. Therefore, the circumflex character (’ˆ’), when taken as a special
37348 character, shall not match the beginning of string.

37349 REG_NOTEOL The last character of the string pointed to by string is not the end of the line.
37350 Therefore, the dollar sign (’$’), when taken as a special character, shall not
37351 match the end of string.

37352 If nmatch is 0 or REG_NOSUB was set in the cflags argument to regcomp(), then regexec() shall
37353 ignore the pmatch argument. Otherwise, the application shall ensure that the pmatch argument
37354 points to an array with at least nmatch elements, and regexec() shall fill in the elements of that
37355 array with offsets of the substrings of string that correspond to the parenthesized subexpressions
37356 of pattern: pmatch[i].rm_so shall be the byte offset of the beginning and pmatch[i].rm_eo shall be
37357 one greater than the byte offset of the end of substring i. (Subexpression i begins at the ith
37358 matched open parenthesis, counting from 1.) Offsets in pmatch[0] identify the substring that
37359 corresponds to the entire regular expression. Unused elements of pmatch up to pmatch[nmatch−1]
37360 shall be filled with −1. If there are more than nmatch subexpressions in pattern (pattern itself
37361 counts as a subexpression), then regexec() shall still do the match, but shall record only the first
37362 nmatch substrings.

37363 When matching a basic or extended regular expression, any given parenthesized subexpression
37364 of pattern might participate in the match of several different substrings of string, or it might not
37365 match any substring even though the pattern as a whole did match. The following rules are used
37366 to determine which substrings to report in pmatch when matching regular expressions:

37367 1. If subexpression i in a regular expression is not contained within another subexpression,
37368 and it participated in the match several times, then the byte offsets in pmatch[i] shall
37369 delimit the last such match.

37370 2. If subexpression i is not contained within another subexpression, and it did not participate
37371 in an otherwise successful match, the byte offsets in pmatch[i] shall be −1. A subexpression
37372 does not participate in the match when:

37373 ’*’ or "\{\}" appears immediately after the subexpression in a basic regular
37374 expression, or ’*’ , ’?’ , or "{ }" appears immediately after the subexpression in an
37375 extended regular expression, and the subexpression did not match (matched 0 times)

37376 or:

37377 ’|’ is used in an extended regular expression to select this subexpression or another,
37378 and the other subexpression matched.

37379 3. If subexpression i is contained within another subexpression j , and i is not contained
37380 within any other subexpression that is contained within j , and a match of subexpression j
37381 is reported in pmatch[j], then the match or non-match of subexpression i reported in
37382 pmatch[i] shall be as described in 1. and 2. above, but within the substring reported in
37383 pmatch[j] rather than the whole string. The offsets in pmatch[i] are still relative to the start
37384 of string.

1708 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces regcomp()

37385 Notes to Reviewers
37386 This section with side shading will not appear in the final copy. - Ed.

37387 D1, XSH, ERN 283 proposes changing ‘‘but within’’ above to ‘‘but describing the substring
37388 found within the substring reported in pmatch[j] rather than the whole string. The byte
37389 offsets are relative to the whole string.’’

37390 4. If subexpression i is contained in subexpression j , and the byte offsets in pmatch[j] are −1,
37391 then the pointers in pmatch[i] shall also be −1.

37392 5. If subexpression i matched a zero-length string, then both byte offsets in pmatch[i] shall be
37393 the byte offset of the character or null terminator immediately following the zero-length
37394 string.

37395 If, when regexec() is called, the locale is different from when the regular expression was
37396 compiled, the result is undefined.

37397 If REG_NEWLINE is not set in cflags, then a <newline> character in pattern or string shall be
37398 treated as an ordinary character. If REG_NEWLINE is set, then <newline> shall be treated as an
37399 ordinary character except as follows:

37400 1. A <newline> character in string shall not be matched by a period outside a bracket
37401 expression or by any form of a non-matching list (see the Base Definitions volume of |
37402 IEEE Std. 1003.1-200x, Chapter 9, Regular Expressions). |

37403 2. A circumflex (’ˆ’) in pattern, when used to specify expression anchoring (see the Base |
37404 Definitions volume of IEEE Std. 1003.1-200x, Section 9.3.8, BRE Expression Anchoring), |
37405 shall match the zero-length string immediately after a <newline> in string, regardless of |
37406 the setting of REG_NOTBOL.

37407 3. A dollar sign (’$’) in pattern, when used to specify expression anchoring, shall match the
37408 zero-length string immediately before a <newline> in string, regardless of the setting of
37409 REG_NOTEOL.

37410 The regfree() function frees any memory allocated by regcomp() associated with preg.

37411 The following constants are defined as error return values:

37412 REG_NOMATCH regexec() failed to match.

37413 REG_BADPAT Invalid regular expression.

37414 REG_ECOLLATE Invalid collating element referenced.

37415 REG_ECTYPE Invalid character class type referenced.

37416 REG_EESCAPE Trailing ’\’ in pattern.

37417 REG_ESUBREG Number in "\digit" invalid or in error.

37418 REG_EBRACK "[]" imbalance. |

37419 REG_EPAREN "\(\)" or "()" imbalance.

37420 REG_EBRACE "\{\}" imbalance.

37421 REG_BADBR Content of "\{\}" invalid: not a number, number too large, more than
37422 two numbers, first larger than second.

37423 REG_ERANGE Invalid endpoint in range expression.

37424 REG_ESPACE Out of memory.

System Interfaces, Issue 6 1709

regcomp() System Interfaces

37425 REG_BADRPT ’?’ , ’*’ , or ’+’ not preceded by valid regular expression.

37426 The regerror() function provides a mapping from error codes returned by regcomp() and
37427 regexec() to unspecified printable strings. It generates a string corresponding to the value of the
37428 errcode argument, which the application shall ensure is the last non-zero value returned by
37429 regcomp() or regexec() with the given value of preg. If errcode is not such a value, the content of
37430 the generated string is unspecified.

37431 If preg is a null pointer, but errcode is a value returned by a previous call to regexec() or regcomp(),
37432 the regerror() still generates an error string corresponding to the value of errcode, but it might not
37433 be as detailed under some implementations.

37434 If the errbuf_size argument is not 0, regerror() shall place the generated string into the buffer of
37435 size errbuf_size bytes pointed to by errbuf. If the string (including the terminating null) cannot fit
37436 in the buffer, regerror() shall truncate the string and null-terminates the result.

37437 If errbuf_size is 0, regerror() shall ignore the errbuf argument, and return the size of the buffer
37438 needed to hold the generated string.

37439 If the preg argument to regexec() or regfree() is not a compiled regular expression returned by
37440 regcomp(), the result is undefined. A preg is no longer treated as a compiled regular expression
37441 after it is given to regfree().

37442 RETURN VALUE
37443 Upon successful completion, the regcomp() function shall return 0. Otherwise, it shall return an
37444 integer value indicating an error as described in <regex.h>, and the content of preg is undefined.
37445 If a code is returned, the interpretation shall be as given in <regex.h>.

37446 If regcomp() detects an invalid RE, it may return REG_BADPAT, or it may return one of the error
37447 codes that more precisely describes the error.

37448 Upon successful completion, the regexec() function shall return 0. Otherwise, it shall return
37449 REG_NOMATCH to indicate no match. |

37450 Upon successful completion, the regerror() function shall return the number of bytes needed to
37451 hold the entire generated string, including the null termination. If the return value is greater than
37452 errbuf_size, the string returned in the buffer pointed to by errbuf has been truncated. |

37453 The regfree() function shall return no value.

37454 ERRORS
37455 No errors are defined.

37456 EXAMPLES

37457 #include <regex.h>

37458 /*
37459 * Match string against the extended regular expression in
37460 * pattern, treating errors as no match.
37461 *
37462 * Return 1 for match, 0 for no match.
37463 */

37464 int
37465 match(const char *string, char *pattern)
37466 {
37467 int status;
37468 regex_t re;

1710 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces regcomp()

37469 if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
37470 return(0); /* Report error. */
37471 }
37472 status = regexec(&re, string, (size_t) 0, NULL, 0);
37473 regfree(&re);
37474 if (status != 0) {
37475 return(0); /* Report error. */
37476 }
37477 return(1);
37478 }

37479 The following demonstrates how the REG_NOTBOL flag could be used with regexec() to find all
37480 substrings in a line that match a pattern supplied by a user. (For simplicity of the example, very
37481 little error checking is done.)

37482 (void) regcomp (&re, pattern, 0);
37483 /* This call to regexec() finds the first match on the line. */
37484 error = regexec (&re, &buffer[0], 1, &pm, 0);
37485 while (error == 0) { /* While matches found. */
37486 /* Substring found between pm.rm_so and pm.rm_eo. */
37487 /* This call to regexec() finds the next match. */
37488 error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);
37489 }

37490 APPLICATION USAGE
37491 An application could use:

37492 regerror(code,preg,(char *)NULL,(size_t)0)

37493 to find out how big a buffer is needed for the generated string, malloc () a buffer to hold the
37494 string, and then call regerror() again to get the string. Alternatively, it could allocate a fixed,
37495 static buffer that is big enough to hold most strings, and then use malloc () to allocate a larger
37496 buffer if it finds that this is too small.

37497 To match a pattern as described in the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
37498 Section 2.14, Pattern Matching Notation, use the fnmatch() function. |

37499 RATIONALE
37500 The regmatch() function must fill in all nmatch elements of pmatch , where nmatch and pmatch are
37501 supplied by the application, even if some elements of pmatch do not correspond to
37502 subexpressions in pattern . The application writer should note that there is probably no reason
37503 for using a value of nmatch that is larger than preg−>re_nsub+1.

37504 The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like
37505 text editors. In such applications, the user supplies an RE asking the application to find a line
37506 that matches the given expression. An anchor in such an RE anchors at the beginning or end of
37507 any line. Such an application can pass a sequence of <newline>-separated lines to regexec() as a
37508 single long string and specify REG_NEWLINE to regcomp() to get the desired behavior. The
37509 application must ensure that there are no explicit <newline>s in pattern if it wants to ensure that
37510 any match occurs entirely within a single line.

37511 The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to
37512 regcomp() to allow flexibility of implementation. Some implementations will want to generate
37513 the same compiled RE in regcomp() regardless of the setting of REG_NEWLINE and have
37514 regexec() handle anchors differently based on the setting of the flag. Other implementations will
37515 generate different compiled REs based on the REG_NEWLINE.

System Interfaces, Issue 6 1711

regcomp() System Interfaces

37516 The REG_ICASE flag supports the operations taken by the grep −i option and the historical
37517 implementations of ex and vi. Including this flag will make it easier for application code to be
37518 written that does the same thing as these utilities.

37519 The substrings reported in pmatch[] are defined using offsets from the start of the string rather
37520 than pointers. Since this is a new interface, there should be no impact on historical
37521 implementations or applications, and offsets should be just as easy to use as pointers. The
37522 change to offsets was made to facilitate future extensions in which the string to be searched is
37523 presented to regexec() in blocks, allowing a string to be searched that is not all in memory at
37524 once.

37525 A new type regoff_t is used for the elements of pmatch[] to ensure that the application can
37526 represent either the largest possible array in memory (important for an application conforming
37527 to the Shell and Utilities volume of IEEE Std. 1003.1-200x) or the largest possible file (important |
37528 for an application using the extension where a file is searched in chunks). |

37529 The standard developers rejected the inclusion of a regsub() function that would be used to do
37530 substitutions for a matched RE. While such a routine would be useful to some applications, its
37531 utility would be much more limited than the matching function described here. Both RE parsing
37532 and substitution are possible to implement without support other than that required by the
37533 ISO C standard, but matching is much more complex than substituting. The only difficult part of
37534 substitution, given the information supplied by regexec(), is finding the next character in a string
37535 when there can be multibyte characters. That is a much larger issue, and one that needs a more
37536 general solution.

37537 The errno variable has not been used for error returns to avoid filling the errno name space for
37538 this feature.

37539 The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate
37540 regmatch_t structure instead of in regex_t. This allows a single compiled RE to be used
37541 simultaneously in several contexts; in main() and a signal handler, perhaps, or in multiple
37542 threads of lightweight processes. (The preg argument to regexec() is declared with type const, so
37543 the implementation is not permitted to use the structure to store intermediate results.) It also
37544 allows an application to request an arbitrary number of substrings from an RE. The number of
37545 subexpressions in the RE is reported in re_nsub in preg. With this change to regexec(),
37546 consideration was given to dropping the REG_NOSUB flag since the user can now specify this
37547 with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an
37548 implementation to use a different (perhaps more efficient) algorithm if it knows in regcomp()
37549 that no subexpressions need be reported. The implementation is only required to fill in pmatch if
37550 nmatch is not zero and if REG_NOSUB is not specified. Note that the size_t type, as defined in
37551 the ISO C standard, is unsigned, so the description of regexec() does not need to address
37552 negative values of nmatch .

37553 REG_NOTBOL was added to allow an application to do repeated searches for the same pattern
37554 in a line. If the pattern contains a circumflex character that should match the beginning of a line,
37555 then the pattern should only match when matched against the beginning of the line. Without
37556 the REG_NOTBOL flag, the application could rewrite the expression for subsequent matches,
37557 but in the general case this would require parsing the expression. The need for REG_NOTEOL is
37558 not as clear; it was added for symmetry.

37559 The addition of the regerror() function addresses the historical need for portable application
37560 programs to have access to error information more than ‘‘Function failed to compile/match your
37561 RE for unknown reasons’’.

37562 This interface provides for two different methods of dealing with error conditions. The specific
37563 error codes (REG_EBRACE, for example), defined in <regex.h>, allow an application to recover

1712 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces regcomp()

37564 from an error if it is so able. Many applications, especially those that use patterns supplied by a
37565 user, will not try to deal with specific error cases, but will just use regerror() to obtain a human-
37566 readable error message to present to the user.

37567 The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating
37568 memory to hold the generated string. The scheme used by strerror() in the ISO C standard was
37569 considered unacceptable since it creates difficulties for multi-threaded applications.

37570 The preg argument is provided to regerror() to allow an implementation to generate a more
37571 descriptive message than would be possible with errcode alone. An implementation might, for
37572 example, save the character offset of the offending character of the pattern in a field of preg, and
37573 then include that in the generated message string. The implementation may also ignore preg.

37574 A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match |
37575 patterns as described in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.14, |
37576 Pattern Matching Notation instead of REs. This service is now provided by the fnmatch() |
37577 function.

37578 Notice that there is a difference in philosophy between the ISO POSIX-2: 1993 standard and
37579 IEEE Std. 1003.1-200x in how to handle a bad regular expression. The ISO POSIX-2: 1993
37580 standard says that many bad constructs produce undefined results, or that the interpretation is
37581 undefined. IEEE Std. 1003.1-200x, however, says that the interpretation of such REs is
37582 unspecified. The term ‘‘undefined’’ means that the action by the application is an error, of
37583 similar severity to passing a bad pointer to a function.

37584 The regcomp() and regexec() functions are required to accept any null-terminated string as the
37585 pattern argument. If the meaning of the string is undefined, the behavior of the function is
37586 unspecified. IEEE Std. 1003.1-200x does not specify how the functions will interpret the pattern;
37587 they might return error codes, or they might do pattern matching in some completely
37588 unexpected way, but they should not do something like abort the process.

37589 FUTURE DIRECTIONS
37590 None.

37591 SEE ALSO
37592 fnmatch(), glob(), the Base Definitions volume of IEEE Std. 1003.1-200x, <regex.h>, |
37593 <sys/types.h>

CHANGE37594 HISTORY
37595 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

37596 Issue 5
37597 Moved from POSIX2 C-language Binding to BASE.

37598 Issue 6
37599 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

37600 The following new requirements on POSIX implementations derive from alignment with the
37601 Single UNIX Specification:

37602 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
37603 required for conforming implementations of previous POSIX specifications, it was not
37604 required for UNIX applications.

37605 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

37606 The REG_ENOSYS constant is removed. |

37607 The restrict keyword is added to the regcomp(), regerror(), and regexec() prototypes for |
37608 alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1713

regcomp() System Interfaces

1714 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces remainder()

37609 NAME
37610 remainder, remainderf, remainderl — remainder function |

37611 SYNOPSIS
37612 XSI #include <math.h>

37613 double remainder(double x, double y);
37614 float remainderf(float x, float y); |
37615 long double remainderl(long double x, long double y); |
37616 |

37617 DESCRIPTION
37618 These functions shall return the floating point remainder r=x−ny when y is non-zero. The value |
37619 n is the integral value nearest the exact value x/y . When A n−x/yA = ⁄1

2, the value n is chosen to be
37620 even.

37621 The behavior of remainder() is independent of the rounding mode.

37622 RETURN VALUE
37623 These functions shall return the floating point remainder r=x−ny when y is non-zero. |

37624 When y is 0, remainder() shall return NaN (or equivalent if available) and set errno to [EDOM]. |

37625 If the value of x is ±Inf, remainder() shall return NaN and set errno to [EDOM].

37626 If x or y is NaN, then the function shall return NaN and errno may be set to [EDOM].

37627 ERRORS
37628 These functions shall fail if: |

37629 [EDOM] The y argument is 0 or the x argument is positive or negative infinity.

37630 These functions may fail if: |

37631 [EDOM] The x or y argument is NaN.

37632 EXAMPLES
37633 None.

37634 APPLICATION USAGE
37635 None.

37636 RATIONALE
37637 None.

37638 FUTURE DIRECTIONS
37639 None.

37640 SEE ALSO
37641 abs(), div(), ldiv (), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

37642 CHANGE HISTORY
37643 First released in Issue 4, Version 2.

37644 Issue 5
37645 Moved from X/OPEN UNIX extension to BASE. |

37646 Issue 6 |
37647 The remainderf() and remainderl() functions are added for alignment with the ISO/IEC 9899: 1999 |
37648 standard. |

System Interfaces, Issue 6 1715

remove() System Interfaces

37649 NAME
37650 remove — remove a file

37651 SYNOPSIS
37652 #include <stdio.h>

37653 int remove(const char * path);

37654 DESCRIPTION
37655 CX The functionality described on this reference page is aligned with the ISO C standard. Any
37656 conflict between the requirements described here and the ISO C standard is unintentional. This
37657 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

37658 The remove() function shall cause the file named by the path name pointed to by path to be no
37659 longer accessible by that name. A subsequent attempt to open that file using that name shall fail,
37660 unless it is created anew.

37661 CX If path does not name a directory, remove(path) shall be equivalent to unlink(path).

37662 If path names a directory, remove(path) shall be equivalent to rmdir(path).

37663 RETURN VALUE
37664 CX Refer to rmdir() or unlink().

37665 ERRORS
37666 CX Refer to rmdir() or unlink().

37667 EXAMPLES

37668 Removing Access to a File

37669 The following example shows how to remove access to a file named /home/cnd/old_mods.

37670 #include <stdio.h>

37671 int status;
37672 ...
37673 status = remove("/home/cnd/old_mods");

37674 APPLICATION USAGE
37675 None.

37676 RATIONALE
37677 None.

37678 FUTURE DIRECTIONS
37679 None.

37680 SEE ALSO
37681 rmdir(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

37682 CHANGE HISTORY
37683 First released in Issue 3.

37684 Entry included for alignment with the POSIX.1-1988 standard and the ISO C standard.

37685 Issue 4
37686 All statements containing references to unlink() and rmdir() in the DESCRIPTION, RETURN
37687 VALUE, and ERRORS sections are marked as extensions.

37688 The following changes are incorporated for alignment with the ISO C standard:

1716 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces remove()

37689 • The type of argument path is changed from char* to const char*.

37690 • The DESCRIPTION is expanded to describe the operation of remove() more completely.

37691 Issue 6
37692 Extensions beyond the ISO C standard are now marked.

37693 The following new requirements on POSIX implementations derive from alignment with the
37694 Single UNIX Specification:

37695 • The DESCRIPTION, RETURN VALUE, and ERRORS sections are updated so that if path is
37696 not a directory, remove() is equivalent to unlink(), and if it is a directory, it is equivalent to
37697 rmdir().

System Interfaces, Issue 6 1717

remque() System Interfaces

37698 NAME
37699 remque — remove an element from a queue

37700 SYNOPSIS
37701 XSI #include <search.h>

37702 void remque(void * element);
37703

37704 DESCRIPTION
37705 Refer to insque().

|

1718 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces remquo()

37706 NAME |
37707 remquo, remquof, remquol — remainder functions |

37708 SYNOPSIS |
37709 #include <math.h> |

37710 double remquo(double x, double y, int * quo); |
37711 float remquof(float x, float y, int * quo); |
37712 long double remquol(long double x, long double y, int * quo); |

37713 DESCRIPTION |
37714 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
37715 conflict between the requirements described here and the ISO C standard is unintentional. This |
37716 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

37717 These functions shall compute the same remainder as the remainder(), remainderf(), and |
37718 remainderl() functions, respectively. In the object pointed to by quo they store a value whose sign |
37719 is the sign of x/y and whose magnitude is congruent modulo 2n to the magnitude of the integral |
37720 quotient of x/y , where n is an implementation-defined integer greater than or equal to 3. |

37721 An application wishing to check for error situations should set errno to 0 before calling these |
37722 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

37723 RETURN VALUE |
37724 These functions shall return x REM y . |

37725 When y is 0, these functions shall return NaN (or equivalent if available) and set errno to |
37726 [EDOM]. |

37727 If the value of x is ±Inf, these functions shall return NaN and set errno to [EDOM]. |

37728 If x or y is NaN, then these functions shall return NaN and errno may be set to [EDOM]. |

37729 ERRORS |
37730 These functions shall fail if: |

37731 [EDOM] The y argument is 0 or the x argument is positive or negative infinity. |

37732 These functions may fail if: |

37733 [EDOM] The x or y argument is NaN. |

37734 EXAMPLES |
37735 None. |

37736 APPLICATION USAGE |
37737 None. |

37738 RATIONALE |
37739 These functions are intended for implementing argument reductions which can exploit a few |
37740 low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an |
37741 exact representation of the quotient is not practical. |

37742 FUTURE DIRECTIONS |
37743 None. |

37744 SEE ALSO |
37745 remainder(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

System Interfaces, Issue 6 1719

remquo() System Interfaces

37746 CHANGE HISTORY |
37747 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1720 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rename()

37748 NAME
37749 rename — rename a file

37750 SYNOPSIS
37751 #include <stdio.h>

37752 int rename(const char * old , const char * new);

37753 DESCRIPTION
37754 CX The functionality described on this reference page is aligned with the ISO C standard. Any
37755 conflict between the requirements described here and the ISO C standard is unintentional. This
37756 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

37757 The rename() function shall change the name of a file. The old argument points to the path name
37758 of the file to be renamed. The new argument points to the new path name of the file. |

37759 CX If the old argument and the new argument both refer to, and both link to, the same existing file, |
37760 rename() shall return successfully and perform no other action.

37761 If the old argument points to the path name of a file that is not a directory, the application shall
37762 ensure that the new argument does not point to the path name of a directory. If the link named
37763 by the new argument exists, it shall be removed and old renamed to new. In this case, a link
37764 named new shall remain visible to other processes throughout the renaming operation and refer
37765 either to the file referred to by new or old before the operation began. Write access permission is
37766 required for both the directory containing old and the directory containing new.

37767 If the old argument points to the path name of a directory, the application shall ensure that the
37768 new argument does not point to the path name of a file that is not a directory. If the directory
37769 named by the new argument exists, it shall be removed and old renamed to new. In this case, a
37770 link named new shall exist throughout the renaming operation and shall refer either to the
37771 directory referred to by new or old before the operation began. If new names an existing directory,
37772 the application shall ensure that it is an empty directory. |

37773 If either the old or the new arguments name a symbolic link, rename() shall operate on the |
37774 symbolic link itself, and shall not resolve the last component of the argument. If old points to a
37775 path name that names a symbolic link, the symbolic link shall be renamed. If new points to a
37776 path name that names a symbolic link, the symbolic link shall be removed. |

37777 The application shall ensure that the new path name does not contain a path prefix that names |
37778 old . Write access permission is required for the directory containing old and the directory
37779 containing new. If the old argument points to the path name of a directory, write access
37780 permission may be required for the directory named by old , and, if it exists, the directory named
37781 by new.

37782 If the link named by the new argument exists and the file’s link count becomes 0 when it is
37783 removed and no process has the file open, the space occupied by the file shall be freed and the
37784 file shall no longer be accessible. If one or more processes have the file open when the last link is
37785 removed, the link shall be removed before rename() returns, but the removal of the file contents
37786 shall be postponed until all references to the file are closed.

37787 Upon successful completion, rename() shall mark for update the st_ctime and st_mtime fields of
37788 the parent directory of each file. |

37789 If the rename() function fails for any reason other than [EIO], any file named by new shall be |
37790 unaffected. |

System Interfaces, Issue 6 1721

rename() System Interfaces

37791 RETURN VALUE
37792 CX Upon successful completion, rename() shall return 0; otherwise, −1 shall be returned, errno shall
37793 be set to indicate the error, and neither the file named by old nor the file named by new shall be
37794 changed or created.

37795 ERRORS
37796 The rename() function shall fail if:

37797 CX [EACCES] A component of either path prefix denies search permission; or one of the |
37798 directories containing old or new denies write permissions; or, write
37799 permission is required and is denied for a directory pointed to by the old or
37800 new arguments.

37801 CX [EBUSY] The directory named by old or new is currently in use by the system or another |
37802 process, and the implementation considers this an error.

37803 CX [EEXIST] or [ENOTEMPTY]
37804 The link named by new is a directory that is not an empty directory.

37805 CX [EINVAL] The new directory path name contains a path prefix that names the old |
37806 directory.

37807 CX [EIO] A physical I/O error has occurred. |

37808 CX [EISDIR] The new argument points to a directory and the old argument points to a file
37809 that is not a directory.

37810 CX [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
37811 argument.

37812 CX [EMLINK] The file named by old is a directory, and the link count of the parent directory |
37813 of new would exceed {LINK_MAX}.

37814 CX [ENAMETOOLONG]
37815 The length of the old or new argument exceeds {PATH_MAX} or a path name
37816 component is longer than {NAME_MAX}. |

37817 CX [ENOENT] The link named by old does not name an existing file, or either old or new |
37818 points to an empty string.

37819 CX [ENOSPC] The directory that would contain new cannot be extended. |

37820 CX [ENOTDIR] A component of either path prefix is not a directory; or the old argument |
37821 names a directory and new argument names a non-directory file.

37822 XSI [EPERM] or [EACCES] |
37823 The S_ISVTX flag is set on the directory containing the file referred to by old
37824 and the caller is not the file owner, nor is the caller the directory owner, nor
37825 does the caller have appropriate privileges; or new refers to an existing file, the
37826 S_ISVTX flag is set on the directory containing this file, and the caller is not
37827 the file owner, nor is the caller the directory owner, nor does the caller have
37828 appropriate privileges.

37829 CX [EROFS] The requested operation requires writing in a directory on a read-only file |
37830 system.

37831 CX [EXDEV] The links named by new and old are on different file systems and the |
37832 implementation does not support links between file systems.

37833 The rename() function may fail if:

1722 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rename()

37834 XSI [EBUSY] The file named by the old or new arguments is a named STREAM. |

37835 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
37836 resolution of the path argument.

37837 CX [ENAMETOOLONG] |
37838 As a result of encountering a symbolic link in resolution of the path argument,
37839 the length of the substituted path name string exceeded {PATH_MAX}.

37840 CX [ETXTBSY] The file to be renamed is a pure procedure (shared text) file that is being |
37841 executed.

37842 EXAMPLES

37843 Renaming a File

37844 The following example shows how to rename a file named /home/cnd/mod1 to
37845 /home/cnd/mod2.

37846 #include <stdio.h>

37847 int status;
37848 ...
37849 status = rename("/home/cnd/mod1", "/home/cnd/mod2");

37850 APPLICATION USAGE
37851 None.

37852 RATIONALE
37853 This rename() function is equivalent for regular files to that defined by the ISO C standard. Its
37854 inclusion here expands that definition to include actions on directories and specifies behavior
37855 when the new parameter names a file that already exists. That specification requires that the
37856 action of the function be atomic.

37857 One of the reasons for introducing this function was to have a means of renaming directories
37858 while permitting implementations to prohibit the use of link () and unlink() with directories,
37859 thus constraining links to directories to those made by mkdir().

37860 The specification that if old and new refer to the same file is intended to guarantee that:

37861 rename("x", "x");

37862 does not remove the file.

37863 Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

37864 See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in rmdir() and [EBUSY] in |
37865 unlink(). For a discussion of [EXDEV], see link (). |

37866 FUTURE DIRECTIONS
37867 None.

37868 SEE ALSO
37869 link (), rmdir(), symlink(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
37870 <stdio.h>

CHANGE37871 HISTORY
37872 First released in Issue 3.

37873 Entry included for alignment with the POSIX.1-1988 standard.

System Interfaces, Issue 6 1723

rename() System Interfaces

37874 Issue 4
37875 The [EMLINK] error is added to the ERRORS section.

37876 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

37877 • The type of arguments old and new are changed from char* to const char*.

37878 • The RETURN VALUE section now states that if an error occurs, neither file is changed or
37879 created.

37880 The following change is incorporated for alignment with the FIPS requirements:

37881 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
37882 name component is larger that {NAME_MAX}, is now defined as mandatory and marked as
37883 an extension.

37884 Issue 4, Version 2
37885 The following changes are made for X/OPEN UNIX conformance:

37886 • The DESCRIPTION is updated to indicate the results of naming a symbolic link in either old
37887 or new.

37888 • In the ERRORS section, [EIO] is added to indicate that a physical I/O error has occurred,
37889 [ELOOP] to indicate that too many symbolic links were encountered during path name
37890 resolution, and [EPERM] or [EACCES] to indicate a permission check failure when operating
37891 on directories with S_ISVTX set.

37892 • In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
37893 excessive length of an intermediate result of path name resolution of a symbolic link.

37894 Issue 5
37895 The [EBUSY] error is added to the ‘‘may fail’’ part of the ERRORS section.

37896 Issue 6
37897 Extensions beyond the ISO C standard are now marked.

37898 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

37899 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
37900 This is since behavior may vary from one file system to another.

37901 The following new requirements on POSIX implementations derive from alignment with the
37902 Single UNIX Specification:

37903 • The [EIO] mandatory error condition is added.

37904 • The [ELOOP] mandatory error condition is added.

37905 • A second [ENAMETOOLONG] is added as an optional error condition.

37906 • The [ETXTBSY] optional error condition is added.

37907 The following changes were made to align with the IEEE P1003.1a draft standard:

37908 • Details are added regarding the treatment of symbolic links.

37909 • The [ELOOP] optional error condition is added.

37910 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1724 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rewind()

37911 NAME
37912 rewind — reset file position indicator in a stream

37913 SYNOPSIS
37914 #include <stdio.h>

37915 void rewind(FILE * stream);

37916 DESCRIPTION
37917 CX The functionality described on this reference page is aligned with the ISO C standard. Any
37918 conflict between the requirements described here and the ISO C standard is unintentional. This
37919 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

37920 The call:

37921 rewind(stream)

37922 shall be equivalent to:

37923 (void) fseek(stream, 0L, SEEK_SET)

37924 except that rewind() also clears the error indicator.

37925 Because rewind() does not return a value, an application wishing to detect errors should clear
37926 errno, then call rewind(), and if errno is non-zero, assume an error has occurred.

37927 RETURN VALUE
37928 The rewind() function shall return no value.

37929 ERRORS
37930 CX Refer to fseek() with the exception of [EINVAL] which does not apply.

37931 EXAMPLES
37932 None.

37933 APPLICATION USAGE
37934 None.

37935 RATIONALE
37936 None.

37937 FUTURE DIRECTIONS
37938 None.

37939 SEE ALSO
37940 fseek(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

37941 CHANGE HISTORY
37942 First released in Issue 1. Derived from Issue 1 of the SVID. |

37943 Issue 6
37944 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1725

rewinddir() System Interfaces

37945 NAME
37946 rewinddir — reset position of directory stream to the beginning of a directory

37947 SYNOPSIS
37948 #include <dirent.h>

37949 void rewinddir(DIR * dirp);

37950 DESCRIPTION
37951 The rewinddir() function resets the position of the directory stream to which dirp refers to the
37952 beginning of the directory. It shall also cause the directory stream to refer to the current state of
37953 the corresponding directory, as a call to opendir() would have done. If dirp does not refer to a
37954 directory stream, the effect is undefined.

37955 After a call to the fork () function, either the parent or child (but not both) may continue
37956 XSI processing the directory stream using readdir(), rewinddir(), or seekdir(). If both the parent and
37957 child processes use these functions, the result is undefined.

37958 RETURN VALUE
37959 The rewinddir() function shall not return a value. |

37960 ERRORS
37961 No errors are defined.

37962 EXAMPLES
37963 None.

37964 APPLICATION USAGE
37965 The rewinddir() function should be used in conjunction with opendir(), readdir(), and closedir() to
37966 examine the contents of the directory. This method is recommended for portability.

37967 RATIONALE
37968 None.

37969 FUTURE DIRECTIONS
37970 None.

37971 SEE ALSO
37972 closedir(), opendir(), readdir(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dirent.h> |
37973 <sys/types.h>

CHANGE37974 HISTORY
37975 First released in Issue 2.

37976 Issue 4
37977 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
37978 XSI-conformant systems.

37979 The following change is incorporated for alignment with the ISO POSIX-1 standard:

37980 • The last paragraph of the DESCRIPTION, describing a restriction after a fork () function, is
37981 added.

37982 Issue 6
37983 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

37984 The following new requirements on POSIX implementations derive from alignment with the
37985 Single UNIX Specification:

37986 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
37987 required for conforming implementations of previous POSIX specifications, it was not

1726 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rewinddir()

37988 required for UNIX applications.

System Interfaces, Issue 6 1727

rindex() System Interfaces

37989 NAME
37990 rindex — character string operations (LEGACY)

37991 SYNOPSIS
37992 XSI #include <strings.h>

37993 char *rindex(const char * s, int c);
37994

37995 DESCRIPTION
37996 The rindex() function is identical to strrchr().

37997 RETURN VALUE
37998 Refer to strrchr().

37999 ERRORS
38000 Refer to strrchr().

38001 EXAMPLES
38002 None.

38003 APPLICATION USAGE
38004 strrchr() is preferred over this function.

38005 For maximum portability, it is recommended to replace the function call to rindex() as follows:

38006 #define rindex(a,b) strrchr((a),(b))

38007 RATIONALE
38008 None.

38009 FUTURE DIRECTIONS
38010 This function may be withdrawn in a future version.

38011 SEE ALSO
38012 strrchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

38013 CHANGE HISTORY
38014 First released in Issue 4, Version 2.

38015 Issue 5
38016 Moved from X/OPEN UNIX extension to BASE.

38017 Issue 6
38018 This function is marked LEGACY.

1728 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rint()

38019 NAME
38020 rint, rintf, rintl — round-to-nearest integral value |

38021 SYNOPSIS
38022 #include <math.h> |

38023 double rint(double x);
38024 float rintf(float x); |
38025 long double rintl(long double x); |

38026 DESCRIPTION |
38027 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
38028 conflict between the requirements described here and the ISO C standard is unintentional. This |
38029 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

38030 These functions shall return the integral value (represented as a double) nearest x in the |
38031 direction of the current rounding mode. The current rounding mode is implementation-defined. |

38032 If the current rounding mode rounds toward negative infinity, then rint() is identical to floor ().
38033 If the current rounding mode rounds toward positive infinity, then rint() is identical to ceil(). |

38034 These functions differ from the nearbyint(), nearbyintf(), and nearbyintl() functions only in that |
38035 they may raise the inexact floating-point exception if the result differs in value from the |
38036 argument. |

38037 RETURN VALUE
38038 Upon successful completion, these functions shall return the integer (represented as a double |
38039 precision number) nearest x in the direction of the current rounding mode. |

38040 When x is ±Inf, rint() shall return x .

38041 If the value of x is NaN, NaN shall be returned and errno may be set to [EDOM].

38042 ERRORS
38043 These functions may fail if: |

38044 [EDOM] The x argument is NaN. |

38045 EXAMPLES
38046 None.

38047 APPLICATION USAGE
38048 None.

38049 RATIONALE
38050 None.

38051 FUTURE DIRECTIONS
38052 None.

38053 SEE ALSO
38054 abs(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

38055 CHANGE HISTORY
38056 First released in Issue 4, Version 2.

38057 Issue 5
38058 Moved from X/OPEN UNIX extension to BASE. |

System Interfaces, Issue 6 1729

rint() System Interfaces

38059 Issue 6 |
38060 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

38061 • The rintf() and rintl() functions are added. |

38062 • The rint() function is no longer marked XSI as it is part of the ISO/IEC 9899: 1999 standard. |
|

1730 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rmdir()

38063 NAME
38064 rmdir — remove a directory

38065 SYNOPSIS
38066 #include <unistd.h>

38067 int rmdir(const char * path);

38068 DESCRIPTION
38069 The rmdir() function shall remove a directory whose name is given by path . The directory is
38070 removed only if it is an empty directory.

38071 If the directory is the root directory or the current working directory of any process, it is
38072 unspecified whether the function succeeds, or whether it shall fail and set errno to [EBUSY].

38073 If path names a symbolic link, then rmdir() shall fail and set errno to [ENOTDIR].

38074 If the path argument refers to a path whose final component is either dot or dot-dot, rmdir() shall
38075 fail.

38076 If the directory’s link count becomes 0 and no process has the directory open, the space occupied
38077 by the directory shall be freed and the directory shall no longer be accessible. If one or more
38078 processes have the directory open when the last link is removed, the dot and dot-dot entries, if
38079 present, are removed before rmdir() returns and no new entries may be created in the directory,
38080 but the directory is not removed until all references to the directory are closed.

38081 If the directory is not an empty directory, rmdir() shall fail and set errno to [EEXIST] or
38082 [ENOTEMPTY].

38083 Upon successful completion, the rmdir() function shall mark for update the st_ctime and
38084 st_mtime fields of the parent directory.

38085 RETURN VALUE
38086 Upon successful completion, the function rmdir() shall return 0. Otherwise, −1 shall be returned,
38087 and errno set to indicate the error. If −1 is returned, the named directory shall not be changed.

38088 ERRORS
38089 The rmdir() function shall fail if:

38090 [EACCES] Search permission is denied on a component of the path prefix, or write |
38091 permission is denied on the parent directory of the directory to be removed.

38092 [EBUSY] The directory to be removed is currently in use by the system or some process |
38093 and the implementation considers this to be an error.

38094 [EEXIST] or [ENOTEMPTY] |
38095 The path argument names a directory that is not an empty directory, or there
38096 are hard links to the directory other than dot or a single entry in dot-dot.

38097 [EINVAL] The path argument contains a last component that is dot. |

38098 [EIO] A physical I/O error has occurred. |

38099 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
38100 argument. |

38101 [ENAMETOOLONG] |
38102 The length of the path argument exceeds {PATH_MAX} or a path name
38103 component is longer than |

38104 NAME_MAX |

System Interfaces, Issue 6 1731

rmdir() System Interfaces

38105 [ENOENT] A component of path does not name an existing file, or the path argument |
38106 names a nonexistent directory or points to an empty string.

38107 [ENOTDIR] A component of path is not a directory. |

38108 XSI [EPERM] or [EACCES] |
38109 The S_ISVTX flag is set on the parent directory of the directory to be removed
38110 and the caller is not the owner of the directory to be removed, nor is the caller
38111 the owner of the parent directory, nor does the caller have the appropriate
38112 privileges.

38113 [EROFS] The directory entry to be removed resides on a read-only file system. |

38114 The rmdir() function may fail if:

38115 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
38116 resolution of the path argument.

38117 [ENAMETOOLONG] |
38118 As a result of encountering a symbolic link in resolution of the path argument,
38119 the length of the substituted path name string exceeded {PATH_MAX}.

38120 EXAMPLES

38121 Removing a Directory

38122 The following example shows how to remove a directory named /home/cnd/mod1.

38123 #include <unistd.h>

38124 int status;
38125 ...
38126 status = rmdir("/home/cnd/mod1");

38127 APPLICATION USAGE
38128 None.

38129 RATIONALE
38130 The rmdir() and rename() functions originated in 4.2 BSD, and they used [ENOTEMPTY] for the |
38131 condition when the directory to be removed does not exist or new already exists. When the 1984
38132 /usr/group standard was published, it contained [EEXIST] instead. When these functions were |
38133 adopted into System V, the 1984 /usr/group standard was used as a reference. Therefore, several
38134 existing applications and implementations support/use both forms, and no agreement could be
38135 reached on either value. All implementations are required to supply both [EEXIST] and |
38136 [ENOTEMPTY] in <errno.h> with distinct values, so that applications can use both values in C-
38137 language case statements.

38138 The meaning of deleting pathname/dot is unclear, because the name of the file (directory) in the
38139 parent directory to be removed is not clear, particularly in the presence of multiple links to a
38140 directory.

38141 IEEE Std. 1003.1-200x was silent with regard to the behavior of rmdir() when there are multiple
38142 hard links to the directory being removed. The requirement to set errno to [EEXIST] or
38143 [ENOTEMPTY] clarifies the behavior in this case.

38144 If the process’s home directory is being removed, that should be an allowed error. |

38145 Virtually all existing implementations detect [ENOTEMPTY] or the case of dot-dot. The text in
38146 Section 2.3 (on page 521) about returning any one of the possible errors permits that behavior to
38147 continue. The [ELOOP] error may be returned if more than {SYMLOOP_MAX} symbolic links

1732 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces rmdir()

38148 are encountered during resolution of the path argument.

38149 FUTURE DIRECTIONS
38150 None.

38151 SEE ALSO
38152 mkdir(), remove(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

38153 CHANGE HISTORY
38154 First released in Issue 3.

38155 Entry included for alignment with the POSIX.1-1988 standard.

38156 Issue 4
38157 The <unistd.h> header is added to the SYNOPSIS section.

38158 The [ENAMETOOLONG] description is amended.

38159 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

38160 • The type of argument path is changed from char* to const char*.

38161 • The DESCRIPTION is expanded to indicate that, if the directory is a root directory or a
38162 current working directory, it is unspecified whether the function succeeds, or whether it fails
38163 and sets errno to [EBUSY]. In Issue 3, the behavior under these circumstances was defined as |
38164 implementation-defined. |

38165 • The RETURN VALUE section is expanded to direct that if −1 is returned, the directory is not
38166 changed.

38167 The following change is incorporated for alignment with the FIPS requirements:

38168 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
38169 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
38170 an extension.

38171 Issue 4, Version 2
38172 The following changes are made for X/OPEN UNIX conformance:

38173 • The DESCRIPTION is updated to indicate the results of naming a symbolic link in path .

38174 • In the ERRORS section, [EIO] is added to indicate that a physical I/O error has occurred,
38175 [ELOOP] to indicate that too many symbolic links were encountered during path name
38176 resolution, and [EPERM] or [EACCES] to indicate a permission check failure when operating
38177 on directories with S_ISVTX set.

38178 • In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
38179 excessive length of an intermediate result of path name resolution of a symbolic link.

38180 Issue 6
38181 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

38182 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
38183 This is since behavior may vary from one file system to another.

38184 The following new requirements on POSIX implementations derive from alignment with the
38185 Single UNIX Specification:

38186 • The DESCRIPTION is updated to indicate the results of naming a symbolic link in path .

38187 • The [EIO] mandatory error condition is added.

System Interfaces, Issue 6 1733

rmdir() System Interfaces

38188 • The [ELOOP] mandatory error condition is added.

38189 • A second [ENAMETOOLONG] is added as an optional error condition.

38190 The following changes were made to align with the IEEE P1003.1a draft standard:

38191 • The [ELOOP] optional error condition is added.
|

1734 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces round()

38192 NAME |
38193 round, roundf, roundl — round to nearest integer value in floating-point format |

38194 SYNOPSIS |
38195 #include <math.h> |

38196 double round(double x); |
38197 float roundf(float x); |
38198 long double roundl(long double x); |

38199 DESCRIPTION |
38200 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
38201 conflict between the requirements described here and the ISO C standard is unintentional. This |
38202 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

38203 These functions shall round their argument to the nearest integer value in floating-point format, |
38204 rounding halfway cases away from zero, regardless of the current rounding direction. |

38205 An application wishing to check for error situations should set errno to 0 before calling these |
38206 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

38207 RETURN VALUE |
38208 Upon successful completion, these functions shall return the rounded integer value. |

38209 If x is ±Inf, these functions shall return x . |

38210 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

38211 ERRORS |
38212 These functions may fail if: |

38213 [EDOM] The value of x is NaN. |

38214 EXAMPLES |
38215 None. |

38216 APPLICATION USAGE |
38217 None. |

38218 RATIONALE |
38219 None. |

38220 FUTURE DIRECTIONS |
38221 None. |

38222 SEE ALSO |
38223 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

38224 CHANGE HISTORY |
38225 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 1735

scalb() System Interfaces

38226 NAME
38227 scalb — load exponent of a radix-independent floating-point number

38228 SYNOPSIS
38229 XSI #include <math.h>

38230 double scalb(double x, double n);
38231

38232 DESCRIPTION
38233 The scalb() function shall compute x*rn, where r is the radix of the machine’s floating point
38234 arithmetic. When r is 2, scalb() is equivalent to ldexp(). The value of r is FLT_RADIX which is |
38235 defined in <float.h>. |

38236 An application wishing to check for error situations should set errno to 0 before calling scalb(). If
38237 errno is non-zero on return, or the return value is NaN, an error has occurred.

38238 RETURN VALUE
38239 Upon successful completion, the scalb() function shall return x*rn.

38240 If the correct value would overflow, scalb() shall return ±HUGE_VAL (according to the sign of x)
38241 and set errno to [ERANGE].

38242 If the correct value would underflow, scalb() shall return 0 and set errno to [ERANGE].

38243 The scalb() function shall return x when x is ±Inf.

38244 If x or n is NaN, then scalb() shall return NaN and may set errno to [EDOM].

38245 ERRORS
38246 The scalb() function shall fail if:

38247 [ERANGE] The correct value would overflow or underflow. |

38248 The scalb() function may fail if:

38249 [EDOM] The x or n argument is NaN. |

38250 EXAMPLES
38251 None.

38252 APPLICATION USAGE
38253 None.

38254 RATIONALE
38255 None.

38256 FUTURE DIRECTIONS
38257 None.

38258 SEE ALSO
38259 ilogb (), ldexp(), logb(), the Base Definitions volume of IEEE Std. 1003.1-200x, <float.h>, |
38260 <math.h>

CHANGE38261 HISTORY
38262 First released in Issue 4, Version 2.

38263 Issue 5
38264 Moved from X/OPEN UNIX extension to BASE.

38265 The DESCRIPTION is updated to indicate how an application should check for an error. This
38266 text was previously published in the APPLICATION USAGE section.

|

1736 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces scalbln()

38267 NAME |
38268 scalbln, scalblnf, scalblnl scalbn, scalbnf, scalbnl, — compute exponent using FLT_RADIX |

38269 SYNOPSIS |
38270 #include <math.h> |

38271 double scalbln(double x, long n); |
38272 float scalblnf(float x, long n); |
38273 long double scalblnl(long double x, long n); |
38274 double scalbn(double x, int n); |
38275 float scalbnf(float x, int n); |
38276 long double scalbnl(long double x, int n); |

38277 DESCRIPTION |
38278 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
38279 conflict between the requirements described here and the ISO C standard is unintentional. This |
38280 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

38281 These functions shall compute x * FLT_RADIXn efficiently, not normally by computing |
38282 FLT_RADIXn explicitly. |

38283 An application wishing to check for error situations should set errno to 0 before calling these |
38284 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

38285 RETURN VALUE |
38286 Upon successful completion, these functions shall return x * FLT_RADIXn. |

38287 If the correct value would overflow, these functions shall return ±HUGE_VAL (according to the |
38288 sign of x) and set errno to [ERANGE]. |

38289 If the correct value would underflow, these functions shall return 0 and set errno to [ERANGE]. |

38290 These functions shall return x when x is ±Inf. |

38291 If x or n is NaN, then these functions shall return NaN and may set errno to [EDOM]. |

38292 ERRORS |
38293 These functions shall fail if: |

38294 [ERANGE] The correct value would overflow or underflow. |

38295 These functions may fail if: |

38296 [EDOM] The x or n argument is NaN. |

38297 EXAMPLES |
38298 None. |

38299 APPLICATION USAGE |
38300 None. |

38301 RATIONALE |
38302 These functions are named so as to avoid conflicting with the Single UNIX Specification, which |
38303 has a scalb() function whose second argument is double instead of int. The scalb() function is |
38304 not part of ISO C standard. These functions, whose second parameter has type long, is provided |
38305 because the factor required to scale from the smallest positive floating-point value to the largest |
38306 finite one, on many implementations, is too large to represent in the minimum-width int format. |

System Interfaces, Issue 6 1737

scalbln() System Interfaces

38307 FUTURE DIRECTIONS |
38308 None. |

38309 SEE ALSO |
38310 scalb(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

38311 CHANGE HISTORY |
38312 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1738 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces scanf()

38313 NAME
38314 scanf — convert formatted input

38315 SYNOPSIS
38316 #include <stdio.h>

38317 int scanf(const char *restrict format , ...); |

38318 DESCRIPTION |
38319 Refer to fscanf().

System Interfaces, Issue 6 1739

sched_get_priority_max() System Interfaces

38320 NAME
38321 sched_get_priority_max, sched_get_priority_min — get priority limits (REALTIME)

38322 SYNOPSIS
38323 PS #include <sched.h>

38324 int sched_get_priority_max(int policy);
38325 int sched_get_priority_min(int policy);
38326

38327 DESCRIPTION
38328 The sched_get_priority_max() and sched_get_priority_min() functions return the appropriate
38329 maximum or minimum, respectively, for the scheduling policy specified by policy .

38330 The value of policy is one of the scheduling policy values defined in <sched.h>.

38331 RETURN VALUE
38332 If successful, the sched_get_priority_max() and sched_get_priority_min() functions shall return the
38333 appropriate maximum or minimum values, respectively. If unsuccessful, they shall return a
38334 value of −1 and set errno to indicate the error.

38335 ERRORS
38336 The sched_get_priority_max() and sched_get_priority_min() functions shall fail if:

38337 [EINVAL] The value of the policy parameter does not represent a defined scheduling |
38338 policy.

38339 EXAMPLES
38340 None.

38341 APPLICATION USAGE
38342 None.

38343 RATIONALE
38344 None.

38345 FUTURE DIRECTIONS
38346 None.

38347 SEE ALSO
38348 sched_getparam(), sched_setparam(), sched_getscheduler(), sched_rr_get_interval(),
38349 sched_setscheduler(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sched.h> |

38350 CHANGE HISTORY
38351 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38352 Issue 6
38353 These functions are marked as part of the Process Scheduling option. |

38354 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38355 implementation does not support the Process Scheduling option. |

38356 The [ESRCH] error condition has been removed since these functions do not take a pid
38357 argument.

1740 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sched_getparam()

38358 NAME
38359 sched_getparam — get scheduling parameters (REALTIME)

38360 SYNOPSIS
38361 PS #include <sched.h>

38362 int sched_getparam(pid_t pid , struct sched_param * param);
38363

38364 DESCRIPTION
38365 The sched_getparam() function shall return the scheduling parameters of a process specified by
38366 pid in the sched_param structure pointed to by param .

38367 If a process specified by pid exists, and if the calling process has permission, the scheduling
38368 parameters for the process whose process ID is equal to pid shall be returned.

38369 If pid is zero, the scheduling parameters for the calling process shall be returned. The behavior of
38370 the sched_getparam() function is unspecified if the value of pid is negative.

38371 RETURN VALUE
38372 Upon successful completion, the sched_getparam() function shall return zero. If the call to
38373 sched_getparam() is unsuccessful, the function shall return a value of −1 and set errno to indicate
38374 the error.

38375 ERRORS
38376 The sched_getparam() function shall fail if:

38377 [EPERM] The requesting process does not have permission to obtain the scheduling |
38378 parameters of the specified process.

38379 [ESRCH] No process can be found corresponding to that specified by pid . |

38380 EXAMPLES
38381 None.

38382 APPLICATION USAGE
38383 None.

38384 RATIONALE
38385 None.

38386 FUTURE DIRECTIONS
38387 None.

38388 SEE ALSO
38389 sched_getscheduler(), sched_setparam(), sched_setscheduler(), the Base Definitions volume of |
38390 IEEE Std. 1003.1-200x, <sched.h> |

38391 CHANGE HISTORY
38392 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38393 Issue 6
38394 The sched_getparam() function is marked as part of the Process Scheduling option. |

38395 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38396 implementation does not support the Process Scheduling option. |

System Interfaces, Issue 6 1741

sched_getscheduler() System Interfaces

38397 NAME
38398 sched_getscheduler — get scheduling policy (REALTIME)

38399 SYNOPSIS
38400 PS #include <sched.h>

38401 int sched_getscheduler(pid_t pid);
38402

38403 DESCRIPTION
38404 The sched_getscheduler() function shall return the scheduling policy of the process specified by
38405 pid . If the value of pid is negative, the behavior of the sched_getscheduler() function is
38406 unspecified.

38407 The values that can be returned by sched_getscheduler() are defined in the header file <sched.h>.

38408 If a process specified by pid exists, and if the calling process has permission, the scheduling
38409 policy shall be returned for the process whose process ID is equal to pid .

38410 If pid is zero, the scheduling policy shall be returned for the calling process.

38411 RETURN VALUE
38412 Upon successful completion, the sched_getscheduler() function shall return the scheduling policy
38413 of the specified process. If unsuccessful, the function shall return −1 and set errno to indicate the
38414 error.

38415 ERRORS
38416 The sched_getscheduler() function shall fail if:

38417 [EPERM] The requesting process does not have permission to determine the scheduling |
38418 policy of the specified process.

38419 [ESRCH] No process can be found corresponding to that specified by pid . |

38420 EXAMPLES
38421 None.

38422 APPLICATION USAGE
38423 None.

38424 RATIONALE
38425 None.

38426 FUTURE DIRECTIONS
38427 None.

38428 SEE ALSO
38429 sched_getparam(), sched_setparam(), sched_setscheduler(), the Base Definitions volume of |
38430 IEEE Std. 1003.1-200x, <sched.h> |

38431 CHANGE HISTORY
38432 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38433 Issue 6
38434 The sched_getscheduler() function is marked as part of the Process Scheduling option. |

38435 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38436 implementation does not support the Process Scheduling option. |

1742 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sched_rr_get_interval()

38437 NAME
38438 sched_rr_get_interval — get execution time limits (REALTIME)

38439 SYNOPSIS
38440 PS #include <sched.h>

38441 int sched_rr_get_interval(pid_t pid , struct timespec * interval);
38442

38443 DESCRIPTION
38444 The sched_rr_get_interval() function updates the timespec structure referenced by the interval
38445 argument to contain the current execution time limit (that is, time quantum) for the process
38446 specified by pid . If pid is zero, the current execution time limit for the calling process shall be
38447 returned.

38448 RETURN VALUE
38449 If successful, the sched_rr_get_interval() function shall return zero. Otherwise, it shall return a
38450 value of −1 and set errno to indicate the error.

38451 ERRORS
38452 The sched_rr_get_interval() function shall fail if:

38453 [ESRCH] No process can be found corresponding to that specified by pid . |

38454 EXAMPLES
38455 None.

38456 APPLICATION USAGE
38457 None.

38458 RATIONALE
38459 None.

38460 FUTURE DIRECTIONS
38461 None.

38462 SEE ALSO
38463 sched_getparam(), sched_get_priority_max(), sched_getscheduler(), sched_setparam(),
38464 sched_setscheduler(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sched.h> |

38465 CHANGE HISTORY
38466 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38467 Issue 6
38468 The sched_rr_get_interval() function is marked as part of the Process Scheduling option. |

38469 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38470 implementation does not support the Process Scheduling option. |

System Interfaces, Issue 6 1743

sched_setparam() System Interfaces

38471 NAME
38472 sched_setparam — set scheduling parameters (REALTIME)

38473 SYNOPSIS
38474 PS #include <sched.h>

38475 int sched_setparam(pid_t pid , const struct sched_param * param);
38476

38477 DESCRIPTION
38478 The sched_setparam() function sets the scheduling parameters of the process specified by pid to
38479 the values specified by the sched_param structure pointed to by param . The value of the
38480 sched_priority member in the sched_param structure is any integer within the inclusive priority
38481 range for the current scheduling policy of the process specified by pid . Higher numerical values
38482 for the priority represent higher priorities. If the value of pid is negative, the behavior of the
38483 sched_setparam() function is unspecified.

38484 If a process specified by pid exists, and if the calling process has permission, the scheduling
38485 parameters shall be set for the process whose process ID is equal to pid .

38486 If pid is zero, the scheduling parameters shall be set for the calling process.

38487 The conditions under which one process has permission to change the scheduling parameters of |
38488 another process are implementation-defined. |

38489 Implementations may require the requesting process to have the appropriate privilege to set its
38490 own scheduling parameters or those of another process.

38491 The target process, whether it is running or not running, resumes execution after all other
38492 runnable processes of equal or greater priority have been scheduled to run.

38493 If the priority of the process specified by the pid argument is set higher than that of the lowest
38494 priority running process and if the specified process is ready to run, the process specified by the
38495 pid argument preempts a lowest priority running process. Similarly, if the process calling
38496 sched_setparam() sets its own priority lower than that of one or more other non-empty process
38497 lists, then the process that is the head of the highest priority list also preempts the calling
38498 process. Thus, in either case, the originating process might not receive notification of the
38499 completion of the requested priority change until the higher priority process has executed.

38500 SS If the scheduling policy of the target process is SCHED_SPORADIC, the value specified by the
38501 sched_ss_low_priority member of the param argument shall be any integer within the inclusive
38502 priority range for the sporadic server policy. The sched_ss_repl_period and sched_ss_init_budget
38503 members of the param argument shall represent the time parameters to be used by the sporadic
38504 server scheduling policy for the target process. The sched_ss_max_repl member of the param
38505 argument shall represent the maximum number of replenishments that are allowed to be
38506 pending simultaneously for the process scheduled under this scheduling policy.

38507 The specified sched_ss_repl_period shall be greater than or equal to the specified |
38508 sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

38509 The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
38510 function to succeed; if not, the function shall fail.

38511 If the scheduling policy of the target process is either SCHED_FIFO or SCHED_RR, the
38512 sched_ss_low_priority , sched_ss_repl_period , and sched_ss_init_budget members of the param
38513 argument shall have no effect on the scheduling behavior. If the scheduling policy of this process
38514 is not SCHED_FIFO, SCHED_RR, or SCHED_SPORADIC, including SCHED_OTHER, the
38515 effects of these members shall be implementation-defined. |

1744 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sched_setparam()

38516 Notes to Reviewers |
38517 This section with side shading will not appear in the final copy. - Ed. |

38518 D3, XSH, ERN 502 questions "including SCHED_OTHER" above. (Problem left over from D2.) |

38519 If the current scheduling policy for the process specified by pid is not SCHED_FIFO, |
38520 SS SCHED_RR, or SCHED_SPORADIC ,the result is implementation-defined; this case includes the |
38521 SCHED_OTHER policy. |

38522 The effect of this function on individual threads is dependent on the scheduling contention
38523 scope of the threads:

38524 • For threads with system scheduling contention scope, these functions have no effect on their
38525 scheduling.

38526 • For threads with process scheduling contention scope, the threads’ scheduling parameters |
38527 shall not be affected. However, the scheduling of these threads with respect to threads in |
38528 other processes may be dependent on the scheduling parameters of their process, which are
38529 governed using these functions.

38530 If an implementation supports a two-level scheduling model in which library threads are |
38531 multiplexed on top of several kernel-scheduled entities, then the underlying kernel-scheduled |
38532 entities for the system contention scope threads shall not be affected by these functions. |

38533 The underlying kernel-scheduled entities for the process contention scope threads shall have |
38534 their scheduling parameters changed to the value specified in param . Kernel scheduled entities
38535 for use by process contention scope threads that are created after this call completes inherit their
38536 scheduling policy and associated scheduling parameters from the process.

38537 This function is not atomic with respect to other threads in the process. Threads are allowed to
38538 continue to execute while this function call is in the process of changing the scheduling policy
38539 for the underlying kernel-scheduled entities used by the process contention scope threads. |

38540 RETURN VALUE
38541 If successful, the sched_setparam() function shall return zero.

38542 If the call to sched_setparam() is unsuccessful, the priority shall remain unchanged, and the
38543 function shall return a value of −1 and set errno to indicate the error.

38544 ERRORS
38545 The sched_setparam() function shall fail if:

38546 [EINVAL] One or more of the requested scheduling parameters is outside the range |
38547 defined for the scheduling policy of the specified pid .

38548 [EPERM] The requesting process does not have permission to set the scheduling |
38549 parameters for the specified process, or does not have the appropriate
38550 privilege to invoke sched_setparam().

38551 [ESRCH] No process can be found corresponding to that specified by pid . |

System Interfaces, Issue 6 1745

sched_setparam() System Interfaces

38552 EXAMPLES
38553 None.

38554 APPLICATION USAGE
38555 None.

38556 RATIONALE
38557 None.

38558 FUTURE DIRECTIONS
38559 None.

38560 SEE ALSO
38561 sched_getparam(), sched_getscheduler(), sched_setscheduler(), the Base Definitions volume of |
38562 IEEE Std. 1003.1-200x, <sched.h> |

38563 CHANGE HISTORY
38564 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38565 Issue 6
38566 The sched_setparam() function is marked as part of the Process Scheduling option. |

38567 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38568 implementation does not support the Process Scheduling option. |

38569 The following new requirements on POSIX implementations derive from alignment with the
38570 Single UNIX Specification:

38571 • In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
38572 added.

38573 • Sections describing two-level scheduling and atomicity of the function are added.

38574 The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std. 1003.1d-1999.

1746 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sched_setscheduler()

38575 NAME
38576 sched_setscheduler — set scheduling policy and parameters (REALTIME)

38577 SYNOPSIS
38578 PS #include <sched.h>

38579 int sched_setscheduler(pid_t pid , int policy ,
38580 const struct sched_param * param);
38581

38582 DESCRIPTION
38583 The sched_setscheduler() function sets the scheduling policy and scheduling parameters of the
38584 process specified by pid to policy and the parameters specified in the sched_param structure
38585 pointed to by param , respectively. The value of the sched_priority member in the sched_param
38586 structure is any integer within the inclusive priority range for the scheduling policy specified by
38587 policy . If the value of pid is negative, the behavior of the sched_setscheduler() function is
38588 unspecified.

38589 The possible values for the policy parameter are defined in the header file <sched.h>.

38590 If a process specified by pid exists, and if the calling process has permission, the scheduling
38591 policy and scheduling parameters shall be set for the process whose process ID is equal to pid .

38592 If pid is zero, the scheduling policy and scheduling parameters shall be set for the calling
38593 process.

38594 The conditions under which one process has the appropriate privilege to change the scheduling
38595 parameters of another process are implementation-defined. |

38596 Implementations may require that the requesting process have permission to set its own
38597 scheduling parameters or those of another process. Additionally, implementation-defined |
38598 restrictions may apply as to the appropriate privileges required to set a process’ own scheduling |
38599 policy, or another process’ scheduling policy, to a particular value.

38600 The sched_setscheduler() function is considered successful if it succeeds in setting the scheduling
38601 policy and scheduling parameters of the process specified by pid to the values specified by policy
38602 and the structure pointed to by param , respectively.

38603 SS If the scheduling policy specified by policy is SCHED_SPORADIC, the value specified by the
38604 sched_ss_low_priority member of the param argument shall be any integer within the inclusive
38605 priority range for the sporadic server policy. The sched_ss_repl_period and sched_ss_init_budget
38606 members of the param argument shall represent the time parameters used by the sporadic server
38607 scheduling policy for the target process. The sched_ss_max_repl member of the param argument
38608 shall represent the maximum number of replenishments that are allowed to be pending
38609 simultaneously for the process scheduled under this scheduling policy.

38610 The specified sched_ss_repl_period shall be greater than or equal to the specified |
38611 sched_ss_init_budget for the function to succeed; if it is not, then the function shall fail.

38612 The value of sched_ss_max_repl shall be within the inclusive range [1,{SS_REPL_MAX}] for the
38613 function to succeed; if not, the function shall fail.

38614 If the scheduling policy specified by policy is either SCHED_FIFO or SCHED_RR, the
38615 sched_ss_low_priority , sched_ss_repl_period , and sched_ss_init_budget members of the param
38616 argument shall have no effect on the scheduling behavior.

38617 The effect of this function on individual threads is dependent on the scheduling contention
38618 scope of the threads:

System Interfaces, Issue 6 1747

sched_setscheduler() System Interfaces

38619 • For threads with system scheduling contention scope, these functions have no effect on their
38620 scheduling.

38621 • For threads with process scheduling contention scope, the threads’ scheduling policy and |
38622 associated parameters shall not be affected. However, the scheduling of these threads with |
38623 respect to threads in other processes may be dependent on the scheduling parameters of their |
38624 process, which are governed using these functions.

38625 If an implementation supports a two-level scheduling model in which library threads are |
38626 multiplexed on top of several kernel-scheduled entities, then the underlying kernel-scheduled |
38627 entities for the system contention scope threads shall not be affected by these functions. |

38628 The underlying kernel-scheduled entities for the process contention scope threads shall have |
38629 their scheduling policy and associated scheduling parameters changed to the values specified in
38630 policy and param , respectively. Kernel scheduled entities for use by process contention scope
38631 threads that are created after this call completes inherit their scheduling policy and associated
38632 scheduling parameters from the process.

38633 This function is not atomic with respect to other threads in the process. Threads are allowed to
38634 continue to execute while this function call is in the process of changing the scheduling policy
38635 and associated scheduling parameters for the underlying kernel-scheduled entities used by the |
38636 process contention scope threads. |

38637 RETURN VALUE
38638 Upon successful completion, the function shall return the former scheduling policy of the
38639 specified process. If the sched_setscheduler() function fails to complete successfully, the policy
38640 and scheduling paramenters shall remain unchanged, and the function shall return a value of −1
38641 and set errno to indicate the error.

38642 ERRORS
38643 The sched_setscheduler() function shall fail if:

38644 [EINVAL] The value of the policy parameter is invalid, or one or more of the parameters |
38645 contained in param is outside the valid range for the specified scheduling
38646 policy.

38647 [EPERM] The requesting process does not have permission to set either or both of the |
38648 scheduling parameters or the scheduling policy of the specified process.

38649 [ESRCH] No process can be found corresponding to that specified by pid . |

38650 EXAMPLES
38651 None.

38652 APPLICATION USAGE
38653 None.

38654 RATIONALE
38655 None.

38656 FUTURE DIRECTIONS
38657 None.

38658 SEE ALSO
38659 sched_getparam(), sched_getscheduler(), sched_setparam(), the Base Definitions volume of |
38660 IEEE Std. 1003.1-200x, <sched.h> |

1748 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sched_setscheduler()

38661 CHANGE HISTORY
38662 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38663 Issue 6
38664 The sched_setscheduler() function is marked as part of the Process Scheduling option. |

38665 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38666 implementation does not support the Process Scheduling option. |

38667 The following new requirements on POSIX implementations derive from alignment with the
38668 Single UNIX Specification:

38669 • In the DESCRIPTION, the effect of this function on a thread’s scheduling parameters is
38670 added.

38671 • Sections describing two-level scheduling and atomicity of the function are added.

38672 The SCHED_SPORADIC scheduling policy is added for alignment with IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1749

sched_yield() System Interfaces

38673 NAME
38674 sched_yield — yield processor

38675 SYNOPSIS
38676 PS|THR #include <sched.h>

38677 int sched_yield(void);
38678

38679 DESCRIPTION
38680 The sched_yield() function forces the running thread to relinquish the processor until it again
38681 becomes the head of its thread list. It takes no arguments.

38682 RETURN VALUE
38683 The sched_yield() function shall return 0 if it completes successfully; otherwise, it shall return a
38684 value of −1 and set errno to indicate the error.

38685 ERRORS
38686 No errors are defined.

38687 EXAMPLES
38688 None.

38689 APPLICATION USAGE
38690 None.

38691 RATIONALE
38692 None.

38693 FUTURE DIRECTIONS
38694 None.

38695 SEE ALSO
38696 The Base Definitions volume of IEEE Std. 1003.1-200x, <sched.h> |

38697 CHANGE HISTORY
38698 First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
38699 POSIX Threads Extension.

38700 Issue 6
38701 The sched_yield() function is now marked as part of the Process Scheduling and Threads options. |

1750 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces seed48()

38702 NAME
38703 seed48 — seed uniformly distributed pseudo-random non-negative long integer generator

38704 SYNOPSIS
38705 XSI #include <stdlib.h>

38706 unsigned short *seed48(unsigned short seed16v [3]); |
38707 |

38708 DESCRIPTION
38709 Refer to drand48().

System Interfaces, Issue 6 1751

seekdir() System Interfaces

38710 NAME
38711 seekdir — set position of directory stream

38712 SYNOPSIS
38713 XSI #include <dirent.h>

38714 void seekdir(DIR * dirp , long loc); |
38715 |

38716 DESCRIPTION
38717 The seekdir() function sets the position of the next readdir() operation on the directory stream
38718 specified by dirp to the position specified by loc . The value of loc should have been returned
38719 from an earlier call to telldir(). The new position reverts to the one associated with the directory
38720 stream when telldir() was performed.

38721 If the value of loc was not obtained from an earlier call to telldir(), or if a call to rewinddir()
38722 occurred between the call to telldir() and the call to seekdir(), the results of subsequent calls to
38723 readdir() are unspecified.

38724 RETURN VALUE
38725 The seekdir() function shall return no value.

38726 ERRORS
38727 No errors are defined.

38728 EXAMPLES
38729 None.

38730 APPLICATION USAGE
38731 None.

38732 RATIONALE
38733 None.

38734 FUTURE DIRECTIONS
38735 None.

38736 SEE ALSO
38737 opendir(), readdir(), telldir(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dirent.h>, |
38738 <stdio.h>, <sys/types.h>

CHANGE38739 HISTORY
38740 First released in Issue 2.

38741 Issue 4
38742 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
38743 XSI-conformant systems.

38744 The type of argument loc is expanded to long. |

38745 Issue 4, Version 2
38746 The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that a call to
38747 readdir() may produce unspecified results if either loc was not obtained by a previous call to
38748 telldir(), or if there is an intervening call to rewinddir().

38749 Issue 6
38750 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

1752 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces select()

38751 NAME
38752 select — synchronous I/O multiplexing

38753 SYNOPSIS
38754 #include <sys/time.h>

38755 int select(int nfds , fd_set *restrict readfds , fd_set *restrict writefds ,|
38756 fd_set *restrict errorfds , struct timeval *restrict timeout); |
38757 |

38758 DESCRIPTION |
38759 Refer to pselect(). |

System Interfaces, Issue 6 1753

sem_close() System Interfaces

38760 NAME
38761 sem_close — close a named semaphore (REALTIME)

38762 SYNOPSIS
38763 SEM #include <semaphore.h>

38764 int sem_close(sem_t * sem);
38765

38766 DESCRIPTION
38767 The sem_close() function is used to indicate that the calling process is finished using the named
38768 semaphore indicated by sem. The effects of calling sem_close() for an unnamed semaphore (one
38769 created by sem_init()) are undefined. The sem_close() function deallocates (that is, makes
38770 available for reuse by a subsequent sem_open() by this process) any system resources allocated
38771 by the system for use by this process for this semaphore. The effect of subsequent use of the
38772 semaphore indicated by sem by this process is undefined. If the semaphore has not been
38773 removed with a successful call to sem_unlink(), then sem_close() has no effect on the state of the
38774 semaphore. If the sem_unlink() function has been successfully invoked for name after the most
38775 recent call to sem_open() with O_CREAT for this semaphore, then when all processes that have
38776 opened the semaphore close it, the semaphore is no longer accessible.

38777 RETURN VALUE
38778 Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
38779 returned and errno set to indicate the error.

38780 ERRORS
38781 The sem_close() function shall fail if:

38782 [EINVAL] The sem argument is not a valid semaphore descriptor. |

38783 EXAMPLES
38784 None.

38785 APPLICATION USAGE
38786 The sem_close() function is part of the Semaphores option and need not be available on all |
38787 implementations.

38788 RATIONALE
38789 None.

38790 FUTURE DIRECTIONS
38791 None.

38792 SEE ALSO
38793 semctl(), semget(), semop(), sem_init(), sem_open(), sem_unlink(), the Base Definitions volume of |
38794 IEEE Std. 1003.1-200x, <semaphore.h> |

38795 CHANGE HISTORY
38796 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38797 Issue 6
38798 The sem_close() function is marked as part of the Semaphores option. |

38799 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38800 implementation does not support the Semaphores option. |

1754 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_destroy()

38801 NAME
38802 sem_destroy — destroy an unnamed semaphore (REALTIME)

38803 SYNOPSIS
38804 SEM #include <semaphore.h>

38805 int sem_destroy(sem_t * sem);
38806

38807 DESCRIPTION
38808 The sem_destroy() function is used to destroy the unnamed semaphore indicated by sem. Only a
38809 semaphore that was created using sem_init() may be destroyed using sem_destroy(); the effect of
38810 calling sem_destroy() with a named semaphore is undefined. The effect of subsequent use of the
38811 semaphore sem is undefined until sem is re-initialized by another call to sem_init().

38812 It is safe to destroy an initialized semaphore upon which no threads are currently blocked. The
38813 effect of destroying a semaphore upon which other threads are currently blocked is undefined.

38814 RETURN VALUE
38815 Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
38816 returned and errno set to indicate the error.

38817 ERRORS
38818 The sem_destroy() function shall fail if:

38819 [EINVAL] The sem argument is not a valid semaphore. |

38820 The sem_destroy() function may fail if:

38821 [EBUSY] There are currently processes blocked on the semaphore. |

38822 EXAMPLES
38823 None.

38824 APPLICATION USAGE
38825 The sem_destroy() function is part of the Semaphores option and need not be available on all |
38826 implementations.

38827 RATIONALE
38828 None.

38829 FUTURE DIRECTIONS
38830 None.

38831 SEE ALSO
38832 semctl(), semget(), semop(), sem_init(), sem_open(), the Base Definitions volume of |
38833 IEEE Std. 1003.1-200x, <semaphore.h> |

38834 CHANGE HISTORY
38835 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38836 Issue 6
38837 The sem_destroy() function is marked as part of the Semaphores option. |

38838 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38839 implementation does not support the Semaphores option. |

System Interfaces, Issue 6 1755

sem_getvalue() System Interfaces

38840 NAME
38841 sem_getvalue — get the value of a semaphore (REALTIME)

38842 SYNOPSIS
38843 SEM #include <semaphore.h>

38844 int sem_getvalue(sem_t *restrict sem, int *restrict sval); |
38845 |

38846 DESCRIPTION
38847 The sem_getvalue() function updates the location referenced by the sval argument to have the
38848 value of the semaphore referenced by sem without affecting the state of the semaphore. The
38849 updated value represents an actual semaphore value that occurred at some unspecified time
38850 during the call, but it need not be the actual value of the semaphore when it is returned to the
38851 calling process.

38852 If sem is locked, then the value returned by sem_getvalue() is either zero or a negative number
38853 whose absolute value represents the number of processes waiting for the semaphore at some
38854 unspecified time during the call.

38855 RETURN VALUE
38856 Upon successful completion, the sem_getvalue() function shall return a value of zero. Otherwise,
38857 it shall return a value of −1 and set errno to indicate the error.

38858 ERRORS
38859 The sem_getvalue() function shall fail if:

38860 [EINVAL] The sem argument does not refer to a valid semaphore. |

38861 EXAMPLES
38862 None.

38863 APPLICATION USAGE
38864 The sem_getvalue() function is part of the Semaphores option and need not be available on all |
38865 implementations.

38866 RATIONALE
38867 None.

38868 FUTURE DIRECTIONS
38869 None.

38870 SEE ALSO
38871 semctl(), semget(), semop(), sem_post(), sem_timedwait(), sem_trywait(), sem_wait(), the Base |
38872 Definitions volume of IEEE Std. 1003.1-200x, <semaphore.h> |

38873 CHANGE HISTORY
38874 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38875 Issue 6
38876 The sem_getvalue() function is marked as part of the Semaphores option. |

38877 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38878 implementation does not support the Semaphores option. |

38879 The sem_timedwait() function is added to the SEE ALSO section for alignment with
38880 IEEE Std. 1003.1d-1999. |

38881 The restrict keyword is added to the sem_getvalue() prototype for alignment with the |
38882 ISO/IEC 9899: 1999 standard. |

1756 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_init()

38883 NAME
38884 sem_init — initialize an unnamed semaphore (REALTIME)

38885 SYNOPSIS
38886 SEM #include <semaphore.h>

38887 int sem_init(sem_t * sem, int pshared , unsigned value); |
38888 |

38889 DESCRIPTION
38890 The sem_init() function is used to initialize the unnamed semaphore referred to by sem. The
38891 value of the initialized semaphore is value . Following a successful call to sem_init(), the
38892 semaphore may be used in subsequent calls to sem_wait(), sem_trywait(), sem_post(), and
38893 sem_destroy(). This semaphore remains usable until the semaphore is destroyed.

38894 If the pshared argument has a non-zero value, then the semaphore is shared between processes;
38895 in this case, any process that can access the semaphore sem can use sem for performing
38896 sem_wait(), sem_trywait(), sem_post(), and sem_destroy() operations.

38897 Only sem itself may be used for performing synchronization. The result of referring to copies of
38898 sem in calls to sem_wait(), sem_trywait(), sem_post(), and sem_destroy(), is undefined.

38899 If the pshared argument is zero, then the semaphore is shared between threads of the process; any
38900 thread in this process can use sem for performing sem_wait(), sem_trywait(), sem_post(), and
38901 sem_destroy() operations. The use of the semaphore by threads other than those created in the
38902 same process is undefined.

38903 Attempting to initialize an already initialized semaphore results in undefined behavior.

38904 RETURN VALUE
38905 Upon successful completion, the sem_init() function shall initialize the semaphore in sem.
38906 Otherwise, it shall return −1 and set errno to indicate the error.

38907 ERRORS
38908 The sem_init() function shall fail if:

38909 [EINVAL] The value argument exceeds {SEM_VALUE_MAX}. |

38910 [ENOSPC] A resource required to initialize the semaphore has been exhausted, or the |
38911 limit on semaphores ({SEM_NSEMS_MAX}) has been reached.

38912 [EPERM] The process lacks the appropriate privileges to initialize the semaphore. |

38913 EXAMPLES
38914 None.

38915 APPLICATION USAGE
38916 The sem_init() function is part of the Semaphores option and need not be available on all |
38917 implementations.

38918 RATIONALE
38919 Although this volume of IEEE Std. 1003.1-200x fails to specify a successful return value, it is
38920 likely that a later version may require the implementation to return a value of zero if the call to
38921 sem_init() is successful.

38922 FUTURE DIRECTIONS
38923 None.

System Interfaces, Issue 6 1757

sem_init() System Interfaces

38924 SEE ALSO
38925 sem_destroy(), sem_post(), sem_timedwait(), sem_trywait(), sem_wait(), the Base Definitions |
38926 volume of IEEE Std. 1003.1-200x, <semaphore.h> |

38927 CHANGE HISTORY
38928 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

38929 Issue 6
38930 The sem_init() function is marked as part of the Semaphores option. |

38931 The [ENOSYS] error condition has been removed as stubs need not be provided if an
38932 implementation does not support the Semaphores option. |

38933 The sem_timedwait() function is added to the SEE ALSO section for alignment with
38934 IEEE Std. 1003.1d-1999.

1758 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_open()

38935 NAME
38936 sem_open — initialize and open a named semaphore (REALTIME)

38937 SYNOPSIS
38938 SEM #include <semaphore.h>

38939 sem_t *sem_open(const char * name, int oflag , ...);
38940

38941 DESCRIPTION
38942 The sem_open() function establishes a connection between a named semaphore and a process.
38943 Following a call to sem_open() with semaphore name name, the process may reference the
38944 semaphore associated with name using the address returned from the call. This semaphore may
38945 be used in subsequent calls to sem_wait(), sem_trywait(), sem_post(), and sem_close(). The
38946 semaphore remains usable by this process until the semaphore is closed by a successful call to
38947 sem_close(), _exit(), or one of the exec functions.

38948 The oflag argument controls whether the semaphore is created or merely accessed by the call to
38949 sem_open(). The following flag bits may be set in oflag :

38950 O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
38951 set and the semaphore already exists, then O_CREAT has no effect, except as noted
38952 under O_EXCL. Otherwise, sem_open() creates a named semaphore. The O_CREAT
38953 flag requires a third and a fourth argument: mode, which is of type mode_t, and
38954 value, which is of type unsigned. The semaphore is created with an initial value of |
38955 value . Valid initial values for semaphores are less than or equal to
38956 {SEM_VALUE_MAX}.

38957 The user ID of the semaphore is set to the effective user ID of the process; the
38958 group ID of the semaphore is set to a system default group ID or to the effective
38959 group ID of the process. The permission bits of the semaphore are set to the value
38960 of the mode argument except those set in the file mode creation mask of the
38961 process. When bits in mode other than the file permission bits are specified, the
38962 effect is unspecified.

38963 After the semaphore named name has been created by sem_open() with the
38964 O_CREAT flag, other processes can connect to the semaphore by calling
38965 sem_open() with the same value of name.

38966 O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
38967 The check for the existence of the semaphore and the creation of the semaphore if
38968 it does not exist are atomic with respect to other processes executing sem_open()
38969 with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the
38970 effect is undefined.

38971 If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the
38972 effect is unspecified.

38973 The name argument points to a string naming a semaphore object. It is unspecified whether the
38974 name appears in the file system and is visible to functions that take path names as arguments.
38975 The name argument conforms to the construction rules for a path name. If name begins with the
38976 slash character, then processes calling sem_open() with the same value of name shall refer to the
38977 same semaphore object, as long as that name has not been removed. If name does not begin with
38978 the slash character, the effect is implementation-defined. The interpretation of slash characters |
38979 other than the leading slash character in name is implementation-defined. |

38980 If a process makes multiple successful calls to sem_open() with the same value for name, the
38981 same semaphore address is returned for each such successful call, provided that there have been

System Interfaces, Issue 6 1759

sem_open() System Interfaces

38982 no calls to sem_unlink() for this semaphore.

38983 References to copies of the semaphore produce undefined results.

38984 RETURN VALUE
38985 Upon successful completion, the sem_open() function shall return the address of the semaphore.
38986 Otherwise, it shall return a value of SEM_FAILED and set errno to indicate the error. The symbol
38987 SEM_FAILED is defined in the header <semaphore.h>. No successful return from sem_open()
38988 shall return the value SEM_FAILED.

38989 ERRORS
38990 If any of the following conditions occur, the sem_open() function shall return SEM_FAILED and
38991 set errno to the corresponding value:

38992 [EACCES] The named semaphore exists and the permissions specified by oflag are |
38993 denied, or the named semaphore does not exist and permission to create the
38994 named semaphore is denied.

38995 [EEXIST] O_CREAT and O_EXCL are set and the named semaphore already exists. |

38996 [EINTR] The sem_open() operation was interrupted by a signal. |

38997 [EINVAL] The sem_open() operation is not supported for the given name, or O_CREAT |
38998 was specified in oflag and value was greater than {SEM_VALUE_MAX}.

38999 [EMFILE] Too many semaphore descriptors or file descriptors are currently in use by |
39000 this process.

39001 [ENAMETOOLONG] |
39002 The length of the name argument exceeds {PATH_MAX} or a path name |
39003 component is longer than {NAME_MAX}. |

39004 [ENFILE] Too many semaphores are currently open in the system. |

39005 [ENOENT] O_CREAT is not set and the named semaphore does not exist. |

39006 [ENOSPC] There is insufficient space for the creation of the new named semaphore. |

39007 EXAMPLES
39008 None.

39009 APPLICATION USAGE
39010 The sem_open() function is part of the Semaphores option and need not be available on all |
39011 implementations.

39012 RATIONALE
39013 An earlier version of this volume of IEEE Std. 1003.1-200x required an error return value of −1
39014 with the type sem_t* for the sem_open() function, which is not guaranteed to be portable across
39015 implementations. The revised text provides the symbolic error code SEM_FAILED to eliminate
39016 the type conflict.

39017 FUTURE DIRECTIONS
39018 None.

39019 SEE ALSO
39020 semctl(), semget(), semop(), sem_close(), sem_post(), sem_timedwait(), sem_trywait(), sem_unlink(),
39021 sem_wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <semaphore.h> |

1760 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_open()

39022 CHANGE HISTORY
39023 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

39024 Issue 6
39025 The sem_open() function is marked as part of the Semaphores option. |

39026 The [ENOSYS] error condition has been removed as stubs need not be provided if an
39027 implementation does not support the Semaphores option. |

39028 The sem_timedwait() function is added to the SEE ALSO section for alignment with
39029 IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1761

sem_post() System Interfaces

39030 NAME
39031 sem_post — unlock a semaphore (REALTIME)

39032 SYNOPSIS
39033 SEM #include <semaphore.h>

39034 int sem_post(sem_t * sem);
39035

39036 DESCRIPTION
39037 The sem_post() function unlocks the semaphore referenced by sem by performing a semaphore
39038 unlock operation on that semaphore.

39039 If the semaphore value resulting from this operation is positive, then no threads were blocked
39040 waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

39041 If the value of the semaphore resulting from this operation is zero, then one of the threads
39042 blocked waiting for the semaphore shall be allowed to return successfully from its call to
39043 PS sem_wait(). If the Process Scheduling option is supported, the thread to be unblocked shall be |
39044 chosen in a manner appropriate to the scheduling policies and parameters in effect for the
39045 blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the highest
39046 priority waiting thread shall be unblocked, and if there is more than one highest priority thread
39047 blocked waiting for the semaphore, then the highest priority thread that has been waiting the
39048 longest shall be unblocked. If the Process Scheduling option is not defined, the choice of a thread
39049 to unblock is unspecified.

39050 SS If the Process Sporadic Server option is supported, and the scheduling policy is |
39051 SCHED_SPORADIC, the semantics are as per SCHED_FIFO above. |

39052 The sem_post() function shall be reentrant with respect to signals and may be invoked from a
39053 signal-catching function.

39054 RETURN VALUE
39055 If successful, the sem_post() function shall return zero; otherwise, the function shall return −1
39056 and set errno to indicate the error.

39057 ERRORS
39058 The sem_post() function shall fail if:

39059 [EINVAL] The sem argument does not refer to a valid semaphore. |

39060 EXAMPLES
39061 None.

39062 APPLICATION USAGE
39063 The sem_post() function is part of the Semaphores option and need not be available on all |
39064 implementations.

39065 RATIONALE
39066 None.

39067 FUTURE DIRECTIONS
39068 None.

39069 SEE ALSO
39070 semctl(), semget(), semop(), sem_timedwait(), sem_trywait(), sem_wait(), the Base Definitions |
39071 volume of IEEE Std. 1003.1-200x, <semaphore.h> |

1762 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_post()

39072 CHANGE HISTORY
39073 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

39074 Issue 6
39075 The sem_post() function is marked as part of the Semaphores option. |

39076 The [ENOSYS] error condition has been removed as stubs need not be provided if an
39077 implementation does not support the Semaphores option. |

39078 The sem_timedwait() function is added to the SEE ALSO section for alignment with
39079 IEEE Std. 1003.1d-1999.

39080 SCHED_SPORADIC is added to the list of scheduling policies for which the thread that is to be
39081 unblocked is specified for alignment with IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1763

sem_timedwait() System Interfaces

39082 NAME
39083 sem_timedwait — lock a semaphore (REALTIME)

39084 SYNOPSIS
39085 SEM TMO #include <semaphore.h>
39086 #include <time.h>

39087 int sem_timedwait(sem_t *restrict sem, |
39088 const struct timespec *restrict abs_timeout); |
39089 |

39090 DESCRIPTION
39091 The sem_timedwait() function locks the semaphore referenced by sem as in the sem_wait()
39092 function. However, if the semaphore cannot be locked without waiting for another process or
39093 thread to unlock the semaphore by performing a sem_post() function, this wait shall be
39094 terminated when the specified timeout expires.

39095 The timeout expires when the absolute time specified by abs_timeout passes, as measured by the
39096 clock on which timeouts are based (that is, when the value of that clock equals or exceeds
39097 abs_timeout), or if the absolute time specified by abs_timeout has already been passed at the time
39098 of the call. If the Timers option is supported, the timeout is based on the CLOCK_REALTIME
39099 clock; if the Timers option is not supported, the timeout is based on the system clock as returned
39100 by the time() function.

39101 RETURN VALUE
39102 The sem_timedwait() function shall return zero if the calling process successfully performed the
39103 semaphore lock operation on the semaphore designated by sem. If the call was unsuccessful, the
39104 state of the semaphore shall be unchanged, and the function shall return a value of −1 and set
39105 errno to indicate the error.

39106 ERRORS
39107 The sem_timedwait() function shall fail if:

39108 [EINVAL] The sem argument does not refer to a valid semaphore.

39109 [EINVAL] The process or thread would have blocked, and the abs_timeout parameter |
39110 specified a nanoseconds field value less than zero or greater than or equal to
39111 1 000 million.

39112 [ETIMEDOUT] The semaphore could not be locked before the specified timeout expired.

39113 The sem_timedwait() function may fail if:

39114 [EDEADLK] A deadlock condition was detected.

39115 [EINTR] A signal interrupted this function.

39116 EXAMPLES
39117 None.

39118 APPLICATION USAGE
39119 Applications using these functions may be subject to priority inversion, as discussed in the Base |
39120 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

39121 The sem_timedwait() function is part of the Semaphores and Timeouts options and need not be |
39122 provided on all implementations. |

1764 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_timedwait()

39123 RATIONALE
39124 None.

39125 FUTURE DIRECTIONS
39126 None.

39127 SEE ALSO
39128 sem_post(), sem_trywait(), sem_wait(), semctl(), semget(), semop(), time(), the Base Definitions |
39129 volume of IEEE Std. 1003.1-200x, <semaphore.h>, <time.h> |

39130 CHANGE HISTORY
39131 First released in Issue 6. Derived from IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1765

sem_trywait() System Interfaces

39132 NAME
39133 sem_trywait, sem_wait — lock a semaphore (REALTIME)

39134 SYNOPSIS
39135 SEM #include <semaphore.h>

39136 int sem_trywait(sem_t * sem);
39137 int sem_wait(sem_t * sem);
39138

39139 DESCRIPTION
39140 The sem_trywait() function locks the semaphore referenced by sem only if the semaphore is
39141 currently not locked; that is, if the semaphore value is currently positive. Otherwise, it does not
39142 lock the semaphore.

39143 The sem_wait() function locks the semaphore referenced by sem by performing a semaphore lock
39144 operation on that semaphore. If the semaphore value is currently zero, then the calling thread
39145 shall not return from the call to sem_wait() until it either locks the semaphore or the call is
39146 interrupted by a signal.

39147 Upon successful return, the state of the semaphore shall be locked and shall remain locked until
39148 the sem_post() function is executed and returns successfully.

39149 The sem_wait() function is interruptible by the delivery of a signal.

39150 RETURN VALUE
39151 The sem_trywait() and sem_wait() functions shall return zero if the calling process successfully
39152 performed the semaphore lock operation on the semaphore designated by sem. If the call was
39153 unsuccessful, the state of the semaphore shall be unchanged, and the function shall return a
39154 value of −1 and set errno to indicate the error.

39155 ERRORS
39156 The sem_trywait() and sem_wait() functions shall fail if:

39157 [EAGAIN] The semaphore was already locked, so it cannot be immediately locked by the |
39158 sem_trywait() operation (sem_trywait() only).

39159 [EINVAL] The sem argument does not refer to a valid semaphore. |

39160 The sem_trywait() and sem_wait() functions may fail if:

39161 [EDEADLK] A deadlock condition was detected. |

39162 [EINTR] A signal interrupted this function. |

39163 EXAMPLES
39164 None.

39165 APPLICATION USAGE
39166 Applications using these functions may be subject to priority inversion, as discussed in the Base |
39167 Definitions volume of IEEE Std. 1003.1-200x, Section 3.287, Priority Inversion. |

39168 The sem_trywait() and sem_wait() functions are part of the Semaphores option and need not be |
39169 provided on all implementations.

39170 RATIONALE
39171 None.

1766 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_trywait()

39172 FUTURE DIRECTIONS
39173 None.

39174 SEE ALSO
39175 semctl(), semget(), semop(), sem_post(), sem_timedwait(), the Base Definitions volume of |
39176 IEEE Std. 1003.1-200x, <semaphore.h> |

39177 CHANGE HISTORY
39178 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

39179 Issue 6
39180 The sem_trywait() and sem_wait() functions are marked as part of the Semaphores option. |

39181 The [ENOSYS] error condition has been removed as stubs need not be provided if an
39182 implementation does not support the Semaphores option. |

39183 The sem_timedwait() function is added to the SEE ALSO section for alignment with
39184 IEEE Std. 1003.1d-1999.

System Interfaces, Issue 6 1767

sem_unlink() System Interfaces

39185 NAME
39186 sem_unlink — remove a named semaphore (REALTIME)

39187 SYNOPSIS
39188 SEM #include <semaphore.h>

39189 int sem_unlink(const char * name);
39190

39191 DESCRIPTION
39192 The sem_unlink() function removes the semaphore named by the string name. If the semaphore
39193 named by name is currently referenced by other processes, then sem_unlink() has no effect on the
39194 state of the semaphore. If one or more processes have the semaphore open when sem_unlink() is
39195 called, destruction of the semaphore is postponed until all references to the semaphore have
39196 been destroyed by calls to sem_close(), _exit(), or exec. Calls to sem_open() to recreate or
39197 reconnect to the semaphore refer to a new semaphore after sem_unlink() is called. The
39198 sem_unlink() call does not block until all references have been destroyed; it shall return
39199 immediately.

39200 RETURN VALUE
39201 Upon successful completion, the sem_unlink() function shall return a value of 0. Otherwise, the
39202 semaphore shall not be changed and the function shall return a value of −1 and set errno to
39203 indicate the error.

39204 ERRORS
39205 The sem_unlink() function shall fail if:

39206 [EACCES] Permission is denied to unlink the named semaphore. |

39207 [ENAMETOOLONG] |
39208 The length of the name argument exceeds {PATH_MAX} or a path name |
39209 component is longer than {NAME_MAX}. |

39210 [ENOENT] The named semaphore does not exist. |

39211 EXAMPLES
39212 None.

39213 APPLICATION USAGE
39214 The sem_unlink() function is part of the Semaphores option and need not be available on all |
39215 implementations.

39216 RATIONALE
39217 None.

39218 FUTURE DIRECTIONS
39219 None.

39220 SEE ALSO
39221 semctl(), semget(), semop(), sem_close(), sem_open(), the Base Definitions volume of |
39222 IEEE Std. 1003.1-200x, <semaphore.h> |

39223 CHANGE HISTORY
39224 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

39225 Issue 6
39226 The sem_unlink() function is marked as part of the Semaphores option. |

39227 The [ENOSYS] error condition has been removed as stubs need not be provided if an
39228 implementation does not support the Semaphores option. |

1768 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sem_unlink()

System Interfaces, Issue 6 1769

sem_wait() System Interfaces

39229 NAME
39230 sem_wait — lock a semaphore (REALTIME)

39231 SYNOPSIS
39232 SEM #include <semaphore.h>

39233 int sem_wait(sem_t * sem);
39234

39235 DESCRIPTION
39236 Refer to sem_trywait().

1770 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semctl()

39237 NAME
39238 semctl — XSI semaphore control operations

39239 SYNOPSIS
39240 XSI #include <sys/sem.h>

39241 int semctl(int semid , int semnum, int cmd, ...);
39242

39243 DESCRIPTION
39244 The semctl() function operates on XSI semaphores (see the Base Definitions volume of |
39245 IEEE Std. 1003.1-200x, Section 4.13, Semaphore). It is unspecified whether this function |
39246 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
39247 page 543).

39248 The semctl() function provides a variety of semaphore control operations as specified by cmd.
39249 The fourth argument is optional and depends upon the operation requested. If required, it is of
39250 type union semun, which the application shall explicitly declare:

39251 union semun {
39252 int val;
39253 struct semid_ds *buf;
39254 unsigned short *array;
39255 } arg;

39256 The following semaphore control operations as specified by cmd are executed with respect to the
39257 semaphore specified by semid and semnum. The level of permission required for each operation
39258 is shown with each command; see Section 2.7 (on page 541). The symbolic names for the values
39259 of cmd are defined by the <sys/sem.h> header:

39260 GETVAL Return the value of semval ; see <sys/sem.h>. Requires read permission.

39261 SETVAL Set the value of semval to arg.val , where arg is the value of the fourth argument
39262 to semctl(). When this command is successfully executed, the semadj value
39263 corresponding to the specified semaphore in all processes is cleared. Requires
39264 alter permission; see Section 2.7 (on page 541).

39265 GETPID Return the value of sempid. Requires read permission.

39266 GETNCNT Return the value of semncnt. Requires read permission.

39267 GETZCNT Return the value of semzcnt. Requires read permission.

39268 The following values of cmd operate on each semval in the set of semaphores:

39269 GETALL Return the value of semval for each semaphore in the semaphore set and place
39270 into the array pointed to by arg.array , where arg is the fourth argument to
39271 semctl(). Requires read permission.

39272 SETALL Set the value of semval for each semaphore in the semaphore set according to
39273 the array pointed to by arg.array , where arg is the fourth argument to semctl().
39274 When this command is successfully executed, the semadj values corresponding
39275 to each specified semaphore in all processes are cleared. Requires alter
39276 permission.

39277 The following values of cmd are also available:

39278 IPC_STAT Place the current value of each member of the semid_ds data structure
39279 associated with semid into the structure pointed to by arg.buf, where arg is the
39280 fourth argument to semctl(). The contents of this structure are defined in

System Interfaces, Issue 6 1771

semctl() System Interfaces

39281 <sys/sem.h>. Requires read permission.

39282 IPC_SET Set the value of the following members of the semid_ds data structure
39283 associated with semid to the corresponding value found in the structure
39284 pointed to by arg.buf, where arg is the fourth argument to semctl():

39285 sem_perm.uid
39286 sem_perm.gid
39287 sem_perm.mode

39288 The mode bits specified in Section 2.7.1 (on page 541) are copied into the
39289 corresponding bits of the sem_perm.mode associated with semid. The stored
39290 values of any other bits are unspecified.

39291 This command can only be executed by a process that has an effective user ID
39292 equal to either that of a process with appropriate privileges or to the value of
39293 sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
39294 semid.

39295 IPC_RMID Remove the semaphore identifier specified by semid from the system and
39296 destroy the set of semaphores and semid_ds data structure associated with it.
39297 This command can only be executed by a process that has an effective user ID
39298 equal to either that of a process with appropriate privileges or to the value of
39299 sem_perm.cuid or sem_perm.uid in the semid_ds data structure associated with
39300 semid.

39301 RETURN VALUE
39302 If successful, the value returned by semctl() depends on cmd as follows:

39303 GETVAL The value of semval .

39304 GETPID The value of sempid.

39305 GETNCNT The value of semncnt.

39306 GETZCNT The value of semzcnt.

39307 All others 0.

39308 Otherwise, semctl() shall return −1 and set errno to indicate the error.

39309 ERRORS
39310 The semctl() function shall fail if:

39311 [EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page |
39312 541).

39313 [EINVAL] The value of semid is not a valid semaphore identifier, or the value of semnum |
39314 is less than 0 or greater than or equal to sem_nsems, or the value of cmd is not a
39315 valid command.

39316 [EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID |
39317 of the calling process is not equal to that of a process with appropriate
39318 privileges and it is not equal to the value of sem_perm.cuid or sem_perm.uid in
39319 the data structure associated with semid.

39320 [ERANGE] The argument cmd is equal to SETVAL or SETALL and the value to which |
39321 semval is to be set is greater than the system-imposed maximum.

1772 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semctl()

39322 EXAMPLES
39323 None.

39324 APPLICATION USAGE
39325 The fourth parameter in the SYNOPSIS section is now specified as "..." in order to avoid a
39326 clash with the ISO C standard when referring to the union semun (as defined in Issue 3) and for
39327 backward compatibility.

39328 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
39329 Application developers who need to use IPC should design their applications so that modules
39330 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
39331 alternative interfaces.

39332 RATIONALE
39333 None.

39334 FUTURE DIRECTIONS
39335 None.

39336 SEE ALSO
39337 semget(), semop(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
39338 sem_unlink(), sem_wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/sem.h>, |
39339 Section 2.7 (on page 541)

39340 CHANGE HISTORY
39341 First released in Issue 2. Derived from Issue 2 of the SVID. |

39342 Issue 4
39343 The function is no longer marked as OPTIONAL FUNCTIONALITY.

39344 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

39345 The last argument is now defined by an ellipsis symbol. In previous issues it was defined as a
39346 union of the various types required by settings of cmd. These are now defined individually in
39347 each description of permitted cmd settings. The text of the description of SETALL in the
39348 DESCRIPTION now refers to the fourth argument instead of arg.buf.

39349 In the DESCRIPTION the type of the array is specified in the descriptions of GETALL and
39350 SETALL.

39351 The [ENOSYS] error is removed from the ERRORS section.

39352 A FUTURE DIRECTIONS section is added warning application developers about migration to
39353 IEEE 1003.4 interfaces for interprocess communication.

39354 Issue 4, Version 2
39355 The fourth argument to semctl(), formerly specified in the APPLICATION USAGE section, is
39356 moved to the DESCRIPTION, and references to its elements are made more precise.

39357 Issue 5
39358 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
39359 DIRECTIONS to the APPLICATION USAGE section.

System Interfaces, Issue 6 1773

semget() System Interfaces

39360 NAME
39361 semget — get set of XSI semaphores

39362 SYNOPSIS
39363 XSI #include <sys/sem.h>

39364 int semget(key_t key , int nsems, int semflg);
39365

39366 DESCRIPTION
39367 The semget() function operates on XSI semaphores (see the Base Definitions volume of |
39368 IEEE Std. 1003.1-200x, Section 4.13, Semaphore). It is unspecified whether this function |
39369 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
39370 page 543).

39371 The semget() function shall return the semaphore identifier associated with key .

39372 A semaphore identifier with its associated semid_ds data structure and its associated set of
39373 nsems semaphores (see <sys/sem.h>) is created for key if one of the following is true:

39374 • The argument key is equal to IPC_PRIVATE.

39375 • The argument key does not already have a semaphore identifier associated with it and (semflg
39376 &IPC_CREAT) is non-zero.

39377 Upon creation, the semid_ds data structure associated with the new semaphore identifier is
39378 initialized as follows:

39379 • In the operation permissions structure sem_perm.cuid , sem_perm.uid, sem_perm.cgid , and
39380 sem_perm.gid are set equal to the effective user ID and effective group ID, respectively, of the
39381 calling process.

39382 • The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semflg .

39383 • The variable sem_nsems is set equal to the value of nsems.

39384 • The variable sem_otime is set equal to 0 and sem_ctime is set equal to the current time.

39385 • The data structure associated with each semaphore in the set is not initialized. The semctl()
39386 function with the command SETVAL or SETALL can be used to initialize each semaphore.

39387 RETURN VALUE
39388 Upon successful completion, semget() shall return a non-negative integer, namely a semaphore
39389 identifier; otherwise, it shall return −1 and set errno to indicate the error.

39390 ERRORS
39391 The semget() function shall fail if:

39392 [EACCES] A semaphore identifier exists for key , but operation permission as specified by |
39393 the low-order 9 bits of semflg would not be granted; see Section 2.7 (on page
39394 541).

39395 [EEXIST] A semaphore identifier exists for the argument key but ((semflg &IPC_CREAT) |
39396 &&(semflg &IPC_EXCL)) is non-zero.

39397 [EINVAL] The value of nsems is either less than or equal to 0 or greater than the system- |
39398 imposed limit, or a semaphore identifier exists for the argument key, but the
39399 number of semaphores in the set associated with it is less than nsems and
39400 nsems is not equal to 0.

39401 [ENOENT] A semaphore identifier does not exist for the argument key and (semflg |
39402 &IPC_CREAT) is equal to 0.

1774 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semget()

39403 [ENOSPC] A semaphore identifier is to be created but the system-imposed limit on the |
39404 maximum number of allowed semaphores system-wide would be exceeded.

39405 EXAMPLES

39406 Creating a Semaphore Identifier

39407 The following example gets a unique semaphore key using the ftok () function, then gets a
39408 semaphore ID associated with that key using the semget() function (the first call also tests to
39409 make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
39410 shown by the second call to semget(). In creating the semaphore for the queueing process, the
39411 program attempts to create one semaphore with read/write permission for all. It also uses the
39412 IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

39413 After creating the semaphore, the program uses a call to semop() to initialize it to the values in
39414 the sbuf array. The number of processes that can execute concurrently without queuing is
39415 initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
39416 the program.

39417 #include <sys/types.h>
39418 #include <stdio.h>
39419 #include <sys/ipc.h>
39420 #include <sys/sem.h>
39421 #include <sys/stat.h>
39422 #include <errno.h>
39423 #include <unistd.h>
39424 #include <stdlib.h>
39425 #include <pwd.h>
39426 #include <fcntl.h>
39427 #include <limits.h>
39428 ...
39429 key_t semkey;
39430 int semid, pfd, fv;
39431 struct sembuf sbuf;
39432 char *lgn;
39433 char filename[PATH_MAX+1];
39434 struct stat outstat;
39435 struct passwd *pw;
39436 ...
39437 /* Get unique key for semaphore. */
39438 if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {
39439 perror("IPC error: ftok"); exit(1);
39440 }

39441 /* Get semaphore ID associated with this key. */
39442 if ((semid = semget(semkey, 0, 0)) == -1) {

39443 /* Semaphore does not exist - Create. */
39444 if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |
39445 S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
39446 {
39447 /* Initialize the semaphore. */
39448 sbuf.sem_num = 0;
39449 sbuf.sem_op = 2; /* This is the number of runs without queuing. */
39450 sbuf.sem_flg = 0;

System Interfaces, Issue 6 1775

semget() System Interfaces

39451 if (semop(semid, &sbuf, 1) == -1) {
39452 perror("IPC error: semop"); exit(1);
39453 }
39454 }
39455 else if (errno == EEXIST) {
39456 if ((semid = semget(semkey, 0, 0)) == -1) {
39457 perror("IPC error 1: semget"); exit(1);
39458 }
39459 }
39460 else {
39461 perror("IPC error 2: semget"); exit(1);
39462 }
39463 }
39464 ...

39465 APPLICATION USAGE
39466 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
39467 Application developers who need to use IPC should design their applications so that modules
39468 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
39469 alternative interfaces.

39470 RATIONALE
39471 None.

39472 FUTURE DIRECTIONS
39473 None.

39474 SEE ALSO
39475 semctl(), semop(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(), sem_open(), sem_post(),
39476 sem_unlink(), sem_wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/sem.h>, |
39477 Section 2.7 (on page 541).

39478 CHANGE HISTORY
39479 First released in Issue 2. Derived from Issue 2 of the SVID. |

39480 Issue 4
39481 The function is no longer marked as OPTIONAL FUNCTIONALITY.

39482 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

39483 The [ENOSYS] error is removed from the ERRORS section.

39484 A FUTURE DIRECTIONS section is added warning application developers about migration to
39485 IEEE 1003.4 interfaces for interprocess communication.

39486 Issue 5
39487 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
39488 DIRECTIONS to a new APPLICATION USAGE section.

1776 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semop()

39489 NAME
39490 semop — XSI semaphore operations

39491 SYNOPSIS
39492 XSI #include <sys/sem.h>

39493 int semop(int semid , struct sembuf * sops , size_t nsops);
39494

39495 DESCRIPTION
39496 The semop() function operates on XSI semaphores (see the Base Definitions volume of |
39497 IEEE Std. 1003.1-200x, Section 4.13, Semaphore). It is unspecified whether this function |
39498 interoperates with the realtime interprocess communication facilities defined in Section 2.8 (on
39499 page 543).

39500 The semop() function is used to perform atomically a user-defined array of semaphore
39501 operations on the set of semaphores associated with the semaphore identifier specified by the
39502 argument semid.

39503 The argument sops is a pointer to a user-defined array of semaphore operation structures. The
39504 implementation shall not modify elements of this array unless the application uses |
39505 implementation-defined extensions. |

39506 The argument nsops is the number of such structures in the array.

39507 Each structure, sembuf, includes the following members:
39508 __
39509 Member Type Member Name Description__
39510 short sem_num Semaphore number.
39511 short sem_op Semaphore operation.
39512 short sem_flg Operation flags.__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

39513 Each semaphore operation specified by sem_op is performed on the corresponding semaphore
39514 specified by semid and sem_num.

39515 The variable sem_op specifies one of three semaphore operations:

39516 1. If sem_op is a negative integer and the calling process has alter permission, one of the
39517 following shall occur:

39518 • If semval(see <sys/sem.h>) is greater than or equal to the absolute value of sem_op, the
39519 absolute value of sem_op is subtracted from semval . Also, if (sem_flg &SEM_UNDO) is
39520 non-zero, the absolute value of sem_op is added to the calling process’ semadj value for
39521 the specified semaphore.

39522 • If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is non-
39523 zero, semop() shall return immediately.

39524 • If semval is less than the absolute value of sem_op and (sem_flg &IPC_NOWAIT) is 0,
39525 semop() shall increment the semncnt associated with the specified semaphore and
39526 suspend execution of the calling thread until one of the following conditions occurs:

39527 — The value of semval becomes greater than or equal to the absolute value of sem_op.
39528 When this occurs, the value of semncnt associated with the specified semaphore is
39529 decremented, the absolute value of sem_op is subtracted from semval and, if (sem_flg
39530 &SEM_UNDO) is non-zero, the absolute value of sem_op is added to the calling
39531 process’ semadj value for the specified semaphore.

System Interfaces, Issue 6 1777

semop() System Interfaces

39532 — The semid for which the calling thread is awaiting action is removed from the
39533 system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
39534 returned.

39535 — The calling thread receives a signal that is to be caught. When this occurs, the value
39536 of semncnt associated with the specified semaphore is decremented, and the calling
39537 thread resumes execution in the manner prescribed in sigaction ().

39538 2. If sem_op is a positive integer and the calling process has alter permission, the value of
39539 sem_op is added to semval and, if (sem_flg &SEM_UNDO) is non-zero, the value of sem_op is
39540 subtracted from the calling process’ semadj value for the specified semaphore.

39541 3. If sem_op is 0 and the calling process has read permission, one of the following shall occur:

39542 • If semval is 0, semop() shall return immediately.

39543 • If semval is non-zero and (sem_flg &IPC_NOWAIT) is non-zero, semop() shall return
39544 immediately.

39545 • If semval is non-zero and (sem_flg &IPC_NOWAIT) is 0, semop() will increment the
39546 semzcnt associated with the specified semaphore and suspends execution of the calling
39547 thread until one of the following occurs:

39548 — The value of semval becomes 0, at which time the value of semzcnt associated with
39549 the specified semaphore is decremented.

39550 — The semid for which the calling thread is awaiting action is removed from the
39551 system. When this occurs, errno shall be set equal to [EIDRM] and −1 shall be
39552 returned.

39553 — The calling thread receives a signal that is to be caught. When this occurs, the value
39554 of semzcnt associated with the specified semaphore is decremented, and the calling
39555 thread resumes execution in the manner prescribed in sigaction ().

39556 Upon successful completion, the value of sempid for each semaphore specified in the array
39557 pointed to by sops shall be set equal to the process ID of the calling process.

39558 RETURN VALUE
39559 Upon successful completion, semop() shall return 0; otherwise, it shall return −1 and set errno to
39560 indicate the error.

39561 ERRORS
39562 The semop() function shall fail if:

39563 [E2BIG] The value of nsops is greater than the system-imposed maximum. |

39564 [EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page |
39565 541).

39566 [EAGAIN] The operation would result in suspension of the calling process but (sem_flg |
39567 &IPC_NOWAIT) is non-zero.

39568 [EFBIG] The value of sem_num is less than 0 or greater than or equal to the number of |
39569 semaphores in the set associated with semid.

39570 [EIDRM] The semaphore identifier semid is removed from the system. |

39571 [EINTR] The semop() function was interrupted by a signal. |

39572 [EINVAL] The value of semid is not a valid semaphore identifier, or the number of |
39573 individual semaphores for which the calling process requests a SEM_UNDO
39574 would exceed the system-imposed limit.

1778 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semop()

39575 [ENOSPC] The limit on the number of individual processes requesting a SEM_UNDO |
39576 would be exceeded.

39577 [ERANGE] An operation would cause a semval to overflow the system-imposed limit, or |
39578 an operation would cause a semadj value to overflow the system-imposed
39579 limit.

39580 EXAMPLES

39581 Setting Values in Semaphores

39582 The following example sets the values of the two semaphores associated with the semid
39583 identifier to the values contained in the sb array.

39584 #include <sys/sem.h>
39585 ...
39586 int semid;
39587 struct sembuf sb[2];
39588 int nsops = 2;
39589 int result;

39590 /* Adjust value of semaphore in the semaphore array semid. */
39591 sb[0].sem_num = 0;
39592 sb[0].sem_op = -1;
39593 sb[0].sem_flg = SEM_UNDO | IPC_NOWAIT;
39594 sb[1].sem_num = 1;
39595 sb[1].sem_op = 1;
39596 sb[1].sem_flg = 0;

39597 result = semop(semid, sb, nsops);

39598 Creating a Semaphore Identifier

39599 The following example gets a unique semaphore key using the ftok () function, then gets a
39600 semaphore ID associated with that key using the semget() function (the first call also tests to
39601 make sure the semaphore exists). If the semaphore does not exist, the program creates it, as
39602 shown by the second call to semget(). In creating the semaphore for the queueing process, the
39603 program attempts to create one semaphore with read/write permission for all. It also uses the
39604 IPC_EXCL flag, which forces semget() to fail if the semaphore already exists.

39605 After creating the semaphore, the program uses a call to semop() to initialize it to the values in
39606 the sbuf array. The number of processes that can execute concurrently without queuing is
39607 initially set to 2. The final call to semget() creates a semaphore identifier that can be used later in
39608 the program.

39609 The final call to semop() acquires the semaphore and waits until it is free; the SEM_UNDO
39610 option releases the semaphore when the process exits, waiting until there are less than two
39611 processes running concurrently.

39612 #include <sys/types.h>
39613 #include <stdio.h>
39614 #include <sys/ipc.h>
39615 #include <sys/sem.h>
39616 #include <sys/stat.h>
39617 #include <errno.h>
39618 #include <unistd.h>
39619 #include <stdlib.h>

System Interfaces, Issue 6 1779

semop() System Interfaces

39620 #include <pwd.h>
39621 #include <fcntl.h>
39622 #include <limits.h>
39623 ...
39624 key_t semkey;
39625 int semid, pfd, fv;
39626 struct sembuf sbuf;
39627 char *lgn;
39628 char filename[PATH_MAX+1];
39629 struct stat outstat;
39630 struct passwd *pw;
39631 ...
39632 /* Get unique key for semaphore. */
39633 if ((semkey = ftok("/tmp", ’a’)) == (key_t) -1) {
39634 perror("IPC error: ftok"); exit(1);
39635 }

39636 /* Get semaphore ID associated with this key. */
39637 if ((semid = semget(semkey, 0, 0)) == -1) {

39638 /* Semaphore does not exist - Create. */
39639 if ((semid = semget(semkey, 1, IPC_CREAT | IPC_EXCL | S_IRUSR |
39640 S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)) != -1)
39641 {
39642 /* Initialize the semaphore. */
39643 sbuf.sem_num = 0;
39644 sbuf.sem_op = 2; /* This is the number of runs without queuing. */
39645 sbuf.sem_flg = 0;
39646 if (semop(semid, &sbuf, 1) == -1) {
39647 perror("IPC error: semop"); exit(1);
39648 }
39649 }
39650 else if (errno == EEXIST) {
39651 if ((semid = semget(semkey, 0, 0)) == -1) {
39652 perror("IPC error 1: semget"); exit(1);
39653 }
39654 }
39655 else {
39656 perror("IPC error 2: semget"); exit(1);
39657 }
39658 }
39659 ...
39660 sbuf.sem_num = 0;
39661 sbuf.sem_op = -1;
39662 sbuf.sem_flg = SEM_UNDO;
39663 if (semop(semid, &sbuf, 1) == -1) {
39664 perror("IPC Error: semop"); exit(1);
39665 }

39666 APPLICATION USAGE
39667 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
39668 Application developers who need to use IPC should design their applications so that modules
39669 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
39670 alternative interfaces.

1780 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces semop()

39671 RATIONALE
39672 None.

39673 FUTURE DIRECTIONS
39674 None.

39675 SEE ALSO
39676 exec, exit(), fork (), semctl(), semget(), sem_close(), sem_destroy(), sem_getvalue(), sem_init(),
39677 sem_open(), sem_post(), sem_unlink(), sem_wait(), the Base Definitions volume of |
39678 IEEE Std. 1003.1-200x, <sys/ipc.h>, <sys/sem.h>, <sys/types.h>, Section 2.7 (on page 541) |

39679 CHANGE HISTORY
39680 First released in Issue 2. Derived from Issue 2 of the SVID. |

39681 Issue 4
39682 The function is no longer marked as OPTIONAL FUNCTIONALITY.

39683 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

39684 The type of nsops is changed to size_t.

39685 The DESCRIPTION is updated to indicate that an implementation does not modify the elements
39686 of sops unless the application uses implementation-defined extensions. |

39687 The [ENOSYS] error is removed from the ERRORS section.

39688 A FUTURE DIRECTIONS section is added warning application developers about migration to
39689 IEEE 1003.4 interfaces for interprocess communication.

39690 Issue 5
39691 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
39692 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1781

send() System Interfaces

39693 NAME
39694 send — send a message on a socket

39695 SYNOPSIS
39696 #include <sys/socket.h>

39697 ssize_t send(int socket , const void * buffer , size_t length , int flags);

39698 DESCRIPTION
39699 The send() functions takes the following arguments:

39700 socket Specifies the socket file descriptor.

39701 buffer Points to the buffer containing the message to send.

39702 length Specifies the length of the message in bytes.

39703 flags Specifies the type of message transmission. Values of this argument are
39704 formed by logically OR’ing zero or more of the following flags:

39705 MSG_EOR Terminates a record (if supported by the protocol).

39706 MSG_OOB Sends out-of-band data on sockets that support out-of-band
39707 communications. The significance and semantics of out-of-
39708 band data are protocol-specific.

39709 The send() function initiates transmission of a message from the specified socket to its peer. The
39710 send() function sends a message only when the socket is connected (including when the peer of a
39711 connectionless socket has been set via connect()).

39712 The length of the message to be sent is specified by the length argument. If the message is too
39713 long to pass through the underlying protocol, send() shall fail and no data shall be transmitted.

39714 Successful completion of a call to send() does not guarantee delivery of the message. A return
39715 value of −1 indicates only locally-detected errors.

39716 If space is not available at the sending socket to hold the message to be transmitted, and the
39717 socket file descriptor does not have O_NONBLOCK set, send() shall block until space is
39718 available. If space is not available at the sending socket to hold the message to be transmitted,
39719 and the socket file descriptor does have O_NONBLOCK set, send() shall fail. The select() and
39720 poll () functions can be used to determine when it is possible to send more data.

39721 The socket in use may require the process to have appropriate privileges to use the send()
39722 function.

39723 RETURN VALUE
39724 Upon successful completion, send() shall return the number of bytes sent. Otherwise, −1 shall be
39725 returned and errno set to indicate the error.

39726 ERRORS
39727 The send() function shall fail if:

39728 [EAGAIN] or [EWOULDBLOCK]
39729 The socket’s file descriptor is marked O_NONBLOCK and the requested
39730 operation would block.

39731 [EBADF] The socket argument is not a valid file descriptor.

39732 [ECONNRESET] A connection was forcibly closed by a peer.

39733 [EDESTADDRREQ]
39734 The socket is not connection-mode and no peer address is set. |

1782 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces send()

39735 [EINTR] A signal interrupted send() before any data was transmitted.

39736 [EMSGSIZE] The message is too large be sent all at once, as the socket requires.

39737 [ENOTCONN] The socket is not connected or otherwise has not had the peer pre-specified.

39738 [ENOTSOCK] The socket argument does not refer to a socket.

39739 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
39740 more of the values set in flags .

39741 [EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
39742 no longer connected. In the latter case, and if the socket is of type
39743 SOCK_STREAM, the SIGPIPE signal is generated to the calling thread. |

39744 The send() function may fail if:

39745 [EACCES] The calling process does not have the appropriate privileges.

39746 [EIO] An I/O error occurred while reading from or writing to the file system.

39747 [ENETDOWN] The local network interface used to reach the destination is down. |

39748 [ENETUNREACH]
39749 No route to the network is present.

39750 [ENOBUFS] Insufficient resources were available in the system to perform the operation. |

39751 EXAMPLES
39752 None.

39753 APPLICATION USAGE
39754 The send() function is identical to sendto() with a null pointer dest_len argument, and to write() if
39755 no flags are used.

39756 RATIONALE
39757 None.

39758 FUTURE DIRECTIONS
39759 None.

39760 SEE ALSO
39761 connect(), getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), sendmsg(), sendto(),
39762 setsockopt (), shutdown(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
39763 <sys/socket.h>

CHANGE39764 HISTORY
39765 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1783

sendmsg() System Interfaces

39766 NAME
39767 sendmsg — send a message on a socket using a message structure

39768 SYNOPSIS
39769 #include <sys/socket.h>

39770 ssize_t sendmsg(int socket , const struct msghdr * message , int flags);

39771 DESCRIPTION
39772 The sendmsg() function sends a message through a connection-mode or connectionless-mode
39773 socket. If the socket is connectionless-mode, the message shall be sent to the address specified by
39774 msghdr. If the socket is connection-mode, the destination address in msghdr is ignored.

39775 The sendmsg() function takes the following arguments:

39776 socket Specifies the socket file descriptor.

39777 message Points to a msghdr structure, containing both the destination address and the
39778 buffers for the outgoing message. The length and format of the address
39779 depend on the address family of the socket. The msg_flags member is ignored.

39780 flags Specifies the type of message transmission. The application may specify 0 or
39781 the following flag:

39782 MSG_EOR Terminates a record (if supported by the protocol).

39783 MSG_OOB Sends out-of-band data on sockets that support out-of-
39784 bound data. The significance and semantics of out-of-band
39785 data are protocol-specific.

39786 The msg_iov and msg_iovlen fields of message specify zero or more buffers containing the data to
39787 be sent. msg_iov points to an array of iovec structures; msg_iovlen shall be set to the dimension of
39788 this array. In each iovec structure, the iov_base field specifies a storage area and the iov_len field
39789 gives its size in bytes. Some of these sizes can be zero. The data from each storage area indicated
39790 by msg_iov is sent in turn.

39791 Successful completion of a call to sendmsg() does not guarantee delivery of the message. A
39792 return value of −1 indicates only locally-detected errors.

39793 If space is not available at the sending socket to hold the message to be transmitted and the
39794 socket file descriptor does not have O_NONBLOCK set, sendmsg() function blocks until space is
39795 available. If space is not available at the sending socket to hold the message to be transmitted
39796 and the socket file descriptor does have O_NONBLOCK set, sendmsg() function shall fail.

39797 If the socket protocol supports broadcast and the specified address is a broadcast address for the
39798 socket protocol, sendmsg() shall fail if the SO_BROADCAST option is not set for the socket.

39799 The socket in use may require the process to have appropriate privileges to use the sendmsg()
39800 function.

39801 RETURN VALUE
39802 Upon successful completion, sendmsg() shall return the number of bytes sent. Otherwise, −1
39803 shall be returned and errno set to indicate the error.

39804 ERRORS
39805 The sendmsg() function shall fail if:

39806 [EAGAIN] or [EWOULDBLOCK]
39807 The socket’s file descriptor is marked O_NONBLOCK and the requested
39808 operation would block.

1784 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sendmsg()

39809 [EAFNOSUPPORT]
39810 Addresses in the specified address family cannot be used with this socket.

39811 [EBADF] The socket argument is not a valid file descriptor.

39812 [ECONNRESET] A connection was forcibly closed by a peer. |

39813 [EINTR] A signal interrupted sendmsg() before any data was transmitted.

39814 [EINVAL] The sum of the iov_len values overflows an ssize_t.

39815 [EMSGSIZE] The message is too large to be sent all at once (as the socket requires), or the
39816 msg_iovlen member of the msghdr structure pointed to by message is less than
39817 or equal to 0 or is greater than {IOV_MAX}.

39818 [ENOTCONN] The socket is connection-mode but is not connected.

39819 [ENOTSOCK] The socket argument does not refer a socket.

39820 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
39821 more of the values set in flags .

39822 [EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
39823 no longer connected. In the latter case, and if the socket is of type
39824 SOCK_STREAM, the SIGPIPE signal is generated to the calling thread. |

39825 If the address family of the socket is AF_UNIX, then sendmsg() shall fail if:

39826 [EIO] An I/O error occurred while reading from or writing to the file system.

39827 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
39828 name in the socket address. |

39829 [ENAMETOOLONG]
39830 A component of a path name exceeded {NAME_MAX} characters, or an entire
39831 path name exceeded {PATH_MAX} characters.

39832 [ENOENT] A component of the path name does not name an existing file or the path
39833 name is an empty string.

39834 [ENOTDIR] A component of the path prefix of the path name in the socket address is not a
39835 directory.

39836 The sendmsg() function may fail if:

39837 [EACCES] Search permission is denied for a component of the path prefix; or write
39838 access to the named socket is denied.

39839 [EDESTADDRREQ]
39840 The socket is not connection-mode and does not have its peer address set, and
39841 no destination address was specified.

39842 [EHOSTUNREACH]
39843 The destination host cannot be reached (probably because the host is down or
39844 a remote router cannot reach it).

39845 [EIO] An I/O error occurred while reading from or writing to the file system.

39846 [EISCONN] A destination address was specified and the socket is already connected.

39847 [ENETDOWN] The local network interface used to reach the destination is down. |

39848 [ENETUNREACH]
39849 No route to the network is present.

System Interfaces, Issue 6 1785

sendmsg() System Interfaces

39850 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

39851 [ENOMEM] Insufficient memory was available to fulfill the request. |

39852 If the address family of the socket is AF_UNIX, then sendmsg() may fail if:

39853 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
39854 resolution of the path name in the socket address. |

39855 [ENAMETOOLONG]
39856 Path name resolution of a symbolic link produced an intermediate result
39857 whose length exceeds {PATH_MAX}.

39858 EXAMPLES
39859 Done.

39860 APPLICATION USAGE
39861 The select() and poll () functions can be used to determine when it is possible to send more data.

39862 RATIONALE
39863 None.

39864 FUTURE DIRECTIONS
39865 None.

39866 SEE ALSO
39867 getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (),
39868 shutdown(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

39869 CHANGE HISTORY
39870 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

39871 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
39872 [ELOOP] error condition is added. |

1786 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sendto()

39873 NAME
39874 sendto — send a message on a socket

39875 SYNOPSIS
39876 #include <sys/socket.h>

39877 ssize_t sendto(int socket , const void * message , size_t length ,
39878 int flags , const struct sockaddr * dest_addr ,
39879 socklen_t dest_len);

39880 DESCRIPTION
39881 The sendto() function sends a message through a connection-mode or connectionless-mode
39882 socket. If the socket is connectionless-mode, the message shall be sent to the address specified by
39883 dest_addr . If the socket is connection-mode, dest_addr is ignored.

39884 The sendto() function takes the following arguments:

39885 socket Specifies the socket file descriptor.

39886 message Points to a buffer containing the message to be sent.

39887 length Specifies the size of the message in bytes.

39888 flags Specifies the type of message transmission. Values of this argument are
39889 formed by logically OR’ing zero or more of the following flags:

39890 MSG_EOR Terminates a record (if supported by the protocol).

39891 MSG_OOB Sends out-of-band data on sockets that support out-of-band
39892 data. The significance and semantics of out-of-band data are
39893 protocol-specific.

39894 dest_addr Points to a sockaddr structure containing the destination address. The length
39895 and format of the address depend on the address family of the socket.

39896 dest_len Specifies the length of the sockaddr structure pointed to by the dest_addr
39897 argument.

39898 If the socket protocol supports broadcast and the specified address is a broadcast address for the
39899 socket protocol, sendto() shall fail if the SO_BROADCAST option is not set for the socket.

39900 The dest_addr argument specifies the address of the target. The length argument specifies the
39901 length of the message.

39902 Successful completion of a call to sendto() does not guarantee delivery of the message. A return
39903 value of −1 indicates only locally-detected errors.

39904 If space is not available at the sending socket to hold the message to be transmitted and the
39905 socket file descriptor does not have O_NONBLOCK set, sendto() blocks until space is available.
39906 If space is not available at the sending socket to hold the message to be transmitted and the
39907 socket file descriptor does have O_NONBLOCK set, sendto() shall fail.

39908 The socket in use may require the process to have appropriate privileges to use the sendto()
39909 function.

39910 RETURN VALUE
39911 Upon successful completion, sendto() shall return the number of bytes sent. Otherwise, −1 shall
39912 be returned and errno set to indicate the error.

System Interfaces, Issue 6 1787

sendto() System Interfaces

39913 ERRORS
39914 The sendto() function shall fail if:

39915 [EAFNOSUPPORT]
39916 Addresses in the specified address family cannot be used with this socket.

39917 [EAGAIN] or [EWOULDBLOCK]
39918 The socket’s file descriptor is marked O_NONBLOCK and the requested
39919 operation would block.

39920 [EBADF] The socket argument is not a valid file descriptor.

39921 [ECONNRESET] A connection was forcibly closed by a peer. |

39922 [EINTR] A signal interrupted sendto() before any data was transmitted.

39923 [EMSGSIZE] The message is too large to be sent all at once, as the socket requires.

39924 [ENOTCONN] The socket is connection-mode but is not connected.

39925 [ENOTSOCK] The socket argument does not refer to a socket.

39926 [EOPNOTSUPP] The socket argument is associated with a socket that does not support one or
39927 more of the values set in flags .

39928 [EPIPE] The socket is shut down for writing, or the socket is connection-mode and is
39929 no longer connected. In the latter case, and if the socket is of type
39930 SOCK_STREAM, the SIGPIPE signal is generated to the calling thread. |

39931 If the address family of the socket is AF_UNIX, then sendto() shall fail if:

39932 [EIO] An I/O error occurred while reading from or writing to the file system.

39933 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
39934 name in the socket address. |

39935 [ENAMETOOLONG]
39936 A component of a path name exceeded {NAME_MAX} characters, or an entire
39937 path name exceeded {PATH_MAX} characters.

39938 [ENOENT] A component of the path name does not name an existing file or the path
39939 name is an empty string.

39940 [ENOTDIR] A component of the path prefix of the path name in the socket address is not a
39941 directory.

39942 The sendto() function may fail if:

39943 [EACCES] Search permission is denied for a component of the path prefix; or write
39944 access to the named socket is denied.

39945 [EDESTADDRREQ]
39946 The socket is not connection-mode and does not have its peer address set, and
39947 no destination address was specified.

39948 [EHOSTUNREACH]
39949 The destination host cannot be reached (probably because the host is down or
39950 a remote router cannot reach it).

39951 [EINVAL] The dest_len argument is not a valid length for the address family.

39952 [EIO] An I/O error occurred while reading from or writing to the file system.

1788 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sendto()

39953 [EISCONN] A destination address was specified and the socket is already connected. This
39954 error may or may not be returned for connection mode sockets.

39955 [ENETDOWN] The local network interface used to reach the destination is down. |

39956 [ENETUNREACH]
39957 No route to the network is present.

39958 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

39959 [ENOMEM] Insufficient memory was available to fulfill the request. |

39960 If the address family of the socket is AF_UNIX, then sendto() may fail if:

39961 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
39962 resolution of the path name in the socket address. |

39963 [ENAMETOOLONG]
39964 Path name resolution of a symbolic link produced an intermediate result
39965 whose length exceeds {PATH_MAX}.

39966 EXAMPLES
39967 None.

39968 APPLICATION USAGE
39969 The select() and poll () functions can be used to determine when it is possible to send more data.

39970 RATIONALE
39971 None.

39972 FUTURE DIRECTIONS
39973 None.

39974 SEE ALSO
39975 getsockopt (), poll (), recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), setsockopt (),
39976 shutdown(), socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

39977 CHANGE HISTORY
39978 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

39979 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
39980 [ELOOP] error condition is added. |

System Interfaces, Issue 6 1789

setbuf() System Interfaces

39981 NAME
39982 setbuf — assign buffering to a stream

39983 SYNOPSIS
39984 #include <stdio.h>

39985 void setbuf(FILE *restrict stream , char *restrict buf); |

39986 DESCRIPTION |
39987 CX The functionality described on this reference page is aligned with the ISO C standard. Any
39988 conflict between the requirements described here and the ISO C standard is unintentional. This
39989 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

39990 Except that it returns no value, the function call:

39991 setbuf(stream, buf)

39992 shall be equivalent to:

39993 setvbuf(stream, buf, _IOFBF, BUFSIZ)

39994 if buf is not a null pointer, or to:

39995 setvbuf(stream, buf, _IONBF, BUFSIZ)

39996 if buf is a null pointer.

39997 RETURN VALUE
39998 The setbuf() function shall return no value.

39999 ERRORS
40000 No errors are defined.

40001 EXAMPLES
40002 None.

40003 APPLICATION USAGE
40004 A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
40005 and then failing to close the stream in the same block.

40006 With setbuf(), allocating a buffer of {BUFSIZ} bytes does not necessarily imply that all of
40007 {BUFSIZ} bytes are used for the buffer area.

40008 RATIONALE
40009 None.

40010 FUTURE DIRECTIONS
40011 None.

40012 SEE ALSO
40013 fopen(), setvbuf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

40014 CHANGE HISTORY
40015 First released in Issue 1. Derived from Issue 1 of the SVID. |

40016 Issue 6 |
40017 The prototype for setbuf() is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1790 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setcontext()

40018 NAME
40019 setcontext — set current user context

40020 SYNOPSIS
40021 XSI #include <ucontext.h>

40022 int setcontext(const ucontext_t * ucp);
40023

40024 DESCRIPTION
40025 Refer to getcontext().

System Interfaces, Issue 6 1791

setegid() System Interfaces

40026 NAME
40027 setegid — set effective group ID

40028 SYNOPSIS
40029 #include <unistd.h>

40030 int setegid(gid_t gid);

40031 DESCRIPTION
40032 If gid is equal to the real group ID or the saved set-group-ID, or if the process has appropriate
40033 privileges, setegid() shall set the effective group ID of the calling process to gid ; the real group |
40034 ID, saved set-group-ID, and any supplementary group IDs shall remain unchanged.

40035 The setegid() function shall not affect the supplementary group list in any way.

40036 RETURN VALUE
40037 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
40038 indicate the error.

40039 ERRORS
40040 The setegid() function shall fail if:

40041 [EINVAL] The value of the gid argument is invalid and is not supported by the
40042 implementation.

40043 [EPERM] The process does not have appropriate privileges and gid does not match the
40044 real group ID or the saved set-group-ID.

40045 EXAMPLES
40046 None.

40047 APPLICATION USAGE
40048 None.

40049 RATIONALE
40050 Refer to the RATIONALE section in setuid().

40051 FUTURE DIRECTIONS
40052 None.

40053 SEE ALSO
40054 exec, getegid(), geteuid(), getgid(), getuid(), seteuid(), setgid(), setregid(), setreuid(), setuid(), the |
40055 Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

40056 CHANGE HISTORY
40057 First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

1792 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setenv()

40058 NAME
40059 setenv — add or change environment variable

40060 SYNOPSIS
40061 #include <stdlib.h>

40062 int setenv(const char * envname, const char * envval , int overwrite);

40063 DESCRIPTION
40064 The setenv() function updates or adds a variable in the environment of the calling process. The
40065 envname argument points to a string containing the name of an environment variable to be
40066 added or altered. The environment variable shall be set to the value to which envval points. The
40067 function shall fail if envname points to a string which contains an ’=’ character. If the
40068 environment variable named by envname already exists and the value of overwrite is non-zero,
40069 the function shall return success and the environment shall be updated. If the environment
40070 variable named by envname already exists and the value of overwrite is zero, the function shall
40071 return success and the environment shall remain unchanged.

40072 If the application modifies environ or the pointers to which it points, the behavior of setenv() is
40073 undefined. The setenv() function shall update the list of pointers to which environ points.

40074 The strings described by envname and envval are copied by this function. |

40075 The setenv() function need not be reentrant. A function that is not required to be reentrant is not |
40076 required to be thread-safe.

40077 RETURN VALUE
40078 Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
40079 indicate the error, and the environment shall be unchanged.

40080 ERRORS
40081 The setenv() function shall fail if:

40082 [EINVAL] The name argument is a null pointer, points to an empty string, or points to a
40083 string containing an ’=’ character.

40084 [ENOMEM] Insufficient memory was available to add a variable or its value to the
40085 environment.

40086 EXAMPLES
40087 None.

40088 APPLICATION USAGE
40089 None.

40090 RATIONALE
40091 Unanticipated results may occur if setenv() changes the external variable environ . In particular,
40092 if the optional envp argument to main() is present, it is not changed, and thus may point to an
40093 obsolete copy of the environment (as may any other copy of environ). However, other than the
40094 aforementioned restriction, the developers of IEEE Std. 1003.1-200x intended that the traditional
40095 method of walking through the environment by way of the environ pointer must be supported.

40096 It was decided that setenv() should be required by this revision because it addresses a piece of
40097 missing functionality, and does not impose a significant burden on the implementor.

40098 There was considerable debate as to whether the System V putenv() function or the BSD setenv()
40099 function should be required as a mandatory function. The setenv() function was chosen because
40100 it permitted the implementation of unsetenv() function to delete environmental variables,
40101 without specifying an additional interface. The putenv() function is available as an XSI
40102 extension.

System Interfaces, Issue 6 1793

setenv() System Interfaces

40103 The standard developers considered requiring that setenv() indicate an error when a call to it
40104 would result in exceeding {ARG_MAX}. The requirement was rejected since the condition might
40105 be temporary, with the application eventually reducing the environment size. The ultimate
40106 success or failure depends on the size at the time of a call to exec, which returns an indication of
40107 this error condition.

40108 FUTURE DIRECTIONS
40109 None.

40110 SEE ALSO
40111 getenv(), unsetenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, |
40112 <sys/types.h>, <unistd.h>

CHANGE40113 HISTORY
40114 First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

1794 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces seteuid()

40115 NAME
40116 seteuid — set effective user ID

40117 SYNOPSIS
40118 #include <unistd.h>

40119 int seteuid(uid_t uid);

40120 DESCRIPTION
40121 If uid is equal to the real user ID or the saved set-user-ID, or if the process has appropriate
40122 privileges, seteuid() shall set the effective user ID of the calling process to uid ; the real user ID |
40123 and saved set-user-ID shall remain unchanged.

40124 The seteuid() function shall not affect the supplementary group list in any way.

40125 RETURN VALUE
40126 Upon successful completion, 0 shall be returned; otherwise, −1 shall be returned and errno set to
40127 indicate the error.

40128 ERRORS
40129 The seteuid() function shall fail if:

40130 [EINVAL] The value of the uid argument is invalid and is not supported by the
40131 implementation.

40132 [EPERM] The process does not have appropriate privileges and uid does not match the
40133 real group ID or the saved set-group-ID.

40134 EXAMPLES
40135 None.

40136 APPLICATION USAGE
40137 None.

40138 RATIONALE
40139 Refer to the RATIONALE section in setuid().

40140 FUTURE DIRECTIONS
40141 None.

40142 SEE ALSO
40143 exec, getegid(), geteuid(), getgid(), getuid(), setegid(), setgid(), setregid(), setreuid(), setuid(), the |
40144 Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

40145 CHANGE HISTORY
40146 First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

System Interfaces, Issue 6 1795

setgid() System Interfaces

40147 NAME
40148 setgid — set-group-ID

40149 SYNOPSIS
40150 #include <unistd.h>

40151 int setgid(gid_t gid);

40152 DESCRIPTION
40153 If the process has appropriate privileges, setgid() shall set the real group ID, effective group ID,
40154 and the saved set-group-ID of the calling process to gid . |

40155 If the process does not have appropriate privileges, but gid is equal to the real group ID or the
40156 saved set-group-ID, setgid() shall set the effective group ID to gid ; the real group ID and saved
40157 set-group-ID shall remain unchanged.

40158 The setgid() function shall not affect the supplementary group list in any way.

40159 Any supplementary group IDs of the calling process shall remain unchanged.

40160 RETURN VALUE
40161 Upon successful completion, 0 is returned. Otherwise, −1 shall be returned and errno set to
40162 indicate the error.

40163 ERRORS
40164 The setgid() function shall fail if:

40165 [EINVAL] The value of the gid argument is invalid and is not supported by the |
40166 implementation.

40167 [EPERM] The process does not have appropriate privileges and gid does not match the |
40168 real group ID or the saved set-group-ID.

40169 EXAMPLES
40170 None.

40171 APPLICATION USAGE
40172 None.

40173 RATIONALE
40174 Refer to the RATIONALE section in setuid().

40175 FUTURE DIRECTIONS
40176 None.

40177 SEE ALSO
40178 exec, getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setregid(), setreuid(), setuid(), the |
40179 Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

40180 CHANGE HISTORY
40181 First released in Issue 1. Derived from Issue 1 of the SVID. |

40182 Issue 4
40183 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
40184 XSI-conformant systems.

40185 The following change is incorporated for alignment with the FIPS requirements:

40186 • All references to the saved set-user-ID are marked as extensions. This is because Issue 4
40187 defines this mechanism as mandatory, whereas the ISO POSIX-1 standard defines that it is
40188 only supported if _POSIX_SAVED_IDS is set.

1796 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setgid()

40189 Issue 6
40190 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

40191 The following new requirements on POSIX implementations derive from alignment with the
40192 Single UNIX Specification:

40193 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
40194 required for conforming implementations of previous POSIX specifications, it was not
40195 required for UNIX applications.

40196 • Functionality associated with _POSIX_SAVED_IDS is now mandated. This is a FIPS
40197 requirement.

40198 The following changes were made to align with the IEEE P1003.1a draft standard:

40199 • The effects of setgid() in processes without appropriate privileges are changed

40200 • A requirement that the supplementary group list is not affected is added.

System Interfaces, Issue 6 1797

setgrent() System Interfaces

40201 NAME
40202 setgrent — reset group database to first entry

40203 SYNOPSIS
40204 XSI #include <grp.h>

40205 void setgrent(void);
40206

40207 DESCRIPTION
40208 Refer to endgrent().

1798 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sethostent()

40209 NAME
40210 sethostent — network host database functions

40211 SYNOPSIS
40212 #include <netdb.h>

40213 void sethostent(int stayopen);

40214 DESCRIPTION
40215 Refer to endhostent().

System Interfaces, Issue 6 1799

setitimer() System Interfaces

40216 NAME
40217 setitimer — set value of interval timer

40218 SYNOPSIS
40219 XSI #include <sys/time.h>

40220 int setitimer(int which , const struct itimerval *restrict value , |
40221 struct itimerval *restrict ovalue); |
40222 |

40223 DESCRIPTION
40224 Refer to getitimer().

1800 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setjmp()

40225 NAME
40226 setjmp — set jump point for a non-local goto

40227 SYNOPSIS
40228 #include <setjmp.h>

40229 int setjmp(jmp_buf env);

40230 DESCRIPTION
40231 CX The functionality described on this reference page is aligned with the ISO C standard. Any
40232 conflict between the requirements described here and the ISO C standard is unintentional. This
40233 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

40234 A call to setjmp(), shall save the calling environment in its env argument for later use by
40235 longjmp().

40236 It is unspecified whether setjmp() is a macro or a function. If a macro definition is suppressed in
40237 order to access an actual function, or a program defines an external identifier with the name
40238 setjmp, the behavior is undefined.

40239 All accessible objects have values as of the time longjmp() was called, except that the values of
40240 objects of automatic storage duration which are local to the function containing the invocation of
40241 the corresponding setjmp() which do not have volatile-qualified type and which are changed
40242 between the setjmp() invocation and longjmp() call are indeterminate.

40243 An application shall ensure that an invocation of setjmp() appears in one of the following
40244 contexts only:

40245 • The entire controlling expression of a selection or iteration statement

40246 • One operand of a relational or equality operator with the other operand an integral constant
40247 expression, with the resulting expression being the entire controlling expression of a
40248 selection or iteration statement

40249 • The operand of a unary ’!’ operator with the resulting expression being the entire
40250 controlling expression of a selection or iteration

40251 • The entire expression of an expression statement (possibly cast to void)

40252 If the invocation appears in any other context, the behavior is undefined. |

40253 RETURN VALUE
40254 If the return is from a direct invocation, setjmp() shall return 0. If the return is from a call to
40255 longjmp(), setjmp() shall return a non-zero value.

40256 ERRORS
40257 No errors are defined.

40258 EXAMPLES
40259 None.

40260 APPLICATION USAGE
40261 In general, sigsetjmp() is more useful in dealing with errors and interrupts encountered in a low-
40262 level subroutine of a program.

40263 RATIONALE
40264 None.

System Interfaces, Issue 6 1801

setjmp() System Interfaces

40265 FUTURE DIRECTIONS
40266 None.

40267 SEE ALSO
40268 longjmp(), sigsetjmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <setjmp.h> |

40269 CHANGE HISTORY
40270 First released in Issue 1. Derived from Issue 1 of the SVID. |

40271 Issue 4
40272 This issue states that setjmp() is a macro or a function; previous issues stated that it was a macro.
40273 Warnings have also been added about the suppression of a setjmp() macro definition.

40274 Text describing the accessibility of objects after a longjmp() call is added to the DESCRIPTION.
40275 This text is imported from the entry for longjmp().

40276 Text describing the contexts in which calls to setjmp() are valid is moved to the DESCRIPTION
40277 from the APPLICATION USAGE section.

40278 The APPLICATION USAGE section is changed to refer to sigsetjmp().

40279 Issue 6
40280 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1802 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setkey()

40281 NAME
40282 setkey — set encoding key (CRYPT)

40283 SYNOPSIS
40284 XSI #include <stdlib.h>

40285 void setkey(const char * key);
40286

40287 DESCRIPTION
40288 The setkey() function provides (rather primitive) access to an implementation-defined encoding |
40289 algorithm. The argument of setkey() is an array of length 64 bytes containing only the bytes with |
40290 numerical value of 0 and 1. If this string is divided into groups of 8, the low-order bit in each
40291 group is ignored; this gives a 56-bit key which is used by the algorithm. This is the key that shall
40292 be used with the algorithm to encode a string block passed to encrypt().

40293 The setkey() function shall not change the setting of errno if successful. An application wishing to
40294 check for error situations should set errno to 0 before calling setkey(). If errno is non-zero on
40295 return, an error has occurred.

40296 The setkey() function need not be reentrant. A function that is not required to be reentrant is not
40297 required to be thread-safe.

40298 RETURN VALUE
40299 No values are returned.

40300 ERRORS
40301 The setkey() function shall fail if:

40302 [ENOSYS] The functionality is not supported on this implementation. |

40303 EXAMPLES
40304 None.

40305 APPLICATION USAGE
40306 Decoding need not be implemented in all environments. This is related to U.S. Government
40307 restrictions on encryption and decryption routines: the DES decryption algorithm cannot be
40308 exported outside the U.S. Historical practice has been to ship a different version of the
40309 encryption library without the decryption feature in the routines supplied. Thus the exported
40310 version of encrypt() does encoding but not decoding.

40311 RATIONALE
40312 None.

40313 FUTURE DIRECTIONS
40314 None.

40315 SEE ALSO
40316 crypt(), encrypt(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

40317 CHANGE HISTORY
40318 First released in Issue 1. Derived from Issue 1 of the SVID. |

40319 Issue 4
40320 The type of argument key is changed from char* to const char*.

40321 The description of the array is put in terms of bytes instead of characters.

40322 The APPLICATION USAGE section is added.

System Interfaces, Issue 6 1803

setkey() System Interfaces

40323 Issue 5
40324 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

1804 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setlocale()

40325 NAME
40326 setlocale — set program locale

40327 SYNOPSIS
40328 #include <locale.h>

40329 char *setlocale(int category , const char * locale);

40330 DESCRIPTION
40331 CX The functionality described on this reference page is aligned with the ISO C standard. Any
40332 conflict between the requirements described here and the ISO C standard is unintentional. This
40333 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

40334 The setlocale () function selects the appropriate piece of the program’s locale, as specified by the
40335 category and locale arguments, and may be used to change or query the program’s entire locale or
40336 portions thereof. The value LC_ALL for category names the program’s entire locale; other values
40337 for category name only a part of the program’s locale:

40338 LC_COLLATE Affects the behavior of regular expressions and the collation functions.

40339 LC_CTYPE Affects the behavior of regular expressions, character classification, character
40340 conversion functions, and wide-character functions.

40341 CX LC_MESSAGES Affects what strings are expected by commands and utilities as affirmative or
40342 negative responses.

40343 XSI It also affects what strings are given by commands and utilities as affirmative
40344 or negative responses, and the content of messages.

40345 LC_MONETARY Affects the behavior of functions that handle monetary values.

40346 LC_NUMERIC Affects the behavior of functions that handle numeric values. |

40347 LC_TIME Affects the behavior of the time conversion functions.

40348 The locale argument is a pointer to a character string containing the required setting of category . |
40349 The contents of this string are implementation-defined. In addition, the following preset values |
40350 of locale are defined for all settings of category :

40351 CX "POSIX" Specifies the minimal environment for C-language translation called POSIX
40352 locale. If setlocale () is not invoked, the POSIX locale is the default at entry to
40353 main().

40354 "C" Same as "POSIX" .

40355 " " Specifies an implementation-defined native environment. For XSI-conformant |
40356 systems, this corresponds to the value of the associated environment
40357 variables, LC_* and LANG; see the Base Definitions volume of |
40358 IEEE Std. 1003.1-200x, Chapter 7, Locale and the Base Definitions volume of |
40359 IEEE Std. 1003.1-200x, Chapter 8, Environment Variables. |

40360 A null pointer Used to direct setlocale () to query the current internationalized environment
40361 and return the name of the locale ().

40362 THR The locale state is common to all threads within a process.

40363 RETURN VALUE
40364 Upon successful completion, setlocale () shall return the string associated with the specified
40365 category for the new locale. Otherwise, setlocale () shall return a null pointer and the program’s
40366 locale is not changed.

System Interfaces, Issue 6 1805

setlocale() System Interfaces

40367 A null pointer for locale causes setlocale () to return a pointer to the string associated with the
40368 category for the program’s current locale. The program’s locale shall not be changed.

40369 The string returned by setlocale () is such that a subsequent call with that string and its associated
40370 category shall restore that part of the program’s locale. The application shall not modify the string
40371 returned which may be overwritten by a subsequent call to setlocale ().

40372 ERRORS
40373 No errors are defined.

40374 EXAMPLES
40375 None.

40376 APPLICATION USAGE
40377 The following code illustrates how a program can initialize the international environment for
40378 one language, while selectively modifying the program’s locale such that regular expressions
40379 and string operations can be applied to text recorded in a different language:

40380 setlocale(LC_ALL, "De");
40381 setlocale(LC_COLLATE, "Fr@dict");

40382 Internationalized programs must call setlocale () to initiate a specific language operation. This can
40383 be done by calling setlocale () as follows:

40384 setlocale(LC_ALL, "");

40385 Changing the setting of LC_MESSAGES has no effect on catalogs that have already been opened
40386 by calls to catopen().

40387 RATIONALE
40388 The ISO C standard defines a collection of functions to support internationalization. One of the
40389 most significant aspects of these functions is a facility to set and query the international
40390 environment. The international environment is a repository of information that affects the
40391 behavior of certain functionality, namely:

40392 1. Character handling

40393 2. String handling (that is, collating)

40394 3. Date/time formatting

40395 4. Numeric editing

40396 The setlocale () function provides the application developer with the ability to set all or portions,
40397 called categories, of the international environment. These categories correspond to the areas of
40398 functionality, mentioned above. The syntax for setlocale () is as follows:

40399 char *setlocale(int category , const char * locale);

40400 where category is the name of one of five categories, namely:

40401 LC_COLLATE
40402 LC_CTYPE
40403 LC_MESSAGES
40404 LC_MONETARY
40405 LC_NUMERIC
40406 LC_TIME

40407 In addition, a special value called LC_ALL directs setlocale () to set all categories.

40408 There are two primary uses of setlocale ():

1806 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setlocale()

40409 1. Querying the international environment to find out what it is set to

40410 2. Setting the international environment, or locale , to a specific value

40411 The behavior of setlocale () in these two areas is described below. Since it is difficult to describe
40412 the behavior in words, examples are used to illustrate the behavior of specific uses.

40413 To query the international environment, setlocale () is invoked with a specific category and the
40414 NULL pointer as the locale. The NULL pointer is a special directive to setlocale () that tells it to
40415 query rather than set the international environment. The following syntax is used to query the
40416 name of the international environment:

40417 setlocale({LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, \
40418 LC_NUMERIC, LC_TIME},(char *) NULL);

40419 The setlocale () function shall return the string corresponding to the current international
40420 environment. This value may be used by a subsequent call to setlocale () to reset the international
40421 environment to this value. However, it should be noted that the return value from setlocale () is a
40422 pointer to a static area within the function and is not guaranteed to remain unchanged (that is, it
40423 may be modified by a subsequent call to setlocale ()). Therefore, if the purpose of calling
40424 setlocale () is to save the value of the current international environment so it can be changed and
40425 reset later, the return value should be copied to an array of char in the calling program.

40426 There are three ways to set the international environment with setlocale ():

40427 setlocale(category,string)
40428 This usage sets a specific category in the international environment to a specific value
40429 corresponding to the value of the string. A specific example is provided below:

40430 setlocale(LC_ALL, "Fr_FR.8859");

40431 In this example, all categories of the international environment are set to the locale
40432 corresponding to the string "Fr_FR.8859" , or to the French language as spoken in France
40433 using the ISO/IEC 8859-1: 1998 standard codeset.

40434 If the string does not correspond to a valid locale, setlocale () shall return a NULL pointer
40435 and the international environment is not changed. Otherwise, setlocale () shall return the
40436 name of the locale just set.

40437 setlocale(category,"C")
40438 The ISO C standard states that one locale must exist on all conforming implementations.
40439 The name of the locale is C and corresponds to a minimal international environment needed
40440 to support the C programming language.

40441 setlocale(category," ")
40442 This sets a specific category to an implementation-defined default. For POSIX-conforming |
40443 systems, this corresponds to the value of the environment variables.

40444 FUTURE DIRECTIONS
40445 None.

40446 SEE ALSO
40447 exec, isalnum(), isalpha (), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(), isupper(),
40448 iswalnum(), iswalpha (), iswcntrl(), iswctype(), iswgraph(), iswlower(), iswprint(), iswpunct(),
40449 iswspace(), iswupper(), localeconv (), mblen(), mbstowcs(), mbtowc(), nl_langinfo (), printf(), scanf(),
40450 setlocale (), strcoll(), strerror(), strfmon(), strtod(), strxfrm(), tolower(), toupper(), towlower(),
40451 towupper(), wcscoll(), wcstod(), wcstombs(), wcsxfrm(), wctomb(), the Base Definitions volume of |
40452 IEEE Std. 1003.1-200x, <langinfo.h>, <locale.h> |

System Interfaces, Issue 6 1807

setlocale() System Interfaces

40453 CHANGE HISTORY
40454 First released in Issue 3.

40455 Issue 4
40456 The description of LC_MESSAGES is extended to indicate that this category also determines
40457 what strings are produced by commands and utilities for affirmative and negative responses,
40458 and that it affects the content of other program messages. This is marked as an extension.

40459 References to nl_langinfo () are removed.

40460 The description of the implementation-defined native locale ("" is clarified by stating the related |
40461 environment variables explicitly.

40462 The APPLICATION USAGE section is expanded.

40463 The following changes are incorporated for alignment with the ISO C standard and the
40464 ISO POSIX-1 standard:

40465 • The type of the argument locale is changed from char* to const char*.

40466 • The name "POSIX" is added to the list of standard locale names.

40467 The following change is incorporated for alignment with the ISO POSIX-2 standard:

40468 • The LC_MESSAGES value for category is added to the DESCRIPTION.

40469 Issue 5
40470 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

40471 Issue 6
40472 Extensions beyond the ISO C standard are now marked.

40473 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1808 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setlogmask()

40474 NAME
40475 setlogmask — set log priority mask

40476 SYNOPSIS
40477 XSI #include <syslog.h>

40478 int setlogmask(int maskpri);
40479

40480 DESCRIPTION
40481 Refer to closelog ().

System Interfaces, Issue 6 1809

setnetent() System Interfaces

40482 NAME
40483 setnetent — network database function

40484 SYNOPSIS
40485 #include <netdb.h>

40486 void setnetent(int stayopen);

40487 DESCRIPTION
40488 Refer to endnetent().

1810 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setpgid()

40489 NAME
40490 setpgid — set process group ID for job control

40491 SYNOPSIS
40492 #include <unistd.h>

40493 int setpgid(pid_t pid , pid_t pgid);

40494 DESCRIPTION
40495 The setpgid() function is used either to join an existing process group or create a new process
40496 group within the session of the calling process. The process group ID of a session leader shall
40497 not change. Upon successful completion, the process group ID of the process with a process ID
40498 that matches pid shall be set to pgid . As a special case, if pid is 0, the process ID of the calling
40499 process shall be used. Also, if pgid is 0, the process group ID of the indicated process shall be
40500 used.

40501 RETURN VALUE
40502 Upon successful completion, setpgid() shall return 0; otherwise, −1 shall be returned and errno
40503 shall be set to indicate the error.

40504 ERRORS
40505 The setpgid() function shall fail if:

40506 [EACCES] The value of the pid argument matches the process ID of a child process of the |
40507 calling process and the child process has successfully executed one of the exec
40508 functions.

40509 [EINVAL] The value of the pgid argument is less than 0, or is not a value supported by |
40510 the implementation.

40511 [EPERM] The process indicated by the pid argument is a session leader. |

40512 [EPERM] The value of the pid argument matches the process ID of a child process of the |
40513 calling process and the child process is not in the same session as the calling
40514 process.

40515 [EPERM] The value of the pgid argument is valid but does not match the process ID of |
40516 the process indicated by the pid argument and there is no process with a
40517 process group ID that matches the value of the pgid argument in the same
40518 session as the calling process.

40519 [ESRCH] The value of the pid argument does not match the process ID of the calling |
40520 process or of a child process of the calling process.

40521 EXAMPLES
40522 None.

40523 APPLICATION USAGE
40524 None.

40525 RATIONALE
40526 The setpgid() function is used to group processes together for the purpose of signaling,
40527 placement in foreground or background, and other job control actions.

40528 The setpgid() function is similar to the setpgrp() function of 4.2 BSD, except that 4.2 BSD allowed
40529 the specified new process group to assume any value. This presents certain security problems
40530 and is more flexible than necessary to support job control.

40531 To provide tighter security, setpgid() only allows the calling process to join a process group
40532 already in use inside its session or create a new process group whose process group ID was

System Interfaces, Issue 6 1811

setpgid() System Interfaces

40533 equal to its process ID.

40534 When a job control shell spawns a new job, the processes in the job must be placed into a new
40535 process group via setpgid(). There are two timing constraints involved in this action:

40536 1. The new process must be placed in the new process group before the appropriate program
40537 is launched via one of the exec functions.

40538 2. The new process must be placed in the new process group before the shell can correctly
40539 send signals to the new process group.

40540 To address these constraints, the following actions are performed. The new processes call
40541 setpgid() to alter their own process groups after fork () but before exec. This satisfies the first
40542 constraint. Under 4.3 BSD, the second constraint is satisfied by the synchronization property of
40543 vfork (); that is, the shell is suspended until the child has completed the exec, thus ensuring that
40544 the child has completed the setpgid(). A new version of fork () with this same synchronization
40545 property was considered, but it was decided instead to merely allow the parent shell process to
40546 adjust the process group of its child processes via setpgid(). Both timing constraints are now
40547 satisfied by having both the parent shell and the child attempt to adjust the process group of the
40548 child process; it does not matter which succeeds first.

40549 Because it would be confusing to an application to have its process group change after it began
40550 executing (that is, after exec), and because the child process would already have adjusted its
40551 process group before this, the [EACCES] error was added to disallow this. |

40552 One non-obvious use of setpgid() is to allow a job control shell to return itself to its original
40553 process group (the one in effect when the job control shell was executed). A job control shell
40554 does this before returning control back to its parent when it is terminating or suspending itself as
40555 a way of restoring its job control ‘‘state’’ back to what its parent would expect. (Note that the
40556 original process group of the job control shell typically matches the process group of its parent,
40557 but this is not necessarily always the case.)

40558 FUTURE DIRECTIONS
40559 None.

40560 SEE ALSO
40561 exec, getpgrp(), setsid(), tcsetpgrp(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
40562 <sys/types.h>, <unistd.h>

CHANGE40563 HISTORY
40564 First released in Issue 3.

40565 Entry included for alignment with the POSIX.1-1988 standard.

40566 Issue 4
40567 The function is no longer marked as OPTIONAL FUNCTIONALITY.

40568 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
40569 XSI-conformant systems.

40570 The <unistd.h> header is added to the SYNOPSIS section.

40571 The DESCRIPTION in Issue 3 defined the behavior of this function for implementations that
40572 either supported or did not support job control. As job control is defined as mandatory in Issue
40573 4, only the former of these is now described.

40574 The [ENOSYS] error is removed from the ERRORS section.

1812 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setpgid()

40575 Issue 6
40576 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

40577 The following new requirements on POSIX implementations derive from alignment with the
40578 Single UNIX Specification:

40579 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
40580 required for conforming implementations of previous POSIX specifications, it was not
40581 required for UNIX applications.

40582 • The setpgid() function is mandatory since _POSIX_JOB_CONTROL is required to be defined
40583 in this issue. This is a FIPS requirement.

System Interfaces, Issue 6 1813

setpgrp() System Interfaces

40584 NAME
40585 setpgrp — set process group ID

40586 SYNOPSIS
40587 XSI #include <unistd.h>

40588 pid_t setpgrp(void);
40589

40590 DESCRIPTION
40591 If the calling process is not already a session leader, setpgrp() sets the process group ID of the
40592 calling process to the process ID of the calling process. If setpgrp() creates a new session, then
40593 the new session has no controlling terminal.

40594 The setpgrp() function has no effect when the calling process is a session leader.

40595 RETURN VALUE
40596 Upon completion, setpgrp() shall return the process group ID.

40597 ERRORS
40598 No errors are defined.

40599 EXAMPLES
40600 None.

40601 APPLICATION USAGE
40602 None.

40603 RATIONALE
40604 None.

40605 FUTURE DIRECTIONS
40606 None.

40607 SEE ALSO
40608 exec, fork (), getpid(), getsid(), kill (), setpgid(), setsid(), the Base Definitions volume of |
40609 IEEE Std. 1003.1-200x, <unistd.h> |

40610 CHANGE HISTORY
40611 First released in Issue 4, Version 2.

40612 Issue 5
40613 Moved from X/OPEN UNIX extension to BASE.

1814 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setpriority()

40614 NAME
40615 setpriority — set the nice value

40616 SYNOPSIS
40617 XSI #include <sys/resource.h>

40618 int setpriority(int which , id_t who, int nice);
40619

40620 DESCRIPTION
40621 Refer to getpriority ().

System Interfaces, Issue 6 1815

setprotoent() System Interfaces

40622 NAME
40623 setprotoent — network protocol database functions

40624 SYNOPSIS
40625 #include <netdb.h>

40626 void setprotoent(int stayopen);

40627 DESCRIPTION
40628 Refer to endprotoent().

1816 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setpwent()

40629 NAME
40630 setpwent — user database function

40631 SYNOPSIS
40632 XSI #include <pwd.h>

40633 void setpwent(void);
40634

40635 DESCRIPTION
40636 Refer to endpwent().

System Interfaces, Issue 6 1817

setregid() System Interfaces

40637 NAME
40638 setregid — set real and effective group IDs

40639 SYNOPSIS
40640 XSI #include <unistd.h>

40641 int setregid(gid_t rgid , gid_t egid);
40642

40643 DESCRIPTION
40644 The setregid() function is used to set the real and effective group IDs of the calling process.

40645 If rgid is −1, the real group ID shall not be changed; if egid is −1, the effective group ID shall not
40646 be changed.

40647 The real and effective group IDs may be set to different values in the same call.

40648 Only a process with appropriate privileges can set the real group ID and the effective group ID
40649 to any valid value.

40650 A non-privileged process can set either the real group ID to the saved set-group-ID from one of |
40651 the exec family of functions, or the effective group ID to the saved set-group-ID or the real group |
40652 ID. |

40653 Any supplementary group IDs of the calling process remain unchanged.

40654 RETURN VALUE
40655 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
40656 indicate the error, and neither of the group IDs are changed.

40657 ERRORS
40658 The setregid() function shall fail if:

40659 [EINVAL] The value of the rgid or egid argument is invalid or out-of-range. |

40660 [EPERM] The process does not have appropriate privileges and a change other than |
40661 changing the real group ID to the saved set-group-ID, or changing the
40662 effective group ID to the real group ID or the saved set-group-ID, was
40663 requested.

40664 EXAMPLES
40665 None.

40666 APPLICATION USAGE
40667 If a set-group-ID process sets its effective group ID to its real group ID, it can still set its effective
40668 group ID back to the saved set-group-ID.

40669 RATIONALE
40670 None.

40671 FUTURE DIRECTIONS
40672 None.

40673 SEE ALSO
40674 exec, getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setreuid(), setuid(), the |
40675 Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

40676 CHANGE HISTORY
40677 First released in Issue 4, Version 2.

1818 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setregid()

40678 Issue 5
40679 Moved from X/OPEN UNIX extension to BASE.

40680 The DESCRIPTION is updated to indicate that the saved set-group-ID can be set by any of the |
40681 exec family of functions, not just execev(). |

System Interfaces, Issue 6 1819

setreuid() System Interfaces

40682 NAME
40683 setreuid — set real and effective user IDs

40684 SYNOPSIS
40685 XSI #include <unistd.h>

40686 int setreuid(uid_t ruid , uid_t euid);
40687

40688 DESCRIPTION
40689 The setreuid() function sets the real and effective user IDs of the current process to the values
40690 specified by the ruid and euid arguments. If ruid or euid is −1, the corresponding effective or real
40691 user ID of the current process is left unchanged.

40692 A process with appropriate privileges can set either ID to any value. An unprivileged process
40693 can only set the effective user ID if the euid argument is equal to either the real, effective, or
40694 saved user ID of the process.

40695 It is unspecified whether a process without appropriate privileges is permitted to change the real
40696 user ID to match the current real, effective, or saved set-user-ID of the process.

40697 RETURN VALUE
40698 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
40699 indicate the error.

40700 ERRORS
40701 The setreuid() function shall fail if:

40702 [EINVAL] The value of the ruid or euid argument is invalid or out-of-range. |

40703 [EPERM] The current process does not have appropriate privileges, and either an |
40704 attempt was made to change the effective user ID to a value other than the
40705 real user ID or the saved set-user-ID or an attempt was made to change the
40706 real user ID to a value not permitted by the implementation.

40707 EXAMPLES

40708 Setting the Effective User ID to the Real User ID

40709 The following example sets the effective user ID of the calling process to the real user ID, so that
40710 files created later will be owned by the current user.

40711 #include <unistd.h>
40712 #include <sys/types.h>
40713 ...
40714 setreuid(getuid(), getuid());
40715 ...

40716 APPLICATION USAGE
40717 None.

40718 RATIONALE
40719 None.

40720 FUTURE DIRECTIONS
40721 None.

1820 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setreuid()

40722 SEE ALSO
40723 getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setuid(), the Base |
40724 Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

40725 CHANGE HISTORY
40726 First released in Issue 4, Version 2.

40727 Issue 5
40728 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1821

setrlimit() System Interfaces

40729 NAME
40730 setrlimit — control maximum resource consumption

40731 SYNOPSIS
40732 XSI #include <sys/resource.h>

40733 int setrlimit(int resource , const struct rlimit * rlp);
40734

40735 DESCRIPTION
40736 Refer to getrlimit().

1822 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setservent()

40737 NAME
40738 setservent — network services database functions

40739 SYNOPSIS
40740 #include <netdb.h>

40741 void setservent(int stayopen);

40742 DESCRIPTION
40743 Refer to endservent().

System Interfaces, Issue 6 1823

setsid() System Interfaces

40744 NAME
40745 setsid — create session and set process group ID

40746 SYNOPSIS
40747 #include <unistd.h>

40748 pid_t setsid(void);

40749 DESCRIPTION
40750 The setsid() function creates a new session, if the calling process is not a process group leader.
40751 Upon return the calling process shall be the session leader of this new session, shall be the
40752 process group leader of a new process group, and shall have no controlling terminal. The
40753 process group ID of the calling process shall be set equal to the process ID of the calling process.
40754 The calling process shall be the only process in the new process group and the only process in
40755 the new session.

40756 RETURN VALUE
40757 Upon successful completion, setsid() shall return the value of the new process group ID of the
40758 calling process. Otherwise, it shall return (pid_t)−1 and set errno to indicate the error.

40759 ERRORS
40760 The setsid() function shall fail if:

40761 [EPERM] The calling process is already a process group leader, or the process group ID |
40762 of a process other than the calling process matches the process ID of the
40763 calling process.

40764 EXAMPLES
40765 None.

40766 APPLICATION USAGE
40767 None.

40768 RATIONALE
40769 The setsid() function is similar to the setpgrp() function of System V. System V, without job
40770 control, groups processes into process groups and creates new process groups via setpgrp(); only
40771 one process group may be part of a login session.

40772 Job control allows multiple process groups within a login session. In order to limit job control
40773 actions so that they can only affect processes in the same login session, this volume of
40774 IEEE Std. 1003.1-200x adds the concept of a session that is created via setsid(). The setsid()
40775 function also creates the initial process group contained in the session. Additional process
40776 groups can be created via the setpgid() function. A System V process group would correspond to
40777 a POSIX System Interfaces session containing a single POSIX process group. Note that this
40778 function requires that the calling process not be a process group leader. The usual way to ensure
40779 this is true is to create a new process with fork () and have it call setsid(). The fork () function
40780 guarantees that the process ID of the new process does not match any existing process group ID.

40781 FUTURE DIRECTIONS
40782 None.

40783 SEE ALSO
40784 getsid(), setpgid(), setpgrp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
40785 <unistd.h>

1824 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setsid()

40786 CHANGE HISTORY
40787 First released in Issue 3.

40788 Entry included for alignment with the POSIX.1-1988 standard.

40789 Issue 4
40790 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
40791 XSI-conformant systems.

40792 The <unistd.h> header is added to the SYNOPSIS section.

40793 The argument list is explicitly defined as void.

40794 Issue 6
40795 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

40796 The following new requirements on POSIX implementations derive from alignment with the
40797 Single UNIX Specification:

40798 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
40799 required for conforming implementations of previous POSIX specifications, it was not
40800 required for UNIX applications.

System Interfaces, Issue 6 1825

setsockopt() System Interfaces

40801 NAME
40802 setsockopt — set the socket options

40803 SYNOPSIS
40804 #include <sys/socket.h>

40805 int setsockopt(int socket , int level , int option_name ,
40806 const void * option_value , socklen_t option_len);

40807 DESCRIPTION
40808 The setsockopt () function sets the option specified by the option_name argument, at the protocol
40809 level specified by the level argument, to the value pointed to by the option_value argument for the
40810 socket associated with the file descriptor specified by the socket argument.

40811 The level argument specifies the protocol level at which the option resides. To set options at the
40812 socket level, specify the level argument as SOL_SOCKET. To set options at other levels, supply
40813 the appropriate level identifier for the protocol controlling the option. For example, to indicate |
40814 that an option is interpreted by the TCP (Transport Control Protocol), set level to IPPROTO_TCP |
40815 as defined in the <netinet/in.h> header.

40816 The option_name argument specifies a single option to set. The option_name argument and any
40817 specified options are passed uninterpreted to the appropriate protocol module for
40818 interpretations. The <sys/socket.h> header defines the socket-level options. The options are as
40819 follows:

40820 SO_DEBUG Turns on recording of debugging information. This option enables or
40821 disables debugging in the underlying protocol modules. This option takes
40822 an int value. This is a Boolean option.

40823 SO_BROADCAST Permits sending of broadcast messages, if this is supported by the
40824 protocol. This option takes an int value. This is a Boolean option.

40825 SO_REUSEADDR Specifies that the rules used in validating addresses supplied to bind()
40826 should allow reuse of local addresses, if this is supported by the protocol.
40827 This option takes an int value. This is a Boolean option.

40828 SO_KEEPALIVE Keeps connections active by enabling the periodic transmission of
40829 messages, if this is supported by the protocol. This option takes an int
40830 value.

40831 If the connected socket fails to respond to these messages, the connection |
40832 is broken and threads writing to that socket are notified with a SIGPIPE |
40833 signal.

40834 This is a Boolean option.

40835 SO_LINGER Lingers on a close() if data is present. This option controls the action
40836 taken when unsent messages queue on a socket and close() is performed.
40837 If SO_LINGER is set, the system blocks the process during close() until it
40838 can transmit the data or until the time expires. If SO_LINGER is not
40839 specified, and close() is issued, the system handles the call in a way that
40840 allows the process to continue as quickly as possible. This option takes a
40841 linger structure, as defined in the <sys/socket.h> header, to specify the
40842 state of the option and linger interval.

40843 SO_OOBINLINE Leaves received out-of-band data (data marked urgent) inline. This
40844 option takes an int value. This is a Boolean option.

1826 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setsockopt()

40845 SO_SNDBUF Sets send buffer size. This option takes an int value.

40846 SO_RCVBUF Sets receive buffer size. This option takes an int value.

40847 SO_DONTROUTE Requests that outgoing messages bypass the standard routing facilities.
40848 The destination shall be on a directly-connected network, and messages
40849 are directed to the appropriate network interface according to the
40850 destination address. The effect, if any, of this option depends on what
40851 protocol is in use. This option takes an int value. This is a Boolean option.

40852 SO_RCVLOWAT Sets the minimum number of bytes to process for socket input operations.
40853 The default value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is set to a
40854 larger value, blocking receive calls normally wait until they have received
40855 the smaller of the low water mark value or the requested amount. (They
40856 may return less than the low water mark if an error occurs, a signal is
40857 caught, or the type of data next in the receive queue is different than that
40858 returned; for example, out-of-band data.) This option takes an int value.
40859 Note that not all implementations allow this option to be set.

40860 SO_RCVTIMEO Sets the timeout value that specifies the maximum amount of time an
40861 input function waits until it completes. It accepts a timeval structure with
40862 the number of seconds and microseconds specifying the limit on how
40863 long to wait for an input operation to complete. If a receive operation has
40864 blocked for this much time without receiving additional data, it shall
40865 return with a partial count or errno set to [EAGAIN] or
40866 [EWOULDBLOCK] if no data is received. The default for this option is
40867 zero, which indicates that a receive operation shall not time out. This
40868 option takes a timeval structure. Note that not all implementations allow
40869 this option to be set.

40870 SO_SNDLOWAT Sets the minimum number of bytes to process for socket output
40871 operations. Non-blocking output operations shall process no data if flow
40872 control does not allow the smaller of the send low water mark value or
40873 the entire request to be processed. This option takes an int value. Note
40874 that not all implementations allow this option to be set.

40875 SO_SNDTIMEO Sets the timeout value specifying the amount of time that an output
40876 function blocks because flow control prevents data from being sent. If a
40877 send operation has blocked for this time, it shall return with a partial
40878 count or with errno set to [EAGAIN] or [EWOULDBLOCK] if no data is
40879 sent. The default for this option is zero, which indicates that a send
40880 operation shall not time out. This option stores a timeval structure. Note
40881 that not all implementations allow this option to be set.

40882 For Boolean options, 0 indicates that the option is disabled and 1 indicates that the option is
40883 enabled.

40884 Options at other protocol levels vary in format and name.

40885 RETURN VALUE
40886 Upon successful completion, setsockopt () shall return 0. Otherwise, −1 shall be returned and errno
40887 set to indicate the error.

40888 ERRORS
40889 The setsockopt () function shall fail if:

40890 [EBADF] The socket argument is not a valid file descriptor.

System Interfaces, Issue 6 1827

setsockopt() System Interfaces

40891 [EDOM] The send and receive timeout values are too big to fit into the timeout fields in
40892 the socket structure. |

40893 [EINVAL] The specified option is invalid at the specified socket level or the socket has
40894 been shut down.

40895 [EISCONN] The socket is already connected, and a specified option cannot be set while the
40896 socket is connected.

40897 [ENOPROTOOPT]
40898 The option is not supported by the protocol.

40899 [ENOTSOCK] The socket argument does not refer to a socket.

40900 The setsockopt () function may fail if:

40901 [ENOMEM] There was insufficient memory available for the operation to complete.

40902 [ENOBUFS] Insufficient resources are available in the system to complete the call. |

40903 EXAMPLES
40904 None.

40905 APPLICATION USAGE
40906 The setsockopt () function provides an application program with the means to control socket
40907 behavior. An application program can use setsockopt () to allocate buffer space, control timeouts,
40908 or permit socket data broadcasts. The <sys/socket.h> header defines the socket-level options
40909 available to setsockopt ().

40910 Options may exist at multiple protocol levels. The SO_ options are always present at the
40911 uppermost socket level.

40912 RATIONALE
40913 None.

40914 FUTURE DIRECTIONS
40915 None.

40916 SEE ALSO
40917 Section 2.10 (on page 562), bind(), endprotoent(), getsockopt (), socket(), the Base Definitions |
40918 volume of IEEE Std. 1003.1-200x, <netinet/in.h>, <sys/socket.h> |

40919 CHANGE HISTORY
40920 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1828 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setstate()

40921 NAME
40922 setstate — switch pseudorandom number generator state arrays

40923 SYNOPSIS
40924 XSI #include <stdlib.h>

40925 char *setstate(const char * state);
40926

40927 DESCRIPTION
40928 Refer to initstate().

System Interfaces, Issue 6 1829

setuid() System Interfaces

40929 NAME
40930 setuid — set user ID

40931 SYNOPSIS
40932 #include <unistd.h>

40933 int setuid(uid_t uid);

40934 DESCRIPTION
40935 If the process has appropriate privileges, setuid() shall set the real user ID, effective user ID, and
40936 the saved set-user-ID of the calling process to uid . |

40937 If the process does not have appropriate privileges, but uid is equal to the real user ID or the
40938 saved set-user-ID, setuid() shall set the effective user ID to uid ; the real user ID and saved set-
40939 user-ID shall remain unchanged.

40940 The setuid() function shall not affect the supplementary group list in any way.

40941 RETURN VALUE
40942 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
40943 indicate the error.

40944 ERRORS
40945 The setuid() function shall fail, return −1, and set errno to the corresponding value if one or more
40946 of the following are true:

40947 [EINVAL] The value of the uid argument is invalid and not supported by the |
40948 implementation.

40949 [EPERM] The process does not have appropriate privileges and uid does not match the |
40950 real user ID or the saved set-user-ID.

40951 EXAMPLES
40952 None.

40953 APPLICATION USAGE
40954 None.

40955 RATIONALE
40956 The various behaviors of the setuid() and setgid() functions when called by non-privileged
40957 processes reflect the behavior of different historical implementations. For portability, it is
40958 recommended that new non-privileged applications use the seteuid() and setegid() functions
40959 instead.

40960 The saved set-user-ID capability allows a program to regain the effective user ID established at
40961 the last exec call. Similarly, the saved set-group-ID capability allows a program to regain the
40962 effective group ID established at the last exec call. These capabilities are derived from System V.
40963 Without them, a program might have to run as superuser in order to perform the same
40964 functions, because superuser can write on the user’s files. This is a problem because such a
40965 program can write on any user’s files, and so must be carefully written to emulate the
40966 permissions of the calling process properly. In System V, these capabilities have traditionally
40967 been implemented only via the setuid() and setgid() functions for non-privileged processes. The
40968 fact that the behavior of those functions was different for privileged processes made them
40969 difficult to use. The POSIX.1-1990 standard defined the setuid() function to behave differently
40970 for privileged and unprivileged users. When the caller had the appropriate privilege, the
40971 function set the calling process’s real user ID, effective user ID, and saved set-user ID on
40972 implementations that supported it. When the caller did not have the appropriate privilege, the
40973 function set only the effective user ID, subject to permission checks. The former use is generally
40974 needed for utilities like login and su, which are not portable applications and thus outside the

1830 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setuid()

40975 scope of IEEE Std. 1003.1-200x. These utilities wish to change the user ID irrevocably to a new
40976 value, generally that of an unprivileged user. The latter use is needed for portable applications
40977 that are installed with the set-user-ID bit and need to perform operations using the real user ID.

40978 IEEE Std. 1003.1-200x augments the latter functionality with a mandatory feature named
40979 _POSIX_SAVED_IDS. This feature permits a set-user-ID application to switch its effective user
40980 ID back and forth between the values of its exec-time real user ID and effective user ID.
40981 Unfortunately, the POSIX.1-1990 standard did not permit a portable application using this
40982 feature to work properly when it happened to be executed with the (implementation-defined) |
40983 appropriate privilege. Furthermore, the application did not even have a means to tell whether it
40984 had this privilege. Because the saved set-user-ID feature is quite desirable for applications, as
40985 evidenced by the fact that NIST required it in FIPS 151-2, it has been mandated by
40986 IEEE Std. 1003.1-200x. However, there are implementors who have been reluctant to support it
40987 given the limitation described above.

40988 The 4.3BSD system handles the problem by supporting separate functions: setuid() (which
40989 always sets both the real and effective user IDs, like setuid() in IEEE Std. 1003.1-200x for
40990 privileged users), and seteuid() (which always sets just the effective user ID, like setuid() in
40991 IEEE Std. 1003.1-200x for non-privileged users). This separation of functionality into distinct
40992 functions seems desirable. 4.3BSD does not support the saved set-user-ID feature. It supports
40993 similar functionality of switching the effective user ID back and forth via setreuid(), which
40994 permits reversing the real and effective user IDs. This model seems less desirable than the saved
40995 set-user-ID because the real user ID changes as a side effect. The current 4.4BSD includes saved
40996 effective IDs and uses them for seteuid() and setegid() as described above. The setreuid() and
40997 setregid() functions will be deprecated or removed.

40998 The solution here is:

40999 • Require that all implementations support the functionality of the saved set-user-ID, which is
41000 set by the exec functions and by privileged calls to setuid().

41001 • Add the seteuid() and setegid() functions as portable alternatives to setuid() and setgid() for
41002 non-privileged and privileged processes.

41003 Historical systems have provided two mechanisms for a set-user-ID process to change its
41004 effective user ID to be the same as its real user ID in such a way that it could return to the
41005 original effective user ID: the use of the setuid() function in the presence of a saved set-user-ID,
41006 or the use of the BSD setreuid() function, which was able to swap the real and effective user IDs.
41007 The changes included in IEEE Std. 1003.1-200x provide a new mechanism using seteuid() in
41008 conjunction with a saved set-user-ID. Thus, all implementations with the new seteuid()
41009 mechanism will have a saved set-user-ID for each process, and most of the behavior controlled |
41010 by _POSIX_SAVED_IDS has been changed to agree with the case where the option was defined. |
41011 The kill () function is an exception. Implementors of the new seteuid() mechanism will generally
41012 be required to maintain compatibility with the older mechanisms previously supported by their
41013 systems. However, compatibility with this use of setreuid() and with the _POSIX_SAVED_IDS
41014 behavior of kill () is unfortunately complicated. If an implementation with a saved set-user-ID
41015 allows a process to use setreuid() to swap its real and effective user IDs, but were to leave the
41016 saved set-user-ID unmodified, the process would then have an effective user ID equal to the
41017 original real user ID, and both real and saved set-user-ID would be equal to the original effective
41018 user ID. In that state, the real user would be unable to kill the process, even though the effective
41019 user ID of the process matches that of the real user, if the kill () behavior of _POSIX_SAVED_IDS
41020 was used. This is obviously not acceptable. The alternative choice, which is used in at least one
41021 implementation, is to change the saved set-user-ID to the effective user ID during most calls to
41022 setreuid(). The standard developers considered that alternative to be less correct than the
41023 retention of the old behavior of kill () in such systems. Current conforming applications shall

System Interfaces, Issue 6 1831

setuid() System Interfaces

41024 accommodate either behavior from kill (), and there appears to be no strong reason for kill () to
41025 check the saved set-user-ID rather than the effective user ID.

41026 FUTURE DIRECTIONS
41027 None.

41028 SEE ALSO
41029 exec, getegid(), geteuid(), getgid(), getuid(), setegid(), seteuid(), setgid(), setregid(), setreuid(), the |
41030 Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

41031 CHANGE HISTORY
41032 First released in Issue 1. Derived from Issue 1 of the SVID. |

41033 Issue 4
41034 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
41035 XSI-conformant systems.

41036 The <unistd.h> header is added to the SYNOPSIS section.

41037 The following change is incorporated for alignment with the FIPS requirements:

41038 • All references to the saved set-user-ID are marked as extensions. This is because Issue 4
41039 defines this mechanism as mandatory, whereas the ISO POSIX-1 standard defines that it is
41040 only supported if _POSIX_SAVED_IDS is set.

41041 Issue 6
41042 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

41043 The following new requirements on POSIX implementations derive from alignment with the
41044 Single UNIX Specification:

41045 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
41046 required for conforming implementations of previous POSIX specifications, it was not
41047 required for UNIX applications.

41048 • The functionality associated with _POSIX_SAVED_IDS is now mandatory. This is a FIPS
41049 requirement.

41050 The following changes were made to align with the IEEE P1003.1a draft standard:

41051 • The effects of setuid() in processes without appropriate privileges are changed.

41052 • A requirement that the supplementary group list is not affected is added.

1832 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setutxent()

41053 NAME
41054 setutxent — reset user accounting database to first entry

41055 SYNOPSIS
41056 XSI #include <utmpx.h>

41057 void setutxent(void);
41058

41059 DESCRIPTION
41060 Refer to endutxent().

System Interfaces, Issue 6 1833

setvbuf() System Interfaces

41061 NAME
41062 setvbuf — assign buffering to a stream

41063 SYNOPSIS
41064 #include <stdio.h>

41065 int setvbuf(FILE *restrict stream , char *restrict buf , int type , |
41066 size_t size); |

41067 DESCRIPTION |
41068 CX The functionality described on this reference page is aligned with the ISO C standard. Any
41069 conflict between the requirements described here and the ISO C standard is unintentional. This
41070 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

41071 The setvbuf() function may be used after the stream pointed to by stream is associated with an |
41072 open file but before any other operation (other than an unsuccessful call to setvbuf()) is |
41073 performed on the stream. The argument type determines how stream shall be buffered, as |
41074 follows:

41075 • {_IOFBF} shall cause input/output to be fully buffered.

41076 • {_IOLBF} shall cause input/output to be line buffered.

41077 • {_IONBF} shall cause input/output to be unbuffered.

41078 If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by |
41079 setvbuf() and the argument size specifies the size of the array; otherwise, size may determine the |
41080 size of a buffer allocated by the setvbuf() function. The contents of the array at any time are |
41081 indeterminate. |

41082 For information about streams, see Section 2.5 (on page 535).

41083 RETURN VALUE
41084 Upon successful completion, setvbuf() shall return 0. Otherwise, it shall return a non-zero value
41085 CX if an invalid value is given for type or if the request cannot be honored, and may set errno to |
41086 indicate the error.

41087 ERRORS
41088 The setvbuf() function may fail if:

41089 CX [EBADF] The file descriptor underlying stream is not valid. |

41090 EXAMPLES
41091 None.

41092 APPLICATION USAGE
41093 A common source of error is allocating buffer space as an ‘‘automatic’’ variable in a code block,
41094 and then failing to close the stream in the same block.

41095 With setvbuf(), allocating a buffer of size bytes does not necessarily imply that all of size bytes are
41096 used for the buffer area.

41097 Applications should note that many implementations only provide line buffering on input from
41098 terminal devices.

41099 RATIONALE
41100 None.

1834 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces setvbuf()

41101 FUTURE DIRECTIONS
41102 None.

41103 SEE ALSO
41104 fopen(), setbuf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

41105 CHANGE HISTORY
41106 First released in Issue 1. Derived from Issue 1 of the SVID. |

41107 Issue 4
41108 The second paragraph of the DESCRIPTION is now in Section 2.5 (on page 535).

41109 The [EBADF] error is marked as an extension.

41110 The APPLICATION USAGE section is expanded.

41111 The following change is incorporated for alignment with the ISO C standard:

41112 • This function is no longer marked as an extension.

41113 Issue 6
41114 Extensions beyond the ISO C standard are now marked. |

41115 The setvbuf() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1835

shm_open() System Interfaces

41116 NAME
41117 shm_open — open a shared memory object (REALTIME)

41118 SYNOPSIS
41119 SHM #include <sys/mman.h>

41120 int shm_open(const char * name, int oflag , mode_t mode);
41121

41122 DESCRIPTION
41123 The shm_open() function establishes a connection between a shared memory object and a file
41124 descriptor. It creates an open file description that refers to the shared memory object and a file
41125 descriptor that refers to that open file description. The file descriptor is used by other functions
41126 to refer to that shared memory object. The name argument points to a string naming a shared
41127 memory object. It is unspecified whether the name appears in the file system and is visible to
41128 other functions that take path names as arguments. The name argument conforms to the
41129 construction rules for a path name. If name begins with the slash character, then processes calling
41130 shm_open() with the same value of name refer to the same shared memory object, as long as that
41131 name has not been removed. If name does not begin with the slash character, the effect is |
41132 implementation-defined. The interpretation of slash characters other than the leading slash |
41133 character in name is implementation-defined. |

41134 If successful, shm_open() shall return a file descriptor for the shared memory object that is the
41135 lowest numbered file descriptor not currently open for that process. The open file description is
41136 new, and therefore the file descriptor does not share it with any other processes. It is unspecified
41137 whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with the new file
41138 descriptor is set.

41139 The file status flags and file access modes of the open file description are according to the value
41140 of oflag . The oflag argument is the bitwise-inclusive OR of the following flags defined in the
41141 header <fcntl.h>. Applications specify exactly one of the first two values (access modes) below
41142 in the value of oflag :

41143 O_RDONLY Open for read access only.

41144 O_RDWR Open for read or write access.

41145 Any combination of the remaining flags may be specified in the value of oflag :

41146 O_CREAT If the shared memory object exists, this flag has no effect, except as noted
41147 under O_EXCL below. Otherwise, the shared memory object is created; the
41148 user ID of the shared memory object shall be set to the effective user ID of the
41149 process; the group ID of the shared memory object is set to a system default
41150 group ID or to the effective group ID of the process. The permission bits of the
41151 shared memory object shall be set to the value of the mode argument except
41152 those set in the file mode creation mask of the process. When bits in mode
41153 other than the file permission bits are set, the effect is unspecified. The mode
41154 argument does not affect whether the shared memory object is opened for
41155 reading, for writing, or for both. The shared memory object has a size of zero.

41156 O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory
41157 object exists. The check for the existence of the shared memory object and the
41158 creation of the object if it does not exist is atomic with respect to other
41159 processes executing shm_open() naming the same shared memory object with
41160 O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set, the
41161 result is undefined.

1836 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shm_open()

41162 O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR,
41163 the object shall be truncated to zero length and the mode and owner shall be
41164 unchanged by this function call. The result of using O_TRUNC with
41165 O_RDONLY is undefined.

41166 When a shared memory object is created, the state of the shared memory object, including all
41167 data associated with the shared memory object, persists until the shared memory object is
41168 unlinked and all other references are gone. It is unspecified whether the name and shared
41169 memory object state remain valid after a system reboot.

41170 RETURN VALUE
41171 Upon successful completion, the shm_open() function shall return a non-negative integer
41172 representing the lowest numbered unused file descriptor. Otherwise, it shall return −1 and set
41173 errno to indicate the error.

41174 ERRORS
41175 The shm_open() function shall fail if:

41176 [EACCES] The shared memory object exists and the permissions specified by oflag are |
41177 denied, or the shared memory object does not exist and permission to create
41178 the shared memory object is denied, or O_TRUNC is specified and write
41179 permission is denied.

41180 [EEXIST] O_CREAT and O_EXCL are set and the named shared memory object already |
41181 exists.

41182 [EINTR] The shm_open() operation was interrupted by a signal. |

41183 [EINVAL] The shm_open() operation is not supported for the given name. |

41184 [EMFILE] Too many file descriptors are currently in use by this process. |

41185 [ENAMETOOLONG] |
41186 The length of the name argument exceeds {PATH_MAX} or a path name |
41187 component is longer than {NAME_MAX}. |

41188 [ENFILE] Too many shared memory objects are currently open in the system. |

41189 [ENOENT] O_CREAT is not set and the named shared memory object does not exist. |

41190 [ENOSPC] There is insufficient space for the creation of the new shared memory object. |

41191 EXAMPLES
41192 None.

41193 APPLICATION USAGE
41194 None.

41195 RATIONALE
41196 When the Memory Mapped Files option is supported, the normal open() call is used to obtain a
41197 descriptor to a file to be mapped according to existing practice with mmap(). When the Shared
41198 Memory Objects option is supported, the shm_open() function is used to obtain a descriptor to
41199 the shared memory object to be mapped.

41200 There is ample precedent for having a file descriptor represent several types of objects. In the
41201 POSIX.1-1990 standard, a file descriptor can represent a file, a pipe, a FIFO, a tty, or a directory.
41202 Many implementations simply have an operations vector, which is indexed by the file descriptor
41203 type and does very different operations. Note that in some cases the file descriptor passed to
41204 generic operations on file descriptors are returned by open() or creat() and in some cases
41205 returned by alternate functions, such as pipe(). The latter technique is used by shm_open().

System Interfaces, Issue 6 1837

shm_open() System Interfaces

41206 Note that such shared memory objects can actually be implemented as mapped files. In both
41207 cases, the size can be set after the open using ftruncate(). The shm_open() function itself does not
41208 create a shared object of a specified size because this would duplicate an extant function that set
41209 the size of an object referenced by a file descriptor.

41210 On implementations where memory objects are implemented using the existing file system, the
41211 shm_open() function may be implemented using a macro that invokes open(), and the
41212 shm_unlink() function may be implemented using a macro that invokes unlink().

41213 For implementations without a permanent file system, the definition of the name of the memory
41214 objects is allowed not to survive a system reboot. Note that this allows systems with a
41215 permanent file system to implement memory objects as data structures internal to the
41216 implementation as well.

41217 On implementations that choose to implement memory objects using memory directly, a
41218 shm_open() followed by a ftruncate() and close() can be used to preallocate a shared memory
41219 area and to set the size of that preallocation. This may be necessary for systems without virtual
41220 memory hardware support in order to ensure that the memory is contiguous.

41221 The set of valid open flags to shm_open() was restricted to O_RDONLY, O_RDWR, O_CREAT,
41222 and O_TRUNC because these could be easily implemented on most memory mapping systems.
41223 This volume of IEEE Std. 1003.1-200x is silent on the results if the implementation cannot supply
41224 the requested file access because of implementation-defined reasons, including hardware ones. |

41225 The error conditions [EACCES] and [ENOTSUP] are provided to inform the application that the |
41226 implementation cannot complete a request.

41227 [EACCES] indicates for implementation-defined reasons, probably hardware-related, that the |
41228 implementation cannot comply with a requested mode because it conflicts with another
41229 requested mode. An example might be that an application desires to open a memory object two
41230 times, mapping different areas with different access modes. If the implementation cannot map a
41231 single area into a process space in two places, which would be required if different access modes
41232 were required for the two areas, then the implementation may inform the application at the time
41233 of the second open.

41234 [ENOTSUP] indicates for implementation-defined reasons, probably hardware-related, that the |
41235 implementation cannot comply with a requested mode at all. An example would be that the
41236 hardware of the implementation cannot support write-only shared memory areas.

41237 On all implementations, it may be desirable to restrict the location of the memory objects to
41238 specific file systems for performance (such as a RAM disk) or implementation-defined reasons |
41239 (shared memory supported directly only on certain file systems). The shm_open() function may |
41240 be used to enforce these restrictions. There are a number of methods available to the application
41241 to determine an appropriate name of the file or the location of an appropriate directory. One
41242 way is from the environment via getenv(). Another would be from a configuration file.

41243 This volume of IEEE Std. 1003.1-200x specifies that memory objects have initial contents of zero
41244 when created. This is consistent with current behavior for both files and newly allocated
41245 memory. For those implementations that use physical memory, it would be possible that such
41246 implementations could simply use available memory and give it to the process uninitialized.
41247 This, however, is not consistent with standard behavior for the uninitialized data area, the stack,
41248 and of course, files. Finally, it is highly desirable to set the allocated memory to zero for security
41249 reasons. Thus, initializing memory objects to zero is required.

1838 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shm_open()

41250 FUTURE DIRECTIONS
41251 None.

41252 SEE ALSO
41253 close(), dup(), exec, fcntl(), mmap(), shmat(), shmctl(), shmdt(), shm_unlink(), umask(), the Base |
41254 Definitions volume of IEEE Std. 1003.1-200x, <fcntl.h>, <sys/mman.h> |

41255 CHANGE HISTORY
41256 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

41257 Issue 6
41258 The shm_open() function is marked as part of the Shared Memory Objects option. |

41259 The [ENOSYS] error condition has been removed as stubs need not be provided if an
41260 implementation does not support the Shared Memory Objects option. |

System Interfaces, Issue 6 1839

shm_unlink() System Interfaces

41261 NAME
41262 shm_unlink — remove a shared memory object (REALTIME)

41263 SYNOPSIS
41264 SHM #include <sys/mman.h>

41265 int shm_unlink(const char * name);
41266

41267 DESCRIPTION
41268 The shm_unlink() function removes the name of the shared memory object named by the string
41269 pointed to by name.

41270 If one or more references to the shared memory object exist when the object is unlinked, the
41271 name is removed before shm_unlink() returns, but the removal of the memory object contents is
41272 postponed until all open and map references to the shared memory object have been removed.

41273 Even if the object continues to exist after the last shm_unlink(), reuse of the name shall cause a
41274 new shared memory object to be created.

41275 RETURN VALUE
41276 Upon successful completion, a value of zero shall be returned. Otherwise, a value of −1 shall be
41277 returned and errno set to indicate the error. If −1 is returned, the named shared memory object
41278 shall not be changed by this function call.

41279 ERRORS
41280 The shm_unlink() function shall fail if:

41281 [EACCES] Permission is denied to unlink the named shared memory object. |

41282 [ENAMETOOLONG] |
41283 The length of the name argument exceeds {PATH_MAX} or a path name |
41284 component is longer than {NAME_MAX}. |

41285 [ENOENT] The named shared memory object does not exist. |

41286 EXAMPLES
41287 None.

41288 APPLICATION USAGE
41289 Names of memory objects that were allocated with open() are deleted with unlink() in the usual
41290 fashion. Names of memory objects that were allocated with shm_open() are deleted with
41291 shm_unlink(). Note that the actual memory object is not destroyed until the last close and
41292 unmap on it have occurred if it was already in use.

41293 RATIONALE
41294 None.

41295 FUTURE DIRECTIONS
41296 None.

41297 SEE ALSO
41298 close(), mmap(), munmap(), shmat(), shmctl(), shmdt(), shm_open(), the Base Definitions volume |
41299 of IEEE Std. 1003.1-200x, <sys/mman.h> |

41300 CHANGE HISTORY
41301 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

1840 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shm_unlink()

41302 Issue 6
41303 The shm_unlink() function is marked as part of the Shared Memory Objects option. |

41304 In the DESCRIPTION, text is added to clarify that reusing the same name after a shm_unlink()
41305 will not attach to the old shared memory object.

41306 The [ENOSYS] error condition has been removed as stubs need not be provided if an
41307 implementation does not support the Shared Memory Objects option. |

System Interfaces, Issue 6 1841

shmat() System Interfaces

41308 NAME
41309 shmat — XSI shared memory attach operation

41310 SYNOPSIS
41311 XSI #include <sys/shm.h>

41312 void *shmat(int shmid , const void * shmaddr , int shmflg);
41313

41314 DESCRIPTION
41315 The shmat() function operates on XSI shared memory (see the Base Definitions volume of |
41316 IEEE Std. 1003.1-200x, Section 3.342, Shared Memory Object). It is unspecified whether this |
41317 function interoperates with the realtime interprocess communication facilities defined in Section
41318 2.8 (on page 543).

41319 The shmat() function attaches the shared memory segment associated with the shared memory
41320 identifier specified by shmid to the address space of the calling process. The segment is attached
41321 at the address specified by one of the following criteria:

41322 • If shmaddr is a null pointer, the segment is attached at the first available address as selected
41323 by the system.

41324 • If shmaddr is not a null pointer and (shmflg &SHM_RND) is non-zero, the segment is attached
41325 at the address given by (shmaddr −((uintptr_t)shmaddr %SHMLBA)). The character ’%’ is the
41326 C-language remainder operator.

41327 • If shmaddr is not a null pointer and (shmflg &SHM_RND) is 0, the segment is attached at the
41328 address given by shmaddr .

41329 • The segment is attached for reading if (shmflg &SHM_RDONLY) is non-zero and the calling
41330 process has read permission; otherwise, if it is 0 and the calling process has read and write
41331 permission, the segment is attached for reading and writing.

41332 RETURN VALUE
41333 Upon successful completion, shmat() shall increment the value of shm_nattch in the data
41334 structure associated with the shared memory ID of the attached shared memory segment and
41335 return the segment’s start address.

41336 Otherwise, the shared memory segment shall not be attached, shmat() shall return −1, and errno
41337 shall be set to indicate the error.

41338 ERRORS
41339 The shmat() function shall fail if:

41340 [EACCES] Operation permission is denied to the calling process; see Section 2.7 (on page |
41341 541).

41342 [EINVAL] The value of shmid is not a valid shared memory identifier, the shmaddr is not a |
41343 null pointer, and the value of (shmaddr −((uintptr_t)shmaddr %SHMLBA)) is an
41344 illegal address for attaching shared memory; or the shmaddr is not a null
41345 pointer, (shmflg &SHM_RND) is 0, and the value of shmaddr is an illegal
41346 address for attaching shared memory.

41347 [EMFILE] The number of shared memory segments attached to the calling process |
41348 would exceed the system-imposed limit.

41349 [ENOMEM] The available data space is not large enough to accommodate the shared |
41350 memory segment.

1842 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shmat()

41351 EXAMPLES
41352 None.

41353 APPLICATION USAGE
41354 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
41355 Application developers who need to use IPC should design their applications so that modules
41356 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
41357 alternative interfaces.

41358 RATIONALE
41359 None.

41360 FUTURE DIRECTIONS
41361 None.

41362 SEE ALSO
41363 exec, exit(), fork (), shmctl(), shmdt(), shmget(), shm_open(), shm_unlink(), the Base Definitions |
41364 volume of IEEE Std. 1003.1-200x, <sys/shm.h>, Section 2.7 (on page 541) |

41365 CHANGE HISTORY
41366 First released in Issue 2. Derived from Issue 2 of the SVID. |

41367 Issue 4
41368 The function is no longer marked as OPTIONAL FUNCTIONALITY.

41369 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

41370 The type of argument shmaddr is changed from char* to const void*.

41371 The [ENOSYS] error is removed from the ERRORS section.

41372 The DESCRIPTION is clarified in several places.

41373 A FUTURE DIRECTIONS section is added warning application developers about migration to
41374 IEEE 1003.4 interfaces for interprocess communication.

41375 Issue 5
41376 Moved from SHARED MEMORY to BASE.

41377 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
41378 DIRECTIONS to a new APPLICATION USAGE section.

41379 Issue 6
41380 The Open Group corrigenda item U021/13 has been applied.

System Interfaces, Issue 6 1843

shmctl() System Interfaces

41381 NAME
41382 shmctl — XSI shared memory control operations

41383 SYNOPSIS
41384 XSI #include <sys/shm.h>

41385 int shmctl(int shmid , int cmd, struct shmid_ds * buf);
41386

41387 DESCRIPTION
41388 The shmctl() function operates on XSI shared memory (see the Base Definitions volume of |
41389 IEEE Std. 1003.1-200x, Section 3.342, Shared Memory Object). It is unspecified whether this |
41390 function interoperates with the realtime interprocess communication facilities defined in Section
41391 2.8 (on page 543).

41392 The shmctl() function provides a variety of shared memory control operations as specified by
41393 cmd. The following values for cmd are available:

41394 IPC_STAT Place the current value of each member of the shmid_ds data structure
41395 associated with shmid into the structure pointed to by buf. The contents of the
41396 structure are defined in <sys/shm.h>.

41397 IPC_SET Set the value of the following members of the shmid_ds data structure
41398 associated with shmid to the corresponding value found in the structure
41399 pointed to by buf:

41400 shm_perm.uid
41401 shm_perm.gid
41402 shm_perm.mode Low-order nine bits.

41403 IPC_SET can only be executed by a process that has an effective user ID equal
41404 to either that of a process with appropriate privileges or to the value of
41405 shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated with
41406 shmid.

41407 IPC_RMID Remove the shared memory identifier specified by shmid from the system and
41408 destroy the shared memory segment and shmid_ds data structure associated
41409 with it. IPC_RMID can only be executed by a process that has an effective user
41410 ID equal to either that of a process with appropriate privileges or to the value
41411 of shm_perm.cuid or shm_perm.uid in the shmid_ds data structure associated
41412 with shmid.

41413 RETURN VALUE
41414 Upon successful completion, shmctl() shall return 0; otherwise, it shall return −1 and set errno to
41415 indicate the error.

41416 ERRORS
41417 The shmctl() function shall fail if:

41418 [EACCES] The argument cmd is equal to IPC_STAT and the calling process does not have |
41419 read permission; see Section 2.7 (on page 541).

41420 [EINVAL] The value of shmid is not a valid shared memory identifier, or the value of cmd |
41421 is not a valid command.

41422 [EPERM] The argument cmd is equal to IPC_RMID or IPC_SET and the effective user ID |
41423 of the calling process is not equal to that of a process with appropriate
41424 privileges and it is not equal to the value of shm_perm.cuid or shm_perm.uid in
41425 the data structure associated with shmid.

1844 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shmctl()

41426 The shmctl() function may fail if:

41427 [EOVERFLOW] The cmd argument is IPC_STAT and the gid or uid value is too large to be |
41428 stored in the structure pointed to by the buf argument.

41429 EXAMPLES
41430 None.

41431 APPLICATION USAGE
41432 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
41433 Application developers who need to use IPC should design their applications so that modules
41434 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
41435 alternative interfaces.

41436 RATIONALE
41437 None.

41438 FUTURE DIRECTIONS
41439 None.

41440 SEE ALSO
41441 shmat(), shmdt(), shmget(), shm_open(), shm_unlink(), the Base Definitions volume of |
41442 IEEE Std. 1003.1-200x, <sys/shm.h>, Section 2.7 (on page 541) |

41443 CHANGE HISTORY
41444 First released in Issue 2. Derived from Issue 2 of the SVID. |

41445 Issue 4
41446 The function is no longer marked as OPTIONAL FUNCTIONALITY.

41447 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

41448 The [ENOSYS] error is removed from the ERRORS section.

41449 A FUTURE DIRECTIONS section is added warning application developers about migration to
41450 IEEE 1003.4 interfaces for interprocess communication.

41451 Issue 4, Version 2
41452 The ERRORS section is updated for X/OPEN UNIX conformance to include [EOVERFLOW] as
41453 an optional error.

41454 Issue 5
41455 Moved from SHARED MEMORY to BASE.

41456 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
41457 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1845

shmdt() System Interfaces

41458 NAME
41459 shmdt — XSI shared memory detach operation

41460 SYNOPSIS
41461 XSI #include <sys/shm.h>

41462 int shmdt(const void * shmaddr);
41463

41464 DESCRIPTION
41465 The shmdt() function operates on XSI shared memory (see the Base Definitions volume of |
41466 IEEE Std. 1003.1-200x, Section 3.342, Shared Memory Object). It is unspecified whether this |
41467 function interoperates with the realtime interprocess communication facilities defined in Section
41468 2.8 (on page 543).

41469 The shmdt() function detaches the shared memory segment located at the address specified by
41470 shmaddr from the address space of the calling process.

41471 RETURN VALUE
41472 Upon successful completion, shmdt() shall decrement the value of shm_nattch in the data
41473 structure associated with the shared memory ID of the attached shared memory segment and
41474 return 0.

41475 Otherwise, the shared memory segment shall not be detached, shmdt() shall return −1, and errno
41476 shall be set to indicate the error.

41477 ERRORS
41478 The shmdt() function shall fail if:

41479 [EINVAL] The value of shmaddr is not the data segment start address of a shared |
41480 memory segment.

41481 EXAMPLES
41482 None.

41483 APPLICATION USAGE
41484 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
41485 Application developers who need to use IPC should design their applications so that modules
41486 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
41487 alternative interfaces.

41488 RATIONALE
41489 None.

41490 FUTURE DIRECTIONS
41491 None.

41492 SEE ALSO
41493 exec, exit(), fork (), shmat(), shmctl(), shmget(), shm_open(), shm_unlink(), the Base Definitions |
41494 volume of IEEE Std. 1003.1-200x, <sys/shm.h>, Section 2.7 (on page 541) |

41495 CHANGE HISTORY
41496 First released in Issue 2. Derived from Issue 2 of the SVID. |

41497 Issue 4
41498 The function is no longer marked as OPTIONAL FUNCTIONALITY.

41499 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

41500 The type of argument shmaddr is changed from char* to const void*.

1846 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shmdt()

41501 The DESCRIPTION is clarified in several places.

41502 The [ENOSYS] error is removed from the ERRORS section.

41503 A FUTURE DIRECTIONS section is added warning application developers about migration to
41504 IEEE 1003.4 interfaces for interprocess communication.

41505 Issue 5
41506 Moved from SHARED MEMORY to BASE.

41507 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
41508 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1847

shmget() System Interfaces

41509 NAME
41510 shmget — get XSI shared memory segment

41511 SYNOPSIS
41512 XSI #include <sys/shm.h>

41513 int shmget(key_t key , size_t size , int shmflg);
41514

41515 DESCRIPTION
41516 The shmget() function operates on XSI shared memory (see the Base Definitions volume of |
41517 IEEE Std. 1003.1-200x, Section 3.342, Shared Memory Object). It is unspecified whether this |
41518 function interoperates with the realtime interprocess communication facilities defined in Section
41519 2.8 (on page 543).

41520 The shmget() function shall return the shared memory identifier associated with key .

41521 A shared memory identifier, associated data structure, and shared memory segment of at least
41522 size bytes (see <sys/shm.h>) are created for key if one of the following is true:

41523 • The argument key is equal to IPC_PRIVATE.

41524 • The argument key does not already have a shared memory identifier associated with it and
41525 (shmflg &IPC_CREAT) is non-zero.

41526 Upon creation, the data structure associated with the new shared memory identifier shall be
41527 initialized as follows:

41528 • The values of shm_perm.cuid , shm_perm.uid, shm_perm.cgid , and shm_perm.gid are set equal to
41529 the effective user ID and effective group ID, respectively, of the calling process.

41530 • The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of shmflg .
41531 The value of shm_segsz is set equal to the value of size .

41532 • The values of shm_lpid , shm_nattch , shm_atime, and shm_dtime are set equal to 0.

41533 • The value of shm_ctime is set equal to the current time.

41534 When the shared memory segment is created, it shall be initialized with all zero values.

41535 RETURN VALUE
41536 Upon successful completion, shmget() shall return a non-negative integer, namely a shared
41537 memory identifier; otherwise, it shall return −1 and set errno to indicate the error.

41538 ERRORS
41539 The shmget() function shall fail if:

41540 [EACCES] A shared memory identifier exists for key but operation permission as |
41541 specified by the low-order nine bits of shmflg would not be granted; see
41542 Section 2.7 (on page 541).

41543 [EEXIST] A shared memory identifier exists for the argument key but (shmflg |
41544 &IPC_CREAT) &&(shmflg &IPC_EXCL) is non-zero.

41545 [EINVAL] The value of size is less than the system-imposed minimum or greater than the |
41546 system-imposed maximum, or a shared memory identifier exists for the
41547 argument key but the size of the segment associated with it is less than size and
41548 size is not 0.

41549 [ENOENT] A shared memory identifier does not exist for the argument key and (shmflg |
41550 &IPC_CREAT) is 0.

1848 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shmget()

41551 [ENOMEM] A shared memory identifier and associated shared memory segment shall be |
41552 created, but the amount of available physical memory is not sufficient to fill
41553 the request.

41554 [ENOSPC] A shared memory identifier is to be created, but the system-imposed limit on |
41555 the maximum number of allowed shared memory identifiers system-wide
41556 would be exceeded.

41557 EXAMPLES
41558 None.

41559 APPLICATION USAGE
41560 The POSIX Realtime Extension defines alternative interfaces for interprocess communication.
41561 Application developers who need to use IPC should design their applications so that modules
41562 using the IPC routines described in Section 2.7 (on page 541) can be easily modified to use the
41563 alternative interfaces.

41564 RATIONALE
41565 None.

41566 FUTURE DIRECTIONS
41567 None.

41568 SEE ALSO
41569 shmat(), shmctl(), shmdt(), shm_open(), shm_unlink(), the Base Definitions volume of |
41570 IEEE Std. 1003.1-200x, <sys/shm.h>, Section 2.7 (on page 541) |

41571 CHANGE HISTORY
41572 First released in Issue 2. Derived from Issue 2 of the SVID. |

41573 Issue 4
41574 The function is no longer marked as OPTIONAL FUNCTIONALITY.

41575 The <sys/types.h> and <sys/ipc.h> headers are removed from the SYNOPSIS section.

41576 The [ENOSYS] error is removed from the ERRORS section.

41577 A FUTURE DIRECTIONS section is added warning application developers about migration to
41578 IEEE 1003.4 interfaces for interprocess communication.

41579 Issue 5
41580 Moved from SHARED MEMORY to BASE.

41581 The note about use of POSIX Realtime Extension IPC routines has been moved from FUTURE
41582 DIRECTIONS to a new APPLICATION USAGE section.

System Interfaces, Issue 6 1849

shutdown() System Interfaces

41583 NAME
41584 shutdown — shut down socket send and receive operations

41585 SYNOPSIS
41586 #include <sys/socket.h>

41587 int shutdown(int socket , int how);

41588 DESCRIPTION
41589 The shutdown() function shall cause all or part of a full-duplex connection on the socket
41590 associated with the file descriptor socket to be shut down.

41591 The shutdown() function takes the following arguments:

41592 socket Specifies the file descriptor of the socket.

41593 how Specifies the type of shutdown. The values are as follows:

41594 SHUT_RD Disables further receive operations.

41595 SHUT_WR Disables further send operations.

41596 SHUT_RDWR Disables further send and receive operations.

41597 The shutdown() function disables subsequent send and/or receive operations on a socket,
41598 depending on the value of the how argument.

41599 RETURN VALUE
41600 Upon successful completion, shutdown() shall return 0; otherwise, −1 shall be returned and errno
41601 set to indicate the error.

41602 ERRORS
41603 The shutdown() function shall fail if:

41604 [EBADF] The socket argument is not a valid file descriptor.

41605 [EINVAL] The how argument is invalid.

41606 [ENOTCONN] The socket is not connected.

41607 [ENOTSOCK] The socket argument does not refer to a socket.

41608 The shutdown() function may fail if:

41609 [ENOBUFS] Insufficient resources were available in the system to perform the operation. |

41610 EXAMPLES
41611 None.

41612 APPLICATION USAGE
41613 None.

41614 RATIONALE
41615 None.

41616 FUTURE DIRECTIONS
41617 None.

41618 SEE ALSO
41619 getsockopt (), read(), recv(), recvfrom(), recvmsg(), select(), send(), sendto(), setsockopt (), socket(),
41620 write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

1850 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces shutdown()

41621 CHANGE HISTORY
41622 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

System Interfaces, Issue 6 1851

sigaction() System Interfaces

41623 NAME
41624 sigaction — examine and change signal action

41625 SYNOPSIS
41626 #include <signal.h>

41627 int sigaction(int sig , const struct sigaction *restrict act , |
41628 struct sigaction *restrict oact); |

41629 DESCRIPTION |
41630 The sigaction () function allows the calling process to examine and/or specify the action to be
41631 associated with a specific signal. The argument sig specifies the signal; acceptable values are
41632 defined in <signal.h>.

41633 The structure sigaction, used to describe an action to be taken, is defined in the header
41634 <signal.h> to include at least the following members:
41635 ___
41636 Member Type Member Name Description___
41637 void(*) (int) sa_handler SIG_DFL, SIG_IGN, or pointer to a function.
41638 Additional set of signals to be blocked
41639 during execution of signal-catching
41640 function.

sigset_t sa_mask

41641 int sa_flags Special flags to affect behavior of signal.
41642 void(*) (int,
41643 siginfo_t *, void *) sa_sigaction Signal-catching function.___LL

L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L

41644 If the argument act is not a null pointer, it points to a structure specifying the action to be
41645 associated with the specified signal. If the argument oact is not a null pointer, the action
41646 previously associated with the signal is stored in the location pointed to by the argument oact. If
41647 the argument act is a null pointer, signal handling is unchanged; thus, the call can be used to
41648 enquire about the current handling of a given signal. The SIGKILL and SIGSTOP signals shall
41649 not be added to the signal mask using this mechanism; this restriction shall be enforced by the
41650 system without causing an error to be indicated.

41651 If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
41652 sa_handler field identifies the action to be associated with the specified signal. If the
41653 SA_SIGINFO flag is set in the sa_flags field, and the implementation supports the Realtime
41654 Signals Extension option or the X/Open System Interfaces Extension option, the sa_sigaction
41655 field specifies a signal-catching function. If the SA_SIGINFO bit is cleared and the sa_handler
41656 field specifies a signal-catching function, or if the SA_SIGINFO bit is set, the sa_mask field
41657 identifies a set of signals that shall be added to the signal mask of the thread before the signal-
41658 catching function is invoked. If the sa_handler field specifies a signal-catching function, the
41659 sa_mask field identifies a set of signals that shall be added to the process’ signal mask before the
41660 signal-catching function is invoked.

41661 The sa_flags field can be used to modify the behavior of the specified signal.

41662 The following flags, defined in the header <signal.h>, can be set in sa_flags :

41663 SA_NOCLDSTOP Do not generate SIGCHLD when children stop. |

41664 If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags , and |
41665 the implementation supports the SIGCHLD signal, then a SIGCHLD |
41666 signal shall be generated for the calling process whenever any of its child |
41667 processes stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set in |
41668 sa_flags , then the implementation shall not generate a SIGCHLD signal in |

1852 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigaction()

41669 this way. |

41670 XSI SA_ONSTACK If set and an alternate signal stack has been declared with sigaltstack () or
41671 sigstack (), the signal shall be delivered to the calling process on that stack.
41672 Otherwise, the signal shall be delivered on the current stack.

41673 XSI SA_RESETHAND If set, the disposition of the signal shall be reset to SIG_DFL and the
41674 SA_SIGINFO flag shall be cleared on entry to the signal handler.

41675 Note: SIGILL and SIGTRAP cannot be automatically reset when
41676 delivered; the system silently enforces this restriction.

41677 Otherwise, the disposition of the signal shall not be modified on entry to
41678 the signal handler.

41679 In addition, if this flag is set, sigaction () behaves as if the SA_NODEFER
41680 flag were also set.

41681 XSI SA_RESTART This flag affects the behavior of interruptible functions; that is, those
41682 specified to fail with errno set to [EINTR]. If set, and a function specified
41683 as interruptible is interrupted by this signal, the function shall restart and
41684 shall not fail with [EINTR] unless otherwise specified. If the flag is not
41685 set, interruptible functions interrupted by this signal shall fail with errno
41686 set to [EINTR].

41687 SA_SIGINFO If cleared and the signal is caught, the signal-catching function shall be
41688 entered as:

41689 void func(int signo);

41690 where signo is the only argument to the signal catching function. In this
41691 case, the application shall use the sa_handler member to describe the
41692 signal catching function and the application shall not modify the
41693 sa_sigaction member.

41694 XSI|RTS If SA_SIGINFO is set and the signal is caught, the signal-catching
41695 function shall be entered as:

41696 void func(int signo , siginfo_t * info , void * context);

41697 where two additional arguments are passed to the signal catching
41698 function. The second argument shall point to an object of type siginfo_t
41699 explaining the reason why the signal was generated; the third argument
41700 can be cast to a pointer to an object of type ucontext_t to refer to the
41701 receiving process’ context that was interrupted when the signal was
41702 delivered. In this case, the application shall use the sa_sigaction member
41703 to describe the signal catching function and the application shall not
41704 modify the sa_handler member.

41705 The si_signo member contains the system-generated signal number.

41706 XSI The si_errno member may contain implementation-defined additional |
41707 error information; if non-zero, it contains an error number identifying the |
41708 condition that caused the signal to be generated.

41709 The si_code member contains a code identifying the cause of the signal. If
41710 the value of si_code is less than or equal to 0, then the signal was
41711 generated by a process and si_pid and si_uid , respectively, indicate the
41712 process ID and the real user ID of the sender. The <signal.h> header
41713 description contains information about the signal specific contents of the

System Interfaces, Issue 6 1853

sigaction() System Interfaces

41714 elements of the siginfo_t type.

41715 XSI SA_NOCLDWAIT If set, and sig equals SIGCHLD, child processes of the calling processes
41716 shall not be transformed into zombie processes when they terminate. If
41717 the calling process subsequently waits for its children, and the process
41718 has no unwaited-for children that were transformed into zombie
41719 processes, it shall block until all of its children terminate, and wait(), |
41720 waitid (), and waitpid () shall fail and set errno to [ECHILD]. Otherwise,
41721 terminating child processes shall be transformed into zombie processes,
41722 unless SIGCHLD is set to SIG_IGN.

41723 XSI SA_NODEFER If set and sig is caught, sig shall not be added to the process’ signal mask
41724 on entry to the signal handler unless it is included in sa_mask . Otherwise,
41725 sig shall always be added to the process’ signal mask on entry to the
41726 signal handler.

41727 When a signal is caught by a signal-catching function installed by sigaction (), a new signal mask |
41728 is calculated and installed for the duration of the signal-catching function (or until a call to either
41729 sigprocmask () or sigsuspend() is made). This mask is formed by taking the union of the current
41730 XSI signal mask and the value of the sa_mask for the signal being delivered unless SA_NODEFER or
41731 SA_RESETHAND is set, and then including the signal being delivered. If and when the user’s
41732 signal handler returns normally, the original signal mask is restored.

41733 Once an action is installed for a specific signal, it remains installed until another action is
41734 XSI explicitly requested (by another call to sigaction ()), until the SA_RESETHAND flag causes
41735 resetting of the handler,or until one of the exec functions is called.

41736 If the previous action for sig had been established by signal(), the values of the fields returned in
41737 the structure pointed to by oact are unspecified, and in particular oact ->sa_handler is not |
41738 necessarily the same value passed to signal(). However, if a pointer to the same structure or a
41739 copy thereof is passed to a subsequent call to sigaction () via the act argument, handling of the
41740 signal shall be as if the original call to signal() were repeated.

41741 If sigaction () fails, no new signal handler is installed.

41742 It is unspecified whether an attempt to set the action for a signal that cannot be caught or
41743 ignored to SIG_DFL is ignored or causes an error to be returned with errno set to [EINVAL].

41744 If SA_SIGINFO is not set in sa_flags , then the disposition of subsequent occurrences of sig when |
41745 it is already pending is implementation-defined; the signal-catching function shall be invoked |
41746 RTS with a single argument. If the implementation supports the Realtime Signals Extension option,
41747 and if SA_SIGINFO is set in sa_flags , then subsequent occurrences of sig generated by sigqueue()
41748 or as a result of any signal-generating function that supports the specification of an application-
41749 defined value (when sig is already pending) shall be queued in FIFO order until delivered or
41750 accepted; the signal-catching function shall be invoked with three arguments. The application
41751 specified value is passed to the signal-catching function as the si_value member of the siginfo_t
41752 structure.

41753 The result of the use of sigaction () and a sigwait () function concurrently within a process on the
41754 same signal is unspecified.

41755 RETURN VALUE
41756 Upon successful completion, sigaction () shall return 0; otherwise, −1 shall be returned, errno shall
41757 be set to indicate the error, and no new signal-catching function shall be installed.

1854 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigaction()

41758 ERRORS
41759 The sigaction () function shall fail if:

41760 [EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a |
41761 signal that cannot be caught or ignore a signal that cannot be ignored.

41762 [ENOTSUP] The SA_SIGINFO bit flag is set in the sa_flags field of the sigaction structure,
41763 and the implementation does not support either the Realtime Signals
41764 Extension option, or the X/Open System Interfaces Extension option.

41765 The sigaction () function may fail if:

41766 [EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be |
41767 caught or ignored (or both).

41768 EXAMPLES
41769 None.

41770 APPLICATION USAGE
41771 The sigaction () function supersedes the signal() function, and should be used in preference. In
41772 particular, sigaction () and signal() should not be used in the same process to control the same
41773 signal. The behavior of reentrant functions, as defined in the DESCRIPTION, is as specified by
41774 this volume of IEEE Std. 1003.1-200x, regardless of invocation from a signal-catching function.
41775 This is the only intended meaning of the statement that reentrant functions may be used in
41776 signal-catching functions without restrictions. Applications must still consider all effects of such
41777 functions on such things as data structures, files, and process state. In particular, application
41778 writers need to consider the restrictions on interactions when interrupting sleep() and
41779 interactions among multiple handles for a file description. The fact that any specific function is
41780 listed as reentrant does not necessarily mean that invocation of that function from a signal-
41781 catching function is recommended.

41782 In order to prevent errors arising from interrupting non-reentrant function calls, applications
41783 should protect calls to these functions either by blocking the appropriate signals or through the
41784 use of some programmatic semaphore (see semget(), sem_init(), sem_open(), and so on). Note in
41785 particular that even the ‘‘safe’’ functions may modify errno; the signal-catching function, if not
41786 executing as an independent thread, may want to save and restore its value. Naturally, the same
41787 principles apply to the reentrancy of application routines and asynchronous data access. Note
41788 that longjmp() and siglongjmp () are not in the list of reentrant functions. This is because the code
41789 executing after longjmp() and siglongjmp () can call any unsafe functions with the same danger as
41790 calling those unsafe functions directly from the signal handler. Applications that use longjmp()
41791 and siglongjmp () from within signal handlers require rigorous protection in order to be portable.
41792 Many of the other functions that are excluded from the list are traditionally implemented using
41793 either malloc () or free() functions or the standard I/O library, both of which traditionally use
41794 data structures in a non-reentrant manner. Because any combination of different functions using
41795 a common data structure can cause reentrancy problems, this volume of IEEE Std. 1003.1-200x
41796 does not define the behavior when any unsafe function is called in a signal handler that
41797 interrupts an unsafe function.

41798 If the signal occurs other than as the result of calling abort(), kill (), or raise(), the behavior is
41799 undefined if the signal handler calls any function in the standard library other than one of the
41800 functions listed in the table above or refers to any object with static storage duration other than
41801 by assigning a value to a static storage duration variable of type volatile sig_atomic_t.
41802 Furthermore, if such a call fails, the value of errno is indeterminate.

41803 Usually, the signal is executed on the stack that was in effect before the signal was delivered. An
41804 alternate stack may be specified to receive a subset of the signals being caught.

System Interfaces, Issue 6 1855

sigaction() System Interfaces

41805 When the signal handler returns, the receiving process resumes execution at the point it was
41806 interrupted unless the signal handler makes other arrangements. If longjmp() or _longjmp () is
41807 used to leave the signal handler, then the signal mask must be explicitly restored by the process.

41808 This volume of IEEE Std. 1003.1-200x defines the third argument of a signal handling function |
41809 when SA_SIGINFO is set as a void* instead of a ucontext_t*, but without requiring type |
41810 checking. New applications should explicitly cast the third argument of the signal handling
41811 function to ucontext_t*.

41812 The BSD optional four argument signal handling function is not supported by this volume of
41813 IEEE Std. 1003.1-200x. The BSD declaration would be:

41814 void handler(int sig , int code , struct sigcontext * scp ,
41815 char * addr);

41816 where sig is the signal number, code is additional information on certain signals, scp is a pointer
41817 to the sigcontext structure, and addr is additional address information. Much the same
41818 information is available in the objects pointed to by the second argument of the signal handler
41819 specified when SA_SIGINFO is set.

41820 RATIONALE
41821 Although this volume of IEEE Std. 1003.1-200x requires that signals that cannot be ignored shall
41822 not be added to the signal mask when a signal-catching function is entered, there is no explicit
41823 requirement that subsequent calls to sigaction () reflect this in the information returned in the oact
41824 argument. In other words, if SIGKILL is included in the sa_mask field of act , it is unspecified
41825 whether or not a subsequent call to sigaction () returns with SIGKILL included in the sa_mask
41826 field of oact .

41827 The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter, allows overloading |
41828 SIGCHLD with the System V semantics that each SIGCLD signal indicates a single terminated
41829 child. Most portable applications that catch SIGCHLD are expected to install signal-catching
41830 functions that repeatedly call the waitpid () function with the WNOHANG flag set, acting on
41831 each child for which status is returned, until waitpid () returns zero. If stopped children are not of
41832 interest, the use of the SA_NOCLDSTOP flag can prevent the overhead from invoking the
41833 signal-catching routine when they stop.

41834 Some historical implementations also define other mechanisms for stopping processes, such as
41835 the ptrace() function. These implementations usually do not generate a SIGCHLD signal when
41836 processes stop due to this mechanism; however, that is beyond the scope of this volume of
41837 IEEE Std. 1003.1-200x.

41838 This volume of IEEE Std. 1003.1-200x requires that calls to sigaction () that supply a NULL act
41839 argument succeed, even in the case of signals that cannot be caught or ignored (that is, SIGKILL
41840 or SIGSTOP). The System V signal() and BSD sigvec() functions return [EINVAL] in these cases |
41841 and, in this respect, their behavior varies from sigaction ().

41842 This volume of IEEE Std. 1003.1-200x requires that sigaction () properly save and restore a signal
41843 action set up by the ISO C standard signal() function. However, there is no guarantee that the
41844 reverse is true, nor could there be given the greater amount of information conveyed by the
41845 sigaction structure. Because of this, applications should avoid using both functions for the same
41846 signal in the same process. Since this cannot always be avoided in case of general-purpose
41847 library routines, they should always be implemented with sigaction ().

41848 It was intended that the signal() function should be implementable as a library routine using
41849 sigaction ().

41850 The POSIX Realtime Extension extends the sigaction () function as specified by the POSIX.1-1990
41851 standard to allow the application to request on a per-signal basis via an additional signal action

1856 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigaction()

41852 flag that the extra parameters, including the application-defined signal value, if any, be passed
41853 to the signal-catching function.

41854 FUTURE DIRECTIONS
41855 The fpathconf () function is marked as an extension in the list of safe functions because it is not
41856 included in the corresponding list in the ISO POSIX-1 standard, but it is expected to be added in |
41857 a future version. |

41858 SEE ALSO
41859 Section 2.4 (on page 528), bsd_signal(), kill (), _longjmp (), longjmp(), raise(), semget(), sem_init(),
41860 sem_open(), sigaddset(), sigaltstack (), sigdelset(), sigemptyset(), sigfillset (), sigismember(), signal(),
41861 sigprocmask (), sigsuspend(), wait(), waitid (), waitpid (), the Base Definitions volume of |
41862 IEEE Std. 1003.1-200x, <signal.h>, <ucontext.h> |

41863 CHANGE HISTORY
41864 First released in Issue 3.

41865 Entry included for alignment with the POSIX.1-1988 standard.

41866 Issue 4
41867 The raise() and signal() functions are added to the list of functions that are either reentrant or not
41868 interruptible by signals; fpathconf () is also added to this list and marked as an extension; ustat()
41869 is removed from the list, as this function is withdrawn from the interface definition. It is no
41870 longer specified whether abort(), exit(), and longjmp() also fall into this category of functions.

41871 The APPLICATION USAGE section is added. Most of this text is moved from the
41872 DESCRIPTION in Issue 3.

41873 The FUTURE DIRECTIONS section is added.

41874 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

41875 • The type of argument act is changed from struct sigaction* to const struct sigaction*.

41876 • A statement is added to the DESCRIPTION indicating that the consequence of attempting to
41877 set SIG_DFL for a signal that cannot be caught or ignored is unspecified. The [EINVAL] error,
41878 describing one possible reaction to this condition, is added to the ERRORS section.

41879 Issue 4, Version 2
41880 The following changes are incorporated for X/OPEN UNIX conformance:

41881 • The DESCRIPTION describes sa_sigaction , the member of the sigaction structure that is the
41882 signal-catching function.

41883 • The DESCRIPTION describes the SA_ONSTACK, SA_RESETHAND, SA_RESTART,
41884 SA_SIGINFO, SA_NOCLDWAIT, and SA_NODEFER settings of sa_flags . The text describes
41885 the implications of the use of SA_SIGINFO for the number of arguments passed to the
41886 signal-catching function. The text also describes the effects of the SA_NODEFER and
41887 SA_RESETHAND flags on the delivery of a signal and on the permanence of an installed
41888 action.

41889 • The DESCRIPTION specifies the effect if the action for the SIGCHLD signal is set to
41890 SIG_IGN.

41891 • In the DESCRIPTION, additional text describes the effect if the action is a pointer to a
41892 function. A new bullet covers the case where SA_SIGINFO is set. SIGBUS is given as an
41893 additional signal for which the behavior of a process is undefined following a normal return
41894 from the signal-catching function.

System Interfaces, Issue 6 1857

sigaction() System Interfaces

41895 • The APPLICATION USAGE section is updated to describe use of an alternate signal stack;
41896 resumption of the process receiving the signal; coding for compatibility with POSIX.4-1993;
41897 and implementation of signal-handling functions in BSD.

41898 Issue 5
41899 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and POSIX
41900 Threads Extension.

41901 In the DESCRIPTION, the second argument to func when SA_SIGINFO is set is no longer
41902 permitted to be NULL, and the description of permitted siginfo_t contents is expanded by
41903 reference to <signal.h>.

41904 Because the X/OPEN UNIX Extension functionality is now folded into the BASE, the
41905 [ENOTSUP] error is deleted.

41906 Issue 6
41907 The Open Group corrigenda item U028/7 has been applied. In the paragraph entitled ‘‘Signal
41908 Effects on Other Functions’’, a reference to sigpending() is added.

41909 In the DESCRIPTION, the text ‘‘Signal Generation and Delivery’’ is moved to a separate section
41910 of this volume of IEEE Std. 1003.1-200x.

41911 Text describing functionality from the Realtime Signals option is marked.

41912 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

41913 • The [ENOTSUP] error condition is added.

41914 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

41915 The restrict keyword is added to the sigaction () prototype for alignment with the |
41916 ISO/IEC 9899: 1999 standard. |

41917 References to the wait3() function are removed. |

1858 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigaddset()

41918 NAME
41919 sigaddset — add a signal to a signal set

41920 SYNOPSIS
41921 #include <signal.h>

41922 int sigaddset(sigset_t * set , int signo);

41923 DESCRIPTION
41924 The sigaddset() function adds the individual signal specified by the signo to the signal set pointed
41925 to by set.

41926 Applications shall call either sigemptyset() or sigfillset () at least once for each object of type
41927 sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
41928 nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
41929 sigpending(), or sigprocmask (), the results are undefined.

41930 RETURN VALUE
41931 Upon successful completion, sigaddset() shall return 0; otherwise, it shall return −1 and set errno
41932 to indicate the error.

41933 ERRORS
41934 The sigaddset() function may fail if:

41935 [EINVAL] The value of the signo argument is an invalid or unsupported signal number. |

41936 EXAMPLES
41937 None.

41938 APPLICATION USAGE
41939 None.

41940 RATIONALE
41941 None.

41942 FUTURE DIRECTIONS
41943 None.

41944 SEE ALSO
41945 Section 2.4 (on page 528), sigaction (), sigdelset(), sigemptyset(), sigfillset (), sigismember(),
41946 sigpending(), sigprocmask (), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
41947 <signal.h>

CHANGE41948 HISTORY
41949 First released in Issue 3.

41950 Entry included for alignment with the POSIX.1-1988 standard.

41951 Issue 4
41952 The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

41953 Issue 5
41954 The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
41955 previous issues.

41956 Issue 6
41957 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 1859

sigaltstack() System Interfaces

41958 NAME
41959 sigaltstack — set and get signal alternate stack context

41960 SYNOPSIS
41961 XSI #include <signal.h>

41962 int sigaltstack(const stack_t *restrict ss , stack_t *restrict oss); |
41963 |

41964 DESCRIPTION
41965 The sigaltstack () function allows a process to define and examine the state of an alternate stack
41966 for signal handlers. Signals that have been explicitly declared to execute on the alternate stack
41967 shall be delivered on the alternate stack.

41968 If ss is not a null pointer, it points to a stack_t structure that specifies the alternate signal stack
41969 that shall take effect upon return from sigaltstack (). The ss_flags member specifies the new stack
41970 state. If it is set to SS_DISABLE, the stack is disabled and ss_sp and ss_size are ignored.
41971 Otherwise, the stack shall be enabled, and the ss_sp and ss_size members specify the new address
41972 and size of the stack.

41973 The range of addresses starting at ss_sp up to but not including ss_sp+ss_size , is available to the
41974 implementation for use as the stack. This function makes no assumptions regarding which end
41975 is the stack base and in which direction the stack grows as items are pushed.

41976 If oss is not a null pointer, on successful completion it shall point to a stack_t structure that
41977 specifies the alternate signal stack that was in effect prior to the call to sigaltstack (). The ss_sp
41978 and ss_size members specify the address and size of that stack. The ss_flags member specifies the
41979 stack’s state, and may contain one of the following values:

41980 SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to
41981 modify the alternate signal stack while the process is executing on it fail. This |
41982 flag shall not be modified by processes. |

41983 SS_DISABLE The alternate signal stack is currently disabled.

41984 The value SIGSTKSZ is a system default specifying the number of bytes that would be used to
41985 cover the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ
41986 is defined to be the minimum stack size for a signal handler. In computing an alternate stack
41987 size, a program should add that amount to its stack requirements to allow for the system
41988 implementation overhead. The constants SS_ONSTACK, SS_DISABLE, SIGSTKSZ, and
41989 MINSIGSTKSZ are defined in <signal.h>.

41990 After a successful call to one of the exec functions, there are no alternate signal stacks in the new
41991 process image.

41992 In some implementations, a signal (whether or not indicated to execute on the alternate stack)
41993 shall always execute on the alternate stack if it is delivered while another signal is being caught
41994 using the alternate stack.

41995 Use of this function by library threads that are not bound to kernel-scheduled entities results in
41996 undefined behavior.

41997 RETURN VALUE
41998 Upon successful completion, sigaltstack () shall return 0; otherwise, it shall return −1 and set errno
41999 to indicate the error.

1860 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigaltstack()

42000 ERRORS
42001 The sigaltstack () function shall fail if:

42002 [EINVAL] The ss argument is not a null pointer, and the ss_flags member pointed to by ss |
42003 contains flags other than SS_DISABLE.

42004 [ENOMEM] The size of the alternate stack area is less than MINSIGSTKSZ. |

42005 [EPERM] An attempt was made to modify an active stack. |

42006 EXAMPLES

42007 Allocating Memory for an Alternate Stack

42008 The following example illustrates a method for allocating memory for an alternate stack.

42009 #include <signal.h>
42010 ...
42011 if ((sigstk.ss_sp = malloc(SIGSTKSZ)) == NULL)
42012 /* Error return. */
42013 sigstk.ss_size = SIGSTKSZ;
42014 sigstk.ss_flags = 0;
42015 if (sigaltstack(&sigstk,(stack_t *)0) < 0)
42016 perror("sigaltstack");

42017 APPLICATION USAGE
42018 On some implementations, stack space is automatically extended as needed. On those
42019 implementations, automatic extension is typically not available for an alternate stack. If the stack
42020 overflows, the behavior is undefined.

42021 RATIONALE
42022 None.

42023 FUTURE DIRECTIONS
42024 None.

42025 SEE ALSO
42026 Section 2.4 (on page 528), sigaction (), sigsetjmp(), the Base Definitions volume of |
42027 IEEE Std. 1003.1-200x, <signal.h> |

42028 CHANGE HISTORY
42029 First released in Issue 4, Version 2.

42030 Issue 5
42031 Moved from X/OPEN UNIX extension to BASE.

42032 The last sentence of the DESCRIPTION was included as an APPLICATION USAGE note in
42033 previous issues.

42034 Issue 6
42035 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

42036 The restrict keyword is added to the sigaltstack () prototype for alignment with the |
42037 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1861

sigdelset() System Interfaces

42038 NAME
42039 sigdelset — delete a signal from a signal set

42040 SYNOPSIS
42041 #include <signal.h>

42042 int sigdelset(sigset_t * set , int signo);

42043 DESCRIPTION
42044 The sigdelset() function deletes the individual signal specified by signo from the signal set
42045 pointed to by set.

42046 Applications should call either sigemptyset() or sigfillset () at least once for each object of type
42047 sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
42048 nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
42049 sigpending(), or sigprocmask (), the results are undefined.

42050 RETURN VALUE
42051 Upon successful completion, sigdelset() shall return 0; otherwise, it shall return −1 and set errno
42052 to indicate the error.

42053 ERRORS
42054 The sigdelset() function may fail if:

42055 [EINVAL] The signo argument is not a valid signal number, or is an unsupported signal |
42056 number.

42057 EXAMPLES
42058 None.

42059 APPLICATION USAGE
42060 None.

42061 RATIONALE
42062 None.

42063 FUTURE DIRECTIONS
42064 None.

42065 SEE ALSO
42066 Section 2.4 (on page 528), sigaction (), sigaddset(), sigemptyset(), sigfillset (), sigismember(),
42067 sigpending(), sigprocmask (), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42068 <signal.h>

CHANGE42069 HISTORY
42070 First released in Issue 3.

42071 Entry included for alignment with the POSIX.1-1988 standard.

42072 Issue 4
42073 The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

42074 Issue 5
42075 The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
42076 previous issues.

1862 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigemptyset()

42077 NAME
42078 sigemptyset — initialize and empty a signal set

42079 SYNOPSIS
42080 #include <signal.h>

42081 int sigemptyset(sigset_t * set);

42082 DESCRIPTION
42083 The sigemptyset() function initializes the signal set pointed to by set, such that all signals defined
42084 in this volume of IEEE Std. 1003.1-200x are excluded.

42085 RETURN VALUE
42086 Upon successful completion, sigemptyset() shall return 0; otherwise, it shall return −1 and set
42087 errno to indicate the error.

42088 ERRORS
42089 No errors are defined.

42090 EXAMPLES
42091 None.

42092 APPLICATION USAGE
42093 None.

42094 RATIONALE
42095 The implementation of the sigemptyset() (or sigfillset ()) function could quite trivially clear (or
42096 set) all the bits in the signal set. Alternatively, it would be reasonable to initialize part of the
42097 structure, such as a version field, to permit binary-compatibility between releases where the size
42098 of the set varies. For such reasons, either sigemptyset() or sigfillset () must be called prior to any
42099 other use of the signal set, even if such use is read-only (for example, as an argument to
42100 sigpending()). This function is not intended for dynamic allocation.

42101 The sigfillset () and sigemptyset() functions require that the resulting signal set include (or
42102 exclude) all the signals defined in this volume of IEEE Std. 1003.1-200x. Although it is outside
42103 the scope of this volume of IEEE Std. 1003.1-200x to place this requirement on signals that are
42104 implemented as extensions, it is recommended that implementation-defined signals also be |
42105 affected by these functions. However, there may be a good reason for a particular signal not to
42106 be affected. For example, blocking or ignoring an implementation-defined signal may have |
42107 undesirable side effects, whereas the default action for that signal is harmless. In such a case, it
42108 would be preferable for such a signal to be excluded from the signal set returned by sigfillset ().

42109 In early proposals there was no distinction between invalid and unsupported signals (the names
42110 of optional signals that were not supported by an implementation were not defined by that
42111 implementation). The [EINVAL] error was thus specified as a required error for invalid signals. |
42112 With that distinction, it is not necessary to require implementations of these functions to
42113 determine whether an optional signal is actually supported, as that could have a significant
42114 performance impact for little value. The error could have been required for invalid signals and
42115 optional for unsupported signals, but this seemed unnecessarily complex. Thus, the error is
42116 optional in both cases.

42117 FUTURE DIRECTIONS
42118 None.

42119 SEE ALSO
42120 Section 2.4 (on page 528), sigaction (), sigaddset(), sigdelset(), sigfillset (), sigismember(),
42121 sigpending(), sigprocmask (), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42122 <signal.h>

System Interfaces, Issue 6 1863

sigemptyset() System Interfaces

42123 CHANGE HISTORY
42124 First released in Issue 3.

42125 Entry included for alignment with the POSIX.1-1988 standard.

1864 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigfillset()

42126 NAME
42127 sigfillset — initialize and fill a signal set

42128 SYNOPSIS
42129 #include <signal.h>

42130 int sigfillset(sigset_t * set);

42131 DESCRIPTION
42132 The sigfillset () function initializes the signal set pointed to by set, such that all signals defined in
42133 this volume of IEEE Std. 1003.1-200x are included.

42134 RETURN VALUE
42135 Upon successful completion, sigfillset () shall return 0; otherwise, it shall return −1 and set errno
42136 to indicate the error.

42137 ERRORS
42138 No errors are defined.

42139 EXAMPLES
42140 None.

42141 APPLICATION USAGE
42142 None.

42143 RATIONALE
42144 Refer to sigemptyset() (on page 1863).

42145 FUTURE DIRECTIONS
42146 None.

42147 SEE ALSO
42148 Section 2.4 (on page 528), sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigismember(),
42149 sigpending(), sigprocmask (), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42150 <signal.h>

CHANGE42151 HISTORY
42152 First released in Issue 3.

42153 Entry included for alignment with the POSIX.1-1988 standard.

System Interfaces, Issue 6 1865

sighold() System Interfaces

42154 NAME
42155 sighold, sigignore — add a signal to the signal mask or set a signal disposition to be ignored

42156 SYNOPSIS
42157 XSI #include <signal.h>

42158 int sighold(int sig);
42159 int sigignore(int sig);
42160

42161 DESCRIPTION
42162 Refer to signal().

1866 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces siginterrupt()

42163 NAME
42164 siginterrupt — allow signals to interrupt functions

42165 SYNOPSIS
42166 XSI #include <signal.h>

42167 int siginterrupt(int sig , int flag);
42168

42169 DESCRIPTION
42170 The siginterrupt() function is used to change the restart behavior when a function is interrupted
42171 by the specified signal. The function siginterrupt(sig, flag) has an effect as if implemented as:

42172 siginterrupt(int sig, int flag) {
42173 int ret;
42174 struct sigaction act;

42175 (void) sigaction(sig, NULL, &act);
42176 if (flag)
42177 act.sa_flags &= ˜SA_RESTART;
42178 else
42179 act.sa_flags |= SA_RESTART;
42180 ret = sigaction(sig, &act, NULL);
42181 return ret;
42182 }

42183 RETURN VALUE
42184 Upon successful completion, siginterrupt() shall return 0; otherwise, −1 shall be returned and
42185 errno set to indicate the error.

42186 ERRORS
42187 The siginterrupt() function shall fail if:

42188 [EINVAL] The sig argument is not a valid signal number. |

42189 EXAMPLES
42190 None.

42191 APPLICATION USAGE
42192 The siginterrupt() function supports programs written to historical system interfaces. A portable
42193 application, when being written or rewritten, should use sigaction () with the SA_RESTART flag
42194 instead of siginterrupt().

42195 RATIONALE
42196 None.

42197 FUTURE DIRECTIONS
42198 None.

42199 SEE ALSO
42200 Section 2.4 (on page 528), sigaction (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42201 <signal.h>

CHANGE42202 HISTORY
42203 First released in Issue 4, Version 2.

System Interfaces, Issue 6 1867

siginterrupt() System Interfaces

42204 Issue 5
42205 Moved from X/OPEN UNIX extension to BASE.

1868 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigismember()

42206 NAME
42207 sigismember — test for a signal in a signal set

42208 SYNOPSIS
42209 #include <signal.h>

42210 int sigismember(const sigset_t * set , int signo);

42211 DESCRIPTION
42212 The sigismember() function tests whether the signal specified by signo is a member of the set
42213 pointed to by set.

42214 Applications should call either sigemptyset() or sigfillset () at least once for each object of type
42215 sigset_t prior to any other use of that object. If such an object is not initialized in this way, but is
42216 nonetheless supplied as an argument to any of sigaction (), sigaddset(), sigdelset(), sigismember(),
42217 sigpending(), or sigprocmask (), the results are undefined.

42218 RETURN VALUE
42219 Upon successful completion, sigismember() shall return 1 if the specified signal is a member of
42220 the specified set, or 0 if it is not. Otherwise, it shall return −1 and set errno to indicate the error.

42221 ERRORS
42222 The sigismember() function may fail if:

42223 [EINVAL] The signo argument is not a valid signal number, or is an unsupported signal |
42224 number.

42225 EXAMPLES
42226 None.

42227 APPLICATION USAGE
42228 None.

42229 RATIONALE
42230 None.

42231 FUTURE DIRECTIONS
42232 None.

42233 SEE ALSO
42234 Section 2.4 (on page 528), sigaction (), sigaddset(), sigdelset(), sigfillset (), sigemptyset(),
42235 sigpending(), sigprocmask (), sigsuspend(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42236 <signal.h>

CHANGE42237 HISTORY
42238 First released in Issue 3.

42239 Entry included for alignment with the POSIX.1-1988 standard.

42240 Issue 4
42241 The following changes are incorporated for alignment with the ISO C standard:

42242 • The type of the argument set is changed from sigset_t* to type const sigset_t*.

42243 • The word ‘‘will’’ is replaced by the word ‘‘may’’ in the ERRORS section.

42244 Issue 5
42245 The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
42246 previous issues.

System Interfaces, Issue 6 1869

siglongjmp() System Interfaces

42247 NAME
42248 siglongjmp — non-local goto with signal handling

42249 SYNOPSIS
42250 #include <setjmp.h>

42251 void siglongjmp(sigjmp_buf env , int val);

42252 DESCRIPTION
42253 The siglongjmp () function restores the environment saved by the most recent invocation of
42254 sigsetjmp() in the same thread, with the corresponding sigjmp_buf argument. If there is no such
42255 invocation, or if the function containing the invocation of sigsetjmp() has terminated execution in
42256 the interim, the behavior is undefined.

42257 All accessible objects have values as of the time siglongjmp () was called, except that the values of |
42258 objects of automatic storage duration which are local to the function containing the invocation of
42259 the corresponding sigsetjmp() which do not have volatile-qualified type and which are changed
42260 between the sigsetjmp() invocation and siglongjmp () call are indeterminate.

42261 As it bypasses the usual function call and return mechanisms, siglongjmp () shall execute
42262 correctly in contexts of interrupts, signals, and any of their associated functions. However, if
42263 siglongjmp () is invoked from a nested signal handler (that is, from a function invoked as a result
42264 of a signal raised during the handling of another signal), the behavior is undefined.

42265 The siglongjmp () function shall restore the saved signal mask if and only if the env argument was
42266 initialized by a call to sigsetjmp() with a non-zero savemask argument.

42267 The effect of a call to siglongjmp () where initialization of the jmp_buf structure was not
42268 performed in the calling thread is undefined.

42269 RETURN VALUE
42270 After siglongjmp () is completed, program execution shall continue as if the corresponding
42271 invocation of sigsetjmp() had just returned the value specified by val . The siglongjmp () function
42272 shall not cause sigsetjmp() to return 0; if val is 0, sigsetjmp() shall return the value 1.

42273 ERRORS
42274 No errors are defined.

42275 EXAMPLES
42276 None.

42277 APPLICATION USAGE
42278 The distinction between setjmp() or longjmp() and sigsetjmp() or siglongjmp () is only significant
42279 for programs which use sigaction (), sigprocmask (), or sigsuspend().

42280 RATIONALE
42281 None.

42282 FUTURE DIRECTIONS
42283 None.

42284 SEE ALSO
42285 longjmp(), setjmp(), sigprocmask (), sigsetjmp(), sigsuspend(), the Base Definitions volume of |
42286 IEEE Std. 1003.1-200x, <setjmp.h> |

42287 CHANGE HISTORY
42288 First released in Issue 3.

42289 Entry included for alignment with the ISO POSIX-1 standard.

1870 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces siglongjmp()

42290 Issue 4
42291 The APPLICATION USAGE section is amended.

42292 An ERRORS section is added.

42293 Issue 5
42294 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

System Interfaces, Issue 6 1871

signal() System Interfaces

42295 NAME
42296 sighold, sigignore, signal, sigpause, sigrelse, sigset — signal management

42297 SYNOPSIS
42298 #include <signal.h>

42299 void (*signal(int sig , void (* func)(int)))(int);
42300 XSI int sighold(int sig);
42301 int sigignore(int sig);
42302 int sigpause(int sig);
42303 int sigrelse(int sig);
42304 void (*sigset(int sig , void (* disp)(int)))(int);
42305

42306 DESCRIPTION
42307 CX For signal(): The functionality described on this reference page is aligned with the ISO C
42308 standard. Any conflict between the requirements described here and the ISO C standard is
42309 unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

42310 CX Use of any of these functions is unspecified in a multi-threaded process.

42311 The signal() function chooses one of three ways in which receipt of the signal number sig is to be
42312 subsequently handled. If the value of func is SIG_DFL, default handling for that signal shall
42313 occur. If the value of func is SIG_IGN, the signal shall be ignored. Otherwise, the application
42314 shall ensure that func points to a function to be called when that signal occurs. An invocation of |
42315 such a function because of a signal, or (recursively) of any further functions called by that |
42316 invocation (other than functions in the standard library), is called a ‘‘signal handler’’. |

42317 When a signal occurs, if func points to a function, first the equivalent of a:

42318 signal(sig , SIG_DFL);

42319 is executed or an implementation-defined blocking of the signal is performed. (If the value of sig |
42320 is SIGILL, whether the reset to SIG_DFL occurs is implementation-defined.) Next the equivalent |
42321 of:

42322 (*func)(sig);

42323 is executed. The func function may terminate by executing a return statement or by calling
42324 abort(), exit(), or longjmp(). If func executes a return statement and the value of sig was SIGFPE |
42325 or any other implementation-defined value corresponding to a computational exception, the |
42326 behavior is undefined. Otherwise, the program shall resume execution at the point it was |
42327 interrupted. If the signal occurs as the result of calling the abort() or raise() function, the signal |
42328 handler shall not call the raise() function. |

42329 If the signal occurs other than as the result of calling abort(), kill (), or raise(), the behavior is |
42330 undefined if the signal handler refers to any object with static storage duration other than by |
42331 assigning a value to an object declared as volatile sig_atomic_t, or if the signal handler calls any |
42332 function in the standard library other than one of the functions listed in Section 2.4 (on page 528) |
42333 or refers to any object with static storage duration other than by assigning a value to a static |
42334 storage duration variable of type volatile sig_atomic_t. Furthermore, if such a call fails, the |
42335 value of errno is indeterminate.

42336 At program start-up, the equivalent of:

42337 signal(sig , SIG_IGN);

42338 is executed for some signals, and the equivalent of:

1872 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces signal()

42339 signal(sig , SIG_DFL);

42340 is executed for all other signals (see exec).

42341 XSI The sighold (), sigignore(), sigpause(), sigrelse(), and sigset() functions provide simplified signal
42342 management.

42343 The sigset() function is used to modify signal dispositions. The sig argument specifies the signal,
42344 which may be any signal except SIGKILL and SIGSTOP. The disp argument specifies the signal’s
42345 disposition, which may be SIG_DFL, SIG_IGN, or the address of a signal handler. If sigset() is
42346 used, and disp is the address of a signal handler, the system shall add sig to the calling process’
42347 signal mask before executing the signal handler; when the signal handler returns, the system
42348 shall restore the calling process’ signal mask to its state prior the delivery of the signal. In
42349 addition, if sigset() is used, and disp is equal to SIG_HOLD, sig shall be added to the calling
42350 process’ signal mask and sig’s disposition shall remain unchanged. If sigset() is used, and disp is
42351 not equal to SIG_HOLD, sig shall be removed from the calling process’ signal mask.

42352 The sighold () function adds sig to the calling process’ signal mask.

42353 The sigrelse() function removes sig from the calling process’ signal mask.

42354 The sigignore() function sets the disposition of sig to SIG_IGN.

42355 The sigpause() function removes sig from the calling process’ signal mask and suspends the
42356 calling process until a signal is received. The sigpause() function restores the process’ signal
42357 mask to its original state before returning.

42358 If the action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes
42359 shall not be transformed into zombie processes when they terminate. If the calling process
42360 subsequently waits for its children, and the process has no unwaited-for children that were
42361 transformed into zombie processes, it shall block until all of its children terminate, and wait(), |
42362 waitid (), and waitpid () shall fail and set errno to [ECHILD].

42363 RETURN VALUE
42364 If the request can be honored, signal() shall return the value of func for the most recent call to |
42365 signal() for the specified signal sig . Otherwise, SIG_ERR shall be returned and a positive value
42366 shall be stored in errno.

42367 XSI Upon successful completion, sigset() shall return SIG_HOLD if the signal had been blocked and
42368 the signal’s previous disposition if it had not been blocked. Otherwise, SIG_ERR shall be
42369 returned and errno set to indicate the error.

42370 The sigpause() function shall suspend execution of the thread until a signal is received,
42371 whereupon it shall return −1 and set errno to [EINTR].

42372 For all other functions, upon successful completion, 0 shall be returned. Otherwise, −1 shall be
42373 returned and errno set to indicate the error.

42374 ERRORS
42375 The signal() function shall fail if:

42376 CX [EINVAL] The sig argument is not a valid signal number or an attempt is made to catch a |
42377 signal that cannot be caught or ignore a signal that cannot be ignored.

42378 The signal() function may fail if:

42379 CX [EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be |
42380 caught or ignored (or both).

42381 The sighold (), sigignore(), sigpause(), sigrelse(), and sigset() functions shall fail if:

System Interfaces, Issue 6 1873

signal() System Interfaces

42382 XSI [EINVAL] The sig argument is an illegal signal number. |

42383 The sigset() and sigignore() functions shall fail if:

42384 XSI [EINVAL] An attempt is made to catch a signal that cannot be caught, or to ignore a
42385 signal that cannot be ignored.

42386 EXAMPLES
42387 None.

42388 APPLICATION USAGE
42389 The sigaction () function provides a more comprehensive and reliable mechanism for controlling
42390 signals; new applications should use sigaction () rather than signal().

42391 The sighold () function, in conjunction with sigrelse() or sigpause(), may be used to establish
42392 critical regions of code that require the delivery of a signal to be temporarily deferred.

42393 The sigsuspend() function should be used in preference to sigpause() for broader portability.

42394 RATIONALE
42395 None.

42396 FUTURE DIRECTIONS
42397 None.

42398 SEE ALSO
42399 Section 2.4 (on page 528), exec, pause(), sigaction (), sigsuspend(), waitid (), the Base Definitions |
42400 volume of IEEE Std. 1003.1-200x, <signal.h> |

42401 CHANGE HISTORY
42402 First released in Issue 1. Derived from Issue 1 of the SVID. |

42403 Issue 4
42404 The APPLICATION USAGE section is added.

42405 The following changes are incorporated for alignment with the ISO C standard:

42406 • The function is no longer marked as an extension.

42407 • The argument int is added to the definition of func in the SYNOPSIS section.

42408 • In Issue 3, this function cross-referred to sigaction (). This issue provides a complete
42409 description of the function as defined in ISO C standard.

42410 Issue 4, Version 2

42411 The following changes are incorporated for X/OPEN UNIX conformance:

42412 • The sighold (), sigignore(), sigpause(), sigrelse(), and sigset() functions are added to the
42413 SYNOPSIS.

42414 • The DESCRIPTION is updated to describe semantics of the above functions.

42415 • Additional text is added to the RETURN VALUE section to describe possible returns from
42416 the sigset() function specifically, and all of the above functions in general.

42417 • The ERRORS section is restructured to describe possible error returns from each of the above
42418 functions individually.

42419 • The APPLICATION USAGE section is updated to describe certain programming
42420 considerations associated with the X/OPEN UNIX functions.

1874 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces signal()

42421 Issue 5
42422 Moved from X/OPEN UNIX extension to BASE.

42423 The DESCRIPTION is updated to indicate that the sigpause() function restores the process’
42424 signal mask to its original state before returning.

42425 The RETURN VALUE section is updated to indicate that the sigpause() function suspends
42426 execution of the process until a signal is received, whereupon it returns −1 and sets errno to
42427 [EINTR].

42428 Issue 6
42429 Extensions beyond the ISO C standard are now marked.

42430 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

42431 The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard. |

42432 References to the wait3() function are removed. |
|

System Interfaces, Issue 6 1875

signbit() System Interfaces

42433 NAME |
42434 signbit — test sign |

42435 SYNOPSIS |
42436 #include <math.h> |

42437 int signbit(real-floating x); |

42438 DESCRIPTION |
42439 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
42440 conflict between the requirements described here and the ISO C standard is unintentional. This |
42441 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

42442 The signbit() macro shall determine whether the sign of its argument value is negative. |

42443 RETURN VALUE |
42444 The signbit() macro shall return a non-zero value if and only if the sign of its argument value is |
42445 negative. |

42446 ERRORS |
42447 No errors are defined. |

42448 EXAMPLES |
42449 None. |

42450 APPLICATION USAGE |
42451 None. |

42452 RATIONALE |
42453 None. |

42454 FUTURE DIRECTIONS |
42455 None. |

42456 SEE ALSO |
42457 fpclassify (), isfinite (), isinf(), isnan(), isnormal(), the Base Definitions volume of |
42458 IEEE Std. 1003.1-200x, <math.h> |

42459 CHANGE HISTORY |
42460 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1876 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigpause()

42461 NAME
42462 sigpause — remove a signal from the signal mask and suspend the thread

42463 SYNOPSIS
42464 XSI #include <signal.h>

42465 int sigpause(int sig);
42466

42467 DESCRIPTION
42468 Refer to signal().

System Interfaces, Issue 6 1877

sigpending() System Interfaces

42469 NAME
42470 sigpending — examine pending signals

42471 SYNOPSIS
42472 #include <signal.h>

42473 int sigpending(sigset_t * set);

42474 DESCRIPTION
42475 The sigpending() function stores, in the location referenced by the set argument, the set of signals
42476 that are blocked from delivery to the calling thread and that are pending on the process or the
42477 calling thread.

42478 RETURN VALUE
42479 Upon successful completion, sigpending() shall return 0; otherwise, −1 shall be returned and
42480 errno set to indicate the error.

42481 ERRORS
42482 No errors are defined.

42483 EXAMPLES
42484 None.

42485 APPLICATION USAGE
42486 None.

42487 RATIONALE
42488 None.

42489 FUTURE DIRECTIONS
42490 None.

42491 SEE ALSO
42492 sigaddset(), sigdelset(), sigemptyset(), sigfillset (), sigismember(), sigprocmask (), the Base Definitions |
42493 volume of IEEE Std. 1003.1-200x, <signal.h> |

42494 CHANGE HISTORY
42495 First released in Issue 3.

42496 Issue 5
42497 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

1878 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigprocmask()

42498 NAME
42499 sigprocmask — examine and change blocked signals

42500 SYNOPSIS
42501 #include <signal.h>

42502 int sigprocmask(int how, const sigset_t *restrict set , |
42503 sigset_t *restrict oset); |

42504 DESCRIPTION |
42505 Refer to pthread_sigmask().

System Interfaces, Issue 6 1879

sigqueue() System Interfaces

42506 NAME
42507 sigqueue — queue a signal to a process (REALTIME)

42508 SYNOPSIS
42509 RTS #include <signal.h>

42510 int sigqueue(pid_t pid , int signo , const union sigval value);
42511

42512 DESCRIPTION
42513 The sigqueue() function shall cause the signal specified by signo to be sent with the value
42514 specified by value to the process specified by pid . If signo is zero (the null signal), error checking
42515 is performed but no signal is actually sent. The null signal can be used to check the validity of
42516 pid .

42517 The conditions required for a process to have permission to queue a signal to another process
42518 are the same as for the kill () function.

42519 The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if the resources
42520 were available to queue the signal, the signal is queued and sent to the receiving process. If
42521 SA_SIGINFO is not set for signo , then signo is sent at least once to the receiving process; it is
42522 unspecified whether value shall be sent to the receiving process as a result of this call.

42523 If the value of pid causes signo to be generated for the sending process, and if signo is not blocked
42524 for the calling thread and if no other thread has signo unblocked or is waiting in a sigwait ()
42525 function for signo , either signo or at least the pending, unblocked signal shall be delivered to the
42526 calling thread before the sigqueue() function returns. Should any multiple pending signals in the
42527 range SIGRTMIN to SIGRTMAX be selected for delivery, it shall be the lowest numbered one.
42528 The selection order between realtime and non-realtime signals, or between multiple pending
42529 non-realtime signals, is unspecified.

42530 RETURN VALUE
42531 Upon successful completion, the specified signal shall have been queued, and the sigqueue()
42532 function shall return a value of zero. Otherwise, the function shall return a value of −1 and set
42533 errno to indicate the error.

42534 ERRORS
42535 The sigqueue() function shall fail if:

42536 [EAGAIN] No resources available to queue the signal. The process has already queued |
42537 SIGQUEUE_MAX signals that are still pending at the receiver(s), or a system-
42538 wide resource limit has been exceeded.

42539 [EINVAL] The value of the signo argument is an invalid or unsupported signal number. |

42540 [EPERM] The process does not have the appropriate privilege to send the signal to the |
42541 receiving process.

42542 [ESRCH] The process pid does not exist. |

1880 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigqueue()

42543 EXAMPLES
42544 None.

42545 APPLICATION USAGE
42546 None.

42547 RATIONALE
42548 The sigqueue() function allows an application to queue a realtime signal to itself or to another
42549 process, specifying the application-defined value. This is common practice in realtime
42550 applications on existing realtime systems. It was felt that specifying another function in the
42551 sig . . . name space already carved out for signals was preferable to extending the function to
42552 kill ().

42553 Such a function became necessary when the put/get event function of the message queues was
42554 removed. It should be noted that the sigqueue() function implies reduced performance in a
42555 security-conscious implementation as the access permissions between the sender and receiver
42556 have to be checked on each send when the pid is resolved into a target process. Such access
42557 checks were necessary only at message queue open in the previous function.

42558 The standard developers required that sigqueue() have the same semantics with respect to the
42559 null signal as kill (), and that the same permission checking be used. But because of the difficulty
42560 of implementing the ‘‘broadcast’’ semantic of kill () (for example, to process groups) and the
42561 interaction with resource allocation, this semantic was not adopted. The sigqueue() function
42562 queues a signal to a single process specified by the pid argument.

42563 The sigqueue() function can fail if the system has insufficient resources to queue the signal. An
42564 explicit limit on the number of queued signals that a process could send was introduced. While
42565 the limit is ‘‘per-sender’’, this volume of IEEE Std. 1003.1-200x does not specify that the
42566 resources be part of the state of the sender. This would require either that the sender be
42567 maintained after exit until all signals that it had sent to other processes were handled or that all
42568 such signals that had not yet been acted upon be removed from the queue(s) of the receivers.
42569 This volume of IEEE Std. 1003.1-200x does not preclude this behavior, but an implementation
42570 that allocated queuing resources from a system-wide pool (with per-sender limits) and that
42571 leaves queued signals pending after the sender exits is also permitted.

42572 FUTURE DIRECTIONS
42573 None.

42574 SEE ALSO
42575 Section 2.8.1 (on page 543), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h> |

42576 CHANGE HISTORY
42577 First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
42578 POSIX Threads Extension.

42579 Issue 6
42580 The sigqueue() function is marked as part of the Realtime Signals Extension option. |

42581 The [ENOSYS] error condition has been removed as stubs need not be provided if an
42582 implementation does not support the Realtime Signals Extension option. |

System Interfaces, Issue 6 1881

sigrelse() System Interfaces

42583 NAME
42584 sigrelse, sigset — remove a signal from signal mask or modify signal disposition

42585 SYNOPSIS
42586 XSI #include <signal.h>

42587 int sigrelse(int sig);
42588 void (*sigset(int sig , void (* disp)(int)))(int);
42589

42590 DESCRIPTION
42591 Refer to signal().

1882 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigsetjmp()

42592 NAME
42593 sigsetjmp — set jump point for a non-local goto

42594 SYNOPSIS
42595 #include <setjmp.h>

42596 int sigsetjmp(sigjmp_buf env , int savemask);

42597 DESCRIPTION
42598 A call to sigsetjmp() saves the calling environment in its env argument for later use by
42599 siglongjmp (). It is unspecified whether sigsetjmp() is a macro or a function. If a macro definition
42600 is suppressed in order to access an actual function, or a program defines an external identifier
42601 with the name sigsetjmp , the behavior is undefined.

42602 If the value of the savemask argument is not 0, sigsetjmp() shall also save the current signal mask
42603 of the calling thread as part of the calling environment.

42604 All accessible objects have values as of the time siglongjmp () was called, except that the values of
42605 objects of automatic storage duration which are local to the function containing the invocation of
42606 the corresponding sigsetjmp() which do not have volatile-qualified type and which are changed
42607 between the sigsetjmp() invocation and siglongjmp () call are indeterminate.

42608 The application shall ensure that an invocation of sigsetjmp() appears in one of the following
42609 contexts only:

42610 • The entire controlling expression of a selection or iteration statement

42611 • One operand of a relational or equality operator with the other operand an integral constant
42612 expression, with the resulting expression being the entire controlling expression of a
42613 selection or iteration statement

42614 • The operand of a unary (’!’) operator with the resulting expression being the entire
42615 controlling expression of a selection or iteration

42616 • The entire expression of an expression statement (possibly cast to void)

42617 RETURN VALUE
42618 If the return is from a successful direct invocation, sigsetjmp() shall return 0. If the return is from
42619 a call to siglongjmp (), sigsetjmp() shall return a non-zero value.

42620 ERRORS
42621 No errors are defined.

42622 EXAMPLES
42623 None.

42624 APPLICATION USAGE
42625 The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp () is only significant for
42626 programs which use sigaction (), sigprocmask (), or sigsuspend().

42627 RATIONALE
42628 The ISO C standard specifies various restrictions on the usage of the setjmp() macro in order to
42629 permit implementors to recognize the name in the compiler and not implement an actual
42630 function. These same restrictions apply to the sigsetjmp() macro.

42631 There are processors that cannot easily support these calls, but this was not considered a
42632 sufficient reason to exclude them.

42633 4.2 BSD and 4.3 BSD systems provide functions named _setjmp() and _longjmp () that, together
42634 with setjmp() and longjmp(), provide the same functionality as sigsetjmp() and siglongjmp (). On
42635 those systems, setjmp() and longjmp() save and restore signal masks, while _setjmp() and

System Interfaces, Issue 6 1883

sigsetjmp() System Interfaces

42636 _longjmp () do not. On System V, Release 3 and in corresponding issues of the SVID, setjmp() and
42637 longjmp() are explicitly defined not to save and restore signal masks. In order to permit existing
42638 practice in both cases, the relation of setjmp() and longjmp() to signal masks is not specified, and
42639 a new set of functions is defined instead.

42640 The longjmp() and siglongjmp () functions operate as in the previous issue provided the matching
42641 setjmp() or sigsetjmp() has been performed in the same thread. Non-local jumps into contexts
42642 saved by other threads would be at best a questionable practice and were not considered worthy
42643 of standardization.

42644 FUTURE DIRECTIONS
42645 None.

42646 SEE ALSO
42647 siglongjmp (), signal(), sigprocmask (), sigsuspend(), the Base Definitions volume of |
42648 IEEE Std. 1003.1-200x, <setjmp.h> |

42649 CHANGE HISTORY
42650 First released in Issue 3.

42651 Entry included for alignment with the POSIX.1-1988 standard.

42652 Issue 4
42653 The DESCRIPTION states that sigsetjmp() is a macro or a function. Issue 3 states that it is a
42654 macro. Warnings are also added about the suppression of a sigsetjmp() macro definition.

42655 A statement is added to the DESCRIPTION about the accessibility of objects after a siglongjmp ()
42656 call.

42657 Text is added to the DESCRIPTION describing the contexts in which calls to sigsetjmp() are
42658 valid.

42659 Issue 5
42660 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

42661 Issue 6
42662 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

1884 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigsuspend()

42663 NAME
42664 sigsuspend — wait for a signal |

42665 SYNOPSIS
42666 #include <signal.h>

42667 int sigsuspend(const sigset_t * sigmask);

42668 DESCRIPTION
42669 The sigsuspend() function replaces the current signal mask of the calling thread with the set of
42670 signals pointed to by sigmask and then suspends the thread until delivery of a signal whose
42671 action is either to execute a signal-catching function or to terminate the process. This shall not
42672 cause any other signals that may have been pending on the process to become pending on the
42673 thread.

42674 If the action is to terminate the process then sigsuspend() shall never return. If the action is to
42675 execute a signal-catching function, then sigsuspend() shall return after the signal-catching
42676 function returns, with the signal mask restored to the set that existed prior to the sigsuspend()
42677 call.

42678 It is not possible to block signals that cannot be ignored. This is enforced by the system without
42679 causing an error to be indicated.

42680 RETURN VALUE
42681 Since sigsuspend() suspends thread execution indefinitely, there is no successful completion
42682 return value. If a return occurs, −1 shall be returned and errno set to indicate the error.

42683 ERRORS
42684 The sigsuspend() function shall fail if:

42685 [EINTR] A signal is caught by the calling process and control is returned from the |
42686 signal-catching function.

42687 EXAMPLES
42688 None.

42689 APPLICATION USAGE
42690 Normally, at the beginning of a critical code section, a specified set of signals is blocked using
42691 the sigprocmask () function. When the thread has completed the critical section and needs to wait |
42692 for the previously blocked signal(s), it pauses by calling sigsuspend() with the mask that was
42693 returned by the sigprocmask () call.

42694 RATIONALE
42695 None.

42696 FUTURE DIRECTIONS
42697 None.

42698 SEE ALSO
42699 Section 2.4 (on page 528), pause(), sigaction (), sigaddset(), sigdelset(), sigemptyset(), sigfillset (), the |
42700 Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h> |

42701 CHANGE HISTORY
42702 First released in Issue 3.

42703 Entry included for alignment with the POSIX.1-1988 standard.

System Interfaces, Issue 6 1885

sigsuspend() System Interfaces

42704 Issue 4
42705 The term ‘‘signal handler’’ is changed to ‘‘signal-catching function’’.

42706 The following change is incorporated for alignment with the ISO POSIX-1 standard:

42707 • The type of the argument sigmask is changed from sigset_t* to const sigset_t*.

42708 Issue 5
42709 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

42710 Issue 6
42711 The text in the RETURN VALUE section has been changed from ‘‘suspends process execution’’
42712 to ‘‘suspends thread execution’’. This reflects IEEE PASC Interpretation 1003.1c #40. |

42713 Text in the APPLICATION USAGE section has been replaced.

1886 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigtimedwait()

42714 NAME
42715 sigtimedwait, sigwaitinfo — wait for queued signals (REALTIME)

42716 SYNOPSIS
42717 RTS #include <signal.h>

42718 int sigtimedwait(const sigset_t *restrict set , siginfo_t *restrict info , |
42719 const struct timespec *restrict timeout); |
42720 int sigwaitinfo(const sigset_t *restrict set , siginfo_t *restrict info); |
42721 |

42722 DESCRIPTION
42723 The sigtimedwait () function behaves the same as sigwaitinfo () except that if none of the signals
42724 specified by set are pending, sigtimedwait () waits for the time interval specified in the timespec
42725 structure referenced by timeout . If the timespec structure pointed to by timeout is zero-valued
42726 and if none of the signals specified by set are pending, then sigtimedwait () returns immediately
42727 MON with an error. If timeout is the NULL pointer, the behavior is unspecified. If the Monotonic Clock
42728 option is supported, the CLOCK_MONOTONIC clock shall be used to measure the time interval
42729 specified by the timeout argument.

42730 The sigwaitinfo () function selects the pending signal from the set specified by set. Should any of
42731 multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it shall be the
42732 lowest numbered one. The selection order between realtime and non-realtime signals, or
42733 between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
42734 the time of the call, the calling thread is suspended until one or more signals in set become
42735 pending or until it is interrupted by an unblocked, caught signal.

42736 The sigwaitinfo () function behaves the same as the sigwait () function if the info argument is
42737 NULL. If the info argument is non-NULL, the sigwaitinfo () function behaves the same as
42738 sigwait (), except that the selected signal number shall be stored in the si_signo member, and the
42739 cause of the signal shall be stored in the si_code member. If any value is queued to the selected
42740 signal, the first such queued value shall be dequeued and, if the info argument is non-NULL, the
42741 value shall be stored in the si_value member of info . The system resource used to queue the |
42742 signal shall be released and returned to the system for other use. If no value is queued, the |
42743 content of the si_value member is undefined. If no further signals are queued for the selected |
42744 signal, the pending indication for that signal shall be reset.

42745 RETURN VALUE
42746 Upon successful completion (that is, one of the signals specified by set is pending or is
42747 generated) sigwaitinfo () and sigtimedwait () shall return the selected signal number. Otherwise,
42748 the function shall return a value of −1 and set errno to indicate the error.

42749 ERRORS
42750 The sigtimedwait () function shall fail if:

42751 Notes to Reviewers
42752 This section with side shading will not appear in the final copy. - Ed.

42753 D1, XSH, ERN 345 proposes that the [EAGAIN] error condition ought to be [ETIMEDOUT] as
42754 per the same condition on pthread_cond_timedwait().

42755 [EAGAIN] No signal specified by set was generated within the specified timeout period. |

42756 The sigtimedwait () and sigwaitinfo () functions may fail if:

42757 [EINTR] The wait was interrupted by an unblocked, caught signal. It shall be |
42758 documented in system documentation whether this error causes these

System Interfaces, Issue 6 1887

sigtimedwait() System Interfaces

42759 functions to fail.

42760 The sigtimedwait () function may also fail if:

42761 [EINVAL] The timeout argument specified a tv_nsec value less than zero or greater than |
42762 or equal to 1 000 million.

42763 An implementation only checks for this error if no signal is pending in set and it is necessary to
42764 wait.

42765 EXAMPLES
42766 None.

42767 APPLICATION USAGE
42768 None.

42769 RATIONALE
42770 Existing programming practice on realtime systems uses the ability to pause waiting for a
42771 selected set of events and handle the first event that occurs in-line instead of in a signal-handling
42772 function. This allows applications to be written in an event-directed style similar to a state
42773 machine. This style of programming is useful for largescale transaction processing in which the
42774 overall throughput of an application and the ability to clearly track states are more important
42775 than the ability to minimize the response time of individual event handling.

42776 It is possible to construct a signal-waiting macro function out of the realtime signal function
42777 mechanism defined in this volume of IEEE Std. 1003.1-200x. However, such a macro has to
42778 include the definition of a generalized handler for all signals to be waited on. A significant
42779 portion of the overhead of handler processing can be avoided if the signal-waiting function is
42780 provided by the kernel. This volume of IEEE Std. 1003.1-200x therefore provides two signal-
42781 waiting functions—one that waits indefinitely and one with a timeout—as part of the overall
42782 realtime signal function specification.

42783 The specification of a function with a timeout allows an application to be written that can be
42784 broken out of a wait after a set period of time if no event has occurred. It was argued that setting
42785 a timer event before the wait and recognizing the timer event in the wait would also implement
42786 the same functionality, but at a lower performance level. Because of the performance
42787 degradation associated with the user-level specification of a timer event and the subsequent
42788 cancelation of that timer event after the wait completes for a valid event, and the complexity
42789 associated with handling potential race conditions associated with the user-level method, the
42790 separate function has been included.

42791 Note that the semantics of the sigwaitinfo () function are nearly identical to that of the sigwait ()
42792 function defined by this volume of IEEE Std. 1003.1-200x. The only difference is that sigwaitinfo ()
42793 returns the queued signal value in the value argument. The return of the queued value is
42794 required so that applications can differentiate between multiple events queued to the same
42795 signal number.

42796 The two distinct functions are being maintained because some implementations may choose to
42797 implement the POSIX Threads Extension functions and not implement the queued signals
42798 extensions. Note, though, that sigwaitinfo () does not return the queued value if the value
42799 argument is NULL, so the POSIX Threads Extension sigwait () function can be implemented as a
42800 macro on sigwaitinfo ().

42801 The sigtimedwait () function was separated from the sigwaitinfo () function to address concerns
42802 regarding the overloading of the timeout pointer to indicate indefinite wait (no timeout), timed
42803 wait, and immediate return, and concerns regarding consistency with other functions where the
42804 conditional and timed waits were separate functions from the pure blocking function. The
42805 semantics of sigtimedwait () are specified such that sigwaitinfo () could be implemented as a

1888 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigtimedwait()

42806 macro with a NULL pointer for timeout .

42807 The sigwait functions provide a synchronous mechanism for threads to wait for asynchronously
42808 generated signals. One important question was how many threads that are suspended in a call to
42809 a sigwait () function for a signal should return from the call when the signal is sent. Four choices
42810 were considered:

42811 1. Return an error for multiple simultaneous calls to sigwait functions for the same signal.

42812 2. One or more threads return.

42813 3. All waiting threads return.

42814 4. Exactly one thread returns.

42815 Prohibiting multiple calls to sigwait () for the same signal was felt to be overly restrictive. The
42816 ‘‘one or more’’ behavior made implementation of conforming packages easy at the expense of
42817 forcing POSIX threads clients to protect against multiple simultaneous calls to sigwait () in
42818 application code in order to achieve predictable behavior. There was concern that the ‘‘all
42819 waiting threads’’ behavior would result in ‘‘signal broadcast storms’’, consuming excessive CPU
42820 resources by replicating the signals in the general case. Furthermore, no convincing examples
42821 could be presented that delivery to all was either simpler or more powerful than delivery to one.

42822 Thus, the consensus was that exactly one thread that was suspended in a call to a sigwait
42823 function for a signal should return when that signal occurs. This is not an onerous restriction as:

42824 • A multi-way signal wait can be built from the single-way wait.

42825 • Signals should only be handled by application-level code, as library routines cannot guess
42826 what the application wants to do with signals generated for the entire process.

42827 • Applications can thus arrange for a single thread to wait for any given signal and call any
42828 needed routines upon its arrival.

42829 In an application that is using signals for XSI interprocess communication, signal processing is
42830 typically done in one place. Alternatively, if the signal is being caught so that process cleanup
42831 can be done, the signal handler thread can call separate process cleanup routines for each
42832 portion of the application. Since the application main line started each portion of the application,
42833 it is at the right abstraction level to tell each portion of the application to clean up.

42834 Certainly, there exist programming styles where it is logical to consider waiting for a single
42835 signal in multiple threads. A simple sigwait_multiple() routine can be constructed to achieve this
42836 goal. A possible implementation would be to have each sigwait_multiple() caller registered as
42837 having expressed interest in a set of signals. The caller then waits on a thread-specific condition
42838 variable. A single server thread calls a sigwait () function on the union of all registered signals.
42839 When the sigwait () function returns, the appropriate state is set and condition variables are
42840 broadcast. New sigwait_multiple() callers may cause the pending sigwait () call to be canceled
42841 and reissued in order to update the set of signals being waited for.

42842 FUTURE DIRECTIONS
42843 None.

42844 SEE ALSO
42845 Section 2.8.1 (on page 543), pause(), pthread_sigmask(), sigaction (), sigpending(), sigsuspend(),
42846 sigwait (), the Base Definitions volume of IEEE Std. 1003.1-200x, <signal.h>, <time.h> |

System Interfaces, Issue 6 1889

sigtimedwait() System Interfaces

42847 CHANGE HISTORY
42848 First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
42849 POSIX Threads Extension.

42850 Issue 6
42851 These functions are marked as part of the Realtime Signals Extension option. |

42852 The Open Group corrigenda item U035/3 has been applied. The SYNOPSIS of the sigwaitinfo ()
42853 function has been corrected so that the second argument is of type siginfo_t*.

42854 The [ENOSYS] error condition has been removed as stubs need not be provided if an
42855 implementation does not support the Realtime Signals Extension option. |

42856 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that the
42857 CLOCK_MONOTONIC clock, if supported, is used to measure timeout intervals. |

42858 The restrict keyword is added to the sigtimedwait () and sigwaitinfo () prototypes for alignment |
42859 with the ISO/IEC 9899: 1999 standard. |

1890 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigwait()

42860 NAME
42861 sigwait — wait for queued signals

42862 SYNOPSIS
42863 #include <signal.h>

42864 int sigwait(const sigset_t *restrict set , int *restrict sig); |

42865 DESCRIPTION |
42866 The sigwait () function selects a pending signal from set, atomically clears it from the system’s set
42867 of pending signals, and returns that signal number in the location referenced by sig . If prior to
42868 the call to sigwait () there are multiple pending instances of a single signal number, it is |
42869 implementation-defined whether upon successful return there are any remaining pending |
42870 RTS signals for that signal number. If the implementation supports queued signals and there are
42871 multiple signals queued for the signal number selected, the first such queued signal shall cause a
42872 return from sigwait () and the remainder shall remain queued. If no signal in set is pending at the
42873 time of the call, the thread is suspended until one or more becomes pending. The signals defined
42874 by set shall have been blocked at the time of the call to sigwait (); otherwise, the behavior is
42875 undefined. The effect of sigwait () on the signal actions for the signals in set is unspecified.

42876 If more than one thread is using sigwait () to wait for the same signal, no more than one of these
42877 threads shall return from sigwait () with the signal number. Which thread returns from sigwait ()
42878 if more than a single thread is waiting is unspecified.

42879 RTS Should any of the multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it
42880 shall be the lowest numbered one. The selection order between realtime and non-realtime
42881 signals, or between multiple pending non-realtime signals, is unspecified.

42882 RETURN VALUE
42883 Upon successful completion, sigwait () shall store the signal number of the received signal at the
42884 location referenced by sig and return zero. Otherwise, an error number shall be returned to
42885 indicate the error.

42886 ERRORS
42887 The sigwait () function may fail if:

42888 [EINVAL] The set argument contains an invalid or unsupported signal number. |

42889 EXAMPLES
42890 None.

42891 APPLICATION USAGE
42892 None.

42893 RATIONALE
42894 To provide a convenient way for a thread to wait for a signal, this volume of
42895 IEEE Std. 1003.1-200x provides the sigwait () function. For most cases where a thread has to wait
42896 for a signal, the sigwait () function should be quite convenient, efficient, and adequate.

42897 However, requests were made for a lower-level primitive than sigwait () and for semaphores that
42898 could be used by threads. After some consideration, threads were allowed to use semaphores
42899 and sem_post() was defined to be async-signal and async-cancel-safe.

42900 In summary, when it is necessary for code run in response to an asynchronous signal to notify a
42901 thread, sigwait () should be used to handle the signal. Alternatively, if the implementation
42902 provides semaphores, they also can be used, either following sigwait () or from within a signal
42903 handling routine previously registered with sigaction ().

System Interfaces, Issue 6 1891

sigwait() System Interfaces

42904 FUTURE DIRECTIONS
42905 None.

42906 SEE ALSO
42907 Section 2.4 (on page 528), Section 2.8.1 (on page 543), pause(), pthread_sigmask(), sigaction (),
42908 sigpending(), sigsuspend(), sigwaitinfo (), the Base Definitions volume of IEEE Std. 1003.1-200x, |
42909 <signal.h>, <time.h>

CHANGE42910 HISTORY
42911 First released in Issue 5. Included for alignment with the POSIX Realtime Extension and the
42912 POSIX Threads Extension.

42913 Issue 6
42914 The RATIONALE section is added. |

42915 The restrict keyword is added to the sigwait () prototype for alignment with the |
42916 ISO/IEC 9899: 1999 standard. |

1892 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sigwaitinfo()

42917 NAME
42918 sigwaitinfo — wait for queued signals (REALTIME)

42919 SYNOPSIS
42920 RTS #include <signal.h>

42921 int sigwaitinfo(const sigset_t *restrict set , siginfo_t *restrict info); |
42922 |

42923 DESCRIPTION
42924 Refer to sigtimedwait ().

System Interfaces, Issue 6 1893

sin() System Interfaces

42925 NAME
42926 sin, sinf, sinl — sine function |

42927 SYNOPSIS
42928 #include <math.h>

42929 double sin(double x);
42930 float sinf(float x); |
42931 long double sinl(long double x); |

42932 DESCRIPTION |
42933 CX The functionality described on this reference page is aligned with the ISO C standard. Any
42934 conflict between the requirements described here and the ISO C standard is unintentional. This
42935 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

42936 These functions shall compute the sine of its argument x, measured in radians. |

42937 An application wishing to check for error situations should set errno to 0 before calling sin(). If
42938 errno is non-zero on return, or the return value is NaN, an error has occurred.

42939 The sin() function may lose accuracy when its argument is far from 0.0.

42940 RETURN VALUE
42941 Upon successful completion, these functions shall return the sine of x . |

42942 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

42943 XSI If x is ±Inf, either 0.0 shall be returned and errno set to [EDOM], or NaN shall be returned and
42944 errno may be set to [EDOM].

42945 If the correct result would cause underflow, 0.0 shall be returned and errno may be set to
42946 [ERANGE].

42947 ERRORS
42948 These functions may fail if: |

42949 XSI [EDOM] The value of x is NaN, or x is ±Inf. |

42950 [ERANGE] The result underflows. |

42951 XSI No other errors shall occur.

42952 EXAMPLES

42953 Taking the Sine of a 45-Degree Angle

42954 #include <math.h>
42955 ...
42956 double radians = 45.0 * M_PI / 180;
42957 double result;
42958 ...
42959 result = sin(radians);

42960 APPLICATION USAGE
42961 None.

42962 RATIONALE
42963 None.

1894 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sin()

42964 FUTURE DIRECTIONS
42965 None.

42966 SEE ALSO
42967 asin(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

42968 CHANGE HISTORY
42969 First released in Issue 1. Derived from Issue 1 of the SVID. |

42970 Issue 4
42971 References to matherr() are removed.

42972 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
42973 ISO C standard and to rationalize error handling in the mathematics functions.

42974 The return value specified for [EDOM] is marked as an extension.

42975 Issue 5
42976 The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
42977 in previous issues. |

42978 Issue 6 |
42979 The sinf() and sinl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1895

sinh() System Interfaces

42980 NAME
42981 sinh, sinhf, sinhl — hyperbolic sine function |

42982 SYNOPSIS
42983 #include <math.h>

42984 double sinh(double x);
42985 float sinhf(float x); |
42986 long double sinhl(long double x); |

42987 DESCRIPTION |
42988 CX The functionality described on this reference page is aligned with the ISO C standard. Any
42989 conflict between the requirements described here and the ISO C standard is unintentional. This
42990 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

42991 These functions shall compute the hyperbolic sine of x . |

42992 An application wishing to check for error situations should set errno to 0 before calling sinh(). If
42993 errno is non-zero on return, or the return value is NaN, an error has occurred.

42994 RETURN VALUE
42995 Upon successful completion, these functions shall return the hyperbolic sine of x . |

42996 If the result would cause an overflow, ±HUGE_VAL shall be returned and errno set to
42997 [ERANGE].

42998 If the result would cause underflow, 0.0 shall be returned and errno may be set to [ERANGE].

42999 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

43000 ERRORS
43001 These functions shall fail if: |

43002 [ERANGE] The result would cause overflow. |

43003 These functions may fail if: |

43004 XSI [EDOM] The value of x is NaN. |

43005 [ERANGE] The result would cause underflow. |

43006 XSI No other errors shall occur.

43007 EXAMPLES
43008 None.

43009 APPLICATION USAGE
43010 None.

43011 RATIONALE
43012 None.

43013 FUTURE DIRECTIONS
43014 None.

43015 SEE ALSO
43016 asinh(), cosh(), isnan(), tanh(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

43017 CHANGE HISTORY
43018 First released in Issue 1. Derived from Issue 1 of the SVID. |

1896 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sinh()

43019 Issue 4
43020 References to matherr() are removed.

43021 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
43022 ISO C standard and to rationalize error handling in the mathematics functions.

43023 The return value specified for [EDOM] is marked as an extension.

43024 Issue 5
43025 The DESCRIPTION is updated to indicate how an application should check for an error. This
43026 text was previously published in the APPLICATION USAGE section. |

43027 Issue 6 |
43028 The sinhf() and sinhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1897

sleep() System Interfaces

43029 NAME
43030 sleep — suspend execution for an interval of time

43031 SYNOPSIS
43032 #include <unistd.h>

43033 unsigned sleep(unsigned seconds); |

43034 DESCRIPTION |
43035 The sleep() function shall cause the calling thread to be suspended from execution until either
43036 the number of realtime seconds specified by the argument seconds has elapsed or a signal is
43037 delivered to the calling thread and its action is to invoke a signal-catching function or to
43038 terminate the process. The suspension time may be longer than requested due to the scheduling
43039 of other activity by the system.

43040 If a SIGALRM signal is generated for the calling process during execution of sleep() and if the
43041 SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether sleep()
43042 returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
43043 unspecified whether it remains pending after sleep() returns or it is discarded.

43044 If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a
43045 result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
43046 delivery, it is unspecified whether that signal has any effect other than causing sleep() to return.

43047 If a signal-catching function interrupts sleep() and examines or changes either the time a
43048 SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
43049 whether the SIGALRM signal is blocked from delivery, the results are unspecified.

43050 If a signal-catching function interrupts sleep() and calls siglongjmp () or longjmp() to restore an
43051 environment saved prior to the sleep() call, the action associated with the SIGALRM signal and
43052 the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
43053 unspecified whether the SIGALRM signal is blocked, unless the process’ signal mask is restored
43054 as part of the environment.

43055 XSI Interactions between sleep() and any of setitimer(), ualarm(), or usleep() are unspecified.

43056 RETURN VALUE
43057 If sleep() returns because the requested time has elapsed, the value returned shall be 0. If sleep()
43058 returns because of premature arousal due to delivery of a signal, the return value shall be the
43059 ‘‘unslept’’ amount (the requested time minus the time actually slept) in seconds.

43060 ERRORS
43061 No errors are defined.

43062 EXAMPLES
43063 None.

43064 APPLICATION USAGE
43065 None.

43066 RATIONALE
43067 There are two general approaches to the implementation of the sleep() function. One is to use the
43068 alarm() function to schedule a SIGALRM signal and then suspend the process waiting for that
43069 signal. The other is to implement an independent facility. This volume of IEEE Std. 1003.1-200x
43070 permits either approach.

43071 In order to comply with the requirement that no primitive shall change a process attribute unless
43072 explicitly described by this volume of IEEE Std. 1003.1-200x, an implementation using SIGALRM
43073 must carefully take into account any SIGALRM signal scheduled by previous alarm() calls, the

1898 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sleep()

43074 action previously established for SIGALRM, and whether SIGALRM was blocked. If a SIGALRM
43075 has been scheduled before the sleep() would ordinarily complete, the sleep() must be shortened
43076 to that time and a SIGALRM generated (possibly simulated by direct invocation of the signal-
43077 catching function) before sleep() returns. If a SIGALRM has been scheduled after the sleep()
43078 would ordinarily complete, it must be rescheduled for the same time before sleep() returns. The
43079 action and blocking for SIGALRM must be saved and restored.

43080 Historical implementations often implement the SIGALRM-based version using alarm() and
43081 pause(). One such implementation is prone to infinite hangups, as described in pause(). Another
43082 such implementation uses the C-language setjmp() and longjmp() functions to avoid that
43083 window. That implementation introduces a different problem: when the SIGALRM signal
43084 interrupts a signal-catching function installed by the user to catch a different signal, the
43085 longjmp() aborts that signal-catching function. An implementation based on sigprocmask (),
43086 alarm(), and sigsuspend() can avoid these problems.

43087 Despite all reasonable care, there are several very subtle, but detectable and unavoidable,
43088 differences between the two types of implementations. These are the cases mentioned in this
43089 volume of IEEE Std. 1003.1-200x where some other activity relating to SIGALRM takes place,
43090 and the results are stated to be unspecified. All of these cases are sufficiently unusual as not to
43091 be of concern to most applications.

43092 See also the discussion of the term realtime in alarm().

43093 Because sleep() can be implemented using alarm(), the discussion about alarms occurring early
43094 under alarm() applies to sleep() as well.

43095 Application writers should note that the type of the argument seconds and the return value of
43096 sleep() is unsigned. That means that a Strictly Conforming POSIX System Interfaces Application |
43097 cannot pass a value greater than the minimum guaranteed value for {UINT_MAX}, which the
43098 ISO C standard sets as 65 535, and any application passing a larger value is restricting its
43099 portability. A different type was considered, but historical implementations, including those
43100 with a 16-bit int type, consistently use either unsigned or int. |

43101 Scheduling delays may cause the process to return from the sleep() function significantly after
43102 the requested time. In such cases, the return value should be set to zero, since the formula
43103 (requested time minus the time actually spent) yields a negative number and sleep() returns an |
43104 unsigned. |

43105 FUTURE DIRECTIONS
43106 None.

43107 SEE ALSO
43108 alarm(), getitimer(), nanosleep(), pause(), sigaction (), sigsetjmp(), ualarm(), usleep(), the Base |
43109 Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

43110 CHANGE HISTORY
43111 First released in Issue 1. Derived from Issue 1 of the SVID. |

43112 Issue 4
43113 The <unistd.h> header is added to the SYNOPSIS section.

43114 Issue 4, Version 2
43115 The DESCRIPTION is updated to indicate possible interactions with the setitimer(), ualarm(),
43116 and usleep() functions.

System Interfaces, Issue 6 1899

sleep() System Interfaces

43117 Issue 5
43118 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

1900 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces socket()

43119 NAME
43120 socket — create an endpoint for communication

43121 SYNOPSIS
43122 #include <sys/socket.h>

43123 int socket(int domain , int type , int protocol);

43124 DESCRIPTION
43125 The socket() function shall create an unbound socket in a communications domain, and return a
43126 file descriptor that can be used in later function calls that operate on sockets.

43127 The socket() function takes the following arguments:

43128 domain Specifies the communications domain in which a socket is to be created.

43129 type Specifies the type of socket to be created.

43130 protocol Specifies a particular protocol to be used with the socket. Specifying a protocol
43131 of 0 causes socket() to use an unspecified default protocol appropriate for the
43132 requested socket type.

43133 The domain argument specifies the address family used in the communications domain. The
43134 address families supported by the system are implementation-defined. |

43135 Symbolic constants that can be used for the domain argument are defined in the <sys/socket.h>
43136 header.

43137 The type argument specifies the socket type, which determines the semantics of communication
43138 over the socket. The socket types supported by the system are implementation-defined. Possible |
43139 socket types include: |

43140 SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
43141 streams, and may provide a transmission mechanism for out-of-band
43142 data.

43143 SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
43144 of fixed maximum length.

43145 SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
43146 transmission path for records. A record can be sent using one or more
43147 output operations and received using one or more input operations, but a
43148 single operation never transfers part of more than one record. Record
43149 boundaries are visible to the receiver via the MSG_EOR flag.

43150 If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
43151 family. The protocols supported by the system are implementation-defined. |

43152 The process may need to have appropriate privileges to use the socket() function or to create
43153 some sockets.

43154 RETURN VALUE
43155 Upon successful completion, socket() shall return a non-negative integer, the socket file
43156 descriptor. Otherwise, a value of −1 shall be returned and errno set to indicate the error.

43157 ERRORS
43158 The socket() function shall fail if:

43159 [EAFNOSUPPORT]
43160 The implementation does not support the specified address family.

System Interfaces, Issue 6 1901

socket() System Interfaces

43161 [EMFILE] No more file descriptors are available for this process.

43162 [ENFILE] No more file descriptors are available for the system.

43163 [EPROTONOSUPPORT]
43164 The protocol is not supported by the address family, or the protocol is not
43165 supported by the implementation.

43166 [EPROTOTYPE] The socket type is not supported by the protocol.

43167 The socket() function may fail if:

43168 [EACCES] The process does not have appropriate privileges.

43169 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

43170 [ENOMEM] Insufficient memory was available to fulfill the request. |

43171 EXAMPLES
43172 None.

43173 APPLICATION USAGE
43174 The documentation for specific address families specifies which protocols each address family
43175 supports. The documentation for specific protocols specifies which socket types each protocol
43176 supports.

43177 The application can determine if an address family is supported by trying to create a socket with
43178 domain set to the protocol in question.

43179 RATIONALE
43180 None.

43181 FUTURE DIRECTIONS
43182 None.

43183 SEE ALSO
43184 accept(), bind(), connect(), getsockname(), getsockopt (), listen(), recv(), recvfrom(), recvmsg(),
43185 send(), sendmsg(), setsockopt (), shutdown(), socketpair (), the Base Definitions volume of |
43186 IEEE Std. 1003.1-200x, <netinet/in.h>, <sys/socket.h> |

43187 CHANGE HISTORY
43188 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1902 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces socketpair()

43189 NAME
43190 socketpair — create a pair of connected sockets

43191 SYNOPSIS
43192 #include <sys/socket.h>

43193 int socketpair(int domain , int type , int protocol ,
43194 int socket_vector [2]);

43195 DESCRIPTION
43196 The socketpair () function creates an unbound pair of connected sockets in a specified domain , of a
43197 specified type , under the protocol optionally specified by the protocol argument. The two sockets
43198 are identical. The file descriptors used in referencing the created sockets are returned in
43199 socket_vector [0] and socket_vector[1].

43200 The socketpair () function takes the following arguments:

43201 domain Specifies the communications domain in which the sockets are to be created.

43202 type Specifies the type of sockets to be created.

43203 protocol Specifies a particular protocol to be used with the sockets. Specifying a
43204 protocol of 0 causes socketpair () to use an unspecified default protocol
43205 appropriate for the requested socket type.

43206 socket_vector Specifies a 2-integer array to hold the file descriptors of the created socket
43207 pair.

43208 The type argument specifies the socket type, which determines the semantics of communications
43209 over the socket. The socket types supported by the system are implementation-defined. Possible |
43210 socket types include: |

43211 SOCK_STREAM Provides sequenced, reliable, bidirectional, connection-mode byte
43212 streams, and may provide a transmission mechanism for out-of-band
43213 data.

43214 SOCK_DGRAM Provides datagrams, which are connectionless-mode, unreliable messages
43215 of fixed maximum length.

43216 SOCK_SEQPACKET Provides sequenced, reliable, bidirectional, connection-mode
43217 transmission paths for records. A record can be sent using one or more
43218 output operations and received using one or more input operations, but a
43219 single operation never transfers part of more than one record. Record
43220 boundaries are visible to the receiver via the MSG_EOR flag.

43221 If the protocol argument is non-zero, it shall specify a protocol that is supported by the address
43222 family. The protocols supported by the system are implementation-defined. |

43223 The process may need to have appropriate privileges to use the socketpair () function or to create
43224 some sockets.

43225 RETURN VALUE
43226 Upon successful completion, this function shall return 0; otherwise, −1 shall be returned and
43227 errno set to indicate the error.

43228 ERRORS
43229 The socketpair () function shall fail if:

43230 [EAFNOSUPPORT]
43231 The implementation does not support the specified address family.

System Interfaces, Issue 6 1903

socketpair() System Interfaces

43232 [EMFILE] No more file descriptors are available for this process.

43233 [ENFILE] No more file descriptors are available for the system.

43234 [EOPNOTSUPP] The specified protocol does not permit creation of socket pairs.

43235 [EPROTONOSUPPORT]
43236 The protocol is not supported by the address family, or the protocol is not
43237 supported by the implementation.

43238 [EPROTOTYPE] The socket type is not supported by the protocol.

43239 The socketpair () function may fail if:

43240 [EACCES] The process does not have appropriate privileges.

43241 [ENOBUFS] Insufficient resources were available in the system to perform the operation.

43242 [ENOMEM] Insufficient memory was available to fulfill the request. |

43243 EXAMPLES
43244 None.

43245 APPLICATION USAGE
43246 The documentation for specific address families specifies which protocols each address family
43247 supports. The documentation for specific protocols specifies which socket types each protocol
43248 supports.

43249 The socketpair () function is used primarily with UNIX domain sockets and need not be
43250 supported for other domains.

43251 RATIONALE
43252 None.

43253 FUTURE DIRECTIONS
43254 None.

43255 SEE ALSO
43256 socket(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/socket.h> |

43257 CHANGE HISTORY
43258 First released in Issue 6. Derived from the XNS, Issue 5.2 specification. |

1904 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sprintf()

43259 NAME
43260 sprintf, snprintf — print formatted output

43261 SYNOPSIS
43262 #include <stdio.h>

43263 int snprintf(char *restrict s, size_t n, |
43264 const char *restrict format , /* args */ ...); |
43265 int sprintf(char *restrict s, const char *restrict format , ...); |

43266 DESCRIPTION |
43267 Refer to fprintf ().

System Interfaces, Issue 6 1905

sqrt() System Interfaces

43268 NAME
43269 sqrt, sqrtf, sqrtl — square root function |

43270 SYNOPSIS
43271 #include <math.h>

43272 double sqrt(double x);
43273 float sqrtf(float x); |
43274 long double sqrtl(long double x); |

43275 DESCRIPTION |
43276 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43277 conflict between the requirements described here and the ISO C standard is unintentional. This
43278 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43279 These functions shall compute the square root of x , √MMx . |

43280 An application wishing to check for error situations should set errno to 0 before calling sqrt(). If
43281 errno is non-zero on return, or the return value is NaN, an error has occurred.

43282 RETURN VALUE
43283 Upon successful completion, these functions shall return the square root of x . |

43284 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

43285 XSI If x is negative, 0.0 or NaN shall be returnedand errno shall be set to [EDOM].

43286 ERRORS
43287 These functions shall fail if: |

43288 [EDOM] The value of x is negative. |

43289 These functions may fail if: |

43290 XSI [EDOM] The value of x is NaN.

43291 XSI No other errors shall occur.

43292 EXAMPLES

43293 Taking the Square Root of 9.0

43294 #include <math.h>
43295 ...
43296 doubl e x = 9.0;
43297 double result;
43298 ...
43299 result = sqrt(x);

43300 APPLICATION USAGE
43301 None.

43302 RATIONALE
43303 None.

43304 FUTURE DIRECTIONS
43305 None.

1906 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sqrt()

43306 SEE ALSO
43307 isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h>, <stdio.h> |

43308 CHANGE HISTORY
43309 First released in Issue 1. Derived from Issue 1 of the SVID. |

43310 Issue 4
43311 References to matherr() are removed.

43312 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
43313 ISO C standard and to rationalize error handling in the mathematics functions.

43314 The return value specified for [EDOM] is marked as an extension.

43315 Issue 5
43316 The DESCRIPTION is updated to indicate how an application should check for an error. This
43317 text was previously published in the APPLICATION USAGE section. |

43318 Issue 6 |
43319 The sqrtf() and sqrtl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1907

srand() System Interfaces

43320 NAME
43321 srand — pseudo-random number generator

43322 SYNOPSIS
43323 #include <stdlib.h>

43324 void srand(unsigned seed); |

43325 DESCRIPTION |
43326 Refer to rand().

1908 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces srand48()

43327 NAME
43328 srand48 — seed uniformly distributed double-precision pseudo-random number generator

43329 SYNOPSIS
43330 XSI #include <stdlib.h>

43331 void srand48(long seedval); |
43332 |

43333 DESCRIPTION
43334 Refer to drand48().

System Interfaces, Issue 6 1909

srandom() System Interfaces

43335 NAME
43336 srandom — seed pseudo-random number generator

43337 SYNOPSIS
43338 XSI #include <stdlib.h>

43339 void srandom(unsigned seed); |
43340 |

43341 DESCRIPTION
43342 Refer to initstate().

1910 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sscanf()

43343 NAME
43344 sscanf — convert formatted input

43345 SYNOPSIS
43346 #include <stdio.h>

43347 int sscanf(const char *restrict s, const char *restrict format , ...); |

43348 DESCRIPTION |
43349 Refer to fscanf().

System Interfaces, Issue 6 1911

stat() System Interfaces

43350 NAME
43351 stat — get file status

43352 SYNOPSIS
43353 #include <sys/stat.h>

43354 int stat(const char *restrict path , struct stat *restrict buf); |

43355 DESCRIPTION |
43356 The stat() function obtains information about the named file and writes it to the area pointed to
43357 by the buf argument. The path argument points to a path name naming a file. Read, write, or
43358 execute permission of the named file is not required. An implementation that provides |
43359 additional or alternate file access control mechanisms may, under implementation-defined |
43360 conditions, cause stat() to fail. In particular, the system may deny the existence of the file |
43361 specified by path .

43362 If the named file is a symbolic link, the stat() function shall continue path name resolution using
43363 the contents of the symbolic link, and shall return information pertaining to the resulting file if
43364 the file exists.

43365 The buf argument is a pointer to a stat structure, as defined in the header <sys/stat.h>, into
43366 which information is placed concerning the file.

43367 The stat() function updates any time-related fields (as described in the definition of File Times
43368 Update in the Base Definitions volume of IEEE Std. 1003.1-200x), before writing into the stat |
43369 structure.

43370 The structure members st_mode, st_ino , st_dev , st_uid , st_gid , st_atime , st_ctime, and st_mtime
43371 shall have meaningful values for all file types defined in this volume of IEEE Std. 1003.1-200x.
43372 The value of the member st_nlink shall be set to the number of links to the file.

43373 RETURN VALUE
43374 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
43375 indicate the error.

43376 ERRORS
43377 The stat() function shall fail if:

43378 [EACCES] Search permission is denied for a component of the path prefix. |

43379 [EIO] An error occurred while reading from the file system. |

43380 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
43381 argument. |

43382 [ENAMETOOLONG] |
43383 The length of the path argument exceeds {PATH_MAX} or a path name
43384 component is longer than {NAME_MAX}. |

43385 [ENOENT] A component of path does not name an existing file or path is an empty string. |

43386 [ENOTDIR] A component of the path prefix is not a directory. |

43387 [EOVERFLOW] The file size in bytes or the number of blocks allocated to the file or the file |
43388 serial number cannot be represented correctly in the structure pointed to by
43389 buf. |

43390 The stat() function may fail if:

43391 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
43392 resolution of the path argument. |

1912 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces stat()

43393 [ENAMETOOLONG] |
43394 As a result of encountering a symbolic link in resolution of the path argument,
43395 the length of the substituted path name string exceeded {PATH_MAX}. |

43396 [EOVERFLOW] A value to be stored would overflow one of the members of the stat structure. |

43397 EXAMPLES

43398 Obtaining File Status Information

43399 The following example shows how to obtain file status information for a file named
43400 /home/cnd/mod1. The structure variable buffer is defined for the stat structure.

43401 #include <sys/types.h>
43402 #include <sys/stat.h>
43403 #include <fcntl.h>

43404 struct stat buffer;
43405 int status;
43406 ...
43407 status = stat("/home/cnd/mod1", &buffer);

43408 Getting Directory Information

43409 The following example fragment gets status information for each entry in a directory. The call to
43410 the stat() function stores file information in the stat structure pointed to by statbuf . The lines
43411 that follow the stat() call format the fields in the stat structure for presentation to the user of the
43412 program.

43413 #include <sys/types.h>
43414 #include <sys/stat.h>
43415 #include <dirent.h>
43416 #include <pwd.h>
43417 #include <grp.h>
43418 #include <time.h>
43419 #include <locale.h>
43420 #include <langinfo.h>

43421 struct dirent *dp;
43422 struct stat statbuf;
43423 struct passwd *pwd;
43424 struct group *grp;
43425 struct tm *tm;
43426 char datestring[256];
43427 ...
43428 /* Loop through directory entries */
43429 while ((dp = readdir(dir)) != NULL) {

43430 /* Get entry’s information. */
43431 if (stat(dp->d_name, &statbuf) == -1)
43432 continue;

43433 /* Print out type, permissions, and number of links. */
43434 printf("%10.10s", sperm (statbuf.st_mode));
43435 printf("%4d", statbuf.st_nlink);

System Interfaces, Issue 6 1913

stat() System Interfaces

43436 /* Print out owners name if it is found using getpwuid(). */
43437 if ((pwd = getpwuid(statbuf.st_uid)) != NULL)
43438 printf(" %-8.8s", pwd->pw_name);
43439 else
43440 printf(" %-8d", statbuf.st_uid);

43441 /* Print out group name if it’s found using getgrgid(). */
43442 if ((grp = getgrgid(statbuf.st_gid)) != NULL)
43443 printf(" %-8.8s", grp->gr_name);
43444 else
43445 printf(" %-8d", statbuf.st_gid);

43446 /* Print size of file. */
43447 printf("%9ld", statbuf.st_size);

43448 tm = localtime(&statbuf.st_mtime);

43449 /* Get localized date string. */
43450 strftime(datestring, sizeof(datestring), nl_langinfo(D_T_FMT), tm);

43451 printf(" %s %s\n", datestring, dp->d_name);
43452 }

43453 APPLICATION USAGE
43454 None.

43455 RATIONALE
43456 The intent of the paragraph describing ‘‘additional or alternate file access control mechanisms’’
43457 is to allow a secure implementation where a process with a label that does not dominate the
43458 file’s label cannot perform a stat() function. This is not related to read permission; a process with
43459 a label that dominates the file’s label does not need read permission. An implementation that
43460 supports write-up operations could fail fstat() function calls even though it has a valid file
43461 descriptor open for writing.

43462 FUTURE DIRECTIONS
43463 None.

43464 SEE ALSO
43465 fstat(), lstat(), readlink (), symlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
43466 <sys/stat.h>, <sys/types.h>

CHANGE43467 HISTORY
43468 First released in Issue 1. Derived from Issue 1 of the SVID. |

43469 Issue 4
43470 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
43471 XSI-conformant systems.

43472 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

43473 • The type of argument path is changed from char* to const char*.

43474 • In the DESCRIPTION is changed as follows:

43475 — Statements indicating the purpose of this function and a paragraph defining the contents
43476 of stat structure members are added.

43477 — The words ‘‘extended security controls’’ are replaced by ‘‘additional or alternate file
43478 access control mechanisms’’.

1914 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces stat()

43479 The following change is incorporated for alignment with the FIPS requirements:

43480 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
43481 name component is larger than {NAME_MAX} is now defined as mandatory and marked as
43482 an extension.

43483 Issue 4, Version 2
43484 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

43485 • In the mandatory section, [EIO] is added to indicate that a physical I/O error has occurred,
43486 and [ELOOP] to indicate that too many symbolic links were encountered during path name
43487 resolution.

43488 • In the optional section, a second [ENAMETOOLONG] condition is defined that may report
43489 excessive length of an intermediate result of path name resolution of a symbolic link.

43490 • In the optional section, [EOVERFLOW] is added to indicate that a value to be stored in a
43491 member of the stat structure would cause overflow.

43492 Issue 5
43493 Large File Summit extensions are added.

43494 Issue 6
43495 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

43496 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

43497 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
43498 This is since behavior may vary from one file system to another.

43499 The following new requirements on POSIX implementations derive from alignment with the
43500 Single UNIX Specification:

43501 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
43502 required for conforming implementations of previous POSIX specifications, it was not
43503 required for UNIX applications.

43504 • The [EIO] mandatory error condition is added.

43505 • The [ELOOP] mandatory error condition is added.

43506 • The [EOVERFLOW] mandatory error condition is added. This change is to support large
43507 files.

43508 • The [ENAMETOOLONG] and the second [EOVERFLOW] optional error conditions are
43509 added.

43510 The following changes were made to align with the IEEE P1003.1a draft standard:

43511 • Details are added regarding the treatment of symbolic links.

43512 • The [ELOOP] optional error condition is added.

43513 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

43514 The restrict keyword is added to the stat() prototype for alignment with the ISO/IEC 9899: 1999 |
43515 standard. |

System Interfaces, Issue 6 1915

statvfs() System Interfaces

43516 NAME
43517 statvfs — get file system information

43518 SYNOPSIS
43519 XSI #include <sys/statvfs.h>

43520 int statvfs(const char *restrict path , struct statvfs *restrict buf); |
43521 |

43522 DESCRIPTION
43523 Refer to fstatvfs ().

1916 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces stdin

43524 NAME
43525 stderr, stdin, stdout — standard I/O streams

43526 SYNOPSIS
43527 #include <stdio.h>

43528 extern FILE * stderr , * stdin , * stdout ;

43529 DESCRIPTION
43530 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43531 conflict between the requirements described here and the ISO C standard is unintentional. This
43532 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43533 A file with associated buffering is called a stream and is declared to be a pointer to a defined type
43534 FILE. The fopen() function creates certain descriptive data for a stream and returns a pointer to
43535 designate the stream in all further transactions. Normally, there are three open streams with
43536 constant pointers declared in the <stdio.h> header and associated with the standard open files.

43537 At program start-up, three streams are predefined and need not be opened explicitly: standard
43538 input (for reading conventional input), standard output (for writing conventional output), and
43539 standard error (for writing diagnostic output). When opened, the standard error stream is not
43540 fully buffered; the standard input and standard output streams are fully buffered if and only if
43541 the stream can be determined not to refer to an interactive device.

43542 CX The following symbolic values in <unistd.h> define the file descriptors that shall be associated
43543 with the C-language stdin , stdout , and stderr when the application is started:

43544 STDIN_FILENO Standard input value, stdin . Its value is 0.

43545 STDOUT_FILENO Standard output value, stdout . Its value is 1.

43546 STDERR_FILENO Standard error value, stderr. Its value is 2.
43547 |

43548 stderr is expected to be open for reading and writing. |

43549 RETURN VALUE
43550 None.

43551 ERRORS
43552 No errors are defined.

43553 EXAMPLES
43554 None.

43555 APPLICATION USAGE
43556 None.

43557 RATIONALE
43558 None.

43559 FUTURE DIRECTIONS
43560 None.

43561 SEE ALSO
43562 fclose(), feof(), ferror(), fileno (), fopen(), fread(), fseek(), getc(), gets(), popen(), printf(), putc(),
43563 puts(), read(), scanf(), setbuf(), setvbuf(), tmpfile(), ungetc(), vprintf(), the Base Definitions |
43564 volume of IEEE Std. 1003.1-200x, <stdio.h>, <unistd.h> |

System Interfaces, Issue 6 1917

stdin System Interfaces

43565 CHANGE HISTORY
43566 First released in Issue 1.

43567 Issue 6
43568 Extensions beyond the ISO C standard are now marked.

1918 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strcasecmp()

43569 NAME
43570 strcasecmp, strncasecmp — case-insensitive string comparisons |

43571 SYNOPSIS
43572 XSI #include <strings.h>

43573 int strcasecmp(const char * s1 , const char * s2);
43574 int strncasecmp(const char * s1 , const char * s2 , size_t n);
43575

43576 DESCRIPTION
43577 The strcasecmp() function compares, while ignoring differences in case, the string pointed to by
43578 s1 to the string pointed to by s2. The strncasecmp() function compares, while ignoring
43579 differences in case, not more than n bytes from the string pointed to by s1 to the string pointed to
43580 by s2.

43581 In the POSIX locale, strcasecmp() and strncasecmp() do upper to lower conversions, then a byte
43582 comparison. The results are unspecified in other locales.

43583 RETURN VALUE
43584 Upon completion, strcasecmp() shall return an integer greater than, equal to, or less than 0, if the
43585 string pointed to by s1 is, ignoring case, greater than, equal to, or less than the string pointed to
43586 by s2, respectively.

43587 Upon successful completion, strncasecmp() shall return an integer greater than, equal to, or less
43588 than 0, if the possibly null-terminated array pointed to by s1 is, ignoring case, greater than, equal
43589 to, or less than the possibly null-terminated array pointed to by s2, respectively.

43590 ERRORS
43591 No errors are defined.

43592 EXAMPLES
43593 None.

43594 APPLICATION USAGE
43595 None.

43596 RATIONALE
43597 None.

43598 FUTURE DIRECTIONS
43599 None.

43600 SEE ALSO
43601 The Base Definitions volume of IEEE Std. 1003.1-200x, <strings.h> |

43602 CHANGE HISTORY
43603 First released in Issue 4, Version 2.

43604 Issue 5
43605 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1919

strcat() System Interfaces

43606 NAME
43607 strcat — concatenate two strings

43608 SYNOPSIS
43609 #include <string.h>

43610 char *strcat(char *restrict s1 , const char *restrict s2); |

43611 DESCRIPTION |
43612 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43613 conflict between the requirements described here and the ISO C standard is unintentional. This
43614 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43615 The strcat() function shall append a copy of the string pointed to by s2 (including the
43616 terminating null byte) to the end of the string pointed to by s1. The initial byte of s2 overwrites
43617 the null byte at the end of s1. If copying takes place between objects that overlap, the behavior is
43618 undefined.

43619 RETURN VALUE
43620 The strcat() function shall return s1; no return value is reserved to indicate an error.

43621 ERRORS
43622 No errors are defined.

43623 EXAMPLES
43624 None.

43625 APPLICATION USAGE
43626 This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
43627 applications. Reliable error detection by this function was never guaranteed.

43628 RATIONALE
43629 None.

43630 FUTURE DIRECTIONS
43631 None.

43632 SEE ALSO
43633 strncat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43634 CHANGE HISTORY
43635 First released in Issue 1. Derived from Issue 1 of the SVID. |

43636 Issue 4
43637 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
43638 (possibly multi-byte) characters.

43639 The following change is incorporated for alignment with the ISO C standard:

43640 • The type of argument s2 is changed from char* to const char*.

43641 Issue 6 |
43642 The strcat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1920 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strchr()

43643 NAME
43644 strchr — string scanning operation

43645 SYNOPSIS
43646 #include <string.h>

43647 char *strchr(const char * s, int c);

43648 DESCRIPTION
43649 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43650 conflict between the requirements described here and the ISO C standard is unintentional. This
43651 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43652 CX The strchr() function shall locate the first occurrence of c (converted to an unsignedchar) in the
43653 string pointed to by s. The terminating null byte is considered to be part of the string.

43654 RETURN VALUE
43655 Upon completion, strchr() shall return a pointer to the byte, or a null pointer if the byte was not
43656 found.

43657 ERRORS
43658 No errors are defined.

43659 EXAMPLES
43660 None.

43661 APPLICATION USAGE
43662 None.

43663 RATIONALE
43664 None.

43665 FUTURE DIRECTIONS
43666 None.

43667 SEE ALSO
43668 strrchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43669 CHANGE HISTORY
43670 First released in Issue 1. Derived from Issue 1 of the SVID. |

43671 Issue 4
43672 The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the function
43673 manipulates bytes rather than (possibly multi-byte) characters.

43674 The APPLICATION USAGE section is removed.

43675 The following change is incorporated for alignment with the ISO C standard:

43676 • The type of argument s is changed from char* to const char*.

43677 Issue 6
43678 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1921

strcmp() System Interfaces

43679 NAME
43680 strcmp — compare two strings

43681 SYNOPSIS
43682 #include <string.h>

43683 int strcmp(const char * s1 , const char * s2);

43684 DESCRIPTION
43685 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43686 conflict between the requirements described here and the ISO C standard is unintentional. This
43687 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43688 The strcmp() function shall compare the string pointed to by s1 to the string pointed to by s2.

43689 The sign of a non-zero return value shall be determined by the sign of the difference between the
43690 values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
43691 being compared.

43692 RETURN VALUE
43693 Upon completion, strcmp() shall return an integer greater than, equal to, or less than 0, if the
43694 string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2,
43695 respectively.

43696 ERRORS
43697 No errors are defined.

43698 EXAMPLES

43699 Checking a Password Entry

43700 The following example compares the information read from standard input to the value of the
43701 name of the user entry. If the strcmp() function returns 0 (indicating a match), a further check
43702 will be made to see if the user entered the proper old password. The crypt() function is used to
43703 encrypt the old password entered by the user, using the value of the encrypted password in the
43704 passwd structure as the salt. If this value matches the value of the encrypted passwd in the
43705 structure, the entered password oldpasswd is the correct user’s password. Finally, the program
43706 encrypts the new password so that it can store the imformation in the passwd structure.

43707 #include <string.h>
43708 #include <unistd.h>
43709 #include <stdio.h>
43710 ...
43711 int valid_change;
43712 struct passwd *p;
43713 char user[100];
43714 char oldpasswd[100];
43715 char newpasswd[100];
43716 char savepasswd[100];
43717 ...
43718 if (strcmp(p->pw_name, user) == 0) {
43719 if (strcmp(p->pw_passwd, crypt(oldpasswd, p->pw_passwd)) == 0) {
43720 strcpy(savepasswd, crypt(newpasswd, user));
43721 p->pw_passwd = savepasswd;
43722 valid_change = 1;
43723 }
43724 else {

1922 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strcmp()

43725 fprintf(stderr, "Old password is not valid\n");
43726 }
43727 }
43728 ...

43729 APPLICATION USAGE
43730 None.

43731 RATIONALE
43732 None.

43733 FUTURE DIRECTIONS
43734 None.

43735 SEE ALSO
43736 strncmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43737 CHANGE HISTORY
43738 First released in Issue 1. Derived from Issue 1 of the SVID. |

43739 Issue 4
43740 The DESCRIPTION is changed to make it clear that strcmp() compares bytes rather than
43741 (possibly multi-byte) characters.

43742 The following change is incorporated for alignment with the ISO C standard:

43743 • The type of arguments s1 and s2 is changed from char* to const char*.

43744 Issue 6
43745 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1923

strcoll() System Interfaces

43746 NAME
43747 strcoll — string comparison using collating information

43748 SYNOPSIS
43749 #include <string.h>

43750 int strcoll(const char * s1 , const char * s2);

43751 DESCRIPTION
43752 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43753 conflict between the requirements described here and the ISO C standard is unintentional. This
43754 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43755 The strcoll() function shall compare the string pointed to by s1 to the string pointed to by s2,
43756 both interpreted as appropriate to the LC_COLLATE category of the current locale.

43757 CX The strcoll() function shall not change the setting of errno if successful.

43758 Because no return value is reserved to indicate an error, an application wishing to check for error
43759 situations should set errno to 0, then call strcoll(), then check errno.

43760 RETURN VALUE
43761 Upon successful completion, strcoll() shall return an integer greater than, equal to, or less than 0,
43762 according to whether the string pointed to by s1 is greater than, equal to, or less than the string
43763 CX pointed to by s2 when both are interpreted as appropriate to the current locale. On error,
43764 strcoll() may set errno, but no return value is reserved to indicate an error.

43765 ERRORS
43766 The strcoll() function may fail if:

43767 CX [EINVAL] The s1 or s2 arguments contain characters outside the domain of the collating |
43768 sequence.

43769 EXAMPLES

43770 Comparing Nodes

43771 The following example uses an application-defined function, node_compare(), to compare two
43772 nodes based on an alphabetical ordering of the string field.

43773 #include <string.h>
43774 ...
43775 struct node { /* These are stored in the table. */
43776 char *string;
43777 int length;
43778 };
43779 ...
43780 int node_compare(const void *node1, const void *node2)
43781 {
43782 return strcoll(((const struct node *)node1)->string,
43783 ((const struct node *)node2)->string);
43784 }
43785 ...

43786 APPLICATION USAGE
43787 The strxfrm() and strcmp() functions should be used for sorting large lists.

1924 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strcoll()

43788 RATIONALE
43789 None.

43790 FUTURE DIRECTIONS
43791 None.

43792 SEE ALSO
43793 strcmp(), strxfrm(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43794 CHANGE HISTORY
43795 First released in Issue 3.

43796 Issue 4
43797 A paragraph describing how the sign of the return value should be determined is removed from
43798 the DESCRIPTION.

43799 The [EINVAL] error is marked as an extension.

43800 The following changes are incorporated for alignment with the ISO C standard:

43801 • The function is no longer marked as an extension.

43802 • The type of arguments s1 and s2 are changed from char* to const char*.

43803 Issue 5
43804 The DESCRIPTION is updated to indicate that errno does not be changed if the function is
43805 successful.

43806 Issue 6
43807 Extensions beyond the ISO C standard are now marked.

43808 The following new requirements on POSIX implementations derive from alignment with the
43809 Single UNIX Specification:

43810 • The [EINVAL] optional error condition is added.

System Interfaces, Issue 6 1925

strcpy() System Interfaces

43811 NAME
43812 strcpy — copy a string

43813 SYNOPSIS
43814 #include <string.h>

43815 char *strcpy(char *restrict s1 , const char *restrict s2); |

43816 DESCRIPTION |
43817 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43818 conflict between the requirements described here and the ISO C standard is unintentional. This
43819 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43820 The strcpy() function shall copy the string pointed to by s2 (including the terminating null byte)
43821 into the array pointed to by s1. If copying takes place between objects that overlap, the behavior
43822 is undefined.

43823 RETURN VALUE
43824 The strcpy() function shall return s1; no return value is reserved to indicate an error.

43825 ERRORS
43826 No errors are defined.

43827 EXAMPLES

43828 Initializing a String

43829 The following example copies the string "----------" into the permstring variable.

43830 #include <string.h>
43831 ...
43832 static char permstring[11];
43833 ...
43834 strcpy(permstring, "----------");
43835 ...

43836 Storing a Key and Data

43837 The following example allocates space for a key using malloc () then uses strcpy() to place the
43838 key there. Then it allocates space for data using malloc (), and uses strcpy() to place data there.
43839 (The user-defined function dbfree() frees memory previously allocated to an array of type struct
43840 element*.)

43841 #include <string.h>
43842 #include <stdlib.h>
43843 #include <stdio.h>
43844 ...
43845 /* Structure used to read data and store it. */
43846 struct element {
43847 char *key;
43848 char *data;
43849 };

43850 struct element *tbl, *curtbl;
43851 char *key, *data;
43852 int count;
43853 ...
43854 void dbfree(struct element *, int);

1926 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strcpy()

43855 ...
43856 if ((curtbl->key = malloc(strlen(key) + 1)) == NULL) {
43857 perror("malloc"); dbfree(tbl, count); return NULL;
43858 }
43859 strcpy(curtbl->key, key);

43860 if ((curtbl->data = malloc(strlen(data) + 1)) == NULL) {
43861 perror("malloc"); free(curtbl->key); dbfree(tbl, count); return NULL;
43862 }
43863 strcpy(curtbl->data, data);
43864 ...

43865 APPLICATION USAGE
43866 Character movement is performed differently in different implementations. Thus, overlapping
43867 moves may yield surprises.

43868 This issue is aligned with the ISO C standard; this does not affect compatibility with XPG3
43869 applications. Reliable error detection by this function was never guaranteed.

43870 RATIONALE
43871 None.

43872 FUTURE DIRECTIONS
43873 None.

43874 SEE ALSO
43875 strncpy(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43876 CHANGE HISTORY
43877 First released in Issue 1. Derived from Issue 1 of the SVID. |

43878 Issue 4
43879 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
43880 (possibly multi-byte) characters.

43881 The following change is incorporated for alignment with the ISO C standard:

43882 • The type of argument s2 is changed from char* to const char*.

43883 Issue 6 |
43884 The strcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1927

strcspn() System Interfaces

43885 NAME
43886 strcspn — get length of a complementary substring

43887 SYNOPSIS
43888 #include <string.h>

43889 size_t strcspn(const char * s1 , const char * s2);

43890 DESCRIPTION
43891 CX The functionality described on this reference page is aligned with the ISO C standard. Any
43892 conflict between the requirements described here and the ISO C standard is unintentional. This
43893 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

43894 The strcspn() function shall compute the length of the maximum initial segment of the string
43895 pointed to by s1 which consists entirely of bytes not from the string pointed to by s2.

43896 RETURN VALUE
43897 The strcspn() function shall return the length of the computed segment of the string pointed to
43898 by s1; no return value is reserved to indicate an error.

43899 ERRORS
43900 No errors are defined.

43901 EXAMPLES
43902 None.

43903 APPLICATION USAGE
43904 None.

43905 RATIONALE
43906 None.

43907 FUTURE DIRECTIONS
43908 None.

43909 SEE ALSO
43910 strspn(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43911 CHANGE HISTORY
43912 First released in Issue 1. Derived from Issue 1 of the SVID. |

43913 Issue 4
43914 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
43915 (possibly multi-byte) characters.

43916 The following change is incorporated for alignment with the ISO C standard:

43917 • The type of arguments s1 and s2 is changed from char* to const char*.

43918 Issue 5
43919 The RETURN VALUE section is updated to indicated that strcspn() returns the length of s1, and
43920 not s1 itself as was previously stated.

43921 Issue 6
43922 The Open Group corrigenda item U030/1 has been applied. The text of the RETURN VALUE
43923 section is updated to indicate that the computed segment length is returned, not the s1 length.

1928 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strdup()

43924 NAME
43925 strdup — duplicate a string

43926 SYNOPSIS
43927 XSI #include <string.h>

43928 char *strdup(const char * s1);
43929

43930 DESCRIPTION
43931 The strdup() function shall return a pointer to a new string, which is a duplicate of the string
43932 pointed to by s1. The returned pointer can be passed to free(). A null pointer is returned if the
43933 new string cannot be created.

43934 RETURN VALUE
43935 The strdup() function shall return a pointer to a new string on success. Otherwise, it shall return
43936 a null pointer and set errno to indicate the error.

43937 ERRORS
43938 The strdup() function may fail if:

43939 [ENOMEM] Storage space available is insufficient. |

43940 EXAMPLES
43941 None.

43942 APPLICATION USAGE
43943 None.

43944 RATIONALE
43945 None.

43946 FUTURE DIRECTIONS
43947 None.

43948 SEE ALSO
43949 free(), malloc (), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43950 CHANGE HISTORY
43951 First released in Issue 4, Version 2.

43952 Issue 5
43953 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1929

strerror() System Interfaces

43954 NAME
43955 strerror, strerror_r — get error message string |

43956 SYNOPSIS
43957 #include <string.h>

43958 char *strerror(int errnum);
43959 int strerror_r(int errnum , char * strerrbuf , size_t buflen); |

43960 DESCRIPTION |
43961 The strerror() function maps the error number in errnum to a locale-dependent error message |
43962 string and returns a pointer to it. The string pointed to must not be modified by the application, |
43963 but may be overwritten by a subsequent call to strerror() or perror(). |

43964 The contents of the error message strings returned by strerror() should be determined by the |
43965 setting of the LC_MESSAGES category in the current locale. |

43966 The implementation shall behave as if no function defined in this volume of |
43967 IEEE Std. 1003.1-200x calls strerror(). |

43968 The strerror() function shall not change the setting of errno if successful. |

43969 Because no return value is reserved to indicate an error, an application wishing to check for error
43970 situations should set errno to 0, then call strerror(), then check errno.

43971 The strerror() function need not be reentrant. A function that is not required to be reentrant is
43972 not required to be thread-safe. |

43973 The strerror_r() function maps the error number in errnum to a locale-dependent error message |
43974 string and returns the string in the buffer pointed to by strerrbuf, with length buflen. |

43975 RETURN VALUE
43976 Upon successful completion, strerror() shall return a pointer to the generated message string. On |
43977 error errno may be set, but no return value is reserved to indicate an error. |

43978 Upon successful completion, strerror_r() returns 0. Otherwise, an error number is returned to |
43979 indicate the error. |

43980 ERRORS
43981 These functions may fail if: |

43982 [EINVAL] The value of errnum is not a valid error number. |

43983 The strerror_r() function may fail if: |

43984 [ERANGE] Insufficient storage was supplied via strerrbuf and buflen to contain the |
43985 generated message string. |

43986 EXAMPLES |
43987 None.

43988 APPLICATION USAGE
43989 None.

43990 RATIONALE
43991 None.

43992 FUTURE DIRECTIONS
43993 None.

1930 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strerror()

43994 SEE ALSO
43995 perror(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

43996 CHANGE HISTORY
43997 First released in Issue 3.

43998 Issue 4
43999 The DESCRIPTION is changed as follows:

44000 • The term ‘‘language-dependent’’ is replaced by ‘‘locale-dependent’’.

44001 • A statement about the use of the LC_MESSAGES category for determining the language of
44002 error messages is added and marked as an extension.

44003 The fact that strerror() can return a null pointer on failure and set errno is marked as an
44004 extension.

44005 The [EINVAL] error is marked as an extension.

44006 The FUTURE DIRECTIONS section is removed.

44007 The following change is incorporated for alignment with the ISO C standard:

44008 • The function is no longer marked as an extension.

44009 Issue 5
44010 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

44011 A note indicating that this function need not be reentrant is added to the DESCRIPTION.

44012 Issue 6
44013 Extensions beyond the ISO C standard are now marked.

44014 The following new requirements on POSIX implementations derive from alignment with the
44015 Single UNIX Specification:

44016 • In the RETURN VALUE section, the fact that errno may be set is added.

44017 • The [EINVAL] optional error condition is added.

44018 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

44019 The strerror_r() function is added in response to IEEE PASC Interpretation 1003.1c #39. |

System Interfaces, Issue 6 1931

strfmon() System Interfaces

44020 NAME
44021 strfmon — convert monetary value to a string

44022 SYNOPSIS
44023 XSI #include <monetary.h>

44024 ssize_t strfmon(char *restrict s, size_t maxsize , |
44025 const char *restrict format , ...); |
44026 |

44027 DESCRIPTION
44028 The strfmon() function shall place characters into the array pointed to by s as controlled by the
44029 string pointed to by format . No more than maxsize bytes are placed into the array.

44030 The format is a character string that contains two types of objects: plain characters, which are
44031 simply copied to the output stream, and conversion specifications, each of which results in the
44032 fetching of zero or more arguments which are converted and formatted. The results are
44033 undefined if there are insufficient arguments for the format. If the format is exhausted while
44034 arguments remain, the excess arguments are simply ignored.

44035 The application shall ensure that a conversion specification consists of the following sequence:

44036 • A ’%’ character

44037 • Optional flags

44038 • Optional field width

44039 • Optional left precision

44040 • Optional right precision

44041 • A required conversion character that determines the conversion to be performed

44042 Flags

44043 One or more of the following optional flags can be specified to control the conversion:

44044 =f An ’=’ followed by a single character f which is used as the numeric fill character. The
44045 application shall ensure that the fill character is representable in a single byte in order
44046 to work with precision and width counts. The default numeric fill character is the
44047 <space> character. This flag does not affect field width filling which always uses the
44048 <space> character. This flag is ignored unless a left precision (see below) is specified.

44049 ^ Do not format the currency amount with grouping characters. The default is to insert
44050 the grouping characters if defined for the current locale.

44051 + or (Specify the style of representing positive and negative currency amounts. Only one of
44052 ’+’ or ’(’ may be specified. If ’+’ is specified, the locale’s equivalent of ’+’ and ’ −’
44053 are used (for example, in the U.S., the empty string if positive and ’ −’ if negative). If
44054 ’(’ is specified, negative amounts are enclosed within parentheses. If neither flag is
44055 specified, the ’+’ style is used.

44056 ! Suppress the currency symbol from the output conversion.

44057 − Specify the alignment. If this flag is present all fields are left-justified (padded to the
44058 right) rather than right-justified.

1932 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strfmon()

44059 Field Width

44060 w A decimal digit string w specifying a minimum field width in bytes in which the result
44061 of the conversion is right-justified (or left-justified if the flag ’ −’ is specified). The
44062 default is 0.

44063 Left Precision

44064 #n A ’#’ followed by a decimal digit string n specifying a maximum number of digits
44065 expected to be formatted to the left of the radix character. This option can be used to
44066 keep the formatted output from multiple calls to the strfmon() function aligned in the
44067 same columns. It can also be used to fill unused positions with a special character as in
44068 "$***123.45" . This option causes an amount to be formatted as if it has the number
44069 of digits specified by n. If more than n digit positions are required, this conversion
44070 specification is ignored. Digit positions in excess of those actually required are filled
44071 with the numeric fill character (see the =f flag above).

44072 If grouping has not been suppressed with the ’ˆ’ flag, and it is defined for the current
44073 locale, grouping separators are inserted before the fill characters (if any) are added.
44074 Grouping separators are not applied to fill characters even if the fill character is a digit.

44075 To ensure alignment, any characters appearing before or after the number in the
44076 formatted output such as currency or sign symbols are padded as necessary with
44077 <space> characters to make their positive and negative formats an equal length.

44078 Right Precision

44079 . p A period followed by a decimal digit string p specifying the number of digits after the
44080 radix character. If the value of the right precision p is 0, no radix character appears. If a
44081 right precision is not included, a default specified by the current locale is used. The
44082 amount being formatted is rounded to the specified number of digits prior to
44083 formatting.

44084 Conversion Characters

44085 The conversion characters and their meanings are:

44086 i The double argument is formatted according to the locale’s international currency
44087 format (for example, in the U.S.: USD 1,234.56).

44088 n The double argument is formatted according to the locale’s national currency format
44089 (for example, in the U.S.: $1,234.56).

44090 % Convert to a ’%’ ; no argument is converted. The entire conversion specification shall
44091 be "%%".

44092 Locale Information

44093 The LC_MONETARY category of the program’s locale affects the behavior of this function
44094 including the monetary radix character (which may be different from the numeric radix
44095 character affected by the LC_NUMERIC category), the grouping separator, the currency
44096 symbols, and formats. The international currency symbol should be conformant with the
44097 ISO 4217: 1995 standard.

44098 If the value of maxsize is greater than {SSIZE_MAX}, the result is implementation-defined. |

System Interfaces, Issue 6 1933

strfmon() System Interfaces

44099 RETURN VALUE
44100 If the total number of resulting bytes including the terminating null byte is not more than
44101 maxsize , strfmon() shall return the number of bytes placed into the array pointed to by s, not
44102 including the terminating null byte. Otherwise, −1 shall be returned, the contents of the array are
44103 indeterminate, and errno shall be set to indicate the error.

44104 ERRORS
44105 The strfmon() function shall fail if:

44106 [E2BIG] Conversion stopped due to lack of space in the buffer. |

44107 EXAMPLES
44108 Given a locale for the U.S. and the values 123.45, −123.45, and 3456.781:

__
44109 Conversion
44110 Specification Output Comments__
44111 %n $123.45 Default formatting.
44112 -$123.45
44113 $3,456.78__
44114 %11n $123.45 Right align within an 11 character field.
44115 -$123.45
44116 $3,456.78__
44117 %#5n $ 123.45 Aligned columns for values up to 99,999.
44118 -$ 123.45
44119 $ 3,456.78__
44120 %=*#5n $***123.45 Specify a fill character.
44121 -$***123.45
44122 $*3,456.78__
44123 %=0#5n $000123.45 Fill characters do not use grouping
44124 -$000123.45 even if the fill character is a digit.
44125 $03,456.78__
44126 %ˆ#5n $ 123.45 Disable the grouping separator.
44127 -$ 123.45
44128 $ 3456.78__
44129 %ˆ#5.0 n $ 123 Round off to whole units.
44130 -$ 123
44131 $ 3457__
44132 %ˆ#5.4 n $ 123.4500 Increase the precision.
44133 -$ 123.4500
44134 $ 3456.7810__
44135 %(#5n 123.45 Use an alternative pos/neg style.
44136 ($ 123.45)
44137 $ 3,456.78__
44138 %(!#5 n 123.45 Disable the currency symbol.
44139 (123.45)
44140 3,456.78__LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

44141 APPLICATION USAGE
44142 None.

1934 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strfmon()

44143 RATIONALE
44144 None.

44145 FUTURE DIRECTIONS
44146 Lowercase conversion characters are reserved for future standards use and uppercase for |
44147 implementation-defined use. |

44148 SEE ALSO
44149 localeconv (), the Base Definitions volume of IEEE Std. 1003.1-200x, <monetary.h> |

44150 CHANGE HISTORY
44151 First released in Issue 4.

44152 Issue 5
44153 Moved from ENHANCED I18N to BASE.

44154 The [ENOSYS] error is removed.

44155 A sentence is added to the DESCRIPTION warning about values of maxsize that are greater than
44156 {SSIZE_MAX}.

44157 Issue 6
44158 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

44159 The restrict keyword is added to the strfmon() prototype for alignment with the |
44160 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1935

strftime() System Interfaces

44161 NAME
44162 strftime — convert date and time to a string

44163 SYNOPSIS
44164 #include <time.h>

44165 size_t strftime(char *restrict s, size_t maxsize , |
44166 const char *restrict format , const struct tm *restrict timptr); |

44167 DESCRIPTION |
44168 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44169 conflict between the requirements described here and the ISO C standard is unintentional. This
44170 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44171 The strftime() function shall place bytes into the array pointed to by s as controlled by the string
44172 pointed to by format . The format string consists of zero or more conversion specifications and
44173 ordinary characters. A conversion specification consists of a ’%’ character, possibly followed by |
44174 an E or O modifier, and a terminating conversion character that determines the conversion |
44175 specification’s behavior. All ordinary characters (including the terminating null byte) are copied |
44176 unchanged into the array. If copying takes place between objects that overlap, the behavior is |
44177 undefined. No more than maxsize bytes are placed into the array. Each conversion specification |
44178 is replaced by appropriate characters as described in the following list. The appropriate
44179 characters are determined by the program’s locale and by the values contained in the structure
44180 pointed to by timptr .

44181 CX Local timezone information is used as though strftime() called tzset().

44182 %a Replaced by the locale’s abbreviated weekday name.

44183 %A Replaced by the locale’s full weekday name.

44184 %b Replaced by the locale’s abbreviated month name.

44185 %B Replaced by the locale’s full month name.

44186 %c Replaced by the locale’s appropriate date and time representation. |

44187 %C Replaced by the century number (the year divided by 100 and truncated to an integer) |
44188 as a decimal number [00-99]. |

44189 %d Replaced by the day of the month as a decimal number [01,31]. |

44190 %D Same as %m/%d/%y. |

44191 %e Replaced by the day of the month as a decimal number [1,31]; a single digit is preceded |
44192 by a space. |

44193 %F Equivalent to %Y-%m-%d (the ISO 8601: 1988 standard date format). |

44194 %g Replaced by the last 2 digits of the week-based year (see below) as a decimal number |
44195 (00-99). |

44196 %G Replaced by the week-based year (see below) as a decimal number (for example, 1977). |

44197 %h Same as %b. |

44198 %H Replaced by the hour (24-hour clock) as a decimal number [00,23].

44199 %I Replaced by the hour (12-hour clock) as a decimal number [01,12].

44200 %j Replaced by the day of the year as a decimal number [001,366].

1936 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strftime()

44201 %m Replaced by the month as a decimal number [01,12].

44202 %M Replaced by the minute as a decimal number [00,59]. |

44203 %n Replaced by a <newline> character. |

44204 %p Replaced by the locale’s equivalent of either a.m. or p.m. |

44205 %r Replaced by the time in a.m. and p.m. notation; in the POSIX locale this is equivalent to |
44206 %I:%M:%S %p. |

44207 %R Replaced by the time in 24 hour notation (%H:%M). |

44208 %S Replaced by the second as a decimal number [00,61]. |

44209 %t Replaced by a <tab> character. |

44210 %T Replaced by the time (%H:%M:%S). |

44211 %u Replaced by the weekday as a decimal number [1,7], with 1 representing Monday.

44212 %U Replaced by the week number of the year (Sunday as the first day of the week) as a
44213 decimal number [00,53].

44214 %V Replaced by the week number of the year (Monday as the first day of the week) as a
44215 decimal number [01,53]. If the week containing 1 January has four or more days in the
44216 new year, then it is considered week 1. Otherwise, it is the last week of the previous
44217 year, and the next week is week 1.

44218 %w Replaced by the weekday as a decimal number [0,6], with 0 representing Sunday.

44219 %W Replaced by the week number of the year (Monday as the first day of the week) as a
44220 decimal number [00,53]. All days in a new year preceding the first Monday are
44221 considered to be in week 0.

44222 %x Replaced by the locale’s appropriate date representation.

44223 %X Replaced by the locale’s appropriate time representation.

44224 %y Replaced by the year without century as a decimal number [00,99].

44225 %Y Replaced by the year with century as a decimal number. |

44226 %z Replaced by the offset from UTC in the ISO 8601: 1988 standard format −0430 (meaning |
44227 4 hours 30 minutes behind UTC, west of Greenwich), or by no characters if no timezone |
44228 is determinable. |

44229 %Z Replaced by the timezone name or abbreviation, or by no bytes if no timezone
44230 information exists.

44231 %% Replaced by ’%’ .

44232 If a conversion specification does not correspond to any of the above, the behavior is undefined. |

44233 Modified Conversion Specifiers

44234 CX Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
44235 alternative format or specification should be used rather than the one normally used by the
44236 unmodified conversion specifier. If the alternative format or specification does not exist for the
44237 current locale, (see ERA in the Base Definitions volume of IEEE Std. 1003.1-200x, Section 7.3.5, |
44238 LC_TIME) the behavior shall be as if the unmodified conversion specification were used. |

44239 %Ec Replaced by the locale’s alternative appropriate date and time representation.

System Interfaces, Issue 6 1937

strftime() System Interfaces

44240 %EC Replaced by the name of the base year (period) in the locale’s alternative
44241 representation.

44242 %Ex Replaced by the locale’s alternative date representation.

44243 %EX Replaced by the locale’s alternative time representation.

44244 %Ey Replaced by the offset from %EC (year only) in the locale’s alternative representation.

44245 %EY Replaced by the full alternative year representation.

44246 %Od Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
44247 as needed with leading zeros if there is any alternative symbol for zero; otherwise, with
44248 leading spaces.

44249 %Oe Replaced by the day of the month, using the locale’s alternative numeric symbols, filled
44250 as needed with leading spaces.

44251 %OH Replaced by the hour (24-hour clock) using the locale’s alternative numeric symbols.

44252 %OI Replaced by the hour (12-hour clock) using the locale’s alternative numeric symbols.

44253 %Om Replaced by the month using the locale’s alternative numeric symbols.

44254 %OM Replaced by the minutes using the locale’s alternative numeric symbols.

44255 %OS Replaced by the seconds using the locale’s alternative numeric symbols.

44256 %Ou Replaced by the weekday as a number in the locale’s alternative representation
44257 (Monday=1).

44258 %OU Replaced by the week number of the year (Sunday as the first day of the week, rules
44259 corresponding to %U) using the locale’s alternative numeric symbols.

44260 %OV Replaced by the week number of the year (Monday as the first day of the week, rules
44261 corresponding to %V) using the locale’s alternative numeric symbols.

44262 %Ow Replaced by the number of the weekday (Sunday=0) using the locale’s alternative
44263 numeric symbols.

44264 %OW Replaced by the week number of the year (Monday as the first day of the week) using
44265 the locale’s alternative numeric symbols.

44266 %Oy Replaced by the year (offset from %C) using the locale’s alternative numeric symbols.

44267 %g, %G, and %V give values according to the ISO 8601: 1988 standard week-based year. In this |
44268 system, weeks begin on a Monday and week 1 of the year is the week that includes January 4th, |
44269 which is also the week that includes the first Thursday of the year, and is also the first week that |
44270 contains at least four days in the year. If the first Monday of January is the 2nd, 3rd, or 4th, the |
44271 preceding days are part of the last week of the preceding year; thus, for Saturday 2nd January |
44272 1999, %G is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, or 31st is a |
44273 Monday, it and any following days are part of week 1 of the following year. Thus, for Tuesday |
44274 30th December 1997, %G is replaced by 1998 and %V is replaced by 01. |

44275 If a conversion specifier is not one of the above, the behavior is undefined. |

44276 RETURN VALUE
44277 If the total number of resulting bytes including the terminating null byte is not more than
44278 maxsize , strftime() shall return the number of bytes placed into the array pointed to by s, not
44279 including the terminating null byte. Otherwise, 0 shall be returned and the contents of the array
44280 are indeterminate.

1938 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strftime()

44281 ERRORS
44282 No errors are defined.

44283 EXAMPLES

44284 Getting a Localized Date String

44285 The following example first sets the locale to the user’s default. The locale information will be
44286 used in the nl_langinfo () and strftime() functions. The nl_langinfo () function returns the localized
44287 date string which specifies how the date is laid out. The strftime() function takes this information
44288 and, using the tm structure for values, places the date and time information into datestring .

44289 #include <time.h>
44290 #include <locale.h>
44291 #include <langinfo.h>
44292 ...
44293 struct tm *tm;
44294 char datestring[256];
44295 ...
44296 setlocale (LC_ALL, "");
44297 ...
44298 strftime (datestring, sizeof(datestring), nl_langinfo (D_T_FMT), tm);
44299 ...

44300 APPLICATION USAGE
44301 The range of values for %S is [00,61] rather than [00,59] to allow for the occasional leap second
44302 and even more infrequent double leap second.

44303 Some of the conversion specifications marked EX are duplicates of others. They are included for
44304 compatibility with nl_cxtime() and nl_ascxtime(), which were published in Issue 2.

44305 Applications should use %Y (4-digit years) in preference to %y (2-digit years). |

44306 In the C locale, the E and O modifiers are ignored and the replacement strings for the following |
44307 specifiers are: |

44308 %a The first three characters of %A. |

44309 %A One of Sunday, Monday, . . ., Saturday. |

44310 %b The first three characters of %B. |

44311 %B One of January, February, . . ., December. |

44312 %c Equivalent to %a %b %e %T %Y. |

44313 %p One of AM or PM. |

44314 %r Equivalent to %I:%M:%S %p. |

44315 %x Equivalent to %m/%d/%y. |

44316 %X Equivalent to %T. |

44317 %Z Implementation-defined. |

44318 RATIONALE |
44319 None.

System Interfaces, Issue 6 1939

strftime() System Interfaces

44320 FUTURE DIRECTIONS
44321 None.

44322 SEE ALSO
44323 asctime(), clock (), ctime(), difftime (), gmtime(), localtime (), mktime(), strptime(), time(), utime(), |
44324 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

44325 CHANGE HISTORY
44326 First released in Issue 3.

44327 Issue 4
44328 The DESCRIPTION is expanded to describe modified conversion specifiers.

44329 %C, %e, %R, %u, and %V are added to the list of valid conversion specifications.

44330 The DESCRIPTION and RETURN VALUE sections are changed to make it clear when the
44331 function uses byte values rather than (possibly multi-byte) character values.

44332 The following changes are incorporated for alignment with the ISO C standard:

44333 • The type of argument format is changed from char* to const char*, and the type of argument
44334 timptr is changed from struct tm* to const struct tm*.

44335 • In the description of the %Z conversion specification, the words ‘‘or abbreviation’’ are added
44336 to indicate that strftime() does not necessarily return a full timezone name.

44337 Issue 5
44338 The description of %OV is changed to be consistent with %V and defines Monday as the first
44339 day of the week.

44340 The description of %Oy is clarified.

44341 Issue 6
44342 Extensions beyond the ISO C standard are now marked.

44343 The Open Group corrigenda item U033/8 has been applied. The %V conversion specifier is
44344 changed from ‘‘Otherwise, it is week 53 of the previous year, and the next week is week 1’’ to
44345 ‘‘Otherwise, it is the last week of the previous year, and the next week is week 1’’.

44346 The following new requirements on POSIX implementations derive from alignment with the
44347 Single UNIX Specification:

44348 • The %C, %D, %e, %h, %n, %r, %R, %t, and %T conversion specifiers are added.

44349 • The modified conversion specifiers are added for consistency with the ISO POSIX-2 standard
44350 date utility.

44351 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

44352 • The strftime() prototype is updated. |

44353 • The DESCRIPTION is extensively revised. |
|

1940 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strlen()

44354 NAME
44355 strlen — get string length

44356 SYNOPSIS
44357 #include <string.h>

44358 size_t strlen(const char * s);

44359 DESCRIPTION
44360 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44361 conflict between the requirements described here and the ISO C standard is unintentional. This
44362 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44363 The strlen() function shall compute the number of bytes in the string to which s points, not
44364 including the terminating null byte.

44365 RETURN VALUE
44366 The strlen() function shall return the length of s; no return value shall be reserved to indicate an
44367 error.

44368 ERRORS
44369 No errors are defined.

44370 EXAMPLES

44371 Getting String Lengths

44372 The following example sets the maximum length of key and data by using strlen() to get the
44373 lengths of those strings.

44374 #include <string.h>
44375 ...
44376 struct element {
44377 char *key;
44378 char *data;
44379 };
44380 ...
44381 char *key, *data;
44382 int len;

44383 *keylength = *datalength = 0;
44384 ...
44385 if ((len = strlen(key)) > *keylength)
44386 *keylength = len;
44387 if ((len = strlen(data)) > *datalength)
44388 *datalength = len;
44389 ...

44390 APPLICATION USAGE
44391 None.

44392 RATIONALE
44393 None.

44394 FUTURE DIRECTIONS
44395 None.

System Interfaces, Issue 6 1941

strlen() System Interfaces

44396 SEE ALSO
44397 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44398 CHANGE HISTORY
44399 First released in Issue 1. Derived from Issue 1 of the SVID. |

44400 Issue 4
44401 The DESCRIPTION is changed to make it clear that the function works in units of bytes rather
44402 than (possibly multi-byte) characters.

44403 The following change is incorporated for alignment with the ISO C standard:

44404 • The type of argument s is changed from char* to const char*.

44405 Issue 5
44406 The RETURN VALUE section is updated to indicate that strlen() returns the length of s, and not
44407 s itself as was previously stated.

1942 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strncasecmp()

44408 NAME
44409 strncasecmp — case-insensitive string comparison

44410 SYNOPSIS
44411 XSI #include <strings.h>

44412 int strncasecmp(const char * s1 , const char * s2 , size_t n);
44413

44414 DESCRIPTION
44415 Refer to strcasecmp().

System Interfaces, Issue 6 1943

strncat() System Interfaces

44416 NAME
44417 strncat — concatenate a string with part of another

44418 SYNOPSIS
44419 #include <string.h>

44420 char *strncat(char *restrict s1 , const char *restrict s2 , size_t n); |

44421 DESCRIPTION |
44422 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44423 conflict between the requirements described here and the ISO C standard is unintentional. This
44424 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44425 The strncat() function shall append not more than n bytes (a null byte and bytes that follow it
44426 are not appended) from the array pointed to by s2 to the end of the string pointed to by s1. The
44427 initial byte of s2 overwrites the null byte at the end of s1. A terminating null byte is always
44428 appended to the result. If copying takes place between objects that overlap, the behavior is
44429 undefined.

44430 RETURN VALUE
44431 The strncat() function shall return s1; no return value shall be reserved to indicate an error.

44432 ERRORS
44433 No errors are defined.

44434 EXAMPLES
44435 None.

44436 APPLICATION USAGE
44437 None.

44438 RATIONALE
44439 None.

44440 FUTURE DIRECTIONS
44441 None.

44442 SEE ALSO
44443 strcat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44444 CHANGE HISTORY
44445 First released in Issue 1. Derived from Issue 1 of the SVID. |

44446 Issue 4
44447 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
44448 (possibly multi-byte) characters.

44449 The following change is incorporated for alignment with the ISO C standard:

44450 • The type of argument s2 is changed from char* to const char*.

44451 Issue 6 |
44452 The strncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1944 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strncmp()

44453 NAME
44454 strncmp — compare part of two strings

44455 SYNOPSIS
44456 #include <string.h>

44457 int strncmp(const char * s1 , const char * s2 , size_t n);

44458 DESCRIPTION
44459 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44460 conflict between the requirements described here and the ISO C standard is unintentional. This
44461 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44462 The strncmp() function shall compare not more than n bytes (bytes that follow a null byte are not
44463 compared) from the array pointed to by s1 to the array pointed to by s2.

44464 The sign of a non-zero return value is determined by the sign of the difference between the
44465 values of the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
44466 being compared.

44467 RETURN VALUE
44468 Upon successful completion, strncmp() shall return an integer greater than, equal to, or less than
44469 0, if the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the
44470 possibly null-terminated array pointed to by s2 respectively.

44471 ERRORS
44472 No errors are defined.

44473 EXAMPLES
44474 None.

44475 APPLICATION USAGE
44476 None.

44477 RATIONALE
44478 None.

44479 FUTURE DIRECTIONS
44480 None.

44481 SEE ALSO
44482 strcmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44483 CHANGE HISTORY
44484 First released in Issue 1. Derived from Issue 1 of the SVID. |

44485 Issue 4
44486 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
44487 (possibly multi-byte) characters.

44488 The following change is incorporated for alignment with the ISO C standard:

44489 • The type of arguments s1 and s2 are changed from char* to const char*.

44490 Issue 6
44491 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 1945

strncpy() System Interfaces

44492 NAME
44493 strncpy — copy part of a string

44494 SYNOPSIS
44495 #include <string.h>

44496 char *strncpy(char *restrict s1 , const char *restrict s2 , size_t n); |

44497 DESCRIPTION |
44498 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44499 conflict between the requirements described here and the ISO C standard is unintentional. This
44500 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44501 The strncpy() function shall copy not more than n bytes (bytes that follow a null byte are not
44502 copied) from the array pointed to by s2 to the array pointed to by s1. If copying takes place
44503 between objects that overlap, the behavior is undefined.

44504 If the array pointed to by s2 is a string that is shorter than n bytes, null bytes shall be appended
44505 to the copy in the array pointed to by s1, until n bytes in all are written.

44506 RETURN VALUE
44507 The strncpy() function shall return s1; no return value is reserved to indicate an error.

44508 ERRORS
44509 No errors are defined.

44510 EXAMPLES
44511 None.

44512 APPLICATION USAGE
44513 Character movement is performed differently in different implementations. Thus, overlapping
44514 moves may yield surprises.

44515 If there is no null byte in the first n bytes of the array pointed to by s2, the result is not null-
44516 terminated.

44517 RATIONALE
44518 None.

44519 FUTURE DIRECTIONS
44520 None.

44521 SEE ALSO
44522 strcpy(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44523 CHANGE HISTORY
44524 First released in Issue 1. Derived from Issue 1 of the SVID. |

44525 Issue 4
44526 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
44527 (possibly multi-byte) characters.

44528 The following change is incorporated for alignment with the ISO C standard:

44529 • The type of argument s2 is changed from char* to const char*.

44530 Issue 6 |
44531 The strncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

1946 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strpbrk()

44532 NAME
44533 strpbrk — scan string for byte

44534 SYNOPSIS
44535 #include <string.h>

44536 char *strpbrk(const char * s1 , const char * s2);

44537 DESCRIPTION
44538 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44539 conflict between the requirements described here and the ISO C standard is unintentional. This
44540 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44541 The strpbrk() function shall locate the first occurrence in the string pointed to by s1 of any byte
44542 from the string pointed to by s2.

44543 RETURN VALUE
44544 Upon successful completion, strpbrk() shall return a pointer to the byte or a null pointer if no
44545 byte from s2 occurs in s1.

44546 ERRORS
44547 No errors are defined.

44548 EXAMPLES
44549 None.

44550 APPLICATION USAGE
44551 None.

44552 RATIONALE
44553 None.

44554 FUTURE DIRECTIONS
44555 None.

44556 SEE ALSO
44557 strchr(), strrchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44558 CHANGE HISTORY
44559 First released in Issue 1. Derived from Issue 1 of the SVID. |

44560 Issue 4
44561 The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the function
44562 works in units of bytes rather than (possibly multi-byte) characters.

44563 The following change is incorporated for alignment with the ISO C standard:

44564 • The type of arguments s1 and s2 is changed from char* to const char*.

System Interfaces, Issue 6 1947

strptime() System Interfaces

44565 NAME
44566 strptime — date and time conversion

44567 SYNOPSIS
44568 XSI #include <time.h>

44569 char *strptime(const char *restrict buf , const char *restrict format , |
44570 struct tm *restrict tm); |
44571 |

44572 DESCRIPTION
44573 The strptime() function shall convert the character string pointed to by buf to values which are
44574 stored in the tm structure pointed to by tm, using the format specified by format .

44575 The format is composed of zero or more directives. Each directive is composed of one of the
44576 following: one or more white-space characters (as specified by isspace()); an ordinary character
44577 (neither ’%’ nor a white-space character); or a conversion specification. Each conversion
44578 specification is composed of a ’%’ character followed by a conversion character which specifies
44579 the replacement required. The application shall ensure that there is white-space or other non-
44580 alphanumeric characters between any two conversion specifications. The following conversion
44581 specifications are supported:

44582 %a The day of the week, using the locale’s weekday names; either the abbreviated or full
44583 name may be specified.

44584 %A The same as %a.

44585 %b The month, using the locale’s month names; either the abbreviated or full name may be
44586 specified.

44587 %B The same as %b.

44588 %c Replaced by the locale’s appropriate date and time representation.

44589 %C The century number [0,99]; leading zeros are permitted but not required.

44590 %d The day of the month [1,31]; leading zeros are permitted but not required.

44591 %D The date as %m/%d/%y.

44592 %e The same as %d.

44593 %h The same as %b.

44594 %H The hour (24-hour clock) [0,23]; leading zeros are permitted but not required.

44595 %I The hour (12-hour clock) [1,12]; leading zeros are permitted but not required.

44596 %j The day number of the year [1,366]; leading zeros are permitted but not required.

44597 %m The month number [1,12]; leading zeros are permitted but not required.

44598 %M The minute [0-59]; leading zeros are permitted but not required.

44599 %n Any white space.

44600 %p The locale’s equivalent of a.m or p.m.

44601 %r 12-hour clock time using the AM/PM notation if t_fmt_ampm is not an empty string in
44602 the LC_TIME portion of the current locale; in the POSIX locale, this is equivalent to
44603 %I:%M:%S %p.

44604 %R The time as %H:%M.

1948 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strptime()

44605 %S The seconds [0,61]; leading zeros are permitted but not required.

44606 %t Any white space.

44607 %T The time as %H:%M:%S.

44608 %U The week number of the year (Sunday as the first day of the week) as a decimal number
44609 [00,53]; leading zeros are permitted but not required.

44610 %w The weekday as a decimal number [0,6], with 0 representing Sunday; leading zeros are
44611 permitted but not required.

44612 %W The week number of the year (Monday as the first day of the week) as a decimal
44613 number [00,53]; leading zeros are permitted but not required.

44614 %x The date, using the locale’s date format.

44615 %X The time, using the locale’s time format.

44616 %y The year within century. When a century is not otherwise specified, values in the range
44617 69-99 refer to years in the twentieth century (1969 to 1999 inclusive); values in the range
44618 00-68 refer to years in the twenty-first century (2000 to 2068 inclusive); leading zeros
44619 are permitted but not required.

44620 %Y The year, including the century (for example, 1988).

44621 %% Replaced by ’%’ .

44622 Modified Directives

44623 Some directives can be modified by the E and O modifier characters to indicate that an
44624 alternative format or specification should be used rather than the one normally used by the
44625 unmodified directive. If the alternative format or specification does not exist in the current
44626 locale, the behavior shall be as if the unmodified directive were used.

44627 %Ec The locale’s alternative appropriate date and time representation.

44628 %EC The name of the base year (period) in the locale’s alternative representation.

44629 %Ex The locale’s alternative date representation.

44630 %EX The locale’s alternative time representation.

44631 %Ey The offset from %EC (year only) in the locale’s alternative representation.

44632 %EY The full alternative year representation.

44633 %Od The day of the month using the locale’s alternative numeric symbols; leading zeros are
44634 permitted but not required.

44635 %Oe The same as %Od.

44636 %OH The hour (24-hour clock) using the locale’s alternative numeric symbols.

44637 %OI The hour (12-hour clock) using the locale’s alternative numeric symbols.

44638 %Om The month using the locale’s alternative numeric symbols.

44639 %OM The minutes using the locale’s alternative numeric symbols.

44640 %OS The seconds using the locale’s alternative numeric symbols.

44641 %OU The week number of the year (Sunday as the first day of the week) using the locale’s
44642 alternative numeric symbols.

System Interfaces, Issue 6 1949

strptime() System Interfaces

44643 %Ow The number of the weekday (Sunday=0) using the locale’s alternative numeric symbols.

44644 %OW The week number of the year (Monday as the first day of the week) using the locale’s
44645 alternative numeric symbols.

44646 %Oy The year (offset from %C) using the locale’s alternative numeric symbols.

44647 A directive composed of white-space characters is executed by scanning input up to the first
44648 character that is not white-space (which remains unscanned), or until no more characters can be
44649 scanned.

44650 A directive that is an ordinary character is executed by scanning the next character from the
44651 buffer. If the character scanned from the buffer differs from the one comprising the directive, the
44652 directive fails, and the differing and subsequent characters remain unscanned.

44653 A series of directives composed of %n, %t, white-space characters, or any combination is
44654 executed by scanning up to the first character that is not white space (which remains
44655 unscanned), or until no more characters can be scanned.

44656 Any other conversion specification is executed by scanning characters until a character matching
44657 the next directive is scanned, or until no more characters can be scanned. These characters,
44658 except the one matching the next directive, are then compared to the locale values associated
44659 with the conversion specifier. If a match is found, values for the appropriate tm structure
44660 members are set to values corresponding to the locale information. Case is ignored when
44661 matching items in buf such as month or weekday names. If no match is found, strptime() fails
44662 and no more characters are scanned.

44663 RETURN VALUE
44664 Upon successful completion, strptime() shall return a pointer to the character following the last
44665 character parsed. Otherwise, a null pointer shall be returned.

44666 ERRORS
44667 No errors are defined.

44668 EXAMPLES
44669 None.

44670 APPLICATION USAGE
44671 Several ‘‘same as’’ formats and the special processing of white-space characters are provided in
44672 order to ease the use of identical format strings for strftime() and strptime().

44673 Applications should use %Y (4-digit years) in preference to %y (2-digit years). |

44674 It is unspecified whether multiple calls to strptime() using the same tm structure will update the |
44675 current contents of the structure or overwrite all contents of the structure. Portable applications |
44676 should make a single call to strptime() with a format and all data needed to completely specify |
44677 the date and time being converted. |

44678 RATIONALE
44679 None.

44680 FUTURE DIRECTIONS
44681 The strptime() function is expected to be mandatory in the next version of this volume of
44682 IEEE Std. 1003.1-200x.

44683 SEE ALSO
44684 scanf(), strftime(), time(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

1950 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strptime()

44685 CHANGE HISTORY
44686 First released in Issue 4.

44687 Issue 5
44688 Moved from ENHANCED I18N to BASE.

44689 The [ENOSYS] error is removed.

44690 The exact meaning of the %y and %Oy specifiers are clarified in the DESCRIPTION.

44691 Issue 6
44692 The Open Group corrigenda item U033/5 has been applied. The %r specifier description is
44693 reworded.

44694 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

44695 The restrict keyword is added to the strptime() prototype for alignment with the |
44696 ISO/IEC 9899: 1999 standard. |

44697 The Open Group corrigenda item U047/2 has been applied. |

System Interfaces, Issue 6 1951

strrchr() System Interfaces

44698 NAME
44699 strrchr — string scanning operation

44700 SYNOPSIS
44701 #include <string.h>

44702 char *strrchr(const char * s, int c);

44703 DESCRIPTION
44704 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44705 conflict between the requirements described here and the ISO C standard is unintentional. This
44706 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44707 CX The strrchr() function shall locate the last occurrence of c (converted to an unsignedchar) in the
44708 string pointed to by s. The terminating null byte is considered to be part of the string.

44709 RETURN VALUE
44710 Upon successful completion, strrchr() shall return a pointer to the byte or a null pointer if c does
44711 not occur in the string.

44712 ERRORS
44713 No errors are defined.

44714 EXAMPLES

44715 Finding the Base Name of a File

44716 The following example uses strrchr() to get a pointer to the base name of a file. The strrchr()
44717 function searches backwards through the name of the file to find the last ’/’ character in name.
44718 This pointer (plus one) will point to the base name of the file.

44719 #include <string.h>
44720 ...
44721 const char *name;
44722 char *basename;
44723 ...
44724 basename = strrchr(name, ’/’) + 1;
44725 ...

44726 APPLICATION USAGE
44727 None.

44728 RATIONALE
44729 None.

44730 FUTURE DIRECTIONS
44731 None.

44732 SEE ALSO
44733 strchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44734 CHANGE HISTORY
44735 First released in Issue 1. Derived from Issue 1 of the SVID. |

44736 Issue 4
44737 The DESCRIPTION and RETURN VALUE sections are changed to make it clear that the function
44738 works in units of bytes rather than (possibly multi-byte) characters.

44739 The following change is incorporated for alignment with the ISO C standard:

1952 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strrchr()

44740 • The type of argument s is changed from char* to const char*.

System Interfaces, Issue 6 1953

strspn() System Interfaces

44741 NAME
44742 strspn — get length of a substring

44743 SYNOPSIS
44744 #include <string.h>

44745 size_t strspn(const char * s1 , const char * s2);

44746 DESCRIPTION
44747 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44748 conflict between the requirements described here and the ISO C standard is unintentional. This
44749 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44750 The strspn() function shall compute the length of the maximum initial segment of the string
44751 pointed to by s1 which consists entirely of bytes from the string pointed to by s2.

44752 RETURN VALUE
44753 The strspn() function shall return the length of s1; no return value is reserved to indicate an
44754 error.

44755 ERRORS
44756 No errors are defined.

44757 EXAMPLES
44758 None.

44759 APPLICATION USAGE
44760 None.

44761 RATIONALE
44762 None.

44763 FUTURE DIRECTIONS
44764 None.

44765 SEE ALSO
44766 strcspn(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44767 CHANGE HISTORY
44768 First released in Issue 1. Derived from Issue 1 of the SVID. |

44769 Issue 4
44770 The DESCRIPTION is changed to make it clear that the function works in units of bytes rather
44771 than (possibly multi-byte) characters.

44772 The following change is incorporated for alignment with the ISO C standard:

44773 • The type of arguments s1 and s2 are changed from char* to const char*.

44774 Issue 5
44775 The RETURN VALUE section is updated to indicate that strspn() returns the length of s, and not
44776 s itself as was previously stated.

1954 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strstr()

44777 NAME
44778 strstr — find a substring

44779 SYNOPSIS
44780 #include <string.h>

44781 char *strstr(const char * s1 , const char * s2);

44782 DESCRIPTION
44783 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44784 conflict between the requirements described here and the ISO C standard is unintentional. This
44785 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44786 The strstr() function shall locate the first occurrence in the string pointed to by s1 of the
44787 sequence of bytes (excluding the terminating null byte) in the string pointed to by s2.

44788 RETURN VALUE
44789 Upon successful completion, strstr() shall return a pointer to the located string or a null pointer
44790 if the string is not found.

44791 If s2 points to a string with zero length, the function shall return s1.

44792 ERRORS
44793 No errors are defined.

44794 EXAMPLES
44795 None.

44796 APPLICATION USAGE
44797 None.

44798 RATIONALE
44799 None.

44800 FUTURE DIRECTIONS
44801 None.

44802 SEE ALSO
44803 strchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

44804 CHANGE HISTORY
44805 First released in Issue 3.

44806 Entry included for alignment with the ANSI C standard.

44807 Issue 4
44808 The DESCRIPTION is changed to make it clear that the function works in units of bytes rather
44809 than (possibly multi-byte) characters.

44810 The following change is incorporated for alignment with the ISO C standard:

44811 • The type of arguments s1 and s2 are changed from char* to const char*.

System Interfaces, Issue 6 1955

strtod() System Interfaces

44812 NAME
44813 strtod, strtof, strtold — convert string to a double-precision number |

44814 SYNOPSIS
44815 #include <stdlib.h>

44816 double strtod(const char *restrict nptr , char **restrict endptr); |
44817 float strtof(const char *restrict nptr , char **restrict endptr); |
44818 long double strtold(const char *restrict nptr , char **restrict endptr); |

44819 DESCRIPTION |
44820 CX The functionality described on this reference page is aligned with the ISO C standard. Any
44821 conflict between the requirements described here and the ISO C standard is unintentional. This
44822 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44823 These functions shall convert the initial portion of the string pointed to by nptr to double, float, |
44824 and long double representation, respectively. First, they decompose the input string into three |
44825 parts: |

44826 1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

44827 2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN |

44828 3. A final string of one or more unrecognized characters, including the terminating null byte
44829 of the input string

44830 Then it attempts to convert the subject sequence to a floating-point number, and returns the
44831 result.

44832 The expected form of the subject sequence is an optional plus or minus sign, then one of the |
44833 following: |

44834 • A non-empty sequence of decimal digits optionally containing a radix character, then an |
44835 optional exponent part |

44836 • A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix |
44837 character, then an optional binary exponent part |

44838 • One of INF or INFINITY, ignoring case |

44839 • One of NAN or NAN(n-char-sequenceopt), ignoring case in the NAN part, where: |

44840 n-char-sequence: |
44841 digit |
44842 nondigit |
44843 n-char-sequence digit |
44844 n-char-sequence nondigit |

44845 The subject sequence is defined as the longest initial subsequence of the input string, starting |
44846 with the first non-white-space character, that is of the expected form. The subject sequence |
44847 contains no characters if the input string is not of the expected form. |

44848 If the subject sequence has the expected form for a floating-point number, the sequence of |
44849 characters starting with the first digit or the decimal-point character (whichever occurs first) is |
44850 interpreted as a floating constant of the C language, except that the radix character is used in |
44851 place of a period, and that if neither an exponent part nor a radix character appears in a decimal |
44852 floating-point number, or if a binary exponent part does not appear in a hexadecimal floating- |
44853 point number, an exponent part of the appropriate type with value zero is assumed to follow the |
44854 last digit in the string. If the subject sequence begins with a minus sign, the sequence is |
44855 interpreted as negated. A character sequence INF or INFINITY is interpreted as an infinity, if |

1956 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtod()

44856 representable in the return type, else like a floating constant that is too large for the range of the |
44857 return type. A character sequence NAN or NAN(n-char-sequenceopt), is interpreted as a quiet NaN, if |
44858 supported in the return type, else like a subject sequence part that does not have the expected form; the |
44859 meaning of the n-char sequences is implementation-defined. A pointer to the final string is stored |
44860 in the object pointed to by endptr, provided that endptr is not a null pointer. |

44861 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value |
44862 resulting from the conversion is correctly rounded. |

44863 CX The radix character is defined in the program’s locale (category LC_NUMERIC). In the POSIX |
44864 locale, or in a locale where the radix character is not defined, the radix character defaults to a
44865 period (’.’).

44866 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
44867 accepted.

44868 If the subject sequence is empty or does not have the expected form, no conversion is performed;
44869 the value of str is stored in the object pointed to by endptr, provided that endptr is not a null
44870 pointer.

44871 The strtod() function shall not change the setting of errno if successful.

44872 Because 0 is returned on error and is also a valid return on success, an application wishing to
44873 check for error situations should set errno to 0, then call strtod(), then check errno.

44874 RETURN VALUE
44875 Upon successful completion, these functions shall return the converted value. If no conversion |
44876 could be performed, 0 shall be returned, and errno may be set to [EINVAL]. |

44877 If the correct value is outside the range of representable values, HUGE_VAL, HUGE_VALF, or |
44878 HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to |
44879 [ERANGE].

44880 If the correct value would cause an underflow, a value whose magnitude is no greater than the |
44881 smallest normalized positive number in the return type shall be returned and errno set to |
44882 [ERANGE].

44883 ERRORS
44884 The strtod() function shall fail if:

44885 CX [ERANGE] The value to be returned would cause overflow or underflow. |

44886 The strtod() function may fail if:

44887 CX [EINVAL] No conversion could be performed. |

44888 Notes to Reviewers |
44889 This section with side shading will not appear in the final copy. - Ed. |

44890 There is a query outstanding over the question of [EINVAL] being an allowable extension to |
44891 C99. This error may be removed in a future draft. |

System Interfaces, Issue 6 1957

strtod() System Interfaces

44892 EXAMPLES |
44893 None.

44894 APPLICATION USAGE
44895 If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, the result |
44896 should be one of the two numbers in the appropriate internal format that are adjacent to the |
44897 hexadecimal floating source value, with the extra stipulation that the error should have a correct |
44898 sign for the current rounding direction. |

44899 If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>) |
44900 significant digits, the result should be correctly rounded. If the subject sequence D has the |
44901 decimal form and more than DECIMAL_DIG significant digits, consider the two bounding, |
44902 adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the |
44903 values of L, D, and U satisfy "L <= D <= U" . The result should be one of the (equal or |
44904 adjacent) values that would be obtained by correctly rounding L and U according to the current |
44905 rounding direction, with the extra stipulation that the error with respect to D should have a |
44906 correct sign for the current rounding direction. |

44907 RATIONALE
44908 None.

44909 FUTURE DIRECTIONS
44910 None.

44911 SEE ALSO
44912 isspace(), localeconv (), scanf(), setlocale (), strtol(), the Base Definitions volume of |
44913 IEEE Std. 1003.1-200x, <float.h>, <stdlib.h>, the Base Definitions volume of |
44914 IEEE Std. 1003.1-200x, Chapter 7, Locale |

44915 CHANGE HISTORY
44916 First released in Issue 1. Derived from Issue 1 of the SVID. |

44917 Issue 4
44918 The DESCRIPTION is changed to make it clear when the function manipulates bytes and when
44919 it manipulates characters.

44920 The [EINVAL] error is added to the ERRORS section and marked as an extension.

44921 The following changes are incorporated for alignment with the ISO C standard:

44922 • The function is no longer marked as an extension.

44923 • The type of argument str is changed from char* to const char*.

44924 • The name of the second argument is changed from ptr to endptr.

44925 • The precise conditions under which the [ERANGE] error can be set have been defined in the
44926 RETURN VALUE section.

44927 Issue 5
44928 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

44929 Issue 6
44930 Extensions beyond the ISO C standard are now marked.

44931 The following new requirements on POSIX implementations derive from alignment with the
44932 Single UNIX Specification:

44933 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
44934 added if no conversion could be performed.

1958 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtod()

44935 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

44936 • The strtod() function is updated. |

44937 • The strtof() and strtold() functions are added. |

44938 • The DESCRIPTION is extensively revised. |
|

System Interfaces, Issue 6 1959

strtoimax() System Interfaces

44939 NAME |
44940 strtoimax, strtoumax — convert string to integer type |

44941 SYNOPSIS |
44942 #include <inttypes.h> |

44943 intmax_t strtoimax(const char *restrict nptr , char **restrict endptr , |
44944 int base); |
44945 uintmax_t strtoumax(const char *restrict nptr , char **restrict endptr , |
44946 int base); |

44947 DESCRIPTION |
44948 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
44949 conflict between the requirements described here and the ISO C standard is unintentional. This |
44950 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

44951 These functions shall be equivalent to the strtol(), strtoll (), strtoul(), and strtoull() functions, |
44952 except that the initial portion of the string shall be converted to intmax_t and uintmax_t |
44953 representation, respectively. |

44954 RETURN VALUE |
44955 These functions shall return the converted value, if any. |

44956 If no conversion could be performed, zero shall be returned. |

44957 If the correct value is outside the range of representable values, {INTMAX_MAX}, |
44958 {INTMAX_MIN}, or {UINTMAX_MAX} shall be returned (according to the return type and sign |
44959 of the value, if any), and errno shall be set to [ERANGE]. |

44960 ERRORS |
44961 These functions shall fail if: |

44962 [ERANGE] The value to be returned is not representable. |

44963 These functions may fail if: |

44964 [EINVAL] The value of base is not supported. |

44965 EXAMPLES |
44966 None. |

44967 APPLICATION USAGE |
44968 None. |

44969 RATIONALE |
44970 None. |

44971 FUTURE DIRECTIONS |
44972 None. |

44973 SEE ALSO |
44974 strtol(), strtoul(), the Base Definitions volume of IEEE Std. 1003.1-200x, <inttypes.h> |

44975 CHANGE HISTORY |
44976 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

1960 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtok()

44977 NAME
44978 strtok, strtok_r — split string into tokens

44979 SYNOPSIS
44980 #include <string.h>

44981 char *strtok(char *restrict s1 , const char *restrict s2); |
44982 TSF char *strtok_r(char *restrict s, const char *restrict sep , |
44983 char **restrict lasts); |
44984 |

44985 DESCRIPTION
44986 CX For strtok(): The functionality described on this reference page is aligned with the ISO C
44987 standard. Any conflict between the requirements described here and the ISO C standard is
44988 unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

44989 A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens, each
44990 of which is delimited by a byte from the string pointed to by s2. The first call in the sequence has
44991 s1 as its first argument, and is followed by calls with a null pointer as their first argument. The
44992 separator string pointed to by s2 may be different from call to call.

44993 The first call in the sequence searches the string pointed to by s1 for the first byte that is not
44994 contained in the current separator string pointed to by s2. If no such byte is found, then there
44995 are no tokens in the string pointed to by s1 and strtok() returns a null pointer. If such a byte is
44996 found, it is the start of the first token.

44997 The strtok() function then searches from there for a byte that is contained in the current
44998 separator string. If no such byte is found, the current token extends to the end of the string
44999 pointed to by s1, and subsequent searches for a token shall return a null pointer. If such a byte is
45000 found, it is overwritten by a null byte, which terminates the current token. The strtok() function
45001 saves a pointer to the following byte, from which the next search for a token shall start.

45002 Each subsequent call, with a null pointer as the value of the first argument, starts searching from
45003 the saved pointer and behaves as described above.

45004 The implementation shall behave as if no function defined in this volume of
45005 IEEE Std. 1003.1-200x calls strtok().

45006 CX The strtok() function need not be reentrant. A function that is not required to be reentrant is not
45007 required to be thread-safe.

45008 TSF The strtok_r() function considers the null-terminated string s as a sequence of zero or more text
45009 tokens separated by spans of one or more characters from the separator string sep. The
45010 argument lasts points to a user-provided pointer which points to stored information necessary
45011 for strtok_r() to continue scanning the same string.

45012 In the first call to strtok_r(), s points to a null-terminated string, sep to a null-terminated string of
45013 separator characters, and the value pointed to by lasts is ignored. The strtok_r() function returns
45014 a pointer to the first character of the first token, writes a null character into s immediately
45015 following the returned token, and updates the pointer to which lasts points.

45016 In subsequent calls, s is a NULL pointer and lasts shall be unchanged from the previous call so
45017 that subsequent calls shall move through the string s, returning successive tokens until no
45018 tokens remain. The separator string sep may be different from call to call. When no token
45019 remains in s, a NULL pointer is returned.

System Interfaces, Issue 6 1961

strtok() System Interfaces

45020 RETURN VALUE
45021 Upon successful completion, strtok() shall return a pointer to the first byte of a token. Otherwise,
45022 if there is no token, strtok() shall return a null pointer.

45023 TSF The strtok_r() function shall return a pointer to the token found, or a NULL pointer when no
45024 token is found.

45025 ERRORS
45026 No errors are defined.

45027 EXAMPLES

45028 Searching for Word Separators

45029 The following example searches for tokens separated by space characters.

45030 #include <string.h>
45031 ...
45032 char *token;
45033 char *line = "LINE TO BE SEPARATED";
45034 char *searc h = " ";

45035 /* Token will point to "LINE". */
45036 token = strtok(line, search);

45037 /* Token will point to "TO". */
45038 token = strtok(NULL, search);

45039 Breaking a Line

45040 The following example uses strtok() to break a line into two character strings separated by any
45041 combination of <space>s, <tab>s, or <newline>s.

45042 #include <string.h>
45043 ...
45044 struct element {
45045 char *key;
45046 char *data;
45047 };
45048 ...
45049 char line[LINE_MAX];
45050 char *key, *data;
45051 ...
45052 key = strtok(line, " \n");
45053 data = strtok(NULL, " \n");
45054 ...

45055 APPLICATION USAGE
45056 The strtok_r() function is thread-safe and stores its state in a user-supplied buffer instead of
45057 possibly using a static data area that may be overwritten by an unrelated call from another
45058 thread.

45059 RATIONALE
45060 The strtok() function searches for a separator string within a larger string. It returns a pointer to
45061 the last substring between separator strings. This function uses static storage to keep track of
45062 the current string position between calls. The new function, strtok_r(), takes an additional
45063 argument, lasts, to keep track of the current position in the string.

1962 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtok()

45064 FUTURE DIRECTIONS
45065 None.

45066 SEE ALSO
45067 The Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

45068 CHANGE HISTORY
45069 First released in Issue 1. Derived from Issue 1 of the SVID. |

45070 Issue 4
45071 The DESCRIPTION is changed to make it clear that the function manipulates bytes rather than
45072 (possibly multi-byte) characters.

45073 The following changes are incorporated for alignment with the ISO C standard:

45074 • The function is no longer marked as an extension.

45075 • The type of argument s2 is changed from char* to const char*.

45076 Issue 5
45077 The strtok_r() function is included for alignment with the POSIX Threads Extension.

45078 A note indicating that the strtok() function need not be reentrant is added to the DESCRIPTION.

45079 Issue 6
45080 Extensions beyond the ISO C standard are now marked.

45081 The strtok_r() function is marked as part of the Thread-Safe Functions option. |

45082 In the DESCRIPTION, the note about reentrancy is expanded to cover thread-safety.

45083 The APPLICATION USAGE section is updated to include a note on the thread-safe function and
45084 its avoidance of possibly using a static data area. |

45085 The restrict keyword is added to the strtok() and strtok_r() prototypes for alignment with the |
45086 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1963

strtol() System Interfaces

45087 NAME
45088 strtol, strtoll — convert string to a long integer |

45089 SYNOPSIS
45090 #include <stdlib.h>

45091 long strtol(const char *restrict str , char **restrict endptr , int base); |
45092 long long strtoll(const char *restrict str , char **restrict endptr , |
45093 int base) |

45094 DESCRIPTION |
45095 CX The functionality described on this reference page is aligned with the ISO C standard. Any
45096 conflict between the requirements described here and the ISO C standard is unintentional. This
45097 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

45098 These functions shall convert the initial portion of the string pointed to by str to a type long and |
45099 long long representation, respectively. First, they decompose the input string into three parts: |

45100 1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

45101 2. A subject sequence interpreted as an integer represented in some radix determined by the
45102 value of base

45103 3. A final string of one or more unrecognized characters, including the terminating null byte
45104 of the input string.

45105 Then it attempts to convert the subject sequence to an integer, and returns the result.

45106 If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
45107 octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A
45108 decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
45109 octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
45110 ’7’ only. A hexadecimal constant consists of the prefix "0x" or "0X" followed by a sequence of
45111 the decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

45112 If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
45113 of letters and digits representing an integer with the radix specified by base, optionally preceded
45114 by a ’+’ or ’ −’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
45115 values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
45116 value of base is 16, the characters "0x" or "0X" may optionally precede the sequence of letters
45117 and digits, following the sign if present.

45118 The subject sequence is defined as the longest initial subsequence of the input string, starting
45119 with the first non-white-space character that is of the expected form. The subject sequence
45120 contains no characters if the input string is empty or consists entirely of white-space characters,
45121 or if the first non-white-space character is other than a sign or a permissible letter or digit.

45122 If the subject sequence has the expected form and the value of base is 0, the sequence of
45123 characters starting with the first digit is interpreted as an integer constant. If the subject
45124 sequence has the expected form and the value of base is between 2 and 36, it is used as the base
45125 for conversion, ascribing to each letter its value as given above. If the subject sequence begins
45126 with a minus sign, the value resulting from the conversion is negated. A pointer to the final
45127 string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

45128 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
45129 accepted.

45130 If the subject sequence is empty or does not have the expected form, no conversion is performed;
45131 the value of str is stored in the object pointed to by endptr, provided that endptr is not a null

1964 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtol()

45132 pointer.

45133 The strtol() function shall not change the setting of errno if successful.

45134 Because 0, {LONG_MIN} or {LLONG_MIN}, and {LONG_MAX} or {LLONG_MAX} are returned |
45135 on error and are also valid returns on success, an application wishing to check for error
45136 situations should set errno to 0, then call strtol(), then check errno.

45137 RETURN VALUE
45138 Upon successful completion, these functions shall return the converted value, if any. If no |
45139 CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL]. |

45140 If the correct value is outside the range of representable values, {LONG_MIN}, {LONG_MAX}, |
45141 {LLONG_MIN} or {LLONG_MAX} shall be returned (according to the sign of the value), and |
45142 errno set to [ERANGE].

45143 ERRORS
45144 The strtol() function shall fail if:

45145 [ERANGE] The value to be returned is not representable. |

45146 The strtol() function may fail if:

45147 CX [EINVAL] The value of base is not supported. |

45148 EXAMPLES
45149 None.

45150 APPLICATION USAGE
45151 None.

45152 RATIONALE
45153 None.

45154 FUTURE DIRECTIONS
45155 None.

45156 SEE ALSO
45157 isalpha (), scanf(), strtod(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

45158 CHANGE HISTORY
45159 First released in Issue 1. Derived from Issue 1 of the SVID. |

45160 Issue 4
45161 The DESCRIPTION is changed to make it clear when the function manipulates bytes and when
45162 it manipulates characters.

45163 In the RETURN VALUE section, text indicating that errno is set when 0 is returned is marked as
45164 an extension.

45165 The ERRORS section is updated in line with the RETURN VALUE section.

45166 The following changes are incorporated for alignment with the ISO C standard:

45167 • The function is no longer marked as an extension.

45168 • The type of argument str is changed from char* to const char*.

45169 • The name of the second argument is changed from ptr to endptr.

45170 • The DESCRIPTION is changed to indicate permitted forms of the subject sequence when base
45171 is 0.

System Interfaces, Issue 6 1965

strtol() System Interfaces

45172 • The RETURN VALUE section is changed to indicate that {LONG_MAX} or {LONG_MIN} is
45173 returned if the converted value is too large or too small.

45174 Issue 5
45175 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

45176 Issue 6
45177 Extensions beyond the ISO C standard are now marked.

45178 The following new requirements on POSIX implementations derive from alignment with the
45179 Single UNIX Specification:

45180 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
45181 added if no conversion could be performed.

45182 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

45183 • The strtol() prototype is updated. |

45184 • The strtoll () function is added. |
|

1966 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtoul()

45185 NAME
45186 strtoul, strtoull — convert string to an unsigned long |

45187 SYNOPSIS
45188 #include <stdlib.h>

45189 long strtoul(const char *restrict str , char **restrict endptr , int base);|
45190 long long strtoull(const char*restrict str , char **restrict endptr , |
45191 int base); |

45192 DESCRIPTION |
45193 CX The functionality described on this reference page is aligned with the ISO C standard. Any
45194 conflict between the requirements described here and the ISO C standard is unintentional. This
45195 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

45196 These functions shall convert the initial portion of the string pointed to by str to a type long and |
45197 long long representation, respectively. First, they decompose the input string into three parts: |

45198 1. An initial, possibly empty, sequence of white-space characters (as specified by isspace())

45199 2. A subject sequence interpreted as an integer represented in some radix determined by the
45200 value of base

45201 3. A final string of one or more unrecognized characters, including the terminating null byte
45202 of the input string

45203 Then it attempts to convert the subject sequence to an unsigned integer, and returns the result.

45204 If the value of base is 0, the expected form of the subject sequence is that of a decimal constant,
45205 octal constant, or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A
45206 decimal constant begins with a non-zero digit, and consists of a sequence of decimal digits. An
45207 octal constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to
45208 ’7’ only. A hexadecimal constant consists of the prefix "0x" or "0X" followed by a sequence of
45209 the decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

45210 If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
45211 of letters and digits representing an integer with the radix specified by base, optionally preceded
45212 by a ’+’ or ’ −’ sign. The letters from ’a’ (or ’A’) to ’z’ (or ’Z’) inclusive are ascribed the
45213 values 10 to 35; only letters whose ascribed values are less than that of base are permitted. If the
45214 value of base is 16, the characters "0x" or "0X" may optionally precede the sequence of letters
45215 and digits, following the sign if present.

45216 The subject sequence is defined as the longest initial subsequence of the input string, starting
45217 with the first non-white-space character that is of the expected form. The subject sequence
45218 contains no characters if the input string is empty or consists entirely of white-space characters,
45219 or if the first non-white-space character is other than a sign or a permissible letter or digit.

45220 If the subject sequence has the expected form and the value of base is 0, the sequence of
45221 characters starting with the first digit is interpreted as an integer constant. If the subject
45222 sequence has the expected form and the value of base is between 2 and 36, it is used as the base
45223 for conversion, ascribing to each letter its value as given above. If the subject sequence begins
45224 with a minus sign, the value resulting from the conversion is negated. A pointer to the final
45225 string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

45226 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
45227 accepted.

45228 If the subject sequence is empty or does not have the expected form, no conversion is performed;
45229 the value of str is stored in the object pointed to by endptr, provided that endptr is not a null

System Interfaces, Issue 6 1967

strtoul() System Interfaces

45230 pointer.

45231 The strtoul() function shall not change the setting of errno if successful.

45232 Because 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and are also valid |
45233 returns on success, an application wishing to check for error situations should set errno to 0, then
45234 call strtoul(), then check errno.

45235 RETURN VALUE
45236 Upon successful completion, these functions shall return the converted value, if any. If no |
45237 CX conversion could be performed, 0 shall be returned and errno may be set to [EINVAL]. If the |
45238 correct value is outside the range of representable values, {ULONG_MAX} or {ULLONG_MAX} |
45239 shall be returned and errno set to [ERANGE].

45240 ERRORS
45241 The strtoul() function shall fail if:

45242 CX [EINVAL] The value of base is not supported. |

45243 [ERANGE] The value to be returned is not representable. |

45244 The strtoul() function may fail if:

45245 CX [EINVAL] No conversion could be performed. |

45246 EXAMPLES
45247 None.

45248 APPLICATION USAGE
45249 None.

45250 RATIONALE
45251 None.

45252 FUTURE DIRECTIONS
45253 None.

45254 SEE ALSO
45255 isalpha (), scanf(), strtod(), strtol(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
45256 <stdlib.h>

CHANGE45257 HISTORY
45258 First released in Issue 4. Derived from the ANSI C standard. |

45259 Issue 5
45260 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

45261 Issue 6
45262 Extensions beyond the ISO C standard are now marked.

45263 The following new requirements on POSIX implementations derive from alignment with the
45264 Single UNIX Specification:

45265 • The [EINVAL] error condition is added for when the value of base is not supported.

45266 In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
45267 added if no conversion could be performed.

45268 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

45269 • The strtoul() prototype is updated. |

1968 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strtoul()

45270 • The strtoull() function is added. |
|

System Interfaces, Issue 6 1969

strxfrm() System Interfaces

45271 NAME
45272 strxfrm — string transformation

45273 SYNOPSIS
45274 #include <string.h>

45275 size_t strxfrm(char *restrict s1 , const char *restrict s2 , size_t n); |

45276 DESCRIPTION |
45277 CX The functionality described on this reference page is aligned with the ISO C standard. Any
45278 conflict between the requirements described here and the ISO C standard is unintentional. This
45279 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

45280 The strxfrm() function shall transform the string pointed to by s2 and place the resulting string |
45281 into the array pointed to by s1. The transformation is such that if strcmp() is applied to two |
45282 transformed strings, it returns a value greater than, equal to, or less than 0, corresponding to the
45283 result of strcoll() applied to the same two original strings. No more than n bytes are placed into
45284 the resulting array pointed to by s1, including the terminating null byte. If n is 0, s1 is permitted
45285 to be a null pointer. If copying takes place between objects that overlap, the behavior is
45286 undefined.

45287 CX The strxfrm() function shall not change the setting of errno if successful.

45288 Because no return value is reserved to indicate an error, an application wishing to check for error
45289 situations should set errno to 0, then call strcoll(), then check errno.

45290 RETURN VALUE
45291 Upon successful completion, strxfrm() shall return the length of the transformed string (not
45292 including the terminating null byte). If the value returned is n or more, the contents of the array
45293 pointed to by s1 are indeterminate.

45294 CX On error, strxfrm() may set errno but no return value is reserved to indicate an error.

45295 ERRORS
45296 The strxfrm() function may fail if:

45297 CX [EINVAL] The string pointed to by the s2 argument contains characters outside the |
45298 domain of the collating sequence.

45299 EXAMPLES
45300 None.

45301 APPLICATION USAGE
45302 The transformation function is such that two transformed strings can be ordered by strcmp() as
45303 appropriate to collating sequence information in the program’s locale (category LC_COLLATE).

45304 The fact that when n is 0 s1 is permitted to be a null pointer is useful to determine the size of the
45305 s1 array prior to making the transformation.

45306 RATIONALE
45307 None.

45308 FUTURE DIRECTIONS
45309 None.

45310 SEE ALSO
45311 strcmp(), strcoll(), the Base Definitions volume of IEEE Std. 1003.1-200x, <string.h> |

1970 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces strxfrm()

45312 CHANGE HISTORY
45313 First released in Issue 3.

45314 Entry included for alignment with the ISO C standard.

45315 Issue 4
45316 The DESCRIPTION is changed to make it clear when the function manipulates byte values and
45317 when it manipulates characters.

45318 The sentence describing error returns in the RETURN VALUE section is marked as an extension,
45319 as is the [EINVAL] error.

45320 The APPLICATION USAGE section is expanded.

45321 The following changes are incorporated for alignment with the ISO C standard:

45322 • The function is no longer marked as an extension.

45323 • The type of argument s2 is changed from char* to const char*.

45324 Issue 5
45325 The DESCRIPTION is updated to indicate that errno does not changed if the function is
45326 successful.

45327 Issue 6
45328 Extensions beyond the ISO C standard are now marked.

45329 The following new requirements on POSIX implementations derive from alignment with the
45330 Single UNIX Specification:

45331 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
45332 added if no conversion could be performed.

45333 The strxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1971

swab() System Interfaces

45334 NAME
45335 swab — swap bytes

45336 SYNOPSIS
45337 XSI #include <unistd.h>

45338 void swab(const void *restrict src , void *restrict dest , |
45339 ssize_t nbytes); |
45340 |

45341 DESCRIPTION
45342 The swab() function shall copy nbytes bytes, which are pointed to by src, to the object pointed to
45343 by dest, exchanging adjacent bytes. The nbytes argument should be even. If nbytes is odd, swab()
45344 copies and exchanges nbytes−1 bytes and the disposition of the last byte is unspecified. If
45345 copying takes place between objects that overlap, the behavior is undefined. If nbytes is
45346 negative, swab() does nothing.

45347 RETURN VALUE
45348 None.

45349 ERRORS
45350 No errors are defined.

45351 EXAMPLES
45352 None.

45353 APPLICATION USAGE
45354 None.

45355 RATIONALE
45356 None.

45357 FUTURE DIRECTIONS
45358 None.

45359 SEE ALSO
45360 The Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

45361 CHANGE HISTORY
45362 First released in Issue 1. Derived from Issue 1 of the SVID. |

45363 Issue 4
45364 The <unistd.h> header is added to the SYNOPSIS section.

45365 The type of argument src is changed from char* to const void*, dest is changed from char* to
45366 void*, and nbytes is changed from int to ssize_t.

45367 The DESCRIPTION is changed as follows:

45368 • States explicitly that copying between overlapping objects results in undefined behavior.

45369 • Takes account of the type change to nbyte; that is, previously it was defined as int and could
45370 be positive or negative, whereas now it is defined as an unsigned type.

45371 • A statement about overlapping objects is added.

45372 The APPLICATION USAGE section is removed. |

1972 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces swab()

45373 Issue 6 |
45374 The restrict keyword is added to the swab() prototype for alignment with the |
45375 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1973

swapcontext() System Interfaces

45376 NAME
45377 swapcontext — swap user context

45378 SYNOPSIS
45379 XSI #include <ucontext.h>

45380 int swapcontext(ucontext_t *restrict oucp , |
45381 const ucontext_t *restrict ucp); |
45382 |

45383 DESCRIPTION
45384 Refer to makecontext().

1974 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces swprintf()

45385 NAME
45386 swprintf — print formatted wide-character output

45387 SYNOPSIS
45388 #include <stdio.h>
45389 #include <wchar.h>

45390 int swprintf(wchar_t * ws, size_t n, const wchar_t * format , ...); |

45391 DESCRIPTION |
45392 Refer to fwprintf().

System Interfaces, Issue 6 1975

swscanf() System Interfaces

45393 NAME
45394 swscanf — convert formatted wide-character input

45395 SYNOPSIS
45396 #include <stdio.h>
45397 #include <wchar.h>

45398 int swscanf(const wchar_t * ws, const wchar_t * format , ...); |

45399 DESCRIPTION |
45400 Refer to fwscanf().

1976 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces symlink()

45401 NAME
45402 symlink — make symbolic link to a file

45403 SYNOPSIS
45404 #include <unistd.h>

45405 int symlink(const char * path1 , const char * path2);

45406 DESCRIPTION
45407 The symlink() function shall create a symbolic link called path2 that contains the string pointed
45408 to by path1 (path2 is the name of the symbolic link created, path1 is the string contained in the
45409 symbolic link).

45410 The string pointed to by path1 shall be treated only as a character string and shall not be
45411 validated as a path name.

45412 If the symlink() function fails for any reason other than [EIO], any file named by path2 shall be |
45413 unaffected.

45414 RETURN VALUE
45415 Upon successful completion, symlink() shall return 0; otherwise, it shall return −1 and set errno to
45416 indicate the error.

45417 ERRORS
45418 The symlink() function shall fail if:

45419 [EACCES] Write permission is denied in the directory where the symbolic link is being |
45420 created, or search permission is denied for a component of the path prefix of
45421 path2 .

45422 [EEXIST] The path2 argument names an existing file or symbolic link. |

45423 [EIO] An I/O error occurs while reading from or writing to the file system. |

45424 [ELOOP] A loop exists in symbolic links encountered during resolution of the path2 |
45425 argument.

45426 [ENAMETOOLONG] |
45427 The length of the path2 argument exceeds {PATH_MAX} or a path name |
45428 component is longer than {NAME_MAX} or the length of the path1 argument |
45429 is longer than {SYMLINK_MAX}. |

45430 [ENOENT] A component of path2 does not name an existing file or path2 is an empty |
45431 string.

45432 [ENOSPC] The directory in which the entry for the new symbolic link is being placed |
45433 cannot be extended because no space is left on the file system containing the
45434 directory, or the new symbolic link cannot be created because no space is left
45435 on the file system which shall contain the link, or the file system is out of file-
45436 allocation resources.

45437 [ENOTDIR] A component of the path prefix of path2 is not a directory. |

45438 [EROFS] The new symbolic link would reside on a read-only file system. |

45439 The symlink() function may fail if:

45440 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
45441 resolution of the path2 argument.

45442 [ENAMETOOLONG] |
45443 As a result of encountering a symbolic link in resolution of the path2

System Interfaces, Issue 6 1977

symlink() System Interfaces

45444 argument, the length of the substituted path name string exceeded
45445 {PATH_MAX} bytes (including the terminating null byte), or the length of the
45446 string pointed to by path1 exceeded {SYMLINK_MAX}.

45447 EXAMPLES
45448 None.

45449 APPLICATION USAGE
45450 Like a hard link, a symbolic link allows a file to have multiple logical names. The presence of a
45451 hard link guarantees the existence of a file, even after the original name has been removed. A
45452 symbolic link provides no such assurance; in fact, the file named by the path1 argument need not
45453 exist when the link is created. A symbolic link can cross file system boundaries.

45454 Normal permission checks are made on each component of the symbolic link path name during
45455 its resolution.

45456 RATIONALE
45457 Since IEEE Std. 1003.1-200x does not require any association of file times with symbolic links,
45458 there is no requirement that file times be updated by symlink().

45459 FUTURE DIRECTIONS
45460 None.

45461 SEE ALSO
45462 lchown(), link (), lstat(), open(), readlink (), unlink(), the Base Definitions volume of |
45463 IEEE Std. 1003.1-200x, <unistd.h> |

45464 CHANGE HISTORY
45465 First released in Issue 4, Version 2.

45466 Issue 5
45467 Moved from X/OPEN UNIX extension to BASE.

45468 Issue 6
45469 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

45470 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
45471 This is since behavior may vary from one file system to another.

45472 The following changes were made to align with the IEEE P1003.1a draft standard:

45473 • The DESCRIPTION text is updated.

45474 • The [ELOOP] optional error condition is added.

1978 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sync()

45475 NAME
45476 sync — schedule file system updates

45477 SYNOPSIS
45478 XSI #include <unistd.h>

45479 void sync(void);
45480

45481 DESCRIPTION
45482 The sync() function shall cause all information in memory that updates file systems to be
45483 scheduled for writing out to all file systems.

45484 The writing, although scheduled, is not necessarily complete upon return from sync().

45485 RETURN VALUE
45486 The sync() function shall return no value.

45487 ERRORS
45488 No errors are defined.

45489 EXAMPLES
45490 None.

45491 APPLICATION USAGE
45492 None.

45493 RATIONALE
45494 None.

45495 FUTURE DIRECTIONS
45496 None.

45497 SEE ALSO
45498 fsync(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

45499 CHANGE HISTORY
45500 First released in Issue 4, Version 2.

45501 Issue 5
45502 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 1979

sysconf() System Interfaces

45503 NAME
45504 sysconf — get configurable system variables

45505 SYNOPSIS
45506 #include <unistd.h>

45507 long sysconf(int name); |

45508 DESCRIPTION |
45509 The sysconf() function provides a method for the application to determine the current value of a
45510 configurable system limit or option (variable). Support for some system variables is dependent
45511 on implementation options (as indicated by the margin codes in the following table). Where an
45512 implementation option is not supported, the variable need not be supported.

45513 The name argument represents the system variable to be queried. The following table lists the
45514 minimal set of system variables from <limits.h> or <unistd.h> that can be returned by sysconf(),
45515 and the symbolic constants, defined in <unistd.h> that are the corresponding values used for
45516 name. Support for some configuration variables is dependent on implementation options (see
45517 shading and margin codes in the table below). Where an implementation option is not
45518 supported, the variable need not be supported.
45519 ___
45520 Variable Value of Name___
45521 AIO {AIO_LISTIO_MAX} _SC_AIO_LISTIO_MAX
45522 {AIO_MAX} _SC_AIO_MAX
45523 {AIO_PRIO_DELTA_MAX} _SC_AIO_PRIO_DELTA_MAX
45524 {ARG_MAX} _SC_ARG_MAX
45525 XSI {ATEXIT_MAX} _SC_ATEXIT_MAX
45526 {BC_BASE_MAX} _SC_BC_BASE_MAX
45527 {BC_DIM_MAX} _SC_BC_DIM_MAX
45528 {BC_SCALE_MAX} _SC_BC_SCALE_MAX
45529 {BC_STRING_MAX} _SC_BC_STRING_MAX
45530 {CHILD_MAX} _SC_CHILD_MAX
45531 Clock ticks/second _SC_CLK_TCK
45532 {COLL_WEIGHTS_MAX} _SC_COLL_WEIGHTS_MAX
45533 XSI {DELAYTIMER_MAX} _SC_DELAYTIMER_MAX
45534 {EXPR_NEST_MAX} _SC_EXPR_NEST_MAX
45535 XSI {IOV_MAX} _SC_IOV_MAX
45536 {LINE_MAX} _SC_LINE_MAX
45537 {LOGIN_NAME_MAX} _SC_LOGIN_NAME_MAX
45538 {NGROUPS_MAX} _SC_NGROUPS_MAX
45539 TSF Maximum size of getgrgid_r() and _SC_GETGR_R_SIZE_MAX
45540 getgrnam_r() data buffers
45541 Maximum size of getpwuid_r() and _SC_GETPW_R_SIZE_MAX
45542 getpwnam_r() data buffers
45543 MSG {MQ_OPEN_MAX} _SC_MQ_OPEN_MAX
45544 {MQ_PRIO_MAX} _SC_MQ_PRIO_MAX
45545 {OPEN_MAX} _SC_OPEN_MAX
45546 ADV _POSIX_ADVISORY_INFO _SC_ADVISORY_INFO
45547 BAR _POSIX_BARRIERS _SC_BARRIERS
45548 AIO _POSIX_ASYNCHRONOUS_IO _SC_ASYNCHRONOUS_IO___L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

1980 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sysconf()

45549 ___
45550 Variable Value of Name___
45551 _POSIX_BASE _SC_BASE
45552 _POSIX_C_LANG_SUPPORT _SC_C_LANG_SUPPORT
45553 _POSIX_C_LANG_SUPPORT_R _SC_C_LANG_SUPPORT_R
45554 CS _POSIX_CLOCK_SELECTION _SC_CLOCK_SELECTION
45555 CPT _POSIX_CPUTIME _SC_CPUTIME
45556 _POSIX_DEVICE_IO _SC_DEVICE_IO
45557 _POSIX_DEVICE_SPECIFIC _SC_DEVICE_SPECIFIC
45558 _POSIX_DEVICE_SPECIFIC_R _SC_DEVICE_SPECIFIC_R
45559 _POSIX_FD_MGMT _SC_FD_MGMT
45560 _POSIX_FIFO _SC_FIFO
45561 _POSIX_FILE_ATTRIBUTES _SC_FILE_ATTRIBUTES
45562 _POSIX_FILE_LOCKING _SC_FILE_LOCKING
45563 _POSIX_FILE_SYSTEM _SC_FILE_SYSTEM
45564 FSC _POSIX_FSYNC _SC_FSYNC
45565 _POSIX_JOB_CONTROL _SC_JOB_CONTROL
45566 MF _POSIX_MAPPED_FILES _SC_MAPPED_FILES
45567 ML _POSIX_MEMLOCK _SC_MEMLOCK
45568 MLR _POSIX_MEMLOCK_RANGE _SC_MEMLOCK_RANGE
45569 MPR _POSIX_MEMORY_PROTECTION _SC_MEMORY_PROTECTION
45570 MSG _POSIX_MESSAGE_PASSING _SC_MESSAGE_PASSING
45571 MON _POSIX_MONOTONIC_CLOCK _SC_MONOTONIC_CLOCK
45572 _POSIX_MULTIPLE_PROCESS _SC_MULTIPLE_PROCESS
45573 _POSIX_NETWORKING _SC_NETWORKING
45574 _POSIX_PIPE _SC_PIPE
45575 PIO _POSIX_PRIORITIZED_IO _SC_PRIORITIZED_IO
45576 PS _POSIX_PRIORITY_SCHEDULING _SC_PRIORITY_SCHEDULING
45577 THR _POSIX_READER_WRITER_LOCKS _SC_READER_WRITER_LOCKS
45578 RTS _POSIX_REALTIME_SIGNALS _SC_REALTIME_SIGNALS
45579 _POSIX_REGEXP _SC_REGEXP
45580 _POSIX_SAVED_IDS _SC_SAVED_IDS
45581 SEM _POSIX_SEMAPHORES _SC_SEMAPHORES
45582 SHM _POSIX_SHARED_MEMORY_OBJECTS _SC_SHARED_MEMORY_OBJECTS
45583 _POSIX_SHELL _SC_SHELL
45584 _POSIX_SIGNALS _SC_SIGNALS
45585 _POSIX_SINGLE_PROCESS _SC_SINGLE_PROCESS
45586 SPN _POSIX_SPAWN _SC_SPAWN
45587 SPI _POSIX_SPIN_LOCKS _SC_SPIN_LOCKS
45588 SS _POSIX_SPORADIC_SERVER _SC_SPORADIC_SERVER
45589 SIO _POSIX_SYNCHRONIZED_IO _SC_SYNCHRONIZED_IO
45590 _POSIX_SYSTEM_DATABASE _SC_SYSTEM_DATABASE
45591 _POSIX_SYSTEM_DATABASE_R _SC_SYSTEM_DATABASE_R___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

System Interfaces, Issue 6 1981

sysconf() System Interfaces

45592 ___
45593 Variable Value of Name___
45594 TSA _POSIX_THREAD_ATTR_STACKADDR _SC_THREAD_ATTR_STACKADDR
45595 TSS _POSIX_THREAD_ATTR_STACKSIZE _SC_THREAD_ATTR_STACKSIZE
45596 TCT _POSIX_THREAD_CPUTIME _SC_THREAD_CPUTIME
45597 TPI _POSIX_THREAD_PRIO_INHERIT _SC_THREAD_PRIO_INHERIT
45598 TPP _POSIX_THREAD_PRIO_PROTECT _SC_THREAD_PRIO_PROTECT
45599 TPS _POSIX_THREAD_PRIORITY_SCHEDULING _SC_THREAD_PRIORITY_SCHEDULING
45600 TSH _POSIX_THREAD_PROCESS_SHARED _SC_THREAD_PROCESS_SHARED
45601 TSF _POSIX_THREAD_SAFE_FUNCTIONS _SC_THREAD_SAFE_FUNCTIONS
45602 TSP _POSIX_THREAD_SPORADIC_SERVER _SC_THREAD_SPORADIC_SERVER
45603 THR _POSIX_THREADS _SC_THREADS
45604 TMO _POSIX_TIMEOUTS _SC_TIMEOUTS
45605 TMR _POSIX_TIMERS _SC_TIMERS
45606 TRC _POSIX_TRACE _SC_TRACE
45607 TEF _POSIX_TRACE_EVENT_FILTER _SC_TRACE_EVENT_FILTER
45608 TRI _POSIX_TRACE_INHERIT _SC_TRACE_INHERIT
45609 TRL _POSIX_TRACE_LOG _SC_TRACE_LOG
45610 TYM _POSIX_TYPED_MEMORY_OBJECTS _SC_TYPED_MEMORY_OBJECTS
45611 _POSIX_USER_GROUPS _SC_USER_GROUPS
45612 _POSIX_USER_GROUPS_R _SC_USER_GROUPS_R
45613 _POSIX_VERSION _SC_VERSION
45614 _POSIX_V6_ILP32_OFF32 _SC_V6_ILP32_OFF32
45615 _POSIX_V6_ILP32_OFFBIG _SC_V6_ILP32_OFFBIG
45616 _POSIX_V6_LP64_OFF64 _SC_V6_LP64_OFF64
45617 _POSIX_V6_LPBIG_OFFBIG _SC_V6_LPBIG_OFFBIG
45618 _POSIX2_C_BIND _SC_2_C_BIND
45619 _POSIX2_C_DEV _SC_2_C_DEV
45620 _POSIX2_C_VERSION _SC_2_C_VERSION
45621 _POSIX2_CHAR_TERM _SC_2_CHAR_TERM
45622 _POSIX2_FORT_DEV _SC_2_FORT_DEV
45623 _POSIX2_FORT_RUN _SC_2_FORT_RUN
45624 _POSIX2_LOCALEDEF _SC_2_LOCALEDEF
45625 BE _POSIX2_PBS _SC_2_PBS
45626 _POSIX2_PBS_ACCOUNTING _SC_2_PBS_ACCOUNTING
45627 _POSIX2_PBS_LOCATE _SC_2_PBS_LOCATE
45628 _POSIX2_PBS_MESSAGE _SC_2_PBS_MESSAGE
45629 _POSIX2_PBS_TRACK _SC_2_PBS_TRACK
45630 _POSIX2_SW_DEV _SC_2_SW_DEV
45631 _POSIX2_UPE _SC_2_UPE
45632 _POSIX2_VERSION _SC_2_VERSION
45633 _REGEX_VERSION _SC_REGEX_VERSION
45634 XSI {PAGE_SIZE} _SC_PAGE_SIZE
45635 {PAGESIZE} _SC_PAGESIZE___LL

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

1982 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sysconf()

45636 __ |
45637 Variable Value of Name |__ |
45638 THR {PTHREAD_DESTRUCTOR_ITERATIONS} _SC_THREAD_DESTRUCTOR_ITERATIONS |
45639 {PTHREAD_KEYS_MAX} _SC_THREAD_KEYS_MAX |
45640 {PTHREAD_STACK_MIN} _SC_THREAD_STACK_MIN |
45641 {PTHREAD_THREADS_MAX} _SC_THREAD_THREADS_MAX |
45642 {RE_DUP_MAX} _SC_RE_DUP_MAX |
45643 RTS {RTSIG_MAX} _SC_RTSIG_MAX |
45644 SEM {SEM_NSEMS_MAX} _SC_SEM_NSEMS_MAX |
45645 {SEM_VALUE_MAX} _SC_SEM_VALUE_MAX |
45646 RTS {SIGQUEUE_MAX} _SC_SIGQUEUE_MAX |
45647 {STREAM_MAX} _SC_STREAM_MAX |
45648 {SYMLOOP_MAX} _SC_SYMLOOP_MAX |
45649 TMR {TIMER_MAX} _SC_TIMER_MAX |
45650 {TTY_NAME_MAX} _SC_TTY_NAME_MAX |
45651 {TZNAME_MAX} _SC_TZNAME_MAX |
45652 XSI _XBS5_ILP32_OFF32 (LEGACY) _SC_XBS5_ILP32_OFF32 (LEGACY) |
45653 _XBS5_ILP32_OFFBIG (LEGACY) _SC_XBS5_ILP32_OFFBIG (LEGACY) |
45654 _XBS5_LP64_OFF64 (LEGACY) _SC_XBS5_LP64_OFF64 (LEGACY) |
45655 _XBS5_LPBIG_OFFBIG (LEGACY) _SC_XBS5_LPBIG_OFFBIG (LEGACY) |
45656 _XOPEN_CRYPT _SC_XOPEN_CRYPT |
45657 _XOPEN_ENH_I18N _SC_XOPEN_ENH_I18N |
45658 _XOPEN_LEGACY _SC_XOPEN_LEGACY |
45659 _XOPEN_REALTIME _SC_XOPEN_REALTIME |
45660 _XOPEN_REALTIME_THREADS _SC_XOPEN_REALTIME_THREADS |
45661 _XOPEN_SHM _SC_XOPEN_SHM |
45662 _XOPEN_UNIX _SC_XOPEN_UNIX |
45663 _XOPEN_VERSION _SC_XOPEN_VERSION |
45664 _XOPEN_XCU_VERSION _SC_XOPEN_XCU_VERSION |__ |L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

|

45665 RETURN VALUE |
45666 If name is an invalid value, sysconf() shall return −1 and set errno to indicate the error. If the |
45667 variable corresponding to name has no limit, sysconf() shall return −1 without changing the value |
45668 of errno. Note that indefinite limits do not imply infinite limits; see <limits.h>. |

45669 Otherwise, sysconf() shall return the current variable value on the system. The value returned |
45670 shall not be more restrictive than the corresponding value described to the application when it |
45671 was compiled with the implementation’s <limits.h> or <unistd.h>. The shall does not change |
45672 during the lifetime of the calling process. |

45673 ERRORS |
45674 The sysconf() function shall fail if: |

45675 [EINVAL] The value of the name argument is invalid. |

45676 EXAMPLES
45677 None.

45678 APPLICATION USAGE
45679 As −1 is a permissible return value in a successful situation, an application wishing to check for
45680 error situations should set errno to 0, then call sysconf(), and, if it returns −1, check to see if errno
45681 is non-zero.

45682 If the value of sysconf(_SC_2_VERSION) is not equal to the value of the _POSIX2_VERSION
45683 symbolic constant, the utilities available via system() or popen() might not behave as described in |
45684 the Shell and Utilities volume of IEEE Std. 1003.1-200x. This would mean that the application is |

System Interfaces, Issue 6 1983

sysconf() System Interfaces

45685 not running in an environment that conforms to the Shell and Utilities volume of |
45686 IEEE Std. 1003.1-200x. Some applications might be able to deal with this, others might not. |
45687 However, the functions defined in this volume of IEEE Std. 1003.1-200x continue to operate as
45688 specified, even if: sysconf(_SC_2_VERSION) reports that the utilities no longer perform as
45689 specified.

45690 RATIONALE
45691 This functionality was added in response to requirements of application developers and of
45692 system vendors who deal with many international system configurations. It is closely related to
45693 pathconf () and fpathconf ().

45694 Although a portable application can run on all systems by never demanding more resources
45695 than the minimum values published in this volume of IEEE Std. 1003.1-200x, it is useful for that
45696 application to be able to use the actual value for the quantity of a resource available on any
45697 given system. To do this, the application makes use of the value of a symbolic constant in
45698 <limits.h> or <unistd.h>.

45699 However, once compiled, the application must still be able to cope if the amount of resource
45700 available is increased. To that end, an application may need a means of determining the quantity
45701 of a resource, or the presence of an option, at execution time.

45702 Two examples are offered:

45703 1. Applications may wish to act differently on systems with or without job control.
45704 Applications vendors who wish to distribute only a single binary package to all instances
45705 of a computer architecture would be forced to assume job control is never available if it
45706 were to rely solely on the <unistd.h> value published in this volume of
45707 IEEE Std. 1003.1-200x.

45708 2. International applications vendors occasionally require knowledge of the number of clock
45709 ticks per second. Without these facilities, they would be required to either distribute their
45710 applications partially in source form or to have 50Hz and 60Hz versions for the various
45711 countries in which they operate.

45712 It is the knowledge that many applications are actually distributed widely in executable form
45713 that leads to this facility. If limited to the most restrictive values in the headers, such
45714 applications would have to be prepared to accept the most limited environments offered by the
45715 smallest microcomputers. Although this is entirely portable, there was a consensus that they
45716 should be able to take advantage of the facilities offered by large systems, without the
45717 restrictions associated with source and object distributions.

45718 During the discussions of this feature, it was pointed out that it is almost always possible for an
45719 application to discern what a value might be at runtime by suitably testing the various functions
45720 themselves. And, in any event, it could always be written to adequately deal with error returns
45721 from the various functions. In the end, it was felt that this imposed an unreasonable level of
45722 complication and sophistication on the application writer.

45723 This runtime facility is not meant to provide ever-changing values that applications have to
45724 check multiple times. The values are seen as changing no more frequently than once per system
45725 initialization, such as by a system administrator or operator with an automatic configuration
45726 program. This volume of IEEE Std. 1003.1-200x specifies that they shall not change within the
45727 lifetime of the process.

45728 Some values apply to the system overall and others vary at the file system or directory level. The
45729 latter are described in pathconf ().

45730 Note that all values returned must be expressible as integers. String values were considered, but
45731 the additional flexibility of this approach was rejected due to its added complexity of

1984 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sysconf()

45732 implementation and use.

45733 Some values, such as {PATH_MAX}, are sometimes so large that they must not be used to, say,
45734 allocate arrays. The sysconf() function returns a negative value to show that this symbolic
45735 constant is not even defined in this case.

45736 Similar to pathconf (), this permits the implementation not to have a limit. When one resource is
45737 infinite, returning an error indicating that some other resource limit has been reached is
45738 conforming behavior.

45739 FUTURE DIRECTIONS
45740 None.

45741 SEE ALSO
45742 confstr(), pathconf (), the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, |
45743 <unistd.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x, getconf |

45744 CHANGE HISTORY
45745 First released in Issue 3.

45746 Entry included for alignment with the POSIX.1-1988 standard.

45747 Issue 4
45748 The type of the function return value is expanded to long. |

45749 _XOPEN_VERSION is added to the table of configurable system limits; this should have been
45750 included in Issue 3.

45751 The following variables are added to the table of configurable system limits in the
45752 DESCRIPTION and marked as extensions:

45753 _XOPEN_CRYPT
45754 _XOPEN_ENH_I18N
45755 _XOPEN_SHM
45756 _XOPEN_UNIX

45757 In the RETURN VALUE section the header <time.h> is given as an alternative to <limits.h> and
45758 <unistd.h>.

45759 The second paragraph is added to the APPLICATION USAGE section.

45760 The following change is incorporated for alignment with the ISO POSIX-1 standard:

45761 • The variables {STREAM_MAX} and {TZNAME_MAX} are added to the table of variables in
45762 the DESCRIPTION.

45763 The following change is incorporated for alignment with the ISO POSIX-2 standard:

45764 • The following variables are added to the table of configurable system limits in the
45765 DESCRIPTION:

45766 {BC_BASE_MAX} _POSIX2_C_BIND _POSIX2_SW_DEV
45767 {BC_DIM_MAX} _POSIX2_C_DEV _POSIX2_VERSION
45768 {BC_SCALE_MAX} _POSIX2_C_VERSION {RE_DUP_MAX}
45769 {BC_STRING_MAX} _POSIX2_CHAR_TERM
45770 {COLL_WEIGHTS_MAX} _POSIX2_FORT_DEV
45771 {EXPR_NEST_MAX} _POSIX2_FORT_RUN
45772 {LINE_MAX} _POSIX2_LOCALEDEF

System Interfaces, Issue 6 1985

sysconf() System Interfaces

45773 Issue 4, Version 2
45774 For X/OPEN UNIX conformance, the {ATEXIT_MAX}, {IOV_MAX}, {PAGESIZE}, {PAGE_SIZE},
45775 and _XOPEN_UNIX variables are added to the list of configurable system values that can be
45776 determined by calling sysconf().

45777 Issue 5
45778 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
45779 Threads Extension.

45780 The _XBS_ variables and name values are added to the table of system variables in the
45781 DESCRIPTION. These are all marked EX.

45782 Issue 6
45783 The symbol CLK_TCK is obsolescent and removed. It is replaced with the phrase ‘‘clock ticks
45784 per second’’.

45785 The symbol {PASS_MAX} is removed.

45786 The following changes were made to align with the IEEE P1003.1a draft standard:

45787 • Table entries added for the following variables: _SC_REGEXP, _SC_SHELL,
45788 _SC_REGEX_VERSION, _SC_SYMLOOP_MAX.

45789 The following sysconf() variables and their associated names are added for alignment with
45790 IEEE Std. 1003.1d-1999:

45791 _POSIX_ADVISORY_INFO
45792 _POSIX_CPUTIME
45793 _POSIX_SPAWN
45794 _POSIX_SPORADIC_SERVER
45795 _POSIX_THREAD_CPUTIME
45796 _POSIX_THREAD_SPORADIC_SERVER
45797 _POSIX_TIMEOUTS

45798 The following changes are made to the DESCRIPTION for alignment with
45799 IEEE Std. 1003.1j-2000:

45800 • A statement expressing the dependency of support for some system variables on
45801 implementation options is added.

45802 • The following system variables are added:

45803 _POSIX_BARRIERS
45804 _POSIX_CLOCK_SELECTION
45805 _POSIX_MONOTONIC_CLOCK
45806 _POSIX_READER_WRITER_LOCKS
45807 _POSIX_SPIN_LOCKS
45808 _POSIX_TYPED_MEMORY_OBJECTS

45809 The following system variables are added for alignment with IEEE Std. 1003.2d-1994: |

45810 _POSIX2_PBS |
45811 _POSIX2_PBS_ACCOUNTING |
45812 _POSIX2_PBS_LOCATE |
45813 _POSIX2_PBS_MESSAGE |
45814 _POSIX2_PBS_TRACK |

45815 The following sysconf() variables and their associated names are added for alignment with |
45816 IEEE Std. 1003.1q-2000: |

1986 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces sysconf()

45817 _POSIX_TRACE |
45818 _POSIX_TRACE_EVENT_FILTER |
45819 _POSIX_TRACE_INHERIT |
45820 _POXIC_TRACE_LOG |

45821 The macros associated with the c89 programming models are marked LEGACY, and new |
45822 equivalent macros associated with c99 are introduced. |

System Interfaces, Issue 6 1987

syslog() System Interfaces

45823 NAME
45824 syslog — log a message

45825 SYNOPSIS
45826 XSI #include <syslog.h>

45827 void syslog(int priority , const char * message , ... /* argument */);
45828

45829 DESCRIPTION
45830 Refer to closelog ().

1988 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces system()

45831 NAME
45832 system — issue a command

45833 SYNOPSIS
45834 #include <stdlib.h>

45835 int system(const char * command);

45836 DESCRIPTION
45837 CX The functionality described on this reference page is aligned with the ISO C standard. Any
45838 conflict between the requirements described here and the ISO C standard is unintentional. This
45839 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

45840 The system() function passes the string pointed to by command to the host environment to be
45841 executed by a command processor in an implementation-defined manner. The environment of |
45842 the executed command shall be as if a child process were created using the fork () function, and |
45843 the child process invoked a command interpreter using the execl() function.

45844 CX If the implementation supports the Shell and Utilities volume of IEEE Std. 1003.1-200x |
45845 commands, the environment of the executed command shall be as if a child process were created |
45846 using fork (), and the child process invoked the sh utility using execl() as follows:

45847 execl(< shell path >, "sh", "-c", command, (char *)0);

45848 where <shell path> is an unspecified path name for the sh utility.

45849 The system() function ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHLD
45850 signal, while waiting for the command to terminate. If this might cause the application to miss a
45851 signal that would have killed it, then the application should examine the return value from
45852 system() and take whatever action is appropriate to the application if the command terminated
45853 due to receipt of a signal.

45854 The system() function shall not affect the termination status of any child of the calling processes
45855 other than the process or processes it itself creates.

45856 The system() function shall not return until the child process has terminated.

45857 RETURN VALUE
45858 If command is a null pointer, system() shall return non-zero to indicate that a command processor
45859 CX is available, or zero if none is available. If the implementation supports the utilities defined in |
45860 the Shell and Utilities volume of IEEE Std. 1003.1-200x, system() shall always return non-zero |
45861 when command is NULL.

45862 CX If command is not a null pointer, system() shall return the termination status of the command
45863 language interpreter in the format specified by waitpid (). If the implementation supports the |
45864 utilities defined in the Shell and Utilities volume of IEEE Std. 1003.1-200x, the termination status |
45865 shall be as defined for the sh utility; otherwise, the termination status is unspecified. If some
45866 error prevents the command language interpreter from executing after the child process is
45867 created, the return value from system() shall be as if the command language interpreter had
45868 terminated using exit(127) or _exit(127). If a child process cannot be created, or if the
45869 termination status for the command language interpreter cannot be obtained, system() shall
45870 return −1 and set errno to indicate the error.

45871 ERRORS
45872 CX The system() function may set errno values as described by fork ().

45873 In addition, system() may fail if:

45874 CX [ECHILD] The status of the child process created by system() is no longer available. |

System Interfaces, Issue 6 1989

system() System Interfaces

45875 EXAMPLES
45876 None.

45877 APPLICATION USAGE
45878 If the return value of system() is not −1, its value can be decoded through the use of the macros
45879 described in <sys/wait.h>. For convenience, these macros are also provided in <stdlib.h>.

45880 To determine whether or not the environment specified in the Shell and Utilities volume of |
45881 IEEE Std. 1003.1-200x is present, use sysconf(_SC_2_VERSION). |

45882 Note that, while system() must ignore SIGINT and SIGQUIT and block SIGCHLD while waiting
45883 for the child to terminate, the handling of signals in the executed command is as specified by
45884 fork () and exec. For example, if SIGINT is being caught or is set to SIG_DFL when system() is
45885 called, then the child is started with SIGINT handling set to SIG_DFL.

45886 Ignoring SIGINT and SIGQUIT in the parent process prevents coordination problems (two
45887 processes reading from the same terminal, for example) when the executed command ignores or
45888 catches one of the signals. It is also usually the correct action when the user has given a
45889 command to the application to be executed synchronously (as in the ’!’ command in many
45890 interactive applications). In either case, the signal should be delivered only to the child process,
45891 not to the application itself. There is one situation where ignoring the signals might have less
45892 than the desired effect. This is when the application uses system() to perform some task invisible
45893 to the user. If the user typed the interrupt character ("ˆC" , for example) while system() is being
45894 used in this way, one would expect the application to be killed, but only the executed command
45895 is killed. Applications that use system() in this way should carefully check the return status from
45896 system() to see if the executed command was successful, and should take appropriate action
45897 when the command fails.

45898 Blocking SIGCHLD while waiting for the child to terminate prevents the application from
45899 catching the signal and obtaining status from system()’s child process before system() can get the
45900 status itself.

45901 The context in which the utility is ultimately executed may differ from that in which system()
45902 was called. For example, file descriptors that have the FD_CLOEXEC flag set are closed, and the
45903 process ID and parent process ID are different. Also, if the executed utility changes its
45904 environment variables or its current working directory, that change is not reflected in the caller’s
45905 context.

45906 There is no defined way for an application to find the specific path for the shell. However,
45907 confstr() can provide a value for PATH that is guaranteed to find the sh utility.

45908 RATIONALE
45909 The system() function should not be used by programs that have set user (or group) ID
45910 privileges. The fork () and exec family of functions (except execlp() and execvp()), should be used
45911 instead. This prevents any unforeseen manipulation of the environment of the user that could
45912 cause execution of commands not anticipated by the calling program.

45913 There are three levels of specification for the system() function. The ISO C standard gives the
45914 most basic. It requires that the function exists, and defines a way for an application to query
45915 whether a command language interpreter exists. It says nothing about the command language or
45916 the environment in which the command is interpreted.

45917 IEEE Std. 1003.1-200x places additional restrictions on system(). It requires that if there is a
45918 command language interpreter, the environment must be as specified by fork () and exec. This
45919 ensures, for example, that close-on-exec works, that file locks are not inherited, and that the
45920 process ID is different. It also specifies the return value from system() when the command line
45921 can be run, thus giving the application some information about the command’s completion

1990 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces system()

45922 status IEEE Std. 1003.1-200x in its base definition still says nothing about the interpretation of
45923 the command.

45924 Finally, IEEE Std. 1003.1-200x requires the command to be interpreted as in the shell command |
45925 language defined in the Shell and Utilities volume of IEEE Std. 1003.1-200x. |

45926 Note that, system(NULL) is required to return non-zero, indicating that there is a command
45927 language interpreter. At first glance, this would seem to conflict with the ISO C standard which
45928 allows system(NULL) to return zero. There is no conflict, however. A system must have a |
45929 command language interpreter, and is non-conforming if none is present. It is therefore |
45930 permissible for the system() function on such a system to implement the behavior specified by |
45931 the ISO C standard as long as it is understood that the implementation does not conform to
45932 IEEE Std. 1003.1-200x if system(NULL) returns zero.

45933 It was explicitly decided that when command is NULL, system() should not be required to check
45934 to make sure that the command language interpreter actually exists with the correct mode, that
45935 there are enough processes to execute it, and so on. The call system(NULL) could, theoretically,
45936 check for such problems as too many existing child processes, and return zero. However, it
45937 would be inappropriate to return zero due to such a (presumably) transient condition. If some
45938 condition exists that is not under the control of this application and that would cause any
45939 system() call to fail, that system has been rendered non-conforming.

45940 Early drafts required, or allowed, system() to return with errno set to [EINTR] if it was
45941 interrupted with a signal. This error return was removed, and a requirement that system() not
45942 return until the child has terminated was added. This means that if a waitpid () call in system()
45943 exits with errno set to [EINTR], system() must re-issue the waitpid (). This change was made for
45944 two reasons:

45945 1. There is no way for an application to clean up if system() returns [EINTR], short of calling
45946 wait(), and that could have the undesirable effect of returning the status of children other
45947 than the one started by system().

45948 2. While it might require a change in some historical implementations, those
45949 implementations already have to be changed because they use wait() instead of waitpid ().

45950 Note that if the application is catching SIGCHLD signals, it will receive such a signal before a
45951 successful system() call returns.

45952 To conform to IEEE Std. 1003.1-200x, system() must use waitpid (), or some similar function,
45953 instead of wait().

45954 The following code sample illustrates how system() might be implemented on an
45955 implementation conforming to IEEE Std. 1003.1-200x.

45956 #include <signal.h>
45957 int system(const char *cmd)
45958 {
45959 int stat;
45960 pid_t pid;
45961 struct sigaction sa, savintr, savequit;
45962 sigset_t saveblock;
45963 if (cmd == NULL)
45964 return(1);
45965 sa.sa_handler = SIG_IGN;
45966 sigemptyset(&sa.sa_mask);
45967 sa.sa_flags = 0;
45968 sigemptyset(&savintr.sa_mask);

System Interfaces, Issue 6 1991

system() System Interfaces

45969 sigemptyset(&savequit.sa_mask);
45970 sigaction(SIGINT, &sa, &savintr);
45971 sigaction(SIGQUIT, &sa, &savequit);
45972 sigaddset(&sa.sa_mask, SIGCHLD);
45973 sigprocmask(SIG_BLOCK, &sa.sa_mask, &saveblock);
45974 if ((pid = fork()) == 0) {
45975 sigaction(SIGINT, &savintr, (struct sigaction *)0);
45976 sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
45977 sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
45978 execl("/bin/sh", "sh", "-c", cmd, (char *)0);
45979 _exit(127);
45980 }
45981 if (pid == -1) {
45982 stat = -1; /* errno comes from fork() */
45983 } else {
45984 while (waitpid(pid, &stat, 0) == -1) {
45985 if (errno != EINTR){
45986 stat = -1;
45987 break;
45988 }
45989 }
45990 }
45991 sigaction(SIGINT, &savintr, (struct sigaction *)0);
45992 sigaction(SIGQUIT, &savequit, (struct sigaction *)0);
45993 sigprocmask(SIG_SETMASK, &saveblock, (sigset_t *)0);
45994 return(stat);
45995 }

45996 Note that, while a particular implementation of system() (such as the one above) can assume a
45997 particular path for the shell, such a path is not necessarily valid on another system. The above
45998 example is not portable, and is not intended to be.

45999 One reviewer suggested that an implementation of system() might want to use an environment
46000 variable such as SHELL to determine which command interpreter to use. The supposed
46001 implementation would use the default command interpreter if the one specified by the
46002 environment variable was not available. This would allow a user, when using an application
46003 that prompts for command lines to be processed using system(), to specify a different command
46004 interpreter. Such an implementation is discouraged. If the alternate command interpreter did not
46005 follow the command line syntax specified in the Shell and Utilities volume of |
46006 IEEE Std. 1003.1-200x, then changing SHELL would render system() non-conforming. This would |
46007 affect applications that expected the specified behavior from system(), and since the Shell and |
46008 Utilities volume of IEEE Std. 1003.1-200x does not mention that SHELL affects system(), the |
46009 application would not know that it needed to unset SHELL.

46010 FUTURE DIRECTIONS
46011 None.

46012 SEE ALSO
46013 exec, pipe(), waitpid (), the Base Definitions volume of IEEE Std. 1003.1-200x, <limits.h>, |
46014 <signal.h>, <stdlib.h>, <sys/wait.h>, the Shell and Utilities volume of IEEE Std. 1003.1-200x |

1992 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces system()

46015 CHANGE HISTORY
46016 First released in Issue 1. Derived from Issue 1 of the SVID. |

46017 Issue 4
46018 Extensions beyond the ISO C standard are now marked.

46019 The following changes are incorporated for alignment with the ISO POSIX-2 standard:

46020 • The function is no longer marked as an extension.

46021 • The name of the argument is changed from string to command , and its type is changed from
46022 char* to const char*.

46023 • The DESCRIPTION and RETURN VALUE sections are completely replaced to bring them in
46024 line with the ISO POSIX-2 standard. They still describe essentially the same functionality,
46025 albeit that the definition is more complete.

46026 • The ERRORS section is changed to indicate that system() may return error values described
46027 for fork ().

46028 • The APPLICATION USAGE section is added.

46029 The following changes were made to align with the IEEE P1003.1a draft standard:

46030 • The DESCRIPTION is adjusted to reflect the behavior on systems that do not support the |
46031 Shell option. |

System Interfaces, Issue 6 1993

tan() System Interfaces

46032 NAME
46033 tan, tanf, tanl — tangent function |

46034 SYNOPSIS
46035 #include <math.h>

46036 double tan(double x);
46037 float tanf(float x); |
46038 long double tanl(long double x); |

46039 DESCRIPTION |
46040 CX The functionality described on this reference page is aligned with the ISO C standard. Any
46041 conflict between the requirements described here and the ISO C standard is unintentional. This
46042 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

46043 These functions shall compute the tangent of its argument x, measured in radians. |

46044 An application wishing to check for error situations should set errno to 0 before calling tan(). If
46045 errno is non-zero on return, or the return value is NaN, an error has occurred.

46046 The tan() function may lose accuracy when its argument is far from 0.0.

46047 RETURN VALUE
46048 Upon successful completion, these functions shall return the tangent of x . |

46049 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

46050 If x is ±Inf, either 0.0 shall be returned and errno set to [EDOM], or NaN shall be returned and
46051 errno may be set to [EDOM].

46052 If the correct value would cause overflow, ±HUGE_VAL shall be returned and errno shall be set
46053 to [ERANGE].

46054 If the correct value would cause underflow, 0.0 shall be returned and errno may be set to
46055 [ERANGE].

46056 ERRORS
46057 These functions shall fail if: |

46058 [ERANGE] The value to be returned would cause overflow. |

46059 These functions may fail if: |

46060 XSI [EDOM] The value x is NaN or ±Inf. |

46061 [ERANGE] The value to be returned would cause underflow. |

46062 XSI No other errors shall occur.

46063 EXAMPLES

46064 Taking the Tangent of a 45-Degree Angle

46065 #include <math.h>
46066 ...
46067 double radians = 45.0 * M_PI / 180;
46068 double result;
46069 ...
46070 result = tan (radians);

1994 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tan()

46071 APPLICATION USAGE
46072 None.

46073 RATIONALE
46074 None.

46075 FUTURE DIRECTIONS
46076 None.

46077 SEE ALSO
46078 atan(), isnan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

46079 CHANGE HISTORY
46080 First released in Issue 1. Derived from Issue 1 of the SVID. |

46081 Issue 4
46082 References to matherr() are removed.

46083 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
46084 ISO C standard and to rationalize error handling in the mathematics functions.

46085 The return value specified for [EDOM] is marked as an extension.

46086 Issue 5
46087 The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
46088 in previous issues. |

46089 Issue 6 |
46090 The tanf() and tanl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1995

tanh() System Interfaces

46091 NAME
46092 tanh, tanhf, tanhl — hyperbolic tangent function |

46093 SYNOPSIS
46094 #include <math.h>

46095 double tanh(double x);
46096 float tanhf(float x); |
46097 long double tanhl(long double x); |

46098 DESCRIPTION |
46099 CX The functionality described on this reference page is aligned with the ISO C standard. Any
46100 conflict between the requirements described here and the ISO C standard is unintentional. This
46101 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

46102 These functions shall ompute the hyperbolic tangent of x . |

46103 An application wishing to check for error situations should set errno to 0 before calling tanh(). If
46104 errno is non-zero on return, or the return value is NaN, an error has occurred.

46105 RETURN VALUE
46106 Upon successful completion, these functions shall return the hyperbolic tangent of x . |

46107 XSI If x is NaN, NaN shall be returned and errno may be set to [EDOM].

46108 If the correct value would cause underflow, 0.0 shall be returned and errno may be set to
46109 [ERANGE].

46110 ERRORS
46111 These functions may fail if: |

46112 XSI [EDOM] The value of x is NaN. |

46113 [ERANGE] The correct result would cause underflow. |

46114 XSI No other errors shall occur.

46115 EXAMPLES
46116 None.

46117 APPLICATION USAGE
46118 None.

46119 RATIONALE
46120 None.

46121 FUTURE DIRECTIONS
46122 None.

46123 SEE ALSO
46124 atanh(), isnan(), tan(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

46125 CHANGE HISTORY
46126 First released in Issue 1. Derived from Issue 1 of the SVID. |

46127 Issue 4
46128 References to matherr() are removed.

46129 The RETURN VALUE and ERRORS sections are substantially rewritten for alignment with the
46130 ISO C standard and to rationalize error handling in the mathematics functions.

46131 The return value specified for [EDOM] is marked as an extension.

1996 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tanh()

46132 Issue 5
46133 The DESCRIPTION is updated to indicate how an application should check for an error. This
46134 text was previously published in the APPLICATION USAGE section. |

46135 Issue 6 |
46136 The tanhf() and tanhl() functions are added for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 1997

tcdrain() System Interfaces

46137 NAME
46138 tcdrain — wait for transmission of output

46139 SYNOPSIS
46140 #include <termios.h>

46141 int tcdrain(int fildes);

46142 DESCRIPTION
46143 The tcdrain() function shall wait until all output written to the object referred to by fildes is
46144 transmitted. The fildes argument is an open file descriptor associated with a terminal.

46145 Any attempts to use tcdrain() from a process which is a member of a background process group
46146 on a fildes associated with its controlling terminal, shall cause the process group to be sent a
46147 SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
46148 allowed to perform the operation, and no signal is sent.

46149 RETURN VALUE
46150 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46151 indicate the error.

46152 ERRORS
46153 The tcdrain() function shall fail if:

46154 [EBADF] The fildes argument is not a valid file descriptor. |

46155 [EINTR] A signal interrupted tcdrain(). |

46156 [ENOTTY] The file associated with fildes is not a terminal. |

46157 The tcdrain() function may fail if:

46158 [EIO] The process group of the writing process is orphaned, and the writing process |
46159 is not ignoring or blocking SIGTTOU. |

46160 EXAMPLES
46161 None.

46162 APPLICATION USAGE
46163 None.

46164 RATIONALE
46165 None.

46166 FUTURE DIRECTIONS
46167 None.

46168 SEE ALSO
46169 tcflush(), the Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, <unistd.h>, the |
46170 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

46171 CHANGE HISTORY
46172 First released in Issue 3.

46173 Entry included for alignment with the POSIX.1-1988 standard.

46174 Issue 4
46175 The [EIO] error is added to the ERRORS section.

46176 The FUTURE DIRECTIONS section is added.

46177 The following change is incorporated for alignment with the FIPS requirements:

1998 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcdrain()

46178 • The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
46179 paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
46180 Issue 4 conforming implementations.

46181 Issue 6
46182 The following new requirements on POSIX implementations derive from alignment with the
46183 Single UNIX Specification:

46184 • In the DESCRIPTION, the final paragraph is no longer conditional on
46185 _POSIX_JOB_CONTROL. This is a FIPS requirement.

46186 • The [EIO] error is added.

System Interfaces, Issue 6 1999

tcflow() System Interfaces

46187 NAME
46188 tcflow — suspend or restart the transmission or reception of data

46189 SYNOPSIS
46190 #include <termios.h>

46191 int tcflow(int fildes , int action);

46192 DESCRIPTION
46193 The tcflow () function shall suspend or restart transmission or reception of data on the object
46194 referred to by fildes , depending on the value of action . The fildes argument is an open file
46195 descriptor associated with a terminal.

46196 • If action is TCOOFF, output shall be suspended.

46197 • If action is TCOON, suspended output shall be restarted.

46198 • If action is TCIOFF, the system shall transmit a STOP character, which is intended to cause
46199 the terminal device to stop transmitting data to the system.

46200 • If action is TCION, the system shall transmit a START character, which is intended to cause
46201 the terminal device to start transmitting data to the system.

46202 The default on the opening of a terminal file is that neither its input nor its output are
46203 suspended.

46204 Attempts to use tcflow () from a process which is a member of a background process group on a
46205 fildes associated with its controlling terminal, shall cause the process group to be sent a
46206 SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
46207 allowed to perform the operation, and no signal is sent.

46208 RETURN VALUE
46209 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46210 indicate the error.

46211 ERRORS
46212 The tcflow () function shall fail if:

46213 [EBADF] The fildes argument is not a valid file descriptor. |

46214 [EINVAL] The action argument is not a supported value. |

46215 [ENOTTY] The file associated with fildes is not a terminal. |

46216 The tcflow () function may fail if:

46217 [EIO] The process group of the writing process is orphaned, and the writing process |
46218 is not ignoring or blocking SIGTTOU. |

46219 EXAMPLES
46220 None.

46221 APPLICATION USAGE
46222 None.

46223 RATIONALE
46224 None.

46225 FUTURE DIRECTIONS
46226 None.

2000 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcflow()

46227 SEE ALSO
46228 tcsendbreak(), the Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, <unistd.h>, the |
46229 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

46230 CHANGE HISTORY
46231 First released in Issue 3.

46232 Entry included for alignment with the POSIX.1-1988 standard.

46233 Issue 4
46234 The descriptions of TCIOFF and TCION are reworded, indicating the intended consequences of
46235 transmitting stop and start characters. Issue 3 implied that these consequences were guaranteed.

46236 The [EIO] error is added to the ERRORS section.

46237 The FUTURE DIRECTIONS section is added.

46238 The following change is incorporated for alignment with the FIPS requirements:

46239 • The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
46240 paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
46241 Issue 4 conforming implementations.

46242 Issue 6
46243 The following new requirements on POSIX implementations derive from alignment with the
46244 Single UNIX Specification:

46245 • The [EIO] error is added.

System Interfaces, Issue 6 2001

tcflush() System Interfaces

46246 NAME
46247 tcflush — flush non-transmitted output data, non-read input data, or both

46248 SYNOPSIS
46249 #include <termios.h>

46250 int tcflush(int fildes , int queue_selector);

46251 DESCRIPTION
46252 Upon successful completion, tcflush() shall discard data written to the object referred to by fildes
46253 (an open file descriptor associated with a terminal) but not transmitted, or data received but not
46254 read, depending on the value of queue_selector:

46255 • If queue_selector is TCIFLUSH, it shall flush data received but not read.

46256 • If queue_selector is TCOFLUSH, it shall flush data written but not transmitted.

46257 • If queue_selector is TCIOFLUSH, it shall flush both data received but not read and data
46258 written but not transmitted.

46259 Attempts to use tcflush() from a process which is a member of a background process group on a
46260 fildes associated with its controlling terminal, shall cause the process group to be sent a
46261 SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
46262 allowed to perform the operation, and no signal is sent.

46263 RETURN VALUE
46264 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46265 indicate the error.

46266 ERRORS
46267 The tcflush() function shall fail if:

46268 [EBADF] The fildes argument is not a valid file descriptor. |

46269 [EINVAL] The queue_selector argument is not a supported value. |

46270 [ENOTTY] The file associated with fildes is not a terminal. |

46271 The tcflush() function may fail if:

46272 [EIO] The process group of the writing process is orphaned, and the writing process |
46273 is not ignoring or blocking SIGTTOU. |

46274 EXAMPLES
46275 None.

46276 APPLICATION USAGE
46277 None.

46278 RATIONALE
46279 None.

46280 FUTURE DIRECTIONS
46281 None.

46282 SEE ALSO
46283 tcdrain(), the Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, <unistd.h>, the |
46284 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

2002 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcflush()

46285 CHANGE HISTORY
46286 First released in Issue 3.

46287 Entry included for alignment with the POSIX.1-1988 standard.

46288 Issue 4
46289 The DESCRIPTION is modified to indicate that the flush operation only results if the call to
46290 tcflush() is successful.

46291 The [EIO] error is added to the ERRORS section.

46292 The FUTURE DIRECTIONS section is added.

46293 The following change is incorporated for alignment with the FIPS requirements:

46294 • The words ‘‘If _POSIX_JOB_CONTROL is defined’’ are removed from the start of the second
46295 paragraph in the DESCRIPTION. This is because job control is defined as mandatory for
46296 Issue 4 conforming implementations.

46297 Issue 6
46298 The Open Group corrigenda item U035/1 has been applied. In the ERRORS and APPLICATION
46299 USAGE sections, references to tcflow () are replaced with tcflush().

46300 The following new requirements on POSIX implementations derive from alignment with the
46301 Single UNIX Specification:

46302 • In the DESCRIPTION, the final paragraph is no longer conditional on
46303 _POSIX_JOB_CONTROL. This is a FIPS requirement.

46304 • The [EIO] error is added.

System Interfaces, Issue 6 2003

tcgetattr() System Interfaces

46305 NAME
46306 tcgetattr — get the parameters associated with the terminal

46307 SYNOPSIS
46308 #include <termios.h>

46309 int tcgetattr(int fildes , struct termios * termios_p);

46310 DESCRIPTION
46311 The tcgetattr() function shall get the parameters associated with the terminal referred to by fildes
46312 and store them in the termios structure referenced by termios_p . The fildes argument is an open
46313 file descriptor associated with a terminal.

46314 The termios_p argument is a pointer to a termios structure.

46315 The tcgetattr() operation is allowed from any process.

46316 If the terminal device supports different input and output baud rates, the baud rates stored in
46317 the termios structure returned by tcgetattr() shall reflect the actual baud rates, even if they are
46318 equal. If differing baud rates are not supported, the rate returned as the output baud rate shall be
46319 the actual baud rate. If the terminal device does not support split baud rates, the input baud rate
46320 stored in the termios structure shall be the output rate (as one of the symbolic values).

46321 RETURN VALUE
46322 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46323 indicate the error.

46324 ERRORS
46325 The tcgetattr() function shall fail if:

46326 [EBADF] The fildes argument is not a valid file descriptor. |

46327 [ENOTTY] The file associated with fildes is not a terminal. |

46328 EXAMPLES
46329 None.

46330 APPLICATION USAGE
46331 None.

46332 RATIONALE
46333 Care must be taken when changing the terminal attributes. Applications should always do a
46334 tcgetattr(), save the termios structure values returned, and then do a tcsetattr() changing only
46335 the necessary fields. The application should use the values saved from the tcgetattr() to reset the
46336 terminal state whenever it is done with the terminal. This is necessary because terminal
46337 attributes apply to the underlying port and not to each individual open instance; that is, all
46338 processes that have used the terminal see the latest attribute changes.

46339 A program that uses these functions should be written to catch all signals and take other
46340 appropriate actions to ensure that when the program terminates, whether planned or not, the
46341 terminal device’s state is restored to its original state.

46342 Existing practice dealing with error returns when only part of a request can be honored is based
46343 on calls to the ioctl () function. In historical BSD and System V implementations, the
46344 corresponding ioctl () returns zero if the requested actions were semantically correct, even if
46345 some of the requested changes could not be made. Many existing applications assume this
46346 behavior and would no longer work correctly if the return value were changed from zero to −1
46347 in this case.

2004 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcgetattr()

46348 Note that either specification has a problem. When zero is returned, it implies everything
46349 succeeded even if some of the changes were not made. When −1 is returned, it implies
46350 everything failed even though some of the changes were made.

46351 Applications that need all of the requested changes made to work properly should follow
46352 tcsetattr() with a call to tcgetattr() and compare the appropriate field values.

46353 FUTURE DIRECTIONS
46354 None.

46355 SEE ALSO
46356 tcsetattr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, the Base |
46357 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

46358 CHANGE HISTORY
46359 First released in Issue 3.

46360 Entry included for alignment with the POSIX.1-1988 standard.

46361 Issue 4
46362 The FUTURE DIRECTIONS section is added to allow for alignment with the ISO POSIX-1
46363 standard.

46364 Issue 6
46365 In the DESCRIPTION, the rate returned as the input baud rate shall be the output rate.
46366 Previously, the number zero was also allowed but was obsolescent.

System Interfaces, Issue 6 2005

tcgetpgrp() System Interfaces

46367 NAME
46368 tcgetpgrp — get the foreground process group ID

46369 SYNOPSIS
46370 #include <unistd.h>

46371 pid_t tcgetpgrp(int fildes);

46372 DESCRIPTION
46373 The tcgetpgrp() function shall return the value of the process group ID of the foreground process
46374 group associated with the terminal.

46375 If there is no foreground process group, tcgetpgrp() returns a value greater than 1 that does not
46376 match the process group ID of any existing process group.

46377 The tcgetpgrp() function is allowed from a process that is a member of a background process
46378 group; however, the information may be subsequently changed by a process that is a member of
46379 a foreground process group.

46380 RETURN VALUE
46381 Upon successful completion, tcgetpgrp() shall return the value of the process group ID of the
46382 foreground process associated with the terminal. Otherwise, −1 shall be returned and errno set to
46383 indicate the error.

46384 ERRORS
46385 The tcgetpgrp() function shall fail if:

46386 [EBADF] The fildes argument is not a valid file descriptor. |

46387 [ENOTTY] The calling process does not have a controlling terminal, or the file is not the |
46388 controlling terminal.

46389 EXAMPLES
46390 None.

46391 APPLICATION USAGE
46392 None.

46393 RATIONALE
46394 None.

46395 FUTURE DIRECTIONS
46396 None.

46397 SEE ALSO
46398 setsid(), setpgid(), tcsetpgrp(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
46399 <sys/types.h>, <unistd.h>

CHANGE46400 HISTORY
46401 First released in Issue 3.

46402 Entry included for alignment with the POSIX.1-1988 standard.

46403 Issue 4
46404 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
46405 XSI-conformant systems.

46406 The <unistd.h> header is added to the SYNOPSIS section.

46407 The following change is incorporated for alignment with the FIPS requirements:

2006 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcgetpgrp()

46408 • The DESCRIPTION is clarified and the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is
46409 removed because job control is now mandatory on all XSI-conformant systems.

46410 Issue 6
46411 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

46412 The following new requirements on POSIX implementations derive from alignment with the
46413 Single UNIX Specification:

46414 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
46415 required for conforming implementations of previous POSIX specifications, it was not
46416 required for UNIX applications.

46417 • In the DESCRIPTION, text previously conditional on support for _POSIX_JOB_CONTROL is
46418 now mandatory. This is a FIPS requirement.

System Interfaces, Issue 6 2007

tcgetsid() System Interfaces

46419 NAME
46420 tcgetsid — get process group ID for session leader for controlling terminal

46421 SYNOPSIS
46422 XSI #include <termios.h>

46423 pid_t tcgetsid(int fildes);
46424

46425 DESCRIPTION
46426 The tcgetsid() function shall obtain the process group ID of the session for which the terminal
46427 specified by fildes is the controlling terminal.

46428 RETURN VALUE
46429 Upon successful completion, tcgetsid() shall return the process group ID associated with the
46430 terminal. Otherwise, a value of (pid_t)−1 shall be returned and errno set to indicate the error.

46431 ERRORS
46432 The tcgetsid() function shall fail if:

46433 [EBADF] The fildes argument is not a valid file descriptor. |

46434 [ENOTTY] The calling process does not have a controlling terminal, or the file is not the |
46435 controlling terminal.

46436 EXAMPLES
46437 None.

46438 APPLICATION USAGE
46439 None.

46440 RATIONALE
46441 None.

46442 FUTURE DIRECTIONS
46443 None.

46444 SEE ALSO
46445 The Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h> |

46446 CHANGE HISTORY
46447 First released in Issue 4, Version 2.

46448 Issue 5
46449 Moved from X/OPEN UNIX extension to BASE.

46450 The [EACCES] error has been removed from the list of mandatory errors, and the description of
46451 [ENOTTY] has been reworded.

2008 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcsendbreak()

46452 NAME
46453 tcsendbreak — send a ‘‘break’’ for a specific duration

46454 SYNOPSIS
46455 #include <termios.h>

46456 int tcsendbreak(int fildes , int duration);

46457 DESCRIPTION
46458 The fildes argument is an open file descriptor associated with a terminal.

46459 If the terminal is using asynchronous serial data transmission, tcsendbreak() shall cause
46460 transmission of a continuous stream of zero-valued bits for a specific duration. If duration is 0, it
46461 shall cause transmission of zero-valued bits for at least 0.25 seconds, and not more than 0.5
46462 seconds. If duration is not 0, it shall send zero-valued bits for an implementation-defined period |
46463 of time. |

46464 If the terminal is not using asynchronous serial data transmission, it is implementation-defined |
46465 whether tcsendbreak() sends data to generate a break condition or returns without taking any |
46466 action.

46467 Attempts to use tcsendbreak() from a process which is a member of a background process group
46468 on a fildes associated with its controlling terminal, shall cause the process group to be sent a
46469 SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is
46470 allowed to perform the operation, and no signal is sent.

46471 RETURN VALUE
46472 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46473 indicate the error.

46474 ERRORS
46475 The tcsendbreak() function shall fail if:

46476 [EBADF] The fildes argument is not a valid file descriptor. |

46477 [ENOTTY] The file associated with fildes is not a terminal. |

46478 The tcsendbreak() function may fail if:

46479 [EIO] The process group of the writing process is orphaned, and the writing process |
46480 is not ignoring or blocking SIGTTOU. |

46481 EXAMPLES
46482 None.

46483 APPLICATION USAGE
46484 None.

46485 RATIONALE
46486 None.

46487 FUTURE DIRECTIONS
46488 None.

46489 SEE ALSO
46490 The Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, <unistd.h>, the Base |
46491 Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal Interface |

System Interfaces, Issue 6 2009

tcsendbreak() System Interfaces

46492 CHANGE HISTORY
46493 First released in Issue 3.

46494 Entry included for alignment with the POSIX.1-1988 standard.

46495 Issue 4
46496 The [EIO] error is added to the ERRORS section.

46497 The following change is incorporated for alignment with the FIPS requirements:

46498 • In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
46499 because job control is now mandatory on all XSI-conformant systems.

46500 Issue 6
46501 The following new requirements on POSIX implementations derive from alignment with the
46502 Single UNIX Specification:

46503 • In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
46504 mandated. This is a FIPS requirement.

46505 • The [EIO] error is added.

2010 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcsetattr()

46506 NAME
46507 tcsetattr — set the parameters associated with the terminal

46508 Notes to Reviewers
46509 This section with side shading will not appear in the final copy. - Ed.

46510 See the FUTURE DIRECTIONS section.

46511 SYNOPSIS
46512 #include <termios.h>

46513 int tcsetattr(int fildes , int optional_actions ,
46514 const struct termios * termios_p);

46515 DESCRIPTION
46516 The tcsetattr() function shall set the parameters associated with the terminal referred to by the
46517 open file descriptor fildes (an open file descriptor associated with a terminal) from the termios
46518 structure referenced by termios_p as follows:

46519 • If optional_actions is TCSANOW, the change shall occur immediately.

46520 • If optional_actions is TCSADRAIN, the change shall occur after all output written to fildes is
46521 transmitted. This function should be used when changing parameters that affect output.

46522 • If optional_actions is TCSAFLUSH, the change shall occur after all output written to fildes is
46523 transmitted, and all input so far received but not read shall be discarded before the change is
46524 made.

46525 If the output baud rate stored in the termios structure pointed to by termios_p is the zero baud
46526 rate, B0, the modem control lines shall no longer be asserted. Normally, this shall disconnect the
46527 line.

46528 If the input baud rate stored in the termios structure pointed to by termios_p is 0, the input baud
46529 rate given to the hardware is the same as the output baud rate stored in the termios structure.

46530 The tcsetattr() function shall return successfully if it was able to perform any of the requested
46531 actions, even if some of the requested actions could not be performed. It shall set all the
46532 attributes that the implementation supports as requested and leaves all the attributes not
46533 supported by the implementation unchanged. If no part of the request can be honored, it shall
46534 return −1 and set errno to [EINVAL]. If the input and output baud rates differ and are a
46535 combination that is not supported, neither baud rate is changed. A subsequent call to tcgetattr()
46536 shall return the actual state of the terminal device (reflecting both the changes made and not
46537 made in the previous tcsetattr() call). The tcsetattr() function shall not change the values found
46538 in the termios structure under any circumstances.

46539 The effect of tcsetattr() is undefined if the value of the termios structure pointed to by termios_p
46540 was not derived from the result of a call to tcgetattr() on fildes ; an application should modify
46541 only fields and flags defined by this volume of IEEE Std. 1003.1-200x between the call to
46542 tcgetattr() and tcsetattr(), leaving all other fields and flags unmodified.

46543 No actions defined by this volume of IEEE Std. 1003.1-200x, other than a call to tcsetattr() or a
46544 close of the last file descriptor in the system associated with this terminal device, shall cause any
46545 of the terminal attributes defined by this volume of IEEE Std. 1003.1-200x to change.

46546 If tcsetattr() is called from a process which is a member of a background process group on a
46547 fildes associated with its controlling terminal:

46548 • If the calling process is blocking or ignoring SIGTTOU signals, the operation completes
46549 normally and no signal is sent.

System Interfaces, Issue 6 2011

tcsetattr() System Interfaces

46550 • Otherwise, a SIGTTOU signal shall be sent to the process group.

46551 RETURN VALUE
46552 Upon successful completion, 0 shall be shall be. Otherwise, −1 shall be returned and errno set to
46553 indicate the error.

46554 ERRORS
46555 The tcsetattr() function shall fail if:

46556 [EBADF] The fildes argument is not a valid file descriptor. |

46557 [EINTR] A signal interrupted tcsetattr(). |

46558 [EINVAL] The optional_actions argument is not a supported value, or an attempt was |
46559 made to change an attribute represented in the termios structure to an
46560 unsupported value.

46561 [ENOTTY] The file associated with fildes is not a terminal. |

46562 The tcsetattr() function may fail if:

46563 [EIO] The process group of the writing process is orphaned, and the writing process |
46564 is not ignoring or blocking SIGTTOU. |

46565 EXAMPLES
46566 None.

46567 APPLICATION USAGE
46568 If trying to change baud rates, applications should call tcsetattr() then call tcgetattr() in order to
46569 determine what baud rates were actually selected.

46570 RATIONALE
46571 The tcsetattr() function can be interrupted in the following situations:

46572 • It is interrupted while waiting for output to drain.

46573 • It is called from a process in a background process group and SIGTTOU is caught.

46574 See also the RATIONALE section in tcgetattr().

46575 FUTURE DIRECTIONS
46576 Using an input baud rate of 0 to set the input rate equal to the output rate may not necessarily be
46577 supported in a future version of this volume of IEEE Std. 1003.1-200x.

46578 SEE ALSO
46579 cfgetispeed(), tcgetattr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <termios.h>, |
46580 <unistd.h>, the Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 11, General Terminal |
46581 Interface |

46582 CHANGE HISTORY
46583 First released in Issue 3.

46584 Entry included for alignment with the POSIX.1-1988 standard.

46585 Issue 4
46586 The words ‘‘and stores them in’’ are changed to ‘‘from’’ in the first paragraph of the
46587 DESCRIPTION.

46588 The [EINTR] and [EIO] errors are added to the ERRORS section.

46589 The FUTURE DIRECTIONS section is added to allow for alignment with the ISO POSIX-1
46590 standard.

2012 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcsetattr()

46591 The following change is incorporated for alignment with the ISO POSIX-1 standard:

46592 • The argument termios_p is changed from type struct termios* to const struct termios*.

46593 The following change is incorporated for alignment with the FIPS requirements:

46594 • In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
46595 because job control is now mandatory on all XSI-conformant systems.

46596 Issue 6
46597 The following new requirements on POSIX implementations derive from alignment with the
46598 Single UNIX Specification:

46599 • In the DESCRIPTION, text previously conditional on _POSIX_JOB_CONTROL is now
46600 mandated. This is a FIPS requirement.

46601 • The [EIO] error is added.

46602 In the DESCRIPTION, the text describing use of tcsetattr() from a process which is a member of
46603 a background process group is clarified.

System Interfaces, Issue 6 2013

tcsetpgrp() System Interfaces

46604 NAME
46605 tcsetpgrp — set the foreground process group ID

46606 SYNOPSIS
46607 #include <unistd.h>

46608 int tcsetpgrp(int fildes , pid_t pgid_id);

46609 DESCRIPTION
46610 If the process has a controlling terminal, tcsetpgrp() shall set the foreground process group ID
46611 associated with the terminal to pgid_id . The application shall ensure that the file associated with
46612 fildes is the controlling terminal of the calling process and the controlling terminal is currently
46613 associated with the session of the calling process. The application shall ensure that the value of
46614 pgid_id matches a process group ID of a process in the same session as the calling process. |

46615 Attempts to use tcsetpgrp() from a process which is a member of a background process group on |
46616 a fildes associated with its controlling terminal will cause the process group to be sent a |
46617 SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is |
46618 allowed to perform the operation, and no signal is sent. |

46619 RETURN VALUE
46620 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
46621 indicate the error.

46622 ERRORS
46623 The tcsetpgrp() function shall fail if:

46624 [EBADF] The fildes argument is not a valid file descriptor. |

46625 [EINVAL] This implementation does not support the value in the pgid_id argument. |

46626 [ENOTTY] The calling process does not have a controlling terminal, or the file is not the |
46627 controlling terminal, or the controlling terminal is no longer associated with
46628 the session of the calling process.

46629 [EPERM] The value of pgid_id is a value supported by the implementation, but does not |
46630 match the process group ID of a process in the same session as the calling
46631 process.

46632 EXAMPLES
46633 None.

46634 APPLICATION USAGE
46635 None.

46636 RATIONALE
46637 None.

46638 FUTURE DIRECTIONS
46639 None.

46640 SEE ALSO
46641 tcgetpgrp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <unistd.h> |

46642 CHANGE HISTORY
46643 First released in Issue 3.

46644 Entry included for alignment with the POSIX.1-1988 standard.

2014 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tcsetpgrp()

46645 Issue 4
46646 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
46647 XSI-conformant systems.

46648 The <unistd.h> header is added to the SYNOPSIS section.

46649 The [ENOSYS] error is removed from the ERRORS section.

46650 The following change is incorporated for alignment with the FIPS requirements:

46651 • In the DESCRIPTION the phrase ‘‘If _POSIX_JOB_CONTROL is defined’’ is removed
46652 because job control is now mandatory on all XSI-conformant systems.

46653 Issue 6
46654 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

46655 The following new requirements on POSIX implementations derive from alignment with the
46656 Single UNIX Specification:

46657 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
46658 required for conforming implementations of previous POSIX specifications, it was not
46659 required for UNIX applications.

46660 • In the DESCRIPTION and ERRORS sections, text previously conditional on
46661 _POSIX_JOB_CONTROL is now mandated. This is a FIPS requirement.

46662 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

46663 The Open Group corrigenda item U047/4 has been applied. |

System Interfaces, Issue 6 2015

tdelete() System Interfaces

46664 NAME
46665 tdelete, tfind, tsearch, twalk — manage a binary search tree |

46666 SYNOPSIS
46667 XSI #include <search.h>

46668 void *tdelete(const void *restrict key , void **restrict rootp , |
46669 int(* compar)(const void *, const void *)); |
46670 void *tfind(const void * key , void *const * rootp , |
46671 int(* compar)(const void *, const void *)); |
46672 void *tsearch(const void * key , void ** rootp , |
46673 int (* compar)(const void *, const void *)); |
46674 void twalk(const void * root , |
46675 void (* action)(const void *, VISIT, int)); |
46676 |

46677 DESCRIPTION
46678 The tdelete(), tfind(), tsearch(), and twalk () functions manipulate binary search trees. |
46679 Comparisons are made with a user-supplied routine, the address of which is passed as the |
46680 compar argument. This routine is called with two arguments, the pointers to the elements being |
46681 compared. The application shall ensure that the user-supplied routine returns an integer less |
46682 than, equal to, or greater than 0, according to whether the first argument is to be considered less |
46683 than, equal to, or greater than the second argument. The comparison function need not compare |
46684 every byte, so arbitrary data may be contained in the elements in addition to the values being |
46685 compared. |

46686 The tsearch() function is used to build and access the tree. The key argument is a pointer to an |
46687 element to be accessed or stored. If there is a node in the tree whose element is equal to the value |
46688 pointed to by key , a pointer to this found node is returned. Otherwise, the value pointed to by |
46689 key is inserted (that is, a new node is created and the value of key is copied to this node), and a |
46690 pointer to this node returned. Only pointers are copied, so the application shall ensure that the |
46691 calling routine stores the data. The rootp argument points to a variable that points to the root |
46692 node of the tree. A null pointer value for the variable pointed to by rootp denotes an empty tree; |
46693 in this case, the variable shall be set to point to the node which shall be at the root of the new |
46694 tree. |

46695 Like tsearch(), tfind() shall search for a node in the tree, returning a pointer to it if found. |
46696 However, if it is not found, tfind() shall return a null pointer. The arguments for tfind() are the |
46697 same as for tsearch(). |

46698 The tdelete() function deletes a node from a binary search tree. The arguments are the same as |
46699 for tsearch(). The variable pointed to by rootp shall be changed if the deleted node was the root |
46700 of the tree. The tdelete() function returns a pointer to the parent of the deleted node, or a null |
46701 pointer if the node is not found. |

46702 The twalk () function traverses a binary search tree. The root argument is a pointer to the root |
46703 node of the tree to be traversed. (Any node in a tree may be used as the root for a walk below |
46704 that node.) The argument action is the name of a routine to be invoked at each node. This routine |
46705 is, in turn, called with three arguments. The first argument is the address of the node being |
46706 visited. The structure pointed to by this argument is unspecified and shall not be modified by |
46707 the application, but it is guaranteed that a pointer-to-node can be converted to pointer-to- |
46708 pointer-to-element to access the element stored in the node. The second argument is a value |
46709 from an enumeration data type: |

46710 typedef enum { preorder, postorder, endorder, leaf } VISIT; |

2016 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tdelete()

46711 (defined in <search.h>), depending on whether this is the first, second, or third time that the |
46712 node is visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a |
46713 leaf. The third argument is the level of the node in the tree, with the root being level 0. |

46714 If the calling function alters the pointer to the root, the result is undefined. |

46715 RETURN VALUE |
46716 If the node is found, both tsearch() and tfind() shall return a pointer to it. If not, tfind() shall |
46717 return a null pointer, and tsearch() shall return a pointer to the inserted item. |

46718 A null pointer shall be returned by tsearch() if there is not enough space available to create a new |
46719 node. |

46720 A null pointer shall be returned by tdelete(), tfind(), and tsearch() if rootp is a null pointer on |
46721 entry. |

46722 The tdelete() function shall return a pointer to the parent of the deleted node, or a null pointer if |
46723 the node is not found. |

46724 The twalk () function shall return no value. |

46725 ERRORS |
46726 No errors are defined. |

46727 EXAMPLES |
46728 The following code reads in strings and stores structures containing a pointer to each string and |
46729 a count of its length. It then walks the tree, printing out the stored strings and their lengths in |
46730 alphabetical order. |

46731 #include <search.h> |
46732 #include <string.h> |
46733 #include <stdio.h> |

46734 #define STRSZ 10000 |
46735 #define NODSZ 500 |

46736 struct node { /* Pointers to these are stored in the tree. */ |
46737 char *string; |
46738 int length; |
46739 }; |

46740 char string_space[STRSZ]; /* Space to store strings. */ |
46741 struct node nodes[NODSZ]; /* Nodes to store. */ |
46742 void *root = NULL; /* This points to the root. */ |

46743 int main(int argc, char *argv[]) |
46744 { |
46745 char *strptr = string_space; |
46746 struct node *nodeptr = nodes; |
46747 void print_node(const void *, VISIT, int); |
46748 int i = 0, node_compare(const void *, const void *); |

46749 while (gets(strptr) != NULL && i++ < NODSZ) { |
46750 /* Set node. */ |
46751 nodeptr −>string = strptr; |
46752 nodeptr −>length = strlen(strptr); |
46753 /* Put node into the tree. */ |
46754 (void) tsearch((void *)nodeptr, (void **)&root, |
46755 node_compare); |

System Interfaces, Issue 6 2017

tdelete() System Interfaces

46756 /* Adjust pointers, so we do not overwrite tree. */ |
46757 strptr += nodeptr −>length + 1; |
46758 nodeptr++; |
46759 } |
46760 twalk(root, print_node); |
46761 return 0; |
46762 } |

46763 /* |
46764 * This routine compares two nodes, based on an |
46765 * alphabetical ordering of the string field. |
46766 */ |
46767 int |
46768 node_compare(const void *node1, const void *node2) |
46769 { |
46770 return strcmp(((const struct node *) node1) −>string, |
46771 ((const struct node *) node2) −>string); |
46772 } |

46773 /* |
46774 * This routine prints out a node, the second time |
46775 * twalk encounters it or if it is a leaf. |
46776 */ |
46777 void |
46778 print_node(const void *ptr, VISIT order, int level) |
46779 { |
46780 const struct node *p = *(const struct node **) ptr; |

46781 if (order == postorder  order == leaf) { |
46782 (void) printf("string = %s, length = %d\n", |
46783 p->string, p->length); |
46784 } |
46785 } |

46786 APPLICATION USAGE |
46787 The root argument to twalk () is one level of indirection less than the rootp arguments to tdelete() |
46788 and tsearch(). |

46789 There are two nomenclatures used to refer to the order in which tree nodes are visited. The |
46790 tsearch() function uses preorder, postorder, and endorder to refer respectively to visiting a node |
46791 before any of its children, after its left child and before its right, and after both its children. The |
46792 alternative nomenclature uses preorder, inorder, and postorder to refer to the same visits, which |
46793 could result in some confusion over the meaning of postorder. |

46794 RATIONALE |
46795 None. |

46796 FUTURE DIRECTIONS |
46797 None. |

46798 SEE ALSO |
46799 hcreate(), lsearch(), the Base Definitions volume of IEEE Std. 1003.1-200x, <search.h> |

2018 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tdelete()

46800 CHANGE HISTORY |
46801 First released in Issue 1. Derived from Issue 1 of the SVID. |

46802 Issue 4 |
46803 The type of argument key is changed from char* to const void*. |

46804 The function return value is changed from char* to void*. |

46805 Arguments to compar are formally defined. |

46806 The type of argument rootp is changed from char** to void** for the tsearch() function. |

46807 The type of argument rootp is changed from char** to void*const* for the tfind() function. |

46808 The type of argument root is changed from char* to const void*, and the argument list to action is |
46809 formally defined for the twalk () function. |

46810 Various minor wording changes are made in the DESCRIPTION to improve clarity and |
46811 accuracy. In particular, additional notes are added about constraints on the first argument to |
46812 twalk (). |

46813 The sample code in the EXAMPLES section is updated to use ISO C standard syntax. Also the |
46814 definition of the root and argv items is changed. |

46815 The paragraph in the APPLICATION USAGE section about casts is removed. |

46816 Issue 5 |
46817 The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in |
46818 previous issues. |

46819 Issue 6 |
46820 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

46821 The restrict keyword is added to the tdelete() prototype for alignment with the |
46822 ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 2019

telldir() System Interfaces

46823 NAME
46824 telldir — current location of a named directory stream

46825 SYNOPSIS
46826 XSI #include <dirent.h>

46827 long telldir(DIR * dirp); |
46828 |

46829 DESCRIPTION
46830 The telldir() function obtains the current location associated with the directory stream specified
46831 by dirp .

46832 If the most recent operation on the directory stream was a seekdir(), the directory position
46833 returned from the telldir() shall be the same as that supplied as a loc argument for seekdir().

46834 RETURN VALUE
46835 Upon successful completion, telldir() shall return the current location of the specified directory
46836 stream.

46837 ERRORS
46838 No errors are defined.

46839 EXAMPLES
46840 None.

46841 APPLICATION USAGE
46842 None.

46843 RATIONALE
46844 None.

46845 FUTURE DIRECTIONS
46846 None.

46847 SEE ALSO
46848 opendir(), readdir(), seekdir(), the Base Definitions volume of IEEE Std. 1003.1-200x, <dirent.h> |

46849 CHANGE HISTORY
46850 First released in Issue 2.

46851 Issue 4
46852 The <sys/types.h> header is removed from the SYNOPSIS section.

46853 The function return value is expanded to long. |

46854 Issue 4, Version 2
46855 The DESCRIPTION is updated for X/OPEN UNIX conformance to indicate that a call to telldir()
46856 immediately following a call to seekdir(), returns the loc value passed to the seekdir() call.

2020 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tempnam()

46857 NAME
46858 tempnam — create a name for a temporary file

46859 SYNOPSIS
46860 XSI #include <stdio.h>

46861 char *tempnam(const char * dir , const char * pfx);
46862

46863 DESCRIPTION
46864 The tempnam() function generates a path name that may be used for a temporary file.

46865 The tempnam() function allows the user to control the choice of a directory. The dir argument
46866 points to the name of the directory in which the file is to be created. If dir is a null pointer or
46867 points to a string which is not a name for an appropriate directory, the path prefix defined as
46868 P_tmpdir in the <stdio.h> header is used. If that directory is not accessible, an implementation- |
46869 defined directory may be used. |

46870 Many applications prefer their temporary files to have certain initial letter sequences in their
46871 names. The pfx argument should be used for this. This argument may be a null pointer or point
46872 to a string of up to five bytes to be used as the beginning of the file name.

46873 Some implementations of tempnam() may use tmpnam() internally. On such implementations, if
46874 called more than {TMP_MAX} times in a single process, the behavior is implementation-defined. |

46875 RETURN VALUE
46876 Upon successful completion, tempnam() shall allocate space for a string, put the generated path
46877 name in that space, and return a pointer to it. The pointer shall be suitable for use in a
46878 subsequent call to free(). Otherwise, it shall return a null pointer and set errno to indicate the
46879 error.

46880 ERRORS
46881 The tempnam() function shall fail if:

46882 [ENOMEM] Insufficient storage space is available. |

46883 EXAMPLES

46884 Generating a Path Name

46885 The following example generates a path name for a temporary file in directory /tmp, with the
46886 prefix file . After the file name has been created, the call to free() deallocates the space used to
46887 store the file name.

46888 #include <stdio.h>
46889 #include <stdlib.h>
46890 ...
46891 char *directory = "/tmp";
46892 char *fileprefix = "file";
46893 char *file;

46894 file = tempnam(directory, fileprefix);
46895 free(file);

46896 APPLICATION USAGE
46897 This function only creates path names. It is the application’s responsibility to create and remove
46898 the files. Between the time a path name is created and the file is opened, it is possible for some
46899 other process to create a file with the same name. Applications may find tmpfile() more useful.

System Interfaces, Issue 6 2021

tempnam() System Interfaces

46900 RATIONALE
46901 None.

46902 FUTURE DIRECTIONS
46903 None.

46904 SEE ALSO
46905 fopen(), free(), open(), tmpfile(), tmpnam(), unlink(), the Base Definitions volume of |
46906 IEEE Std. 1003.1-200x, <stdio.h> |

46907 CHANGE HISTORY
46908 First released in Issue 1. Derived from Issue 1 of the SVID. |

46909 Issue 4
46910 The type of arguments dir and pfx is changed from char* to const char*.

46911 The DESCRIPTION is changed to indicate that pfx is treated as a string of bytes and not as a
46912 string of (possibly multi-byte) characters.

46913 The second paragraph of the APPLICATION USAGE section is expanded.

46914 Issue 5
46915 The last paragraph of the DESCRIPTION was included as an APPLICATION USAGE note in
46916 previous issues.

2022 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tfind()

46917 NAME
46918 tfind — search binary search tree

46919 SYNOPSIS
46920 XSI #include <search.h>

46921 void *tfind(const void * key , void *const * rootp ,
46922 int (* compar)(const void *, const void *));
46923

46924 DESCRIPTION
46925 Refer to tdelete(). |

|

System Interfaces, Issue 6 2023

tgamma() System Interfaces

46926 NAME |
46927 tgamma, tgammaf, tgammal — compute gamma() function |

46928 SYNOPSIS |
46929 #include <math.h> |

46930 double tgamma(double x); |
46931 float tgammaf(float x); |
46932 long double tgammal(long double x); |

46933 DESCRIPTION |
46934 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
46935 conflict between the requirements described here and the ISO C standard is unintentional. This |
46936 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

46937 These functions shall compute the gamma() function of x . |

46938 An application wishing to check for error situations should set errno to 0 before calling these |
46939 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

46940 RETURN VALUE |
46941 Upon successful completion, these functions shall return Gamma(x). |

46942 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

46943 If x is a negative integer, or if the result cannot be represented when x is 0, either HUGE_VAL or |
46944 NaN shall be returned and errno shall be set to [EDOM]. |

46945 If the magnitude of x is too large or too small, ±HUGE_VAL shall be returned and errno shall be |
46946 set to [ERANGE]. |

46947 ERRORS |
46948 These functions shall fail if: |

46949 [EDOM] The value of x is negative or the result cannot be represented when x is zero. |

46950 [ERANGE] The magnitude of x is too large or too small. |

46951 These functions may fail if: |

46952 [EDOM] The value of x is NaN. |

46953 EXAMPLES |
46954 None. |

46955 APPLICATION USAGE |
46956 None. |

46957 RATIONALE |
46958 This function is named tgamma() in order to avoid conflicts with the historical gamma() and |
46959 lgamma() functions. |

46960 FUTURE DIRECTIONS |
46961 None. |

46962 SEE ALSO |
46963 lgamma(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

46964 CHANGE HISTORY |
46965 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

2024 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces time()

46966 NAME
46967 time — get time

46968 SYNOPSIS
46969 #include <time.h>

46970 time_t time(time_t * tloc);

46971 DESCRIPTION
46972 CX The functionality described on this reference page is aligned with the ISO C standard. Any
46973 conflict between the requirements described here and the ISO C standard is unintentional. This
46974 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

46975 CX The time() function returns the value of time in seconds since the Epoch.

46976 The tloc argument points to an area where the return value is also stored. If tloc is a null pointer,
46977 no value is stored.

46978 RETURN VALUE
46979 Upon successful completion, time() shall return the value of time. Otherwise, (time_t)−1 shall be
46980 returned.

46981 ERRORS
46982 No errors are defined.

46983 EXAMPLES

46984 Getting the Current Time

46985 The following example uses the time() function to calculate the time elapsed, in seconds, since
46986 January 1, 1970 0:00 UTC, localtime () to convert that value to a broken-down time, and asctime()
46987 to convert the broken-down time values into a printable string.

46988 #include <stdio.h>
46989 #include <time.h>

46990 main()
46991 {
46992 time_t result;

46993 result = time(NULL);
46994 printf("%s%ld secs since the Epoch\n",
46995 asctime(localtime(&result)),
46996 (long)result);
46997 return(0);
46998 }

46999 This example writes the current time to stdout in a form like this:

47000 Wed Jun 26 10:32:15 1996
47001 835810335 secs since the Epoch

System Interfaces, Issue 6 2025

time() System Interfaces

47002 Timing an Event

47003 The following example gets the current time, prints it out in the user’s format, and prints the
47004 number of minutes to an event being timed.

47005 #include <time.h>
47006 #include <stdio.h>
47007 ...
47008 time_t now;
47009 int minutes_to_event;
47010 ...
47011 time(&now);
47012 printf("The time is ");
47013 puts(asctime(localtime(&now)));
47014 printf("There are %d minutes to the event.\n",
47015 minutes_to_event);
47016 ...

47017 APPLICATION USAGE
47018 None.

47019 RATIONALE
47020 The time() function returns a value in seconds (type time_t) while times() returns a set of values
47021 in clock ticks (type clock_t). Some historical implementations, such as 4.3 BSD, have
47022 mechanisms capable of returning more precise times (see below). A generalized timing scheme
47023 to unify these various timing mechanisms has been proposed but not adopted.

47024 Implementations in which time_t is a 32-bit signed integer (many historical implementations)
47025 fail in the year 2038. This issue of this volume of IEEE Std. 1003.1-200x does not address this
47026 problem. However, the use of the time_t type is mandated in order to ease the eventual fix.

47027 The use of the <time.h>, header instead of <sys/types.h>, allows compatibility with the ISO C
47028 standard.

47029 Many historical implementations (including Version 7) and the 1984 /usr/group standard use
47030 long instead of time_t. This volume of IEEE Std. 1003.1-200x uses the latter type in order to
47031 agree with the ISO C standard.

47032 4.3 BSD includes time() only as an alternate function to the more flexible gettimeofday () function. |

47033 FUTURE DIRECTIONS
47034 In a future version of this volume of IEEE Std. 1003.1-200x, time_t is likely to be required to be
47035 capable of representing times far in the future. Whether this will be mandated as a 64-bit type or
47036 a requirement that a specific date in the future be representable (for example, 10000 AD) is not
47037 yet determined. Systems purchased after the approval of this volume of IEEE Std. 1003.1-200x
47038 should be evaluated to determine whether their lifetime will extend past 2038.

47039 SEE ALSO
47040 asctime(), clock (), ctime(), difftime (), gmtime(), localtime (), mktime(), strftime(), strptime(), utime(), |
47041 the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

47042 CHANGE HISTORY
47043 First released in Issue 1. Derived from Issue 1 of the SVID. |

47044 Issue 4
47045 The following change is incorporated for alignment with the ISO POSIX-1 standard:

47046 • The RETURN VALUE section is updated to indicate that (time_t)−1 is returned on error.

2026 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces time()

47047 Issue 6
47048 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 2027

timer_create() System Interfaces

47049 NAME
47050 timer_create — create a per-process timer (REALTIME)

47051 SYNOPSIS
47052 TMR #include <signal.h>
47053 #include <time.h>

47054 int timer_create(clockid_t clockid , struct sigevent *restrict evp , |
47055 timer_t *restrict timerid); |
47056 |

47057 DESCRIPTION
47058 The timer_create() function shall create a per-process timer using the specified clock, clock_id , as
47059 the timing base. The timer_create() function returns, in the location referenced by timerid , a timer
47060 ID of type timer_t used to identify the timer in timer requests. This timer ID shall be unique
47061 within the calling process until the timer is deleted. The particular clock, clock_id , is defined in
47062 <time.h>. The timer whose ID is returned shall be in a disarmed state upon return from
47063 timer_create().

47064 The evp argument, if non-NULL, points to a sigevent structure. This structure, allocated by the
47065 application, defines the asynchronous notification to occur as specified in Section 2.4.1 (on page
47066 528) when the timer expires. If the evp argument is NULL, the effect is as if the evp argument
47067 pointed to a sigevent structure with the sigev_notify member having the value SIGEV_SIGNAL,
47068 the sigev_signo having a default signal number, and the sigev_value member having the value of
47069 the timer ID.

47070 Each implementation shall define a set of clocks that can be used as timing bases for per-process |
47071 MON timers. All implementations shall support a clock_id of CLOCK_REALTIME. If the Monotonic |
47072 Clock option is supported, implementations shall support a clock_id of CLOCK_MONOTONIC. |

47073 Per-process timers shall not be inherited by a child process across a fork () and shall be disarmed
47074 and deleted by an exec.

47075 CPT If _POSIX_CPUTIME is defined, implementations shall support clock_id values representing the
47076 CPU-time clock of the calling process.

47077 TCT If _POSIX_THREAD_CPUTIME is defined, implementations shall support clock_id values
47078 representing the CPU-time clock of the calling thread.

47079 CPT|TCT It is implementation-defined whether a timer_create() function will succeed if the value defined |
47080 by clock_id corresponds to the CPU-time clock of a process or thread different from the process
47081 or thread invoking the function.

47082 RETURN VALUE
47083 If the call succeeds, timer_create() shall return zero and update the location referenced by timerid
47084 to a timer_t, which can be passed to the per-process timer calls. If an error occurs, the function
47085 shall return a value of −1 and set errno to indicate the error. The value of timerid is undefined if
47086 an error occurs.

47087 ERRORS
47088 The timer_create() function shall fail if:

47089 [EAGAIN] The system lacks sufficient signal queuing resources to honor the request. |

47090 [EAGAIN] The calling process has already created all of the timers it is allowed by this |
47091 implementation.

47092 [EINVAL] The specified clock ID is not defined. |

2028 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces timer_create()

47093 CPT|TCT [ENOTSUP] The implementation does not support the creation of a timer attached to the |
47094 CPU-time clock that is specified by clock_id and associated with a process or |
47095 thread different from the process or thread invoking timer_create(). |

47096 EXAMPLES
47097 None.

47098 APPLICATION USAGE
47099 None.

47100 RATIONALE

47101 Periodic Timer Overrun and Resource Allocation

47102 The specified timer facilities may deliver realtime signals (that is, queued signals) on
47103 implementations that support this option. Because realtime applications cannot afford to lose
47104 notifications of asynchronous events, like timer expirations or asynchronous I/O completions, it
47105 must be possible to ensure that sufficient resources exist to deliver the signal when the event
47106 occurs. In general, this is not a difficulty because there is a one-to-one correspondence between a
47107 request and a subsequent signal generation. If the request cannot allocate the signal delivery
47108 resources, it can fail the call with an [EAGAIN] error. |

47109 Periodic timers are a special case. A single request can generate an indeterminate number of
47110 signals. This is not a problem if the requesting process can service the signals as fast as they are
47111 generated, thus making the signal delivery resources available for delivery of subsequent
47112 periodic timer expiration signals. But, in general, this cannot be assured—processing of periodic
47113 timer signals may ‘‘overrun’’; that is, subsequent periodic timer expirations may occur before the
47114 currently pending signal has been delivered.

47115 Also, for signals, according to the POSIX.1-1990 standard, if subsequent occurrences of a |
47116 pending signal are generated, it is implementation-defined whether a signal is delivered for each |
47117 occurrence. This is not adequate for some realtime applications. So a mechanism is required to
47118 allow applications to detect how many timer expirations were delayed without requiring an
47119 indefinite amount of system resources to store the delayed expirations.

47120 The specified facilities provide for an overrun count. The overrun count is defined as the number
47121 of extra timer expirations that occurred between the time a timer expiration signal is generated
47122 and the time the signal is delivered. The signal-catching function, if it is concerned with
47123 overruns, can retrieve this count on entry. With this method, a periodic timer only needs one
47124 ‘‘signal queuing resource’’ that can be allocated at the time of the timer_create() function call.

47125 A function is defined to retrieve the overrun count so that an application need not allocate static
47126 storage to contain the count, and an implementation need not update this storage
47127 asynchronously on timer expirations. But, for some high-frequency periodic applications, the
47128 overhead of an additional system call on each timer expiration may be prohibitive. The
47129 functions, as defined, permit an implementation to maintain the overrun count in user space,
47130 associated with the timerid . The timer_getoverrun() function can then be implemented as a macro
47131 that uses the timerid argument (which may just be a pointer to a user space structure containing
47132 the counter) to locate the overrun count with no system call overhead. Other implementations,
47133 less concerned with this class of applications, can avoid the asynchronous update of user space
47134 by maintaining the count in a system structure at the cost of the extra system call to obtain it.

System Interfaces, Issue 6 2029

timer_create() System Interfaces

47135 Timer Expiration Signal Parameters

47136 The Realtime Signals Extension option supports an application-specific datum that is delivered
47137 to the extended signal handler. This value is explicitly specified by the application, along with
47138 the signal number to be delivered, in a sigevent structure. The type of the application-defined
47139 value can be either an integer constant or a pointer. This explicit specification of the value, as
47140 opposed to always sending the timer ID, was selected based on existing practice.

47141 It is common practice for realtime applications (on non-POSIX systems or realtime extended
47142 POSIX systems) to use the parameters of event handlers as the case label of a switch statement
47143 or as a pointer to an application-defined data structure. Because timer_ids are dynamically
47144 allocated by the timer_create() function, they can be used for neither of these functions without
47145 additional application overhead in the signal handler; for example, to search an array of saved
47146 timer IDs to associate the ID with a constant or application data structure.

47147 FUTURE DIRECTIONS
47148 None.

47149 SEE ALSO
47150 clock_getres(), timer_delete(), timer_getoverrun(), the Base Definitions volume of |
47151 IEEE Std. 1003.1-200x, <time.h> |

47152 CHANGE HISTORY
47153 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

47154 Issue 6
47155 The timer_create() function is marked as part of the Timers option. |

47156 The [ENOSYS] error condition has been removed as stubs need not be provided if an
47157 implementation does not support the Timers option. |

47158 CPU-time clocks are added for alignment with IEEE Std. 1003.1d-1999.

47159 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by adding the
47160 requirement for the CLOCK_MONOTONIC clock under the Monotonic Clock option. |

47161 The restrict keyword is added to the timer_create() prototype for alignment with the |
47162 ISO/IEC 9899: 1999 standard. |

2030 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces timer_delete()

47163 NAME
47164 timer_delete — delete a per-process timer (REALTIME)

47165 SYNOPSIS
47166 TMR #include <time.h>

47167 int timer_delete(timer_t timerid);
47168

47169 DESCRIPTION
47170 The timer_delete() function deletes the specified timer, timerid , previously created by the
47171 timer_create() function. If the timer is armed when timer_delete() is called, the behavior shall be
47172 as if the timer is automatically disarmed before removal. The disposition of pending signals for
47173 the deleted timer is unspecified.

47174 RETURN VALUE
47175 If successful, the timer_delete() function shall return a value of zero. Otherwise, the function shall
47176 return a value of −1 and set errno to indicate the error.

47177 ERRORS
47178 The timer_delete() function shall fail if:

47179 [EINVAL] The timer ID specified by timerid is not a valid timer ID. |

47180 EXAMPLES
47181 None.

47182 APPLICATION USAGE
47183 None.

47184 RATIONALE
47185 None.

47186 FUTURE DIRECTIONS
47187 None.

47188 SEE ALSO
47189 timer_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

47190 CHANGE HISTORY
47191 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

47192 Issue 6
47193 The timer_delete() function is marked as part of the Timers option. |

47194 The [ENOSYS] error condition has been removed as stubs need not be provided if an
47195 implementation does not support the Timers option. |

System Interfaces, Issue 6 2031

timer_getoverrun() System Interfaces

47196 NAME
47197 timer_getoverrun, timer_gettime, timer_settime — per-process timers (REALTIME)

47198 SYNOPSIS
47199 TMR #include <time.h>

47200 int timer_getoverrun(timer_t timerid);
47201 int timer_gettime(timer_t timerid , struct itimerspec * value);
47202 int timer_settime(timer_t timerid , int flags ,
47203 const struct itimerspec *restrict value , |
47204 struct itimerspec *restrict ovalue); |
47205 |

47206 DESCRIPTION
47207 Only a single signal shall be queued to the process for a given timer at any point in time. When a
47208 timer for which a signal is still pending expires, no signal shall be queued, and a timer overrun
47209 RTS shall occur. When a timer expiration signal is delivered to or accepted by a process, if the
47210 implementation supports the Realtime Signals Extension, the timer_getoverrun() function returns
47211 the timer expiration overrun count for the specified timer. The overrun count returned contains
47212 the number of extra timer expirations that occurred between the time the signal was generated
47213 (queued) and when it was delivered or accepted, up to but not including an implementation- |
47214 defined maximum of {DELAYTIMER_MAX}. If the number of such extra expirations is greater |
47215 than or equal to {DELAYTIMER_MAX}, then the overrun count is set to {DELAYTIMER_MAX}.
47216 The value returned by timer_getoverrun() applies to the most recent expiration signal delivery or
47217 acceptance for the timer. If no expiration signal has been delivered for the timer, or if the
47218 Realtime Signals Extension is not supported, the return value of timer_getoverrun() is
47219 unspecified.

47220 The timer_gettime() function shall store the amount of time until the specified timer, timerid ,
47221 expires and the reload value of the timer into the space pointed to by the value argument. The
47222 it_value member of this structure shall contain the amount of time before the timer expires, or
47223 zero if the timer is disarmed. This value is returned as the interval until timer expiration, even if
47224 the timer was armed with absolute time. The it_interval member of value shall contain the reload
47225 value last set by timer_settime().

47226 The timer_settime() function shal set the time until the next expiration of the timer specified by
47227 timerid from the it_value member of the value argument and arms the timer if the it_value
47228 member of value is non-zero. If the specified timer was already armed when timer_settime() is
47229 called, this call shall reset the time until next expiration to the value specified. If the it_value
47230 member of value is zero, the timer shall be disarmed. The effect of disarming or resetting a timer
47231 on pending expiration notifications is unspecified.

47232 If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() behaves as if the
47233 time until next expiration is set to be equal to the interval specified by the it_value member of
47234 value . That is, the timer shall expire in it_value nanoseconds from when the call is made. If the
47235 flag TIMER_ABSTIME is set in the argument flags, timer_settime() behaves as if the time until
47236 next expiration is set to be equal to the difference between the absolute time specified by the
47237 it_value member of value and the current value of the clock associated with timerid . That is, the
47238 timer shal expire when the clock reaches the value specified by the it_value member of value . If
47239 the specified time has already passed, the function shall succeed and the expiration notification
47240 shall be made.

47241 The reload value of the timer is set to the value specified by the it_interval member of value .
47242 When a timer is armed with a non-zero it_interval , a periodic (or repetitive) timer is specified.

2032 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces timer_getoverrun()

47243 Time values that are between two consecutive non-negative integer multiples of the resolution
47244 of the specified timer shall be rounded up to the larger multiple of the resolution. Quantization
47245 error shall not cause the timer to expire earlier than the rounded time value.

47246 If the argument ovalue is not NULL, the function timer_settime() shall store, in the location
47247 referenced by ovalue , a value representing the previous amount of time before the timer would
47248 have expired, or zero if the timer was disarmed, together with the previous timer reload value.

47249 Notes to Reviewers
47250 This section with side shading will not appear in the final copy. - Ed.

47251 D1, XSH, ERN 388 suggests rewording ‘‘are subject to the resolution of the timer’’ to ‘‘may have
47252 been rounded to the resolution of the timer’’.
47253 The members of ovalue are subject to the resolution of the timer, and they are the same values
47254 that would be returned by a timer_gettime() call at that point in time.

47255 RETURN VALUE
47256 If the timer_getoverrun() function succeeds, it shall return the timer expiration overrun count as
47257 explained above.

47258 If the timer_gettime() or timer_settime() functions succeed, a value of 0 shall be returned.

47259 If an error occurs for any of these functions, the value −1 shall be returned, and errno set to
47260 indicate the error.

47261 ERRORS
47262 The timer_getoverrun(), timer_gettime(), and timer_settime() functions shall if:

47263 [EINVAL] The timerid argument does not correspond to an ID returned by timer_create() |
47264 but not yet deleted by timer_delete().

47265 The timer_settime() function shall fail if:

47266 [EINVAL] A value structure specified a nanosecond value less than zero or greater than |
47267 or equal to 1,000 million, and the it_value member of that structure did not |
47268 specify zero seconds and nanoseconds. |

47269 EXAMPLES
47270 None.

47271 APPLICATION USAGE
47272 None.

47273 RATIONALE
47274 The clock_settime(), timer_settime(), and nanosleep() functions are defined to truncate specified
47275 time values down to the resolution supported by the implementation. Values are truncated
47276 when set because this appears to be existing practice, and it does not seem reasonable to require
47277 an error in this case. Note that this is symmetric with the truncation that occurs when reading
47278 the time via clock_gettime() or timer_gettime() at a time that is not an integral multiple of the
47279 clock or timer resolution.

47280 This volume of IEEE Std. 1003.1-200x defines functions that allow an application to determine
47281 the implementation-supported resolution for the clocks and requires an implementation to
47282 document the resolution supported for timers and nanosleep() if they differ from the supported
47283 clock resolution. This is more of a procurement issue than a runtime application issue.

System Interfaces, Issue 6 2033

timer_getoverrun() System Interfaces

47284 FUTURE DIRECTIONS
47285 None.

47286 SEE ALSO
47287 clock_getres(), timer_create(), the Base Definitions volume of IEEE Std. 1003.1-200x, <time.h> |

47288 CHANGE HISTORY
47289 First released in Issue 5. Included for alignment with the POSIX Realtime Extension.

47290 Issue 6
47291 The timer_getoverrun(), timer_gettime(), and timer_settime() functions are marked as part of the |
47292 Timers option. |

47293 The [ENOSYS] error condition has been removed as stubs need not be provided if an
47294 implementation does not support the Timers option. |

47295 The [EINVAL] error condition is updated to include the following: ‘‘and the it_value member of
47296 that structure did not specify zero seconds and nanoseconds.’’ This change is for IEEE PASC |
47297 Interpretation 1003.1 #89. |

47298 The DESCRIPTION for timer_getoverrun() is updated to clarify that ‘‘If no expiration signal has
47299 been delivered for the timer, or if the Realtime Signals Extension is not supported, the return
47300 value of timer_getoverrun() is unspecified’’. |

47301 The restrict keyword is added to the timer_settime() prototype for alignment with the |
47302 ISO/IEC 9899: 1999 standard. |

2034 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces times()

47303 NAME
47304 times — get process and waited-for child process times

47305 SYNOPSIS
47306 #include <sys/times.h>

47307 clock_t times(struct tms * buffer);

47308 DESCRIPTION
47309 The times() function shall fill the tms structure pointed to by buffer with time-accounting
47310 information. The structure tms is defined in <sys/times.h>.

47311 All times are measured in terms of the number of clock ticks used.

47312 The times of a terminated child process are included in the tms_cutime and tms_cstime elements
47313 of the parent when wait() or waitpid () returns the process ID of this terminated child. If a child
47314 process has not waited for its children, their times shall not be included in its times.

47315 • The tms_utime structure member is the CPU time charged for the execution of user
47316 instructions of the calling process.

47317 • The tms_stime structure member is the CPU time charged for execution by the system on
47318 behalf of the calling process.

47319 • The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the
47320 child processes.

47321 • The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the child
47322 processes.

47323 RETURN VALUE
47324 Upon successful completion, times() shall return the elapsed real time, in clock ticks, since an
47325 arbitrary point in the past (for example, system start-up time). This point does not change from
47326 one invocation of times() within the process to another. The return value may overflow the
47327 possible range of type clock_t. If times() fails, (clock_t)−1 shall be returned and errno set to
47328 indicate the error.

47329 ERRORS
47330 No errors are defined.

47331 EXAMPLES

47332 Timing a Database Lookup

47333 The following example defines two functions, start_clock () and end_clock (), that are used to time
47334 a lookup. It also defines variables of type clock_t and tms to measure the duration of
47335 transactions. The start_clock () function saves the beginning times given by the times() function.
47336 The end_clock () function gets the ending times and prints the difference between the two times.

47337 #include <sys/times.h>
47338 #include <stdio.h>
47339 ...
47340 void start_clock(void);
47341 void end_clock(char *msg);
47342 ...
47343 static clock_t st_time;
47344 static clock_t en_time;
47345 static struct tms st_cpu;
47346 static struct tms en_cpu;

System Interfaces, Issue 6 2035

times() System Interfaces

47347 ...
47348 void
47349 start_clock()
47350 {
47351 st_time = times(&st_cpu);
47352 }

47353 void
47354 end_clock(char *msg)
47355 {
47356 en_time = times(&en_cpu);

47357 printf(msg);
47358 printf("Real Time: %ld, User Time %ld, System Time %ld\n",
47359 en_time - st_time,
47360 en_cpu.tms_utime - st_cpu.tms_utime,
47361 en_cpu.tms_stime - st_cpu.tms_stime);
47362 }

47363 APPLICATION USAGE
47364 Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per
47365 second as it may vary from system to system.

47366 RATIONALE
47367 The accuracy of the times reported is intentionally left unspecified to allow implementations
47368 flexibility in design, from uniprocessor to multiprocessor networks.

47369 The inclusion of times of child processes is recursive, so that a parent process may collect the
47370 total times of all of its descendants. But the times of a child are only added to those of its parent
47371 when its parent successfully waits on the child. Thus, it is not guaranteed that a parent process
47372 can always see the total times of all its descendants; see also the discussion of the term realtime in
47373 alarm().

47374 If the type clock_t is defined to be a signed 32-bit integer, it overflows in somewhat more than a
47375 year if there are 60 clock ticks per second, or less than a year if there are 100. There are individual
47376 systems that run continuously for longer than that. This volume of IEEE Std. 1003.1-200x permits
47377 an implementation to make the reference point for the returned value be the start-up time of the
47378 process, rather than system start-up time.

47379 The term charge in this context has nothing to do with billing for services. The operating system
47380 accounts for time used in this way. That information must be correct, regardless of how that
47381 information is used.

47382 FUTURE DIRECTIONS
47383 None.

47384 SEE ALSO
47385 exec, fork (), sysconf(), time(), wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
47386 <sys/times.h>

CHANGE47387 HISTORY
47388 First released in Issue 1. Derived from Issue 1 of the SVID. |

47389 Issue 4
47390 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

47391 • All references to the constant CLK_TCK are removed.

2036 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces times()

47392 • The RETURN VALUE section is updated to indicate that (clock_t)−1 is returned on error.

System Interfaces, Issue 6 2037

timezone() System Interfaces

47393 NAME
47394 timezone — difference from UTC and local standard time

47395 SYNOPSIS
47396 #include <time.h>

47397 XSI extern long timezone; |
47398 |

47399 DESCRIPTION
47400 Refer to tzset().

2038 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tmpfile()

47401 NAME
47402 tmpfile — create a temporary file

47403 SYNOPSIS
47404 #include <stdio.h>

47405 FILE *tmpfile(void);

47406 DESCRIPTION
47407 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47408 conflict between the requirements described here and the ISO C standard is unintentional. This
47409 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47410 The tmpfile() function shall create a temporary file and open a corresponding stream. The file is
47411 automatically deleted when all references to the file are closed. The file is opened as in fopen()
47412 for update (w+).

47413 CX The largest value that can be represented correctly in an object of type off_t is established as the
47414 offset maximum in the open file description.

47415 In some implementations, a permanent file may be left behind if the process calling tmpfile() is
47416 killed while it is processing a call to tmpfile().

47417 An error message may be written to standard error if the stream cannot be opened.

47418 RETURN VALUE
47419 Upon successful completion, tmpfile() shall return a pointer to the stream of the file that is
47420 CX created. Otherwise, it shall return a null pointer and set errno to indicate the error.

47421 ERRORS
47422 The tmpfile() function shall fail if:

47423 CX [EINTR] A signal was caught during tmpfile(). |

47424 CX [EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process. |

47425 CX [ENFILE] The maximum allowable number of files is currently open in the system. |

47426 CX [ENOSPC] The directory or file system which would contain the new file cannot be |
47427 expanded.

47428 CX [EOVERFLOW] The file is a regular file and the size of the file cannot be represented correctly |
47429 in an object of type off_t.

47430 The tmpfile() function may fail if:

47431 CX [EMFILE] {FOPEN_MAX} streams are currently open in the calling process. |

47432 CX [ENOMEM] Insufficient storage space is available. |

47433 EXAMPLES

47434 Creating a Temporary File

47435 The following example creates a temporary file for update, and returns a pointer to a stream for
47436 the created file in the fp variable.

47437 #include <stdio.h>
47438 ...
47439 FILE *fp;

47440 fp = tmpfile ();

System Interfaces, Issue 6 2039

tmpfile() System Interfaces

47441 APPLICATION USAGE
47442 It should be possible to open at least {TMP_MAX} temporary files during the lifetime of the |
47443 program (this limit may be shared with tmpnam()) and there should be no limit on the number |
47444 simultaneously open other than this limit and any limit on the number of open files |
47445 ({FOPEN_MAX}). |

47446 RATIONALE
47447 None.

47448 FUTURE DIRECTIONS
47449 None.

47450 SEE ALSO
47451 fopen(), tmpnam(), unlink(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdio.h> |

47452 CHANGE HISTORY
47453 First released in Issue 1. Derived from Issue 1 of the SVID. |

47454 Issue 4
47455 The argument list is explicitly defined as void.

47456 The [EINTR] error is moved to the ‘‘fails’’ part of the ERRORS section; [EMFILE], [ENFILE], and
47457 [ENOSPC] are no longer marked as extensions; [EACCES], [ENOTDIR], and [EROFS] are
47458 removed; and the [EMFILE] error in the ‘‘may fail’’ part is marked as an extension.

47459 Issue 5
47460 Large File Summit extensions are added.

47461 The last two paragraphs of the DESCRIPTION were included as APPLICATION USAGE notes
47462 in previous issues.

47463 Issue 6
47464 Extensions beyond the ISO C standard are now marked.

47465 The following new requirements on POSIX implementations derive from alignment with the
47466 Single UNIX Specification:

47467 • In the DESCRIPTION, text is added to indicate setting of the offset maximum in the open file
47468 description. This change is to support large files.

47469 • In the ERRORS section, the [EOVERFLOW] condition is added. This change is to support
47470 large files.

47471 • The [EMFILE] optional error condition is added.

47472 The APPLICATION USAGE section is added for alignment with the ISO/IEC 9899: 1999 |
47473 standard. |

2040 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tmpnam()

47474 NAME
47475 tmpnam — create a name for a temporary file

47476 SYNOPSIS
47477 #include <stdio.h>

47478 char *tmpnam(char * s);

47479 DESCRIPTION
47480 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47481 conflict between the requirements described here and the ISO C standard is unintentional. This
47482 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47483 The tmpnam() function shall generate a string that is a valid file name and that is not the same as |
47484 the name of an existing file. The function is potentially capable of generating {TMP_MAX} |
47485 different strings, but any or all of them may already be in use by existing files and thus not be |
47486 suitable return values. |

47487 The tmpnam() function generates a different string each time it is called from the same process,
47488 up to {TMP_MAX} times. If it is called more than {TMP_MAX} times, the behavior is |
47489 implementation-defined. |

47490 The implementation shall behave as if no function defined in this volume of
47491 IEEE Std. 1003.1-200x calls tmpnam().

47492 CX If the application uses any of the functions guaranteed to be available if either
47493 _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS is defined, the application shall
47494 ensure that the tmpnam() function is called with a non-NULL parameter.

47495 RETURN VALUE
47496 Upon successful completion, tmpnam() shall return a pointer to a string. If no suitable string can |
47497 be generated, the tmpnam() function shall return a null pointer. |

47498 If the argument s is a null pointer, tmpnam() shall leave its result in an internal static object and
47499 return a pointer to that object. Subsequent calls to tmpnam() may modify the same object. If the
47500 argument s is not a null pointer, it is presumed to point to an array of at least {L_tmpnam} chars; |
47501 tmpnam() writes its result in that array and returns the argument as its value.

47502 ERRORS
47503 No errors are defined.

47504 EXAMPLES

47505 Generating a File Name

47506 The following example generates a unique file name and stores it in the array pointed to by ptr.

47507 #include <stdio.h>
47508 ...
47509 char filename[L_tmpnam+1];
47510 char *ptr;

47511 ptr = tmpnam(filename);

47512 APPLICATION USAGE
47513 This function only creates file names. It is the application’s responsibility to create and remove
47514 the files.

47515 Between the time a path name is created and the file is opened, it is possible for some other
47516 process to create a file with the same name. Applications may find tmpfile() more useful.

System Interfaces, Issue 6 2041

tmpnam() System Interfaces

47517 RATIONALE
47518 None.

47519 FUTURE DIRECTIONS
47520 None.

47521 SEE ALSO
47522 fopen(), open(), tempnam(), tmpfile(), unlink(), the Base Definitions volume of |
47523 IEEE Std. 1003.1-200x, <stdio.h> |

47524 CHANGE HISTORY
47525 First released in Issue 1. Derived from Issue 1 of the SVID. |

47526 Issue 5
47527 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

47528 Issue 6
47529 Extensions beyond the ISO C standard are now marked.

47530 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

47531 The DESCRIPTION is expanded for alignment with the ISO/IEC 9899: 1999 standard. |

2042 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces toascii()

47532 NAME
47533 toascii — translate integer to a 7-bit ASCII character

47534 SYNOPSIS
47535 XSI #include <ctype.h>

47536 int toascii(int c);
47537

47538 DESCRIPTION
47539 The toascii () function shall convert its argument into a 7-bit ASCII character.

47540 RETURN VALUE
47541 The toascii () function shall return the value (c &0x7f).

47542 ERRORS
47543 No errors are returned.

47544 EXAMPLES
47545 None.

47546 APPLICATION USAGE
47547 None.

47548 RATIONALE
47549 None.

47550 FUTURE DIRECTIONS
47551 None.

47552 SEE ALSO
47553 isascii (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h> |

47554 CHANGE HISTORY
47555 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 2043

tolower() System Interfaces

47556 NAME
47557 tolower — transliterate uppercase characters to lowercase

47558 SYNOPSIS
47559 #include <ctype.h>

47560 int tolower(int c);

47561 DESCRIPTION
47562 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47563 conflict between the requirements described here and the ISO C standard is unintentional. This
47564 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47565 The tolower() function has as a domain a type int, the value of which is representable as an
47566 unsigned char or the value of EOF. If the argument has any other value, the behavior is
47567 undefined. If the argument of tolower() represents an uppercase letter, and there exists a
47568 CX corresponding lowercase letter (as defined by character type information in the program locale
47569 category LC_CTYPE), the result is the corresponding lowercase letter. All other arguments in the
47570 domain are returned unchanged.

47571 RETURN VALUE
47572 Upon successful completion, tolower() shall return the lowercase letter corresponding to the
47573 argument passed; otherwise, it shall return the argument unchanged.

47574 ERRORS
47575 No errors are defined.

47576 EXAMPLES
47577 None.

47578 APPLICATION USAGE
47579 None.

47580 RATIONALE
47581 None.

47582 FUTURE DIRECTIONS
47583 None.

47584 SEE ALSO
47585 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base Definitions |
47586 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

47587 CHANGE HISTORY
47588 First released in Issue 1. Derived from Issue 1 of the SVID. |

47589 Issue 4
47590 Reference to ‘‘shift information’’ is replaced by ‘‘character type information’’.

47591 The RETURN VALUE section is added.

47592 Issue 6
47593 Extensions beyond the ISO C standard are now marked.

2044 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces toupper()

47594 NAME
47595 toupper — transliterate lowercase characters to uppercase

47596 SYNOPSIS
47597 #include <ctype.h>

47598 int toupper(int c);

47599 DESCRIPTION
47600 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47601 conflict between the requirements described here and the ISO C standard is unintentional. This
47602 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47603 The toupper() function has as a domain a type int, the value of which is representable as an
47604 unsigned char or the value of EOF. If the argument has any other value, the behavior is
47605 undefined. If the argument of toupper() represents a lowercase letter, and there exists a
47606 CX corresponding uppercase letter (as defined by character type information in the program locale
47607 category LC_CTYPE),the result is the corresponding uppercase letter. All other arguments in the
47608 domain are returned unchanged.

47609 RETURN VALUE
47610 Upon successful completion, toupper() shall return the uppercase letter corresponding to the
47611 argument passed.

47612 ERRORS
47613 No errors are defined.

47614 EXAMPLES
47615 None.

47616 APPLICATION USAGE
47617 None.

47618 RATIONALE
47619 None.

47620 FUTURE DIRECTIONS
47621 None.

47622 SEE ALSO
47623 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <ctype.h>, the Base Definitions |
47624 volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

47625 CHANGE HISTORY
47626 First released in Issue 1. Derived from Issue 1 of the SVID. |

47627 Issue 4
47628 Reference to ‘‘shift information’’ is replaced by ‘‘character type information’’.

47629 The RETURN VALUE section is added.

47630 Issue 6
47631 Extensions beyond the ISO C standard are now marked.

System Interfaces, Issue 6 2045

towctrans() System Interfaces

47632 NAME
47633 towctrans — character transliteration

47634 SYNOPSIS
47635 #include <wctype.h>

47636 wint_t towctrans(wint_t wc, wctrans_t desc);

47637 DESCRIPTION
47638 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47639 conflict between the requirements described here and the ISO C standard is unintentional. This
47640 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47641 The towctrans() function transliterates the wide-character code wc using the mapping described
47642 by desc. The current setting of the LC_CTYPE category should be the same as during the call to
47643 CX wctrans() that returned the value desc. If the value of desc is invalid (that is, not obtained by a
47644 call to wctrans() or desc is invalidated by a subsequent call to setlocale () that has affected
47645 category LC_CTYPE), the result is unspecified.

47646 An application wishing to check for error situations should set errno to 0 before calling
47647 towctrans(). If errno is non-zero on return, an error has occurred.

47648 RETURN VALUE
47649 If successful, the towctrans() function shall return the mapped value of wc using the mapping
47650 described by desc. Otherwise, it shall return wc unchanged.

47651 ERRORS
47652 The towctrans() function may fail if:

47653 CX [EINVAL] desc contains an invalid transliteration descriptor. |

47654 EXAMPLES
47655 None.

47656 APPLICATION USAGE
47657 The strings "tolower" and "toupper" are reserved for the standard mapping names. In the
47658 table below, the functions in the left column are equivalent to the functions in the right column.

47659 towlower(wc) towctrans(wc, wctrans("tolower"))
47660 towupper(wc) towctrans(wc, wctrans("toupper"))

47661 RATIONALE
47662 None.

47663 FUTURE DIRECTIONS
47664 None.

47665 SEE ALSO
47666 towlower(), towupper(), wctrans(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
47667 <wctype.h>

CHANGE47668 HISTORY
47669 First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E). |

47670 Issue 6
47671 Extensions beyond the ISO C standard are now marked.

2046 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces towlower()

47672 NAME
47673 towlower — transliterate uppercase wide-character code to lowercase

47674 SYNOPSIS
47675 #include <wctype.h>

47676 wint_t towlower(wint_t wc);

47677 DESCRIPTION
47678 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47679 conflict between the requirements described here and the ISO C standard is unintentional. This
47680 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47681 The towlower() function has as a domain a type wint_t, the value of which the application shall
47682 ensure is a character representable as a wchar_t, and a wide-character code corresponding to a
47683 valid character in the current locale or the value of WEOF. If the argument has any other value,
47684 the behavior is undefined. If the argument of towlower() represents an uppercase wide-character
47685 code, and there exists a corresponding lowercase wide-character code (as defined by character
47686 type information in the program locale category LC_CTYPE), the result is the corresponding
47687 lowercase wide-character code. All other arguments in the domain are returned unchanged.

47688 RETURN VALUE
47689 Upon successful completion, towlower() shall return the lowercase letter corresponding to the
47690 argument passed; otherwise, it shall return the argument unchanged.

47691 ERRORS
47692 No errors are defined.

47693 EXAMPLES
47694 None.

47695 APPLICATION USAGE
47696 None.

47697 RATIONALE
47698 None.

47699 FUTURE DIRECTIONS
47700 None.

47701 SEE ALSO
47702 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the |
47703 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

47704 CHANGE HISTORY
47705 First released in Issue 4.

47706 Issue 5
47707 The following change has been made in this issue for alignment with
47708 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

47709 • The SYNOPSIS has been changed to indicate that this function and associated data types are
47710 now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

47711 Issue 6
47712 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2047

towupper() System Interfaces

47713 NAME
47714 towupper — transliterate lowercase wide-character code to uppercase

47715 SYNOPSIS
47716 #include <wctype.h>

47717 wint_t towupper(wint_t wc);

47718 DESCRIPTION
47719 CX The functionality described on this reference page is aligned with the ISO C standard. Any
47720 conflict between the requirements described here and the ISO C standard is unintentional. This
47721 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

47722 The towupper() function has as a domain a type wint_t, the value of which the application shall
47723 ensure is a character representable as a wchar_t, and a wide-character code corresponding to a
47724 valid character in the current locale or the value of WEOF. If the argument has any other value,
47725 the behavior is undefined. If the argument of towupper() represents a lowercase wide-character
47726 code, and there exists a corresponding uppercase wide-character code (as defined by character
47727 type information in the program locale category LC_CTYPE), the result is the corresponding
47728 uppercase wide-character code. All other arguments in the domain are returned unchanged.

47729 RETURN VALUE
47730 Upon successful completion, towupper() shall return the uppercase letter corresponding to the
47731 argument passed. Otherwise, it shall return the argument unchanged.

47732 ERRORS
47733 No errors are defined.

47734 EXAMPLES
47735 None.

47736 APPLICATION USAGE
47737 None.

47738 RATIONALE
47739 None.

47740 FUTURE DIRECTIONS
47741 None.

47742 SEE ALSO
47743 setlocale (), the Base Definitions volume of IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h>, the |
47744 Base Definitions volume of IEEE Std. 1003.1-200x, Chapter 7, Locale |

47745 CHANGE HISTORY
47746 First released in Issue 4.

47747 Issue 5
47748 The following change has been made in this issue for alignment with
47749 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

47750 • The SYNOPSIS has been changed to indicate that this function and associated data types are
47751 now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

47752 Issue 6
47753 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

|

2048 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces trunc()

47754 NAME |
47755 trunc, truncf, truncl — round to truncated integer value |

47756 SYNOPSIS |
47757 #include <math.h> |

47758 double trunc(double x); |
47759 float truncf(float x); |
47760 long double truncl(long double x); |

47761 DESCRIPTION |
47762 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
47763 conflict between the requirements described here and the ISO C standard is unintentional. This |
47764 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

47765 These functions shall round their argument to the integer value, in floating format, nearest to but |
47766 no larger in magnitude than the argument. |

47767 An application wishing to check for error situations should set errno to 0 before calling these |
47768 functions. If errno is non-zero on return, or the return value is NaN, an error has occurred. |

47769 RETURN VALUE |
47770 Upon successful completion, these functions shall return the truncated integer value. |

47771 If x is ±Inf, these functions shall return x . |

47772 If x is NaN, NaN shall be returned and errno may be set to [EDOM]. |

47773 ERRORS |
47774 These functions may fail if: |

47775 [EDOM] The value of x is NaN. |

47776 EXAMPLES |
47777 None. |

47778 APPLICATION USAGE |
47779 None. |

47780 RATIONALE |
47781 None. |

47782 FUTURE DIRECTIONS |
47783 None. |

47784 SEE ALSO |
47785 The Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

47786 CHANGE HISTORY |
47787 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 2049

truncate() System Interfaces

47788 NAME
47789 truncate — truncate a file to a specified length

47790 SYNOPSIS
47791 XSI #include <unistd.h>

47792 int truncate(const char * path , off_t length);
47793

47794 DESCRIPTION
47795 The truncate() function shall cause the regular file named by path to have a size which shall be |
47796 equal to length bytes. |

47797 If the file previously was larger than length , the extra data is discarded. If the file was previously |
47798 shorter than length , its size is increased, and the extended area appears as if it were zero-filled. |

47799 The application shall ensure that the process has write permission for the file.

47800 If the request would cause the file size to exceed the soft file size limit for the process, the
47801 request shall fail and the implementation shall generate the SIGXFSZ signal for the process.

47802 This function shall not modify the file offset for any open file descriptions associated with the
47803 file. Upon successful completion, if the file size is changed, this function shall mark for update
47804 the st_ctime and st_mtime fields of the file, and the S_ISUID and S_ISGID bits of the file mode |
47805 may be cleared. |

47806 RETURN VALUE
47807 Upon successful completion, truncate() shall return 0. Otherwise, −1 shall be returned, and errno
47808 set to indicate the error.

47809 ERRORS
47810 The truncate() function shall fail if:

47811 [EINTR] A signal was caught during execution. |

47812 [EINVAL] The length argument was less than 0. |

47813 [EFBIG] or [EINVAL] |
47814 The length argument was greater than the maximum file size.

47815 [EIO] An I/O error occurred while reading from or writing to a file system. |

47816 [EACCES] A component of the path prefix denies search permission, or write permission |
47817 is denied on the file.

47818 [EISDIR] The named file is a directory. |

47819 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
47820 argument. |

47821 [ENAMETOOLONG] |
47822 The length of the path argument exceeds {PATH_MAX} or a path name |
47823 component is longer than {NAME_MAX}. |

47824 [ENOENT] A component of path does not name an existing file or path is an empty string. |

47825 [ENOTDIR] A component of the path prefix of path is not a directory. |

47826 [EROFS] The named file resides on a read-only file system. |

47827 The truncate() function may fail if:

2050 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces truncate()

47828 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
47829 resolution of the path argument. |

47830 [ENAMETOOLONG] |
47831 Path name resolution of a symbolic link produced an intermediate result
47832 whose length exceeds {PATH_MAX}.

47833 EXAMPLES
47834 None.

47835 APPLICATION USAGE
47836 None.

47837 RATIONALE
47838 None.

47839 FUTURE DIRECTIONS
47840 None.

47841 SEE ALSO
47842 open(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

47843 CHANGE HISTORY
47844 First released in Issue 4, Version 2.

47845 Issue 5
47846 Moved from X/OPEN UNIX extension to BASE.

47847 Large File Summit extensions are added.

47848 Issue 6
47849 This reference page is split out from the ftruncate() reference page.

47850 The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC. This
47851 is since behavior may vary from one file system to another.

47852 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

47853 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
47854 [ELOOP] error condition is added. |

System Interfaces, Issue 6 2051

tsearch() System Interfaces

47855 NAME
47856 tsearch — search a binary search tree |

47857 SYNOPSIS
47858 XSI #include <search.h>

47859 void *tsearch(const void * key , void ** rootp , |
47860 int (* compar)(const void *, const void *));
47861 |

47862 DESCRIPTION |
47863 Refer to tdelete(). |

2052 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ttyname()

47864 NAME
47865 ttyname, ttyname_r — find path name of a terminal

47866 SYNOPSIS
47867 #include <unistd.h>

47868 char *ttyname(int fildes);
47869 TSF int ttyname_r(int fildes , char * name, size_t namesize);
47870

47871 DESCRIPTION
47872 The ttyname() function shall return a pointer to a string containing a null-terminated path name
47873 of the terminal associated with file descriptor fildes . The return value may point to static data
47874 whose content is overwritten by each call.

47875 The ttyname() function need not be reentrant. A function that is not required to be reentrant is
47876 not required to be thread-safe.

47877 TSF The ttyname_r() function stores the null-terminated path name of the terminal associated with
47878 the file descriptor fildes in the character array referenced by name. The array is namesize
47879 characters long and should have space for the name and the terminating null character. The
47880 maximum length of the terminal name is {TTY_NAME_MAX}.

47881 RETURN VALUE
47882 Upon successful completion, ttyname() shall return a pointer to a string. Otherwise, a null
47883 pointer shall be returned and errno set to indicate the error. |

47884 TSF If successful, the ttyname_r() function shall return zero. Otherwise, an error number shall be
47885 returned to indicate the error.

47886 ERRORS
47887 The ttyname() function may fail if:

47888 [EBADF] The fildes argument is not a valid file descriptor. |

47889 [ENOTTY] The fildes argument does not refer to a terminal. |

47890 The ttyname_r() function may fail if:

47891 TSF [EBADF] The fildes argument is not a valid file descriptor. |

47892 TSF [ENOTTY] The fildes argument does not refer to a terminal. |

47893 Notes to Reviewers
47894 This section with side shading will not appear in the final copy. - Ed.

47895 D1, XSH, ERN 397 points out an inconsistency for the [ERANGE] error
47896 condition below and suggests this be changed to [E2BIG].

47897 TSF [ERANGE] The value of namesize is smaller than the length of the string to be returned |
47898 including the terminating null character.

System Interfaces, Issue 6 2053

ttyname() System Interfaces

47899 EXAMPLES
47900 None.

47901 APPLICATION USAGE
47902 None.

47903 RATIONALE
47904 The term terminal is used instead of the historical term terminal device in order to avoid a
47905 reference to an undefined term.

47906 The thread-safe version places the terminal name in a user-supplied buffer and returns a non-
47907 zero value if it fails. The non-thread-safe version may return the name in a static data area that
47908 may be overwritten by each call.

47909 FUTURE DIRECTIONS
47910 None.

47911 SEE ALSO
47912 The Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

47913 CHANGE HISTORY
47914 First released in Issue 1. Derived from Issue 1 of the SVID. |

47915 Issue 4
47916 The <unistd.h> header is added to the SYNOPSIS.

47917 The statement indicating that errno is set on error in the RETURN VALUE section, and the errors
47918 [EBADF] and [ENOTTY], are marked as extensions.

47919 Issue 5
47920 The ttyname_r() function is included for alignment with the POSIX Threads Extension.

47921 A note indicating that the ttyname() function need not be reentrant is added to the
47922 DESCRIPTION.

47923 Issue 6
47924 The ttyname_r() function is marked as part of the Thread-Safe Functions option. |

47925 The following new requirements on POSIX implementations derive from alignment with the
47926 Single UNIX Specification:

47927 • The statement that errno is set on error is added.

47928 • The [EBADF] and [ENOTTY] optional error conditions are added.

2054 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces twalk()

47929 NAME
47930 twalk — traverse a binary search tree

47931 SYNOPSIS
47932 XSI #include <search.h>

47933 void twalk(const void * root ,
47934 void (* action)(const void *, VISIT, int));
47935

47936 DESCRIPTION
47937 Refer to tdelete(). |

System Interfaces, Issue 6 2055

tzname System Interfaces

47938 NAME
47939 tzname — timezone strings

47940 SYNOPSIS
47941 #include <time.h>

47942 extern char *tzname[2]; |

47943 DESCRIPTION |
47944 Refer to tzset().

2056 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces tzset()

47945 NAME
47946 daylight, timezone, tzname, tzset — set timezone conversion information

47947 SYNOPSIS
47948 #include <time.h>

47949 XSI extern int daylight;
47950 extern long timezone; |
47951 extern char *tzname[2]; |
47952 void tzset(void); |

47953 DESCRIPTION |
47954 The tzset() function uses the value of the environment variable TZ to set time conversion
47955 information used by ctime(), localtime (), mktime(), and strftime(). If TZ is absent from the |
47956 environment, implementation-defined default timezone information is used. |

47957 The tzset() function shall set the external variable tzname as follows:

47958 tzname[0] = " std ";
47959 tzname[1] = " dst ";

47960 where std and dst are as described in the Base Definitions volume of IEEE Std. 1003.1-200x, |
47961 Chapter 8, Environment Variables. |

47962 XSI The tzset() function also shall set the external variable daylight to 0 if Daylight Savings Time
47963 conversions should never be applied for the timezone in use; otherwise, non-zero. The external
47964 variable timezone shall be set to the difference, in seconds, between Coordinated Universal Time
47965 (UTC) and local standard time.

47966 RETURN VALUE
47967 The tzset() function shall return no value.

47968 ERRORS
47969 No errors are defined.

47970 EXAMPLES
47971 Example TZ variables and their timezone differences are given in the table below:
47972 __________________
47973 TZ timezone__________________
47974 EST 5*60*60
47975 GMT 0*60*60
47976 JST −9*60*60
47977 MET −1*60*60
47978 MST 7*60*60
47979 PST 8*60*60__________________L

L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L

47980 APPLICATION USAGE
47981 None.

47982 RATIONALE
47983 None.

47984 FUTURE DIRECTIONS
47985 None.

System Interfaces, Issue 6 2057

tzset() System Interfaces

47986 SEE ALSO
47987 ctime(), localtime (), mktime(), strftime(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
47988 <time.h>

CHANGE47989 HISTORY
47990 First released in Issue 1. Derived from Issue 1 of the SVID. |

47991 Issue 4
47992 The reference to timezone in the SYNOPSIS section is marked as an extension.

47993 The type of timezone is expanded to extern long. |

47994 The <time.h> header is added to the SYNOPSIS section.

47995 The following change is incorporated for alignment with the ISO POSIX-1 standard:

47996 • The argument list is explicitly defined as void.

2058 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ualarm()

47997 NAME
47998 ualarm — set the interval timer

47999 SYNOPSIS
48000 XSI #include <unistd.h>

48001 useconds_t ualarm(useconds_t useconds , useconds_t interval);
48002

48003 DESCRIPTION
48004 The ualarm() function shall cause the SIGALRM signal to be generated for the calling process
48005 after the number of realtime microseconds specified by the useconds argument has elapsed.
48006 When the interval argument is non-zero, repeated timeout notification occurs with a period in
48007 microseconds specified by the interval argument. If the notification signal, SIGALRM, is not
48008 caught or ignored, the calling process is terminated.

48009 Implementations may place limitations on the granularity of timer values. For each interval
48010 timer, if the requested timer value requires a finer granularity than the implementation supports,
48011 the actual timer value shall be rounded up to the next supported value.

48012 Interactions between ualarm() and any of the following are unspecified:

48013 alarm()
48014 nanosleep()
48015 setitimer()
48016 timer_create()
48017 timer_delete()
48018 timer_getoverrun()
48019 timer_gettime()
48020 timer_settime()
48021 sleep()

48022 RETURN VALUE
48023 The ualarm() function shall return the number of microseconds remaining from the previous
48024 ualarm() call. If no timeouts are pending or if ualarm() has not previously been called, ualarm()
48025 shall return 0.

48026 ERRORS
48027 No errors are defined.

48028 EXAMPLES
48029 None.

48030 APPLICATION USAGE
48031 Applications are recommended to use nanosleep() if the Timers option is supported, or |
48032 setitimer(), timer_create(), timer_delete(), timer_getoverrun(), timer_gettime(), or timer_settime()
48033 instead of this function.

48034 RATIONALE
48035 None.

48036 FUTURE DIRECTIONS
48037 None.

48038 SEE ALSO
48039 alarm(), nanosleep(), setitimer(), sleep(), timer_create(), timer_delete(), timer_getoverrun(), the Base |
48040 Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

System Interfaces, Issue 6 2059

ualarm() System Interfaces

48041 CHANGE HISTORY
48042 First released in Issue 4, Version 2.

48043 Issue 5
48044 Moved from X/OPEN UNIX extension to BASE.

2060 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ulimit()

48045 NAME
48046 ulimit — get and set process limits

48047 SYNOPSIS
48048 XSI #include <ulimit.h>

48049 long ulimit(int cmd, ...); |
48050 |

48051 DESCRIPTION
48052 The ulimit() function provides for control over process limits. The process limits that can be
48053 controlled by this function include the maximum size of a single file that can be written (this is
48054 equivalent to using setrlimit() with RLIMIT_FSIZE). The cmd values, defined in <ulimit.h>
48055 include:

48056 UL_GETFSIZE Return the file size limit (RLIMIT_FSIZE) of the process. The limit is in units
48057 of 512-byte blocks and is inherited by child processes. Files of any size can be
48058 read. The return value shall be the integer part of the soft file size limit
48059 divided by 512. If the result cannot be represented as a long, the result is |
48060 unspecified.

48061 UL_SETFSIZE Set the file size limit for output operations of the process to the value of the
48062 second argument, taken as a long, multiplied by 512. If the result would |
48063 overflow an rlim_t, the actual value set is unspecified. Any process may |
48064 decrease its own limit, but only a process with appropriate privileges may |
48065 increase the limit. The return value shall be the integer part of the new file size |
48066 limit divided by 512. |

48067 The ulimit() function shall not change the setting of errno if successful.

48068 As all return values are permissible in a successful situation, an application wishing to check for
48069 error situations should set errno to 0, then call ulimit(), and, if it returns −1, check to see if errno is
48070 non-zero.

48071 RETURN VALUE
48072 Upon successful completion, ulimit() shall return the value of the requested limit. Otherwise, −1
48073 shall be returned and errno set to indicate the error.

48074 ERRORS
48075 The ulimit() function shall fail and the limit shall be unchanged if:

48076 [EINVAL] The cmd argument is not valid. |

48077 [EPERM] A process not having appropriate privileges attempts to increase its file size |
48078 limit.

48079 EXAMPLES
48080 None.

48081 APPLICATION USAGE
48082 None.

48083 RATIONALE
48084 None.

48085 FUTURE DIRECTIONS
48086 None.

System Interfaces, Issue 6 2061

ulimit() System Interfaces

48087 SEE ALSO
48088 getrlimit(), setrlimit(), write(), the Base Definitions volume of IEEE Std. 1003.1-200x, <ulimit.h> |

48089 CHANGE HISTORY
48090 First released in Issue 1. Derived from Issue 1 of the SVID. |

48091 Issue 4
48092 The use of long is replaced by long in the SYNOPSIS and the DESCRIPTION sections. |

48093 Issue 4, Version 2
48094 In the DESCRIPTION, the discussion of UL_GETFSIZE and UL_SETFSIZE is revised generally to
48095 distinguish between the soft and the hard file size limit of the process. For UL_GETFSIZE, the
48096 return value is defined more precisely. For UL_SETFSIZE, the effect on both file size limits is
48097 specified, as is the effect if the result would overflow an rlim_t.

48098 Issue 5
48099 In the description of UL_SETFSIZE, the text is corrected to refer to rlim_t rather than the
48100 spurious rlimit_t.

48101 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

2062 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces umask()

48102 NAME
48103 umask — set and get file mode creation mask

48104 SYNOPSIS
48105 #include <sys/stat.h>

48106 mode_t umask(mode_t cmask);

48107 DESCRIPTION
48108 The umask() function shall set the process’ file mode creation mask to cmask and return the
48109 previous value of the mask. Only the file permission bits of cmask (see <sys/stat.h>) are used; the |
48110 meaning of the other bits is implementation-defined. |

48111 The process’ file mode creation mask is used during open(), creat(), mkdir(), and mkfifo () to turn
48112 off permission bits in the mode argument supplied. Bit positions that are set in cmask are cleared
48113 in the mode of the created file.

48114 RETURN VALUE
48115 The file permission bits in the value returned by umask() shall be the previous value of the file
48116 mode creation mask. The state of any other bits in that value is unspecified, except that a
48117 subsequent call to umask() with the returned value as cmask shall leave the state of the mask the
48118 same as its state before the first call, including any unspecified use of those bits.

48119 ERRORS
48120 No errors are defined.

48121 EXAMPLES
48122 None.

48123 APPLICATION USAGE
48124 None.

48125 RATIONALE
48126 Unsigned argument and return types for umask() were proposed. The return type and the
48127 argument were both changed to mode_t.

48128 Historical implementations have made use of additional bits in cmask for their implementation- |
48129 defined purposes. The addition of the text that the meaning of other bits of the field is |
48130 implementation-defined permits these implementations to conform to this volume of |
48131 IEEE Std. 1003.1-200x.

48132 FUTURE DIRECTIONS
48133 None.

48134 SEE ALSO
48135 creat(), mkdir(), mkfifo (), open(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
48136 <sys/stat.h>, <sys/types.h>

CHANGE48137 HISTORY
48138 First released in Issue 1. Derived from Issue 1 of the SVID. |

48139 Issue 4
48140 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
48141 XSI-conformant systems.

48142 The RETURN VALUE section is expanded, in line with the ISO POSIX-1 standard, to describe
48143 the situation with regard to additional bits in the file mode creation mask.

System Interfaces, Issue 6 2063

umask() System Interfaces

48144 Issue 6
48145 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

48146 The following new requirements on POSIX implementations derive from alignment with the
48147 Single UNIX Specification:

48148 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
48149 required for conforming implementations of previous POSIX specifications, it was not
48150 required for UNIX applications.

2064 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces uname()

48151 NAME
48152 uname — get name of current system

48153 SYNOPSIS
48154 #include <sys/utsname.h>

48155 int uname(struct utsname * name);

48156 DESCRIPTION
48157 The uname() function shall store information identifying the current system in the structure
48158 pointed to by name.

48159 The uname() function uses the utsname structure defined in <sys/utsname.h>.

48160 The uname() function returns a string naming the current system in the character array sysname.
48161 Similarly, nodename contains the name that the system is known by on a communications
48162 network. The arrays release and version further identify the operating system. The array machine
48163 contains a name that identifies the hardware that the system is running on.

48164 The format of each member is implementation-defined. |

48165 RETURN VALUE
48166 Upon successful completion, a non-negative value shall be returned. Otherwise, −1 shall be
48167 returned and errno set to indicate the error.

48168 ERRORS
48169 No errors are defined.

48170 EXAMPLES
48171 None.

48172 APPLICATION USAGE
48173 The inclusion of the nodename member in this structure does not imply that it is sufficient
48174 information for interfacing to communications networks.

48175 RATIONALE
48176 The values of the structure members are not constrained to have any relation to the version of
48177 this volume of IEEE Std. 1003.1-200x implemented in the operating system. An application
48178 should instead depend on _POSIX_VERSION and related constants defined in <unistd.h>.

48179 This volume of IEEE Std. 1003.1-200x does not define the sizes of the members of the structure
48180 and permits them to be of different sizes, although most implementations define them all to be
48181 the same size: eight bytes plus one byte for the string terminator. That size for nodename is not
48182 enough for use with many networks.

48183 The uname() function is specific to System III, System V, and related implementations, and it
48184 does not exist in Version 7 or 4.3 BSD. The values it returns are set at system compile time in
48185 those historical implementations.

48186 4.3 BSD has gethostname() and gethostid (), which return a symbolic name and a numeric value,
48187 respectively. There are related sethostname() and sethostid() functions that are used to set the
48188 values the other two functions return. The length of the host name is limited to 31 characters in
48189 most implementations and the host ID is a 32-bit integer.

48190 FUTURE DIRECTIONS
48191 None.

System Interfaces, Issue 6 2065

uname() System Interfaces

48192 SEE ALSO
48193 The Base Definitions volume of IEEE Std. 1003.1-200x, <sys/utsname.h> |

48194 CHANGE HISTORY
48195 First released in Issue 1. Derived from Issue 1 of the SVID. |

48196 Issue 4
48197 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

48198 • The DESCRIPTION is changed to indicate that the format of members in the utsname |
48199 structure is implementation-defined. |

48200 • The RETURN VALUE section is updated to indicate that −1 is returned and errno set to
48201 indicate an error.

2066 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ungetc()

48202 NAME
48203 ungetc — push byte back into input stream

48204 SYNOPSIS
48205 #include <stdio.h>

48206 int ungetc(int c, FILE * stream);

48207 DESCRIPTION
48208 CX The functionality described on this reference page is aligned with the ISO C standard. Any
48209 conflict between the requirements described here and the ISO C standard is unintentional. This
48210 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

48211 The ungetc() function shall push the byte specified by c (converted to an unsigned char) back
48212 onto the input stream pointed to by stream. The pushed-back bytes shall be returned by
48213 subsequent reads on that stream in the reverse order of their pushing. A successful intervening
48214 call (with the stream pointed to by stream) to a file-positioning function (fseek(), fsetpos(), or
48215 rewind()) discards any pushed-back bytes for the stream. The external storage corresponding to
48216 the stream is unchanged.

48217 One byte of push-back is guaranteed. If ungetc() is called too many times on the same stream
48218 without an intervening read or file-positioning operation on that stream, the operation may fail.

48219 If the value of c equals that of the macro EOF, the operation fails and the input stream is
48220 unchanged.

48221 A successful call to ungetc() shall clear the end-of-file indicator for the stream. The value of the
48222 file-position indicator for the stream after reading or discarding all pushed-back bytes shall be
48223 the same as it was before the bytes were pushed back. The file-position indicator is decremented
48224 by each successful call to ungetc(); if its value was 0 before a call, its value is indeterminate after
48225 the call.

48226 RETURN VALUE
48227 Upon successful completion, ungetc() shall return the byte pushed back after conversion.
48228 Otherwise, it shall return EOF.

48229 ERRORS
48230 No errors are defined.

48231 EXAMPLES
48232 None.

48233 APPLICATION USAGE
48234 None.

48235 RATIONALE
48236 None.

48237 FUTURE DIRECTIONS
48238 None.

48239 SEE ALSO
48240 fseek(), getc(), fsetpos(), read(), rewind(), setbuf(), the Base Definitions volume of |
48241 IEEE Std. 1003.1-200x, <stdio.h> |

48242 CHANGE HISTORY
48243 First released in Issue 1. Derived from Issue 1 of the SVID. |

System Interfaces, Issue 6 2067

ungetc() System Interfaces

48244 Issue 4
48245 The DESCRIPTION is changed to make it clear that ungetc() manipulates bytes rather than
48246 (possibly multi-byte) characters.

48247 The APPLICATION USAGE section is removed.

48248 The following changes are incorporated for alignment with the ISO C standard:

48249 • The fsetpos() function is added to the list of file-positioning functions in the DESCRIPTION.

48250 • Also, this issue states that the file-position indicator is decremented by each successful call to
48251 ungetc(), although note that XSI-conformant systems do not distinguish between text and
48252 binary streams. Previous issues state that the disposition of this indicator is unspecified.

2068 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces ungetwc()

48253 NAME
48254 ungetwc — push wide-character code back into input stream

48255 SYNOPSIS
48256 #include <stdio.h>
48257 #include <wchar.h>

48258 wint_t ungetwc(wint_t wc, FILE * stream);

48259 DESCRIPTION
48260 CX The functionality described on this reference page is aligned with the ISO C standard. Any
48261 conflict between the requirements described here and the ISO C standard is unintentional. This
48262 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

48263 The ungetwc() function shall push the character corresponding to the wide-character code
48264 specified by wc back onto the input stream pointed to by stream. The pushed-back characters
48265 shall be returned by subsequent reads on that stream in the reverse order of their pushing. A
48266 successful intervening call (with the stream pointed to by stream) to a file-positioning function
48267 (fseek(), fsetpos(), or rewind()) discards any pushed-back characters for the stream. The external
48268 storage corresponding to the stream is unchanged.

48269 One character of push-back is guaranteed. If ungetwc() is called too many times on the same
48270 stream without an intervening read or file-positioning operation on that stream, the operation
48271 may fail.

48272 If the value of wc equals that of the macro WEOF, the operation fails and the input stream is
48273 unchanged.

48274 A successful call to ungetwc() shall clear the end-of-file indicator for the stream. The value of the
48275 file-position indicator for the stream after reading or discarding all pushed-back characters shall
48276 be the same as it was before the characters were pushed back. The file-position indicator is
48277 decremented (by one or more) by each successful call to ungetwc(); if its value was 0 before a
48278 call, its value is indeterminate after the call.

48279 RETURN VALUE
48280 Upon successful completion, ungetwc() shall return the wide-character code corresponding to
48281 the pushed-back character. Otherwise, it shall return WEOF.

48282 ERRORS
48283 The ungetwc() function may fail if:

48284 [EILSEQ] An invalid character sequence is detected, or a wide-character code does not |
48285 correspond to a valid character.

48286 EXAMPLES
48287 None.

48288 APPLICATION USAGE
48289 None.

48290 RATIONALE
48291 None.

48292 FUTURE DIRECTIONS
48293 None.

System Interfaces, Issue 6 2069

ungetwc() System Interfaces

48294 SEE ALSO
48295 fseek(), fsetpos(), read(), rewind(), setbuf(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
48296 <stdio.h>, <wchar.h>

CHANGE48297 HISTORY
48298 First released in Issue 4. Derived from the MSE working draft. |

48299 Issue 5
48300 The Optional Header (OH) marking is removed from <stdio.h>.

2070 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces unlink()

48301 NAME
48302 unlink — remove a directory entry

48303 SYNOPSIS
48304 #include <unistd.h>

48305 int unlink(const char * path);

48306 DESCRIPTION
48307 The unlink() function shall remove a link to a file. If path names a symbolic link, unlink() |
48308 removes the symbolic link named by path and does not affect any file or directory named by the
48309 contents of the symbolic link. Otherwise, unlink() removes the link named by the path name |
48310 pointed to by path and decrements the link count of the file referenced by the link.

48311 When the file’s link count becomes 0 and no process has the file open, the space occupied by the
48312 file shall be freed and the file shall no longer be accessible. If one or more processes have the file
48313 open when the last link is removed, the link shall be removed before unlink() returns, but the
48314 removal of the file contents shall be postponed until all references to the file are closed.

48315 The application shall ensure that the path argument does not name a directory unless the process
48316 has appropriate privileges and the implementation supports using unlink() on directories.

48317 Upon successful completion, unlink() shall mark for update the st_ctime and st_mtime fields of
48318 the parent directory. Also, if the file’s link count is not 0, the st_ctime field of the file shall be
48319 marked for update.

48320 RETURN VALUE
48321 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno set to
48322 indicate the error. If −1 is returned, the named file shall not be changed.

48323 ERRORS
48324 The unlink() function shall fail and shall not unlink the file if:

48325 [EACCES] Search permission is denied for a component of the path prefix, or write |
48326 permission is denied on the directory containing the directory entry to be
48327 removed.

48328 [EBUSY] The file named by the path argument cannot be unlinked because it is being |
48329 used by the system or another process and the implementation considers this
48330 an error. |

48331 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
48332 argument. |

48333 [ENAMETOOLONG] |
48334 The length of the path argument exceeds {PATH_MAX} or a path name
48335 component is longer than {NAME_MAX}. |

48336 [ENOENT] A component of path does not name an existing file or path is an empty string. |

48337 [ENOTDIR] A component of the path prefix is not a directory. |

48338 [EPERM] The file named by path is a directory, and either the calling process does not |
48339 have appropriate privileges, or the implementation prohibits using unlink()
48340 on directories.

48341 XSI [EPERM] or [EACCES] |
48342 The S_ISVTX flag is set on the directory containing the file referred to by the
48343 path argument and the caller is not the file owner, nor is the caller the
48344 directory owner, nor does the caller have appropriate privileges.

System Interfaces, Issue 6 2071

unlink() System Interfaces

48345 [EROFS] The directory entry to be unlinked is part of a read-only file system. |

48346 The unlink() function may fail and not unlink the file if:

48347 XSI [EBUSY] The file named by path is a named STREAM. |

48348 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
48349 resolution of the path argument. |

48350 [ENAMETOOLONG] |
48351 As a result of encountering a symbolic link in resolution of the path argument,
48352 the length of the substituted path name string exceeded {PATH_MAX}. |

48353 [ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared |
48354 text) file that is being executed. |

48355 EXAMPLES

48356 Removing a Link to a File

48357 The following example shows how to remove a link to a file named /home/cnd/mod1 by
48358 removing the entry named /modules/pass1.

48359 #include <unistd.h>

48360 char *path = "/modules/pass1";
48361 int status;
48362 ...
48363 status = unlink(path);

48364 Checking for an Error

48365 The following example fragment creates a temporary password lock file named LOCKFILE,
48366 which is defined as /etc/ptmp, and gets a file descriptor for it. If the file cannot be opened for
48367 writing, unlink() is used to remove the link between the file descriptor and LOCKFILE.

48368 #include <sys/types.h>
48369 #include <stdio.h>
48370 #include <fcntl.h>
48371 #include <errno.h>
48372 #include <unistd.h>
48373 #include <sys/stat.h>

48374 #define LOCKFILE "/etc/ptmp"

48375 int pfd; /* Integer for file descriptor returned by open call. */
48376 FILE *fpfd; /* File pointer for use in putpwent(). */
48377 ...
48378 /* Open password Lock file. If it exists, this is an error. */
48379 if ((pfd = open(LOCKFILE, O_WRONLY| O_CREAT | O_EXCL, S_IRUSR
48380 | S_IWUSR | S_IRGRP | S_IROTH)) == -1) {
48381 fprintf(stderr, "Cannot open /etc/ptmp. Try again later.\n");
48382 exit(1);
48383 }

48384 /* Lock file created, proceed with fdopen of lock file so that
48385 putpwent() can be used.
48386 */
48387 if ((fpfd = fdopen(pfd, "w")) == NULL) {

2072 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces unlink()

48388 close(pfd);
48389 unlink(LOCKFILE);
48390 exit(1);
48391 }

48392 Replacing Files

48393 The following example fragment uses unlink() to discard links to files, so that they can be
48394 replaced with new versions of the files. The first call remove the link to LOCKFILE if an error
48395 occurs. Successive calls remove the links to SAVEFILE and PASSWDFILE so that new links can
48396 be created, then removes the link to LOCKFILE when it is no longer needed.

48397 #include <sys/types.h>
48398 #include <stdio.h>
48399 #include <fcntl.h>
48400 #include <errno.h>
48401 #include <unistd.h>
48402 #include <sys/stat.h>

48403 #define LOCKFILE "/etc/ptmp"
48404 #define PASSWDFILE "/etc/passwd"
48405 #define SAVEFILE "/etc/opasswd"
48406 ...
48407 /* If no change was made, assume error and leave passwd unchanged. */
48408 if (!valid_change) {
48409 fprintf(stderr, "Could not change password for user %s\n", user);
48410 unlink(LOCKFILE);
48411 exit(1);
48412 }

48413 /* Change permissions on new password file. */
48414 chmod(LOCKFILE, S_IRUSR | S_IRGRP | S_IROTH);

48415 /* Remove saved password file. */
48416 unlink(SAVEFILE);

48417 /* Save current password file. */
48418 link(PASSWDFILE, SAVEFILE);

48419 /* Remove current password file. */
48420 unlink(PASSWDFILE);

48421 /* Save new password file as current password file. */
48422 link(LOCKFILE,PASSWDFILE);

48423 /* Remove lock file. */
48424 unlink(LOCKFILE);

48425 exit(0);

48426 APPLICATION USAGE
48427 Applications should use rmdir() to remove a directory.

48428 RATIONALE
48429 Unlinking a directory is restricted to the superuser in many historical implementations for
48430 reasons given in link () (see also rename()).

System Interfaces, Issue 6 2073

unlink() System Interfaces

48431 The meaning of [EBUSY] in historical implementations is ‘‘mount point busy’’. Since this volume |
48432 of IEEE Std. 1003.1-200x does not cover the system administration concepts of mounting and
48433 unmounting, the description of the error was changed to ‘‘resource busy’’. (This meaning is used
48434 by some device drivers when a second process tries to open an exclusive use device.) The
48435 wording is also intended to allow implementations to refuse to remove a directory if it is the
48436 root or current working directory of any process.

48437 FUTURE DIRECTIONS
48438 None.

48439 SEE ALSO
48440 close(), link (), remove(), rmdir(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
48441 <unistd.h>

CHANGE48442 HISTORY
48443 First released in Issue 1. Derived from Issue 1 of the SVID. |

48444 Issue 4
48445 The <unistd.h> header is added to the SYNOPSIS section.

48446 The error [ETXTBSY] is marked as an extension.

48447 The following change is incorporated for alignment with the ISO POSIX-1 standard:

48448 • The type of argument path is changed from char* to const char*.

48449 The following change is incorporated for alignment with the FIPS requirements:

48450 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
48451 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
48452 an extension.

48453 Issue 4, Version 2
48454 The entry is updated for X/OPEN UNIX conformance as follows:

48455 • In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

48456 • In the ERRORS section, [ELOOP] is added to indicate that too many symbolic links were
48457 encountered during path name resolution

48458 • In the ERRORS section, [EPERM] or [EACCES] are added to indicate a permission check
48459 failure when operating on directories with S_ISVTX set.

48460 • In the ERRORS section, a second [ENAMETOOLONG] condition is defined that may report
48461 excessive length of an intermediate result of path name resolution of a symbolic link.

48462 Issue 5
48463 The [EBUSY] error is added to the ‘‘may fail’’ part of the ERRORS section.

48464 Issue 6
48465 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

48466 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
48467 This is since behavior may vary from one file system to another.

48468 The following new requirements on POSIX implementations derive from alignment with the
48469 Single UNIX Specification:

48470 • In the DESCRIPTION, the effect is specified if path specifies a symbolic link.

48471 • The [ELOOP] mandatory error condition is added.

2074 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces unlink()

48472 • A second [ENAMETOOLONG] is added as an optional error condition.

48473 • The [ETXTBSY] optional error condition is added.

48474 The following changes were made to align with the IEEE P1003.1a draft standard:

48475 • The [ELOOP] optional error condition is added.

48476 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2075

unlockpt() System Interfaces

48477 NAME
48478 unlockpt — unlock a pseudo-terminal master/slave pair

48479 SYNOPSIS
48480 XSI #include <stdlib.h>

48481 int unlockpt(int fildes);
48482

48483 DESCRIPTION
48484 The unlockpt () function shall unlock the slave pseudo-terminal device associated with the
48485 master to which fildes refers.

48486 Portable applications shall ensure that they call unlockpt () before opening the slave side of a
48487 pseudo-terminal device.

48488 RETURN VALUE
48489 Upon successful completion, unlockpt () shall return 0. Otherwise, it shall return −1 and set errno
48490 to indicate the error.

48491 ERRORS
48492 The unlockpt () function may fail if:

48493 [EBADF] The fildes argument is not a file descriptor open for writing. |

48494 [EINVAL] The fildes argument is not associated with a master pseudo-terminal device. |

48495 EXAMPLES
48496 None.

48497 APPLICATION USAGE
48498 None.

48499 RATIONALE
48500 None.

48501 FUTURE DIRECTIONS
48502 None.

48503 SEE ALSO
48504 grantpt(), open(), ptsname(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h> |

48505 CHANGE HISTORY
48506 First released in Issue 4, Version 2.

48507 Issue 5
48508 Moved from X/OPEN UNIX extension to BASE.

48509 Issue 6
48510 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2076 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces unsetenv()

48511 NAME
48512 unsetenv — remove environment variable

48513 SYNOPSIS
48514 #include <stdlib.h>

48515 int unsetenv(const char * name);

48516 DESCRIPTION
48517 The unsetenv() function removes an environment variable from the environment of the calling
48518 process. The name argument points to a string, which is the name of the variable to be removed.
48519 The named argument shall not contain an ’=’ character. If the named variable does not exist in
48520 the current environment, the environment is unchanged and the function is considered to have
48521 completed successfully.

48522 If the application modifies environ or the pointers to which it points, the behavior of unsetenv() is
48523 undefined. The unsetenv() function shall update the list of pointers to which environ points.

48524 The unsetenv() function need not be reentrant. A function that is not required to be reentrant is
48525 not required to be thread-safe.

48526 RETURN VALUE
48527 Upon successful completion, zero shall be returned. Otherwise, −1 shall be returned, errno set to
48528 indicate the error, and the environment shall be unchanged.

48529 ERRORS
48530 The unsetenv() function shall fail if:

48531 [EINVAL] The name argument is a null pointer, points to an empty string, or points to a
48532 string containing an ’=’ character.

48533 EXAMPLES
48534 None.

48535 APPLICATION USAGE
48536 None.

48537 RATIONALE
48538 Refer to the RATIONALE section in setenv().

48539 FUTURE DIRECTIONS
48540 None.

48541 SEE ALSO
48542 getenv(), setenv(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdlib.h>, |
48543 <sys/types.h>, <unistd.h>

CHANGE48544 HISTORY
48545 First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

System Interfaces, Issue 6 2077

usleep() System Interfaces

48546 NAME
48547 usleep — suspend execution for an interval

48548 SYNOPSIS
48549 XSI #include <unistd.h>

48550 int usleep(useconds_t useconds);
48551

48552 DESCRIPTION
48553 The usleep() function shall cause the calling thread to be suspended from execution until either
48554 the number of realtime microseconds specified by the argument useconds has elapsed or a signal
48555 is delivered to the calling thread and its action is to invoke a signal-catching function or to
48556 terminate the process. The suspension time may be longer than requested due to the scheduling
48557 of other activity by the system.

48558 The application shall ensure that the useconds argument is less than 1,000,000. If the value of
48559 useconds is 0, then the call has no effect.

48560 If a SIGALRM signal is generated for the calling process during execution of usleep() and if the
48561 SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether usleep()
48562 returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also
48563 unspecified whether it remains pending after usleep() returns or it is discarded.

48564 If a SIGALRM signal is generated for the calling process during execution of usleep(), except as a
48565 result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from
48566 delivery, it is unspecified whether that signal has any effect other than causing usleep() to return.

48567 If a signal-catching function interrupts usleep() and examines or changes either the time a
48568 SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or
48569 whether the SIGALRM signal is blocked from delivery, the results are unspecified.

48570 If a signal-catching function interrupts usleep() and calls siglongjmp () or longjmp() to restore an
48571 environment saved prior to the usleep() call, the action associated with the SIGALRM signal and
48572 the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also
48573 unspecified whether the SIGALRM signal is blocked, unless the process’ signal mask is restored
48574 as part of the environment.

48575 Implementations may place limitations on the granularity of timer values. For each interval
48576 timer, if the requested timer value requires a finer granularity than the implementation supports,
48577 the actual timer value shall be rounded up to the next supported value.

48578 Interactions between usleep() and any of the following are unspecified:

48579 nanosleep()
48580 setitimer()
48581 timer_create()
48582 timer_delete()
48583 timer_getoverrun()
48584 timer_gettime()
48585 timer_settime()
48586 ualarm()
48587 sleep()

2078 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces usleep()

48588 RETURN VALUE
48589 Upon successful completion, usleep() shall return 0; otherwise, it shall return −1 and set errno to
48590 indicate the error.

48591 ERRORS
48592 The usleep() function may fail if:

48593 [EINVAL] The time interval specified 1,000,000 or more microseconds. |

48594 EXAMPLES
48595 None.

48596 APPLICATION USAGE
48597 Applications are recommended to use nanosleep() if the Timers option is supported, or |
48598 setitimer(), timer_create(), timer_delete(), timer_getoverrun(), timer_gettime(), or timer_settime()
48599 instead of this function.

48600 RATIONALE
48601 None.

48602 FUTURE DIRECTIONS
48603 None.

48604 SEE ALSO
48605 alarm(), getitimer(), nanosleep(), sigaction (), sleep(), timer_create(), timer_delete(),
48606 timer_getoverrun(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

48607 CHANGE HISTORY
48608 First released in Issue 4, Version 2.

48609 Issue 5
48610 Moved from X/OPEN UNIX extension to BASE.

48611 The DESCRIPTION is changed to indicate that timers are now thread-based rather than
48612 process-based.

48613 Issue 6
48614 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2079

utime() System Interfaces

48615 NAME
48616 utime — set file access and modification times

48617 SYNOPSIS
48618 #include <utime.h>

48619 int utime(const char * path , const struct utimbuf * times);

48620 DESCRIPTION
48621 The utime() function shall set the access and modification times of the file named by the path
48622 argument.

48623 If times is a null pointer, the access and modification times of the file are set to the current time.
48624 The application shall ensure that the effective user ID of the process matches the owner of the
48625 file, or the process has write permission to the file or has appropriate privileges, to use utime() in
48626 this manner.

48627 If times is not a null pointer, times is interpreted as a pointer to a utimbuf structure and the
48628 access and modification times are set to the values contained in the designated structure. Only a
48629 process with effective user ID equal to the user ID of the file or a process with appropriate
48630 privileges may use utime() this way.

48631 The utimbuf structure is defined by the header <utime.h>. The times in the structure utimbuf
48632 are measured in seconds since the Epoch.

48633 Upon successful completion, utime() shall mark the time of the last file status change, st_ctime,
48634 to be updated; see <sys/stat.h>.

48635 RETURN VALUE
48636 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno shall
48637 be set to indicate the error, and the file times shall not be affected.

48638 ERRORS
48639 The utime() function shall fail if:

48640 [EACCES] Search permission is denied by a component of the path prefix; or the times |
48641 argument is a null pointer and the effective user ID of the process does not
48642 match the owner of the file, the process does not have write permission for the
48643 file, and the process does not have appropriate privileges. |

48644 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
48645 argument. |

48646 [ENAMETOOLONG] |
48647 The length of the path argument exceeds {PATH_MAX} or a path name
48648 component is longer than {NAME_MAX}. |

48649 [ENOENT] A component of path does not name an existing file or path is an empty string. |

48650 [ENOTDIR] A component of the path prefix is not a directory. |

48651 [EPERM] The times argument is not a null pointer and the calling process’ effective user |
48652 ID does not match the owner of the file and the calling process does not have
48653 the appropriate privileges.

48654 [EROFS] The file system containing the file is read-only. |

48655 The utime() function may fail if:

48656 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during
48657 resolution of the path argument. |

2080 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces utime()

48658 [ENAMETOOLONG] |
48659 As a result of encountering a symbolic link in resolution of the path argument,
48660 the length of the substituted path name string exceeded {PATH_MAX}. |

48661 EXAMPLES
48662 None.

48663 APPLICATION USAGE
48664 None.

48665 RATIONALE
48666 The actime structure member must be present so that an application may set it, even though an
48667 implementation may ignore it and not change the access time on the file. If an application
48668 intends to leave one of the times of a file unchanged while changing the other, it should use
48669 stat() to retrieve the file’s st_atime and st_mtime parameters, set actime and modtime in the buffer,
48670 and change one of them before making the utime() call.

48671 FUTURE DIRECTIONS
48672 None.

48673 SEE ALSO
48674 The Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, <utime.h> |

48675 CHANGE HISTORY
48676 First released in Issue 1. Derived from Issue 1 of the SVID. |

48677 Issue 4
48678 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
48679 XSI-conformant systems.

48680 The following change is incorporated for alignment with the ISO POSIX-1 standard:

48681 • The type of argument path is changed from char* to const char*, and times is changed from
48682 struct utimbuf* to const struct utimbuf*.

48683 The following change is incorporated for alignment with the FIPS requirements:

48684 • In the ERRORS section, the condition whereby [ENAMETOOLONG] is returned if a path
48685 name component is larger that {NAME_MAX} is now defined as mandatory and marked as
48686 an extension.

48687 Issue 4, Version 2
48688 The ERRORS section is updated for X/OPEN UNIX conformance as follows:

48689 • It states that [ELOOP] is returned if too many symbolic links are encountered during path
48690 name resolution.

48691 • A second [ENAMETOOLONG] condition is defined that may report excessive length of an
48692 intermediate result of path name resolution of a symbolic link.

48693 Issue 6
48694 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

48695 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

48696 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
48697 This is since behavior may vary from one file system to another.

48698 The following new requirements on POSIX implementations derive from alignment with the
48699 Single UNIX Specification:

System Interfaces, Issue 6 2081

utime() System Interfaces

48700 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
48701 required for conforming implementations of previous POSIX specifications, it was not
48702 required for UNIX applications.

48703 • The [ELOOP] mandatory error condition is added.

48704 • A second [ENAMETOOLONG] is added as an optional error condition.

48705 The following changes were made to align with the IEEE P1003.1a draft standard:

48706 • The [ELOOP] optional error condition is added.

48707 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2082 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces utimes()

48708 NAME
48709 utimes — set file access and modification times (LEGACY)

48710 SYNOPSIS
48711 XSI #include <sys/time.h>

48712 int utimes(const char * path , const struct timeval times[2]);
48713

48714 DESCRIPTION
48715 The utimes() function shall set the access and modification times of the file pointed to by the path
48716 argument to the value of the times argument. The utimes() function allows time specifications
48717 accurate to the microsecond.

48718 For utimes(), the times argument is an array of timeval structures. The first array member
48719 represents the date and time of last access, and the second member represents the date and time
48720 of last modification. The times in the timeval structure are measured in seconds and
48721 microseconds since the Epoch, although rounding toward the nearest second may occur.

48722 If the times argument is a null pointer, the access and modification times of the file shall be set to
48723 the current time. The application shall ensure that the effective user ID of the process is the same
48724 as the owner of the file, or has write access to the file or appropriate privileges to use this call in
48725 this manner. Upon completion, utimes() shall mark the time of the last file status change,
48726 st_ctime, for update.

48727 RETURN VALUE
48728 Upon successful completion, 0 shall be returned. Otherwise, −1 shall be returned and errno shall
48729 be set to indicate the error, and the file times shall not be affected.

48730 ERRORS
48731 The utimes() function shall fail if:

48732 [EACCES] Search permission is denied by a component of the path prefix; or the times |
48733 argument is a null pointer and the effective user ID of the process does not
48734 match the owner of the file and write access is denied.

48735 [ELOOP] A loop exists in symbolic links encountered during resolution of the path |
48736 argument. |

48737 [ENAMETOOLONG] |
48738 The length of the path argument exceeds {PATH_MAX} or a path name
48739 component is longer than {NAME_MAX}. |

48740 [ENOENT] A component of path does not name an existing file or path is an empty string. |

48741 [ENOTDIR] A component of the path prefix is not a directory. |

48742 [EPERM] The times argument is not a null pointer and the calling process’ effective user |
48743 ID has write access to the file but does not match the owner of the file and the
48744 calling process does not have the appropriate privileges.

48745 [EROFS] The file system containing the file is read-only. |

48746 The utimes() function may fail if:

48747 [ELOOP] More than {SYMLOOP_MAX} symbolic links were encountered during |
48748 resolution of the path argument. |

48749 [ENAMETOOLONG] |
48750 Path name resolution of a symbolic link produced an intermediate result
48751 whose length exceeds {PATH_MAX}.

System Interfaces, Issue 6 2083

utimes() System Interfaces

48752 EXAMPLES
48753 None.

48754 APPLICATION USAGE
48755 For applications portability, the utime() function should be used to set file access and
48756 modification times instead of utimes().

48757 RATIONALE
48758 None.

48759 FUTURE DIRECTIONS
48760 This function may be withdrawn in a future version.

48761 SEE ALSO
48762 The Base Definitions volume of IEEE Std. 1003.1-200x, <sys/time.h> |

48763 CHANGE HISTORY
48764 First released in Issue 4, Version 2.

48765 Issue 5
48766 Moved from X/OPEN UNIX extension to BASE.

48767 Issue 6
48768 This function is marked LEGACY.

48769 The following changes are made for alignment with the ISO POSIX-1: 1996 standard:

48770 • The [ENAMETOOLONG] error is restored as an error dependent on _POSIX_NO_TRUNC.
48771 This is since behavior may vary from one file system to another.

48772 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

48773 The wording of the mandatory [ELOOP] error condition is updated, and a second optional |
48774 [ELOOP] error condition is added. |

2084 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces va_arg()

48775 NAME
48776 va_arg, va_copy, va_end, va_start — handle variable argument list |

48777 SYNOPSIS
48778 #include <stdarg.h>

48779 type va_arg(va_list ap, type);
48780 void va_copy(va_list dest , va_list src); |
48781 void va_end(va_list ap); |
48782 void va_start(va_list ap, argN);

48783 DESCRIPTION
48784 Refer to the Base Definitions volume of IEEE Std. 1003.1-200x, <stdarg.h>. |

System Interfaces, Issue 6 2085

vfork() System Interfaces

48785 NAME
48786 vfork — create new process; share virtual memory

48787 SYNOPSIS
48788 XSI #include <unistd.h>

48789 pid_t vfork(void);
48790

48791 DESCRIPTION
48792 The vfork () function has the same effect as fork (), except that the behavior is undefined if the
48793 process created by vfork () either modifies any data other than a variable of type pid_t used to
48794 store the return value from vfork (), or returns from the function in which vfork () was called, or
48795 calls any other function before successfully calling _exit() or one of the exec family of functions.

48796 RETURN VALUE
48797 Upon successful completion, vfork () shall return 0 to the child process and return the process ID
48798 of the child process to the parent process. Otherwise, −1 shall be returned to the parent, no child
48799 process shall be created, and errno shall be set to indicate the error.

48800 ERRORS
48801 The vfork () function shall fail if:

48802 [EAGAIN] The system-wide limit on the total number of processes under execution |
48803 would be exceeded, or the system-imposed limit on the total number of
48804 processes under execution by a single user would be exceeded.

48805 [ENOMEM] There is insufficient swap space for the new process. |

48806 EXAMPLES
48807 None.

48808 APPLICATION USAGE
48809 On some systems, vfork () is the same as fork ().

48810 The vfork () function differs from fork () only in that the child process can share code and data
48811 with the calling process (parent process). This speeds cloning activity significantly at a risk to
48812 the integrity of the parent process if vfork () is misused.

48813 The use of vfork () for any purpose except as a prelude to an immediate call to a function from
48814 the exec family, or to _exit(), is not advised.

48815 The vfork () function can be used to create new processes without fully copying the address
48816 space of the old process. If a forked process is simply going to call exec, the data space copied
48817 from the parent to the child by fork () is not used. This is particularly inefficient in a paged
48818 environment, making vfork () particularly useful. Depending upon the size of the parent’s data
48819 space, vfork () can give a significant performance improvement over fork ().

48820 The vfork () function can normally be used just like fork (). It does not work, however, to return
48821 while running in the child’s context from the caller of vfork () since the eventual return from
48822 vfork () would then return to a no longer existent stack frame. Care should be taken, also, to call
48823 _exit() rather than exit() if exec cannot be used, since exit() flushes and closes standard I/O
48824 channels, thereby damaging the parent process’ standard I/O data structures. (Even with fork (),
48825 it is wrong to call exit(), since buffered data would then be flushed twice.)

48826 If signal handlers are invoked in the child process after vfork (), they must follow the same rules
48827 as other code in the child process.

2086 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces vfork()

48828 RATIONALE
48829 None.

48830 FUTURE DIRECTIONS
48831 None.

48832 SEE ALSO
48833 exec, exit(), fork (), wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <unistd.h> |

48834 CHANGE HISTORY
48835 First released in Issue 4, Version 2.

48836 Issue 5
48837 Moved from X/OPEN UNIX extension to BASE.

System Interfaces, Issue 6 2087

vfprintf() System Interfaces

48838 NAME
48839 vfprintf, vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

48840 SYNOPSIS
48841 #include <stdarg.h>
48842 #include <stdio.h>

48843 int vfprintf(FILE *restrict stream , const char *restrict format , |
48844 va_list ap); |
48845 int vprintf(const char *restrict format , va_list ap); |
48846 XSI int vsnprintf(char *restrict s, size_t n, const char *restrict format , |
48847 va_list ap); |
48848 int vsprintf(char *restrict s, const char *restrict format , va_list ap); |

48849 DESCRIPTION |
48850 CX For vfprintf (), vprintf(), and vsprintf(): The functionality described on this reference page is
48851 aligned with the ISO C standard. Any conflict between the requirements described here and the
48852 ISO C standard is unintentional. This volume of IEEE Std. 1003.1-200x defers to the ISO C
48853 standard.

48854 XSI The vprintf(), vfprintf (), vsnprintf(), and vsprintf() functions shall be the same as printf(),
48855 XSI fprintf (), snprintf(), and sprintf() respectively, except that instead of being called with a variable
48856 number of arguments, they are called with an argument list as defined by <stdarg.h>.

48857 These functions do not invoke the va_end macro. As these functions invoke the va_arg macro, the
48858 value of ap after the return is indeterminate.

48859 RETURN VALUE
48860 Refer to fprintf ().

48861 ERRORS
48862 Refer to fprintf ().

48863 EXAMPLES
48864 None.

48865 APPLICATION USAGE
48866 Applications using these functions should call va_end(ap) afterwards to clean up.

48867 RATIONALE
48868 None.

48869 FUTURE DIRECTIONS
48870 None.

48871 SEE ALSO
48872 fprintf (), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdarg.h>, <stdio.h> |

48873 CHANGE HISTORY
48874 First released in Issue 1. Derived from Issue 1 of the SVID. |

48875 Issue 4
48876 The APPLICATION USAGE section is added.

48877 The FUTURE DIRECTIONS section is removed.

48878 The following changes are incorporated for alignment with the ISO C standard:

48879 • These functions are no longer marked as extensions.

2088 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces vfprintf()

48880 • The type of argument format is changed from char* to const char*.

48881 • Reference to the <varargs.h> header in the DESCRIPTION is replaced by <stdarg.h>. The
48882 last paragraph has also been added to indicate interactions with the va_arg and va_end
48883 macros.

48884 Issue 5
48885 The vsnprintf() function is added. |

48886 Issue 6 |
48887 The vfprintf (), vprintf(), vsnprintf(), and vsprintf() functions are updated for alignment with the |
48888 ISO/IEC 9899: 1999 standard. |

|

System Interfaces, Issue 6 2089

vfscanf() System Interfaces

48889 NAME |
48890 vfscanf, vscanf, vsscanf — format input of a stdarg list |

48891 SYNOPSIS |
48892 #include <stdarg.h> |
48893 #include <stdio.h> |

48894 int vfscanf(FILE *restrict stream , const char *restrict format , |
48895 va_list arg); |
48896 int vscanf(const char *restrict format , va_list arg); |
48897 int vsscanf(const char *restrict s, const char *restrict format , |
48898 va_list arg); |

48899 DESCRIPTION |
48900 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
48901 conflict between the requirements described here and the ISO C standard is unintentional. This |
48902 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

48903 These functions shall be equivalent to the scanf(), fscanf(), and sscanf() functions, respectively, |
48904 except that instead of being called with a variable number of arguments, they are called with an |
48905 argument list as defined by the <stdarg.h> header. These functions do not invoke the va_end |
48906 macro. As these functions invoke the va_arg macro, the value of ap after the return is |
48907 indeterminate. |

48908 RETURN VALUE |
48909 Refer to fscanf(). |

48910 ERRORS |
48911 Refer to fscanf(). |

48912 EXAMPLES |
48913 None. |

48914 APPLICATION USAGE |
48915 Applications using these functions should call va_end(ap) afterwards to clean up. |

48916 RATIONALE |
48917 None. |

48918 FUTURE DIRECTIONS |
48919 None. |

48920 SEE ALSO |
48921 fscanf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdarg.h>, <stdio.h> |

48922 CHANGE HISTORY |
48923 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

2090 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces vfwprintf()

48924 NAME
48925 vfwprintf, vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

48926 SYNOPSIS
48927 #include <stdarg.h>
48928 #include <stdio.h>
48929 #include <wchar.h>

48930 int vfwprintf(FILE *restrict stream , const wchar_t *restrict format , |
48931 va_list arg); |
48932 int vswprintf(wchar_t *restrict ws, size_t n, const wchar_t *restrict format ,|
48933 va_list arg); |
48934 int vwprintf(const wchar_t *restrict format , va_list arg); |

48935 DESCRIPTION |
48936 CX The functionality described on this reference page is aligned with the ISO C standard. Any
48937 conflict between the requirements described here and the ISO C standard is unintentional. This
48938 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

48939 The vfwprintf (), vswprintf(), and vwprintf() functions shall be the same as fwprintf(), swprintf(),
48940 and wprintf() respectively, except that instead of being called with a variable number of
48941 arguments, they are called with an argument list as defined by <stdarg.h>.

48942 These functions do not invoke the va_end macro. However, as these functions do invoke the
48943 va_arg macro, the value of ap after the return is indeterminate.

48944 RETURN VALUE
48945 Refer to fwprintf().

48946 ERRORS
48947 Refer to fwprintf().

48948 EXAMPLES
48949 None.

48950 APPLICATION USAGE
48951 Applications using these functions should call va_end(ap) afterwards to clean up.

48952 RATIONALE
48953 None.

48954 FUTURE DIRECTIONS
48955 None.

48956 SEE ALSO
48957 fwprintf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdarg.h>, <stdio.h>, |
48958 <wchar.h>

CHANGE48959 HISTORY
48960 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
48961 (E). |

48962 Issue 6 |
48963 The vfwprintf (), vswprintf(), and vwprintf() prototypes are updated for alignment with the |
48964 ISO/IEC 9899: 1999 standard. () |

|

System Interfaces, Issue 6 2091

vfwscanf() System Interfaces

48965 NAME |
48966 vfwscanf, vswscanf, vwscanf — wide-character formattted input of a stdarg list |

48967 SYNOPSIS |
48968 #include <stdarg.h> |
48969 #include <stdio.h> |
48970 #include <wchar.h> |

48971 int vfwscanf(FILE *restrict stream , const wchar_t *restrict format , |
48972 va_list arg); |
48973 int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format , |
48974 va_list arg); |
48975 int vwscanf(const wchar_t *restrict format , va_list arg); |

48976 DESCRIPTION |
48977 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
48978 conflict between the requirements described here and the ISO C standard is unintentional. This |
48979 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

48980 These functions shall be equivalent to the fwscanf(), swscanf(), and wscanf() functions, |
48981 respectively, except that instead of being called with a variable number of arguments, they are |
48982 called with an argument list as defined by the <stdarg.h> header. These functions do not invoke |
48983 the va_end macro. As these functions invoke the va_arg macro, the value of ap after the return is |
48984 indeterminate. |

48985 RETURN VALUE |
48986 Refer to fwscanf(). |

48987 ERRORS |
48988 Refer to fwscanf(). |

48989 EXAMPLES |
48990 None. |

48991 APPLICATION USAGE |
48992 Applications using these functions should call va_end(ap) afterwards to clean up. |

48993 RATIONALE |
48994 None. |

48995 FUTURE DIRECTIONS |
48996 None. |

48997 SEE ALSO |
48998 fwscanf(), the Base Definitions volume of IEEE Std. 1003.1-200x, <stdarg.h>, <stdio.h>, |
48999 <wchar.h> |

49000 CHANGE HISTORY |
49001 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

2092 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces vprintf()

49002 NAME
49003 vprintf, vsnprintf, vsprintf — format output of a stdarg argument list

49004 SYNOPSIS
49005 #include <stdarg.h>
49006 #include <stdio.h>

49007 int vprintf(const char * format , va_list ap);
49008 XSI int vsnprintf(char * s, size_t n, const char * format , va_list ap);
49009 int vsprintf(char * s, const char * format , va_list ap);

49010 DESCRIPTION
49011 Refer to vfprintf ().

|

System Interfaces, Issue 6 2093

vscanf() System Interfaces

49012 NAME |
49013 vscanf, vsscanf — format input of a stdarg list |

49014 SYNOPSIS |
49015 #include <stdarg.h> |
49016 #include <stdio.h> |

49017 int vscanf(const char *restrict format , va_list arg); |
49018 int vsscanf(const char *restrict s, const char *restrict format , |
49019 va_list arg); |

49020 DESCRIPTION |
49021 Refer to vfscanf (). |

|

2094 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces vswprintf()

49022 NAME
49023 vswprintf, vwprintf — wide-character formatted output of a stdarg argument list

49024 SYNOPSIS
49025 #include <stdarg.h>
49026 #include <stdio.h>
49027 #include <wchar.h>

49028 int vswprintf(wchar_t * ws, size_t n, const wchar_t * format , |
49029 va_list arg); |
49030 int vwprintf(const wchar_t * format , va_list arg);

49031 DESCRIPTION
49032 Refer to vfwprintf (). |

|

System Interfaces, Issue 6 2095

vswscanf() System Interfaces

49033 NAME |
49034 vswscanf, vwscanf — wide-character formattted input of a stdarg list |

49035 SYNOPSIS |
49036 #include <stdarg.h> |
49037 #include <stdio.h> |
49038 #include <wchar.h> |

49039 int vswscanf(const wchar_t *restrict ws, const wchar_t *restrict format , |
49040 va_list arg); |
49041 int vwscanf(const wchar_t *restrict format , va_list arg); |

49042 DESCRIPTION |
49043 Refer to vfwscanf(). |

|

2096 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wait()

49044 NAME
49045 wait, waitpid — wait for a child process to stop or terminate

49046 SYNOPSIS
49047 #include <sys/wait.h>

49048 pid_t wait(int * stat_loc);
49049 pid_t waitpid(pid_t pid , int * stat_loc , int options);

49050 DESCRIPTION
49051 The wait() and waitpid () functions allow the calling process to obtain status information
49052 pertaining to one of its child processes. Various options permit status information to be obtained
49053 for child processes that have terminated or stopped. If status information is available for two or
49054 more child processes, the order in which their status is reported is unspecified.

49055 The wait() function shall suspend execution of the calling thread until status information for one
49056 of the terminated child processes of the calling process is available, or until delivery of a signal
49057 whose action is either to execute a signal-catching function or to terminate the process. If more
49058 than one thread is suspended in wait() or waitpid () awaiting termination of the same process,
49059 exactly one thread shall return the process status at the time of the target process termination. If
49060 status information is available prior to the call to wait(), return shall be immediate.

49061 The waitpid () function shall behave identically to wait() if the pid argument is (pid_t)−1 and the
49062 options argument is 0. Otherwise, its behavior shall be modified by the values of the pid and
49063 options arguments.

49064 The pid argument specifies a set of child processes for which status is requested. The waitpid ()
49065 function shall only return the status of a child process from this set:

49066 • If pid is equal to (pid_t)−1, status is requested for any child process. In this respect, waitpid ()
49067 is then equivalent to wait().

49068 • If pid is greater than 0, it specifies the process ID of a single child process for which status is
49069 requested.

49070 • If pid is 0, status is requested for any child process whose process group ID is equal to that of
49071 the calling process.

49072 • If pid is less than (pid_t)−1, status is requested for any child process whose process group ID
49073 is equal to the absolute value of pid .

49074 The options argument is constructed from the bitwise-inclusive OR of zero or more of the
49075 following flags, defined in the header <sys/wait.h>:

49076 XSI WCONTINUED The waitpid () function shall report the status of any continued child process
49077 specified by pid whose status has not been reported since it continued from a
49078 job control stop.

49079 WNOHANG The waitpid () function shall not suspend execution of the calling thread if
49080 status is not immediately available for one of the child processes specified by
49081 pid .

49082 WUNTRACED The status of any child processes specified by pid that are stopped, and whose
49083 status has not yet been reported since they stopped, shall also be reported to |
49084 the requesting process. |

49085 XSI If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIG_IGN, and the
49086 process has no unwaited-for children that were transformed into zombie processes, the calling
49087 thread shall block until all of the children of the process containing the calling thread terminate,
49088 and wait() and waitpid () shall fail and set errno to [ECHILD].

System Interfaces, Issue 6 2097

wait() System Interfaces

49089 If wait() or waitpid () return because the status of a child process is available, these functions
49090 shall return a value equal to the process ID of the child process. In this case, if the value of the
49091 argument stat_loc is not a null pointer, information shall be stored in the location pointed to by
49092 stat_loc . The value stored at the location pointed to by stat_loc shall be 0 if and only if the status |
49093 returned is from a terminated child process that terminated by one of the following means: |

49094 1. The process returned 0 from main(). |

49095 2. The process called _exit() or exit() with a status argument of 0. |

49096 3. The process was terminated because the last thread in the process terminated. |

49097 Regardless of its value, this information may be interpreted using the following macros, which |
49098 are defined in <sys/wait.h> and evaluate to integral expressions; the stat_val argument is the
49099 integer value pointed to by stat_loc .

49100 WIFEXITED(stat_val)
49101 Evaluates to a non-zero value if status was returned for a child process that terminated
49102 normally.

49103 WEXITSTATUS(stat_val)
49104 If the value of WIFEXITED(stat_val) is non-zero, this macro evaluates to the low-order 8 bits
49105 of the status argument that the child process passed to _exit() or exit(), or the value the child
49106 process returned from main().

49107 WIFSIGNALED(stat_val)
49108 Evaluates to non-zero value if status was returned for a child process that terminated due to
49109 the receipt of a signal that was not caught (see <signal.h>).

49110 WTERMSIG(stat_val)
49111 If the value of WIFSIGNALED(stat_val) is non-zero, this macro evaluates to the number of
49112 the signal that caused the termination of the child process.

49113 WIFSTOPPED(stat_val)
49114 Evaluates to a non-zero value if status was returned for a child process that is currently
49115 stopped.

49116 WSTOPSIG(stat_val)
49117 If the value of WIFSTOPPED(stat_val) is non-zero, this macro evaluates to the number of the
49118 signal that caused the child process to stop.

49119 XSI WIFCONTINUED(stat_val)
49120 Evaluates to a non-zero value if status was returned for a child process that has continued
49121 from a job control stop.

49122 SPN It is unspecified whether the status value returned by calls to wait() or waitpid () for processes
49123 created by posix_spawn () or posix_spawnp () may indicate a WIFSTOPPED(stat_val) before
49124 subsequent calls to wait() or waitpid () indicate WIFEXITED(stat_val) as the result of an error
49125 detected before the new process image starts executing.

49126 It is unspecified whether the status value returned by calls to wait() or waitpid () for processes
49127 created by posix_spawn () or posix_spawnp () may indicate a WIFSIGNALED(stat_val) if a signal is
49128 sent to the parent’s process group after posix_spawn () or posix_spawnp () is called.

49129 If the information pointed to by stat_loc was stored by a call to waitpid () that specified the
49130 XSI WUNTRACED flag and did not specify the WCONTINUED flag, exactly one of the macros
49131 WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc) shall evaluate to
49132 a non-zero value.

2098 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wait()

49133 If the information pointed to by stat_loc was stored by a call to waitpid () that specified the
49134 XSI WUNTRACED and WCONTINUED flags, exactly one of the macros WIFEXITED(*stat_loc),
49135 XSI WIFSIGNALED(*stat_loc), WIFSTOPPED(*stat_loc), and WIFCONTINUED(*stat_loc) shall
49136 evaluate to a non-zero value.

49137 If the information pointed to by stat_loc was stored by a call to waitpid () that did not specify the
49138 XSI WUNTRACED or WCONTINUED flags, or by a call to the wait() function, exactly one of the
49139 macros WIFEXITED(*stat_loc) and WIFSIGNALED(*stat_loc) shall evaluate to a non-zero value.

49140 If the information pointed to by stat_loc was stored by a call to waitpid () that did not specify the
49141 XSI WUNTRACED flag and specified the WCONTINUED flag, or by a call to the wait() function,
49142 XSI exactly one of the macros WIFEXITED(*stat_loc), WIFSIGNALED(*stat_loc), and
49143 WIFCONTINUED(*stat_loc)shall evaluate to a non-zero value.

49144 If _POSIX_REALTIME_SIGNALS is defined, and the implementation queues the SIGCHLD
49145 signal, then if wait() or waitpid () returns because the status of a child process is available, any
49146 pending SIGCHLD signal associated with the process ID of the child process shall be discarded.
49147 Any other pending SIGCHLD signals shall remain pending.

49148 Otherwise, if SIGCHLD is blocked, if wait() or waitpid () return because the status of a child
49149 process is available, any pending SIGCHLD signal shall be cleared unless the status of another
49150 child process is available.

49151 For all other conditions, it is unspecified whether child status will be available when a SIGCHLD
49152 signal is delivered.

49153 There may be additional implementation-defined circumstances under which wait() or waitpid () |
49154 report status. This shall not occur unless the calling process or one of its child processes explicitly
49155 makes use of a non-standard extension. In these cases the interpretation of the reported status is |
49156 implementation-defined. |

49157 XSI If a parent process terminates without waiting for all of its child processes to terminate, the
49158 remaining child processes shall be assigned a new parent process ID corresponding to an |
49159 implementation-defined system process. |

49160 RETURN VALUE
49161 If wait() or waitpid () returns because the status of a child process is available, these functions
49162 shall return a value equal to the process ID of the child process for which status is reported. If
49163 wait() or waitpid () returns due to the delivery of a signal to the calling process, −1 shall be
49164 returned and errno set to [EINTR]. If waitpid () was invoked with WNOHANG set in options , it
49165 has at least one child process specified by pid for which status is not available, and status is not
49166 available for any process specified by pid , 0 is returned. Otherwise, (pid_t)−1 shall be returned,
49167 and errno set to indicate the error.

49168 ERRORS
49169 The wait() function shall fail if:

49170 [ECHILD] The calling process has no existing unwaited-for child processes. |

49171 [EINTR] The function was interrupted by a signal. The value of the location pointed to |
49172 by stat_loc is undefined.

49173 The waitpid () function shall fail if:

49174 [ECHILD] The process specified by pid does not exist or is not a child of the calling |
49175 process, or the process group specified by pid does not exist or does not have
49176 any member process that is a child of the calling process.

System Interfaces, Issue 6 2099

wait() System Interfaces

49177 [EINTR] The function was interrupted by a signal. The value of the location pointed to |
49178 by stat_loc is undefined.

49179 [EINVAL] The options argument is not valid. |

49180 EXAMPLES
49181 None.

49182 APPLICATION USAGE
49183 None.

49184 RATIONALE
49185 A call to the wait() or waitpid () function only returns status on an immediate child process of the
49186 calling process; that is, a child that was produced by a single fork () call (perhaps followed by an
49187 exec or other function calls) from the parent. If a child produces grandchildren by further use of
49188 fork (), none of those grandchildren nor any of their descendants affect the behavior of a wait()
49189 from the original parent process. Nothing in this volume of IEEE Std. 1003.1-200x prevents an
49190 implementation from providing extensions that permit a process to get status from a grandchild
49191 or any other process, but a process that does not use such extensions must be guaranteed to see
49192 status from only its direct children.

49193 The waitpid () function is provided for three reasons:

49194 1. To support job control

49195 2. To permit a non-blocking version of the wait() function

49196 3. To permit a library routine, such as system() or pclose(), to wait for its children without
49197 interfering with other terminated children for which the process has not waited

49198 The first two of these facilities are based on the wait3() function provided by 4.3 BSD. The
49199 function uses the options argument, which is identical to an argument to wait3(). The
49200 WUNTRACED flag is used only in conjunction with job control on systems supporting job
49201 control. Its name comes from 4.3 BSD and refers to the fact that there are two types of stopped
49202 processes in that implementation: processes being traced via the ptrace() debugging facility and
49203 (untraced) processes stopped by job control signals. Since ptrace() is not part of this volume of
49204 IEEE Std. 1003.1-200x, only the second type is relevant. The name WUNTRACED was retained
49205 because its usage is the same, even though the name is not intuitively meaningful in this context.

49206 The third reason for the waitpid () function is to permit independent sections of a process to
49207 spawn and wait for children without interfering with each other. For example, the following
49208 problem occurs in developing a portable shell, or command interpreter:

49209 stream = popen("/bin/true");
49210 (void) system("sleep 100");
49211 (void) pclose(stream);

49212 On all historical implementations, the final pclose() fails to reap the wait() status of the popen().

49213 The status values are retrieved by macros, rather than given as specific bit encodings as they are
49214 in most historical implementations (and thus expected by existing programs). This was
49215 necessary to eliminate a limitation on the number of signals an implementation can support that
49216 was inherent in the traditional encodings. This volume of IEEE Std. 1003.1-200x does require that
49217 a status value of zero corresponds to a process calling _exit(0), as this is the most common
49218 encoding expected by existing programs. Some of the macro names were adopted from 4.3 BSD.

49219 These macros syntactically operate on an arbitrary integer value. The behavior is undefined
49220 unless that value is one stored by a successful call to wait() or waitpid () in the location pointed
49221 to by the stat_loc argument. An early proposal attempted to make this clearer by specifying each

2100 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wait()

49222 argument as *stat_loc rather than stat_val . However, that did not follow the conventions of other
49223 specifications in this volume of IEEE Std. 1003.1-200x or traditional usage. It also could have
49224 implied that the argument to the macro must literally be *stat_loc; in fact, that value can be
49225 stored or passed as an argument to other functions before being interpreted by these macros.

49226 The extension that affects wait() and waitpid () and is common in historical implementations is
49227 the ptrace() function. It is called by a child process and causes that child to stop and return a
49228 status that appears identical to the status indicated by WIFSTOPPED. The status of ptrace()
49229 children is traditionally returned regardless of the WUNTRACED flag (or by the wait()
49230 function). Most applications do not need to concern themselves with such extensions because
49231 they have control over what extensions they or their children use. However, applications, such
49232 as command interpreters, that invoke arbitrary processes may see this behavior when those
49233 arbitrary processes misuse such extensions.

49234 Implementations that support core file creation or other implementation-defined actions on |
49235 termination of some processes traditionally provide a bit in the status returned by wait() to |
49236 indicate that such actions have occurred.

49237 Allowing the wait() family of functions to discard a pending SIGCHLD signal that is associated
49238 with a successfully waited-for child process puts them into the sigwait () and sigwaitinfo ()
49239 category with respect to SIGCHLD.

49240 This definition allows implementations to treat a pending SIGCHLD signal as accepted by the
49241 process in wait(), with the same meaning of ‘‘accepted’’ as when that word is applied to the
49242 sigwait () family of functions.

49243 Allowing the wait() family of functions to behave this way permits an implementation to be able
49244 to deal precisely with SIGCHLD signals.

49245 In particular, an implementation that does accept (discard) the SIGCHLD signal can make the
49246 following guarantees regardless of the queuing depth of signals in general (the list of waitable
49247 children can hold the SIGCHLD queue):

49248 1. If a SIGCHLD signal handler is established via sigaction () without the SA_RESETHAND
49249 flag, SIGCHLD signals can be accurately counted; that is, exactly one SIGCHLD signal will
49250 be delivered to or accepted by the process for every child process that terminates.

49251 2. A single wait() issued from a SIGCHLD signal handler can be guaranteed to return
49252 immediately with status information for a child process.

49253 3. When SA_SIGINFO is requested, the SIGCHLD signal handler can be guaranteed to
49254 receive a non-NULL pointer to a siginfo_t structure that describes a child process for
49255 which a wait via waitpid () or waitid () will not block or fail.

49256 4. The system() function will not cause a processs SIGCHLD handler to be called as a result of
49257 the fork ()/exec executed within system() because system() will accept the SIGCHLD signal
49258 when it performs a waitpid () for its child process. This is a desirable behavior of system()
49259 so that it can be used in a library without causing side effects to the application linked with
49260 the library.

49261 An implementation that does not permit the wait() family of functions to accept (discard) a
49262 pending SIGCHLD signal associated with a successfully waited-for child, cannot make the
49263 guarantees described above for the following reasons:

49264 Guarantee #1
49265 Although it might be assumed that reliable queuing of all SIGCHLD signals generated by
49266 the system can make this guarantee, the counter example is the case of a process that blocks
49267 SIGCHLD and performs an indefinite loop of fork ()/wait() operations. If the

System Interfaces, Issue 6 2101

wait() System Interfaces

49268 implementation supports queued signals, then eventually the system will run out of
49269 memory for the queue. The guarantee cannot be made because there must be some limit to
49270 the depth of queuing.

49271 Guarantees #2 and #3
49272 These cannot be guaranteed unless the wait() family of functions accepts the SIGCHLD
49273 signal. Otherwise, a fork ()/wait() executed while SIGCHLD is blocked (as in the system()
49274 function) will result in an invocation of the handler when SIGCHLD is unblocked, after the
49275 process has disappeared.

49276 Guarantee #4
49277 Although possible to make this guarantee, system() would have to set the SIGCHLD
49278 handler to SIG_DFL so that the SIGCHLD signal generated by its fork () would be discarded
49279 (the SIGCHLD default action is to be ignored), then restore it to its previous setting. This
49280 would have the undesirable side effect of discarding all SIGCHLD signals pending to the
49281 process.

49282 FUTURE DIRECTIONS
49283 None.

49284 SEE ALSO
49285 exec, exit(), fork (), waitid (), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/types.h>, |
49286 <sys/wait.h>

CHANGE49287 HISTORY
49288 First released in Issue 1. Derived from Issue 1 of the SVID. |

49289 Issue 4
49290 The <sys/types.h> header is now marked as optional (OH); this header need not be included on
49291 XSI-conformant systems.

49292 Error return values throughout the DESCRIPTION and RETURN VALUE sections are changed
49293 to show the proper casting (that is, (pid_t)−1).

49294 The words ‘‘If the implementation supports job control’’ are removed from the description of
49295 WUNTRACED. This is because job control is defined as mandatory for Issue 4 conforming
49296 implementations.

49297 The following change is incorporated for alignment with the ISO POSIX-1 standard:

49298 • Text describing conditions under which 0 is returned when WNOHANG is set in options is
49299 added to the RETURN VALUE section.

49300 Issue 4, Version 2
49301 The waitpid () function is added.

49302 The following changes are incorporated in the DESCRIPTION for X/OPEN UNIX conformance:

49303 • The WCONTINUED options flag and the WIFCONTINUED(stat_val) macro are added.

49304 • Text following the list of options flags explains the implications of setting the
49305 SA_NOCLDWAIT signal flag, or setting SIGCHLD to SIG_IGN.

49306 • Text following the list of macros, which explains what macros return non-zero values in
49307 certain cases, is expanded and the value of the WCONTINUED flag on the previous call to
49308 waitpid () is taken into account.

2102 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wait()

49309 Issue 5
49310 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

49311 Issue 6
49312 In the SYNOPSIS, the inclusion of <sys/types.h> is no longer required.

49313 The following new requirements on POSIX implementations derive from alignment with the
49314 Single UNIX Specification:

49315 • The requirement to include <sys/types.h> has been removed. Although <sys/types.h> was
49316 required for conforming implementations of previous POSIX specifications, it was not
49317 required for UNIX applications.

49318 The following changes were made to align with the IEEE P1003.1a draft standard:

49319 • The processing of the SIGCHLD signal and the [ECHILD] error is clarified.

49320 The semantics of WIFSTOPPED(stat_val), WIFEXITED(stat_val), and WIFSIGNALED(stat_val)
49321 are defined with respect to posix_spawn () or posix_spawnp () for alignment with
49322 IEEE Std. 1003.1d-1999. |

49323 The DESCRIPTION is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 2103

waitid() System Interfaces

49324 NAME
49325 waitid — wait for a child process to change state

49326 SYNOPSIS
49327 XSI #include <sys/wait.h>

49328 int waitid(idtype_t idtype , id_t id , siginfo_t * infop , int options);
49329

49330 DESCRIPTION
49331 The waitid () function shall suspend the calling thread until one child of the process containing
49332 the calling thread changes state. It records the current state of a child in the structure pointed to
49333 by infop . If a child process changed state prior to the call to waitid (), waitid () returns
49334 immediately. If more than one thread is suspended in wait() or waitpid () waiting termination of
49335 the same process, exactly one thread returns the process status at the time of the target process
49336 termination

49337 The idtype and id arguments are used to specify which children waitid () waits for.

49338 If idtype is P_PID, waitid () shall wait for the child with a process ID equal to (pid_t)id.

49339 If idtype is P_PGID, waitid () shall wait for any child with a process group ID equal to (pid_t)id.

49340 If idtype is P_ALL, waitid () shall wait for any children and id is ignored.

49341 The options argument is used to specify which state changes waitid () shall wait for. It is formed
49342 by OR’ing together one or more of the following flags:

49343 WEXITED Wait for processes that have exited.

49344 WSTOPPED Status shall be returned for any child that has stopped upon receipt of a signal.

49345 WCONTINUED Status shall be returned for any child that was stopped and has been
49346 continued.

49347 WNOHANG Return immediately if there are no children to wait for.

49348 WNOWAIT Keep the process whose status is returned in infop in a waitable state. This
49349 shall not affect the state of the process; the process may be waited for again
49350 after this call completes.

49351 The application shall ensure that the infop argument points to a siginfo_t structure. If waitid ()
49352 returns because a child process was found that satisfied the conditions indicated by the
49353 arguments idtype and options, then the structure pointed to by infop shall be filled in by the
49354 system with the status of the process. The si_signo member shall always be equal to SIGCHLD.

49355 RETURN VALUE

49356 Notes to Reviewers
49357 This section with side shading will not appear in the final copy. - Ed.

49358 D1, XSH, ERN 416 points out an omission. The following text is proposed: ‘‘If WNOHANG was
49359 specified and there are no children to wait for, 0 shall be returned.’’
49360 If waitid () returns due to the change of state of one of its children, 0 shall be returned. Otherwise,
49361 −1 shall be returned and errno set to indicate the error.

49362 ERRORS
49363 The waitid () function shall fail if:

49364 [ECHILD] The calling process has no existing unwaited-for child processes. |

2104 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces waitid()

49365 [EINTR] The waitid () function was interrupted by a signal. |

49366 [EINVAL] An invalid value was specified for options , or idtype and id specify an invalid |
49367 set of processes.

49368 EXAMPLES
49369 None.

49370 APPLICATION USAGE
49371 None.

49372 RATIONALE
49373 None.

49374 FUTURE DIRECTIONS
49375 None.

49376 SEE ALSO
49377 exec, exit(), wait(), the Base Definitions volume of IEEE Std. 1003.1-200x, <sys/wait.h> |

49378 CHANGE HISTORY
49379 First released in Issue 4, Version 2.

49380 Issue 5
49381 Moved from X/OPEN UNIX extension to BASE.

49382 The DESCRIPTION is updated for alignment with the POSIX Threads Extension.

49383 Issue 6
49384 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2105

waitpid() System Interfaces

49385 NAME
49386 waitpid — wait for a child process to stop or terminate

49387 SYNOPSIS
49388 #include <sys/wait.h>

49389 pid_t waitpid(pid_t pid , int * stat_loc , int options);

49390 DESCRIPTION
49391 Refer to wait().

2106 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcrtomb()

49392 NAME
49393 wcrtomb — convert a wide-character code to a character (restartable)

49394 SYNOPSIS
49395 #include <stdio.h>

49396 size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps); |

49397 DESCRIPTION |
49398 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49399 conflict between the requirements described here and the ISO C standard is unintentional. This
49400 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49401 If s is a null pointer, the wcrtomb() function shall be equivalent to the call:

49402 wcrtomb(buf , L’\0’, ps)

49403 where buf is an internal buffer.

49404 If s is not a null pointer, the wcrtomb() function shall determine the number of bytes needed to
49405 represent the character that corresponds to the wide character given by wc (including any shift
49406 sequences), and stores the resulting bytes in the array whose first element is pointed to by s. At
49407 most {MB_CUR_MAX} bytes are stored. If wc is a null wide character, a null byte is stored,
49408 preceded by any shift sequence needed to restore the initial shift state. The resulting state
49409 described is the initial conversion state.

49410 If ps is a null pointer, the wcrtomb() function uses its own internal mbstate_t object, which is
49411 initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
49412 pointed to by ps is used to completely describe the current conversion state of the associated
49413 character sequence. The implementation shall behave as if no function defined in this volume of
49414 IEEE Std. 1003.1-200x calls wcrtomb().

49415 CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS |
49416 functions, the application shall ensure that the wcrtomb() function is called with a non-NULL ps |
49417 argument.

49418 XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

49419 RETURN VALUE
49420 The wcrtomb() function shall return the number of bytes stored in the array object (including any
49421 shift sequences). When wc is not a valid wide character, an encoding error shall occur. In this
49422 case, the function shall store the value of the macros [EILSEQ] in errno and shall return |
49423 (size_t)−1; the conversion state shall be undefined. |

49424 ERRORS
49425 The wcrtomb() function may fail if:

49426 CX [EINVAL] ps points to an object that contains an invalid conversion state. |

49427 [EILSEQ] Invalid wide-character code is detected. |

System Interfaces, Issue 6 2107

wcrtomb() System Interfaces

49428 EXAMPLES
49429 None.

49430 APPLICATION USAGE
49431 None.

49432 RATIONALE
49433 None.

49434 FUTURE DIRECTIONS
49435 None.

49436 SEE ALSO
49437 mbsinit(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49438 CHANGE HISTORY
49439 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
49440 (E).

49441 Issue 6
49442 In the DESCRIPTION, a note on using this function in a threaded application is added.

49443 Extensions beyond the ISO C standard are now marked.

49444 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

49445 The wcrtomb() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2108 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcscat()

49446 NAME
49447 wcscat — concatenate two wide-character strings

49448 SYNOPSIS
49449 #include <wchar.h>

49450 wchar_t *wcscat(wchar_t *restrict ws1, const wchar_t *restrict ws2); |

49451 DESCRIPTION |
49452 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49453 conflict between the requirements described here and the ISO C standard is unintentional. This
49454 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49455 The wcscat() function shall append a copy of the wide-character string pointed to by ws2
49456 (including the terminating null wide-character code) to the end of the wide-character string
49457 pointed to by ws1. The initial wide-character code of ws2 overwrites the null wide-character
49458 code at the end of ws1. If copying takes place between objects that overlap, the behavior is
49459 undefined.

49460 RETURN VALUE
49461 The wcscat() function shall return ws1; no return value is reserved to indicate an error.

49462 ERRORS
49463 No errors are defined.

49464 EXAMPLES
49465 None.

49466 APPLICATION USAGE
49467 None.

49468 RATIONALE
49469 None.

49470 FUTURE DIRECTIONS
49471 None.

49472 SEE ALSO
49473 wcsncat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49474 CHANGE HISTORY
49475 First released in Issue 4. Derived from the MSE working draft. |

49476 Issue 6
49477 The Open Group corrigenda item U040/2 has been applied. In the RETURN VALUE section, s1
49478 is changed to ws1. |

49479 The wcscat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 2109

wcschr() System Interfaces

49480 NAME
49481 wcschr — wide-character string scanning operation

49482 SYNOPSIS
49483 #include <wchar.h>

49484 wchar_t *wcschr(const wchar_t * ws, wchar_t wc);

49485 DESCRIPTION
49486 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49487 conflict between the requirements described here and the ISO C standard is unintentional. This
49488 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49489 The wcschr() function shall locate the first occurrence of wc in the wide-character string pointed
49490 to by ws. The application shall ensure that the value of wc is a character representable as a type
49491 wchar_t and a wide-character code corresponding to a valid character in the current locale. The
49492 terminating null wide-character code is considered to be part of the wide-character string.

49493 RETURN VALUE
49494 Upon completion, wcschr() shall return a pointer to the wide-character code, or a null pointer if
49495 the wide-character code is not found.

49496 ERRORS
49497 No errors are defined.

49498 EXAMPLES
49499 None.

49500 APPLICATION USAGE
49501 None.

49502 RATIONALE
49503 None.

49504 FUTURE DIRECTIONS
49505 None.

49506 SEE ALSO
49507 wcsrchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49508 CHANGE HISTORY
49509 First released in Issue 4. Derived from the MSE working draft. |

49510 Issue 6
49511 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2110 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcscmp()

49512 NAME
49513 wcscmp — compare two wide-character strings

49514 SYNOPSIS
49515 #include <wchar.h>

49516 int wcscmp(const wchar_t * ws1, const wchar_t * ws2);

49517 DESCRIPTION
49518 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49519 conflict between the requirements described here and the ISO C standard is unintentional. This
49520 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49521 The wcscmp() function shall compare the wide-character string pointed to by ws1 to the wide-
49522 character string pointed to by ws2.

49523 The sign of a non-zero return value is determined by the sign of the difference between the
49524 values of the first pair of wide-character codes that differ in the objects being compared.

49525 RETURN VALUE
49526 Upon completion, wcscmp() shall return an integer greater than, equal to, or less than 0, if the
49527 wide-character string pointed to by ws1 is greater than, equal to, or less than the wide-character
49528 string pointed to by ws2, respectively.

49529 ERRORS
49530 No errors are defined.

49531 EXAMPLES
49532 None.

49533 APPLICATION USAGE
49534 None.

49535 RATIONALE
49536 None.

49537 FUTURE DIRECTIONS
49538 None.

49539 SEE ALSO
49540 wcsncmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49541 CHANGE HISTORY
49542 First released in Issue 4. Derived from the MSE working draft. |

System Interfaces, Issue 6 2111

wcscoll() System Interfaces

49543 NAME
49544 wcscoll — wide-character string comparison using collating information

49545 SYNOPSIS
49546 #include <wchar.h>

49547 int wcscoll(const wchar_t * ws1, const wchar_t * ws2);

49548 DESCRIPTION
49549 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49550 conflict between the requirements described here and the ISO C standard is unintentional. This
49551 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49552 The wcscoll() function shall compare the wide-character string pointed to by ws1 to the wide-
49553 character string pointed to by ws2, both interpreted as appropriate to the LC_COLLATE category
49554 of the current locale.

49555 CX The wcscoll() function shall not change the setting of errno if successful.

49556 An application wishing to check for error situations should set errno to 0 before calling wcscoll().
49557 If errno is non-zero on return, an error has occurred.

49558 RETURN VALUE
49559 Upon successful completion, wcscoll() shall return an integer greater than, equal to, or less than
49560 0, according to whether the wide-character string pointed to by ws1 is greater than, equal to, or
49561 less than the wide-character string pointed to by ws2, when both are interpreted as appropriate
49562 CX to the current locale. On error, wcscoll() may set errno, but no return value is reserved to indicate
49563 an error.

49564 ERRORS
49565 The wcscoll() function may fail if:

49566 [EINVAL] The ws1 or ws2 arguments contain wide-character codes outside the domain of |
49567 the collating sequence.

49568 EXAMPLES
49569 None.

49570 APPLICATION USAGE
49571 The wcsxfrm() and wcscmp() functions should be used for sorting large lists.

49572 RATIONALE
49573 None.

49574 FUTURE DIRECTIONS
49575 None.

49576 SEE ALSO
49577 wcscmp(), wcsxfrm(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49578 CHANGE HISTORY
49579 First released in Issue 4. Derived from the MSE working draft. |

49580 Issue 5
49581 Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

49582 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

2112 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcscpy()

49583 NAME
49584 wcscpy — copy a wide-character string

49585 SYNOPSIS
49586 #include <wchar.h>

49587 wchar_t *wcscpy(wchar_t *restrict ws1, const wchar_t *restrict ws2); |

49588 DESCRIPTION |
49589 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49590 conflict between the requirements described here and the ISO C standard is unintentional. This
49591 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49592 The wcscpy() function shall copy the wide-character string pointed to by ws2 (including the
49593 terminating null wide-character code) into the array pointed to by ws1. If copying takes place
49594 between objects that overlap, the behavior is undefined.

49595 RETURN VALUE
49596 The wcscpy() function shall return ws1; no return value is reserved to indicate an error.

49597 ERRORS
49598 No errors are defined.

49599 EXAMPLES
49600 None.

49601 APPLICATION USAGE
49602 None. |

49603 RATIONALE
49604 None.

49605 FUTURE DIRECTIONS
49606 None.

49607 SEE ALSO
49608 wcsncpy(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49609 CHANGE HISTORY
49610 First released in Issue 4. Derived from the MSE working draft. |

49611 Issue 6 |
49612 The wcscpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 2113

wcscspn() System Interfaces

49613 NAME
49614 wcscspn — get length of a complementary wide substring

49615 SYNOPSIS
49616 #include <wchar.h>

49617 size_t wcscspn(const wchar_t * ws1, const wchar_t * ws2);

49618 DESCRIPTION
49619 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49620 conflict between the requirements described here and the ISO C standard is unintentional. This
49621 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49622 The wcscspn() function shall compute the length of the maximum initial segment of the wide-
49623 character string pointed to by ws1 which consists entirely of wide-character codes not from the
49624 wide-character string pointed to by ws2.

49625 RETURN VALUE
49626 The wcscspn() function shall return the length of the initial substring of ws1; no return value is
49627 reserved to indicate an error.

49628 ERRORS
49629 No errors are defined.

49630 EXAMPLES
49631 None.

49632 APPLICATION USAGE
49633 None.

49634 RATIONALE
49635 None.

49636 FUTURE DIRECTIONS
49637 None.

49638 SEE ALSO
49639 wcsspn(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49640 CHANGE HISTORY
49641 First released in Issue 4. Derived from the MSE working draft. |

49642 Issue 5
49643 The RETURN VALUE section is updated to indicate that wcscspn() returns the length of ws1,
49644 rather than ws1 itself.

2114 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcsftime()

49645 NAME
49646 wcsftime — convert date and time to a wide-character string

49647 SYNOPSIS
49648 #include <wchar.h>

49649 size_t wcsftime(wchar_t *restrict wcs, size_t maxsize , |
49650 const wchar_t *restrict format , const struct tm *restrict timptr); |

49651 DESCRIPTION |
49652 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49653 conflict between the requirements described here and the ISO C standard is unintentional. This
49654 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49655 The wcsftime() function shall be equivalent to the strftime() function, except that:

49656 • The argument wcs points to the initial element of an array of wide characters into which the
49657 generated output is to be placed.

49658 • The argument maxsize indicates the maximum number of wide characters to be placed in the
49659 output array.

49660 • The argument format is a wide-character string and the conversion specifications are replaced
49661 by corresponding sequences of wide characters.

49662 • The return value indicates the number of wide characters placed in the output array.

49663 If copying takes place between objects that overlap, the behavior is undefined.

49664 RETURN VALUE
49665 If the total number of resulting wide-character codes including the terminating null wide-
49666 character code is no more than maxsize , wcsftime() shall return the number of wide-character
49667 codes placed into the array pointed to by wcs, not including the terminating null wide-character
49668 code.

49669 ERRORS
49670 No errors are defined.

49671 EXAMPLES
49672 None.

49673 APPLICATION USAGE
49674 None.

49675 RATIONALE
49676 None.

49677 FUTURE DIRECTIONS
49678 None.

49679 SEE ALSO
49680 strftime(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49681 CHANGE HISTORY
49682 First released in Issue 4.

49683 Issue 5
49684 Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

49685 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, the type of the format |
49686 argument is changed from const char* to const wchar_t*. |

System Interfaces, Issue 6 2115

wcsftime() System Interfaces

49687 Issue 6 |
49688 The wcsftime() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2116 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcslen()

49689 NAME
49690 wcslen — get wide-character string length

49691 SYNOPSIS
49692 #include <wchar.h>

49693 size_t wcslen(const wchar_t * ws);

49694 DESCRIPTION
49695 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49696 conflict between the requirements described here and the ISO C standard is unintentional. This
49697 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49698 The wcslen() function shall compute the number of wide-character codes in the wide-character
49699 string to which ws points, not including the terminating null wide-character code.

49700 RETURN VALUE
49701 The wcslen() function shall return the length of ws; no return value is reserved to indicate an
49702 error.

49703 ERRORS
49704 No errors are defined.

49705 EXAMPLES
49706 None.

49707 APPLICATION USAGE
49708 None.

49709 RATIONALE
49710 None.

49711 FUTURE DIRECTIONS
49712 None.

49713 SEE ALSO
49714 The Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49715 CHANGE HISTORY
49716 First released in Issue 4. Derived from the MSE working draft. |

System Interfaces, Issue 6 2117

wcsncat() System Interfaces

49717 NAME
49718 wcsncat — concatenate a wide-character string with part of another

49719 SYNOPSIS
49720 #include <wchar.h>

49721 wchar_t *wcsncat(wchar_t *restrict ws1, const wchar_t *restrict ws2, |
49722 size_t n); |

49723 DESCRIPTION |
49724 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49725 conflict between the requirements described here and the ISO C standard is unintentional. This
49726 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49727 The wcsncat() function shall append not more than n wide-character codes (a null wide-
49728 character code and wide-character codes that follow it are not appended) from the array pointed
49729 to by ws2 to the end of the wide-character string pointed to by ws1. The initial wide-character
49730 code of ws2 overwrites the null wide-character code at the end of ws1. A terminating null wide-
49731 character code is always appended to the result. If copying takes place between objects that
49732 overlap, the behavior is undefined.

49733 RETURN VALUE
49734 The wcsncat() function shall return ws1; no return value is reserved to indicate an error.

49735 ERRORS
49736 No errors are defined.

49737 EXAMPLES
49738 None.

49739 APPLICATION USAGE
49740 None.

49741 RATIONALE
49742 None.

49743 FUTURE DIRECTIONS
49744 None.

49745 SEE ALSO
49746 wcscat(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49747 CHANGE HISTORY
49748 First released in Issue 4. Derived from the MSE working draft. |

49749 Issue 6 |
49750 The wcsncat() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2118 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcsncmp()

49751 NAME
49752 wcsncmp — compare part of two wide-character strings

49753 SYNOPSIS
49754 #include <wchar.h>

49755 int wcsncmp(const wchar_t * ws1, const wchar_t * ws2, size_t n);

49756 DESCRIPTION
49757 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49758 conflict between the requirements described here and the ISO C standard is unintentional. This
49759 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49760 The wcsncmp() function shall compare not more than n wide-character codes (wide-character
49761 codes that follow a null wide-character code are not compared) from the array pointed to by ws1
49762 to the array pointed to by ws2.

49763 The sign of a non-zero return value is determined by the sign of the difference between the
49764 values of the first pair of wide-character codes that differ in the objects being compared.

49765 RETURN VALUE
49766 Upon successful completion, wcsncmp() shall return an integer greater than, equal to, or less
49767 than 0, if the possibly null-terminated array pointed to by ws1 is greater than, equal to, or less
49768 than the possibly null-terminated array pointed to by ws2, respectively.

49769 ERRORS
49770 No errors are defined.

49771 EXAMPLES
49772 None.

49773 APPLICATION USAGE
49774 None.

49775 RATIONALE
49776 None.

49777 FUTURE DIRECTIONS
49778 None.

49779 SEE ALSO
49780 wcscmp(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49781 CHANGE HISTORY
49782 First released in Issue 4. Derived from the MSE working draft. |

System Interfaces, Issue 6 2119

wcsncpy() System Interfaces

49783 NAME
49784 wcsncpy — copy part of a wide-character string

49785 SYNOPSIS
49786 #include <wchar.h>

49787 wchar_t *wcsncpy(wchar_t *restrict ws1, const wchar_t *restrict ws2, |
49788 size_t n); |

49789 DESCRIPTION |
49790 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49791 conflict between the requirements described here and the ISO C standard is unintentional. This
49792 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49793 The wcsncpy() function shall copy not more than n wide-character codes (wide-character codes
49794 that follow a null wide-character code are not copied) from the array pointed to by ws2 to the
49795 array pointed to by ws1. If copying takes place between objects that overlap, the behavior is
49796 undefined.

49797 If the array pointed to by ws2 is a wide-character string that is shorter than n wide-character
49798 codes, null wide-character codes are appended to the copy in the array pointed to by ws1, until n
49799 wide-character codes in all are written.

49800 RETURN VALUE
49801 The wcsncpy() function shall return ws1; no return value is reserved to indicate an error.

49802 ERRORS
49803 No errors are defined.

49804 EXAMPLES
49805 None.

49806 APPLICATION USAGE
49807 If there is no null wide-character code in the first n wide-character codes of the array pointed to |
49808 by ws2, the result is not null-terminated.

49809 RATIONALE
49810 None.

49811 FUTURE DIRECTIONS
49812 None.

49813 SEE ALSO
49814 wcscpy(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49815 CHANGE HISTORY
49816 First released in Issue 4. Derived from the MSE working draft. |

49817 Issue 6 |
49818 The wcsncpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2120 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcspbrk()

49819 NAME
49820 wcspbrk — scan wide-character string for a wide-character code

49821 SYNOPSIS
49822 #include <wchar.h>

49823 wchar_t *wcspbrk(const wchar_t * ws1, const wchar_t * ws2);

49824 DESCRIPTION
49825 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49826 conflict between the requirements described here and the ISO C standard is unintentional. This
49827 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49828 The wcspbrk() function shall locate the first occurrence in the wide-character string pointed to by
49829 ws1 of any wide-character code from the wide-character string pointed to by ws2.

49830 RETURN VALUE
49831 Upon successful completion, wcspbrk() shall return a pointer to the wide-character code or a null
49832 pointer if no wide-character code from ws2 occurs in ws1.

49833 ERRORS
49834 No errors are defined.

49835 EXAMPLES
49836 None.

49837 APPLICATION USAGE
49838 None.

49839 RATIONALE
49840 None.

49841 FUTURE DIRECTIONS
49842 None.

49843 SEE ALSO
49844 wcschr(), wcsrchr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49845 CHANGE HISTORY
49846 First released in Issue 4. Derived from the MSE working draft. |

System Interfaces, Issue 6 2121

wcsrchr() System Interfaces

49847 NAME
49848 wcsrchr — wide-character string scanning operation

49849 SYNOPSIS
49850 #include <wchar.h>

49851 wchar_t *wcsrchr(const wchar_t * ws, wchar_t wc);

49852 DESCRIPTION
49853 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49854 conflict between the requirements described here and the ISO C standard is unintentional. This
49855 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49856 The wcsrchr() function shall locate the last occurrence of wc in the wide-character string pointed
49857 to by ws. The application shall ensure that the value of wc is a character representable as a type
49858 wchar_t and a wide-character code corresponding to a valid character in the current locale. The
49859 terminating null wide-character code is considered to be part of the wide-character string.

49860 RETURN VALUE
49861 Upon successful completion, wcsrchr() shall return a pointer to the wide-character code or a null
49862 pointer if wc does not occur in the wide-character string.

49863 ERRORS
49864 No errors are defined.

49865 EXAMPLES
49866 None.

49867 APPLICATION USAGE
49868 None.

49869 RATIONALE
49870 None.

49871 FUTURE DIRECTIONS
49872 None.

49873 SEE ALSO
49874 wcschr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49875 CHANGE HISTORY
49876 First released in Issue 4. Derived from the MSE working draft. |

49877 Issue 6
49878 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2122 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcsrtombs()

49879 NAME
49880 wcsrtombs — convert a wide-character string to a character string (restartable)

49881 SYNOPSIS
49882 #include <wchar.h>

49883 size_t wcsrtombs(char *restrict dst , const wchar_t **restrict src , |
49884 size_t len , mbstate_t *restrict ps); |

49885 DESCRIPTION |
49886 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49887 conflict between the requirements described here and the ISO C standard is unintentional. This
49888 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49889 The wcsrtombs() function shall convert a sequence of wide characters from the array indirectly
49890 pointed to by src into a sequence of corresponding characters, beginning in the conversion state
49891 described by the object pointed to by ps. If dst is not a null pointer, the converted characters are
49892 then stored into the array pointed to by dst. Conversion continues up to and including a
49893 terminating null wide character, which is also stored. Conversion stops earlier in the following
49894 cases:

49895 • When a code is reached that does not correspond to a valid character

49896 • When the next character would exceed the limit of len total bytes to be stored in the array
49897 pointed to by dst (and dst is not a null pointer)

49898 Each conversion takes place as if by a call to the wcrtomb() function.

49899 If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
49900 conversion stopped due to reaching a terminating null wide character) or the address just past
49901 the last wide character converted (if any). If conversion stopped due to reaching a terminating
49902 null wide character, the resulting state described is the initial conversion state.

49903 If ps is a null pointer, the wcsrtombs() function uses its own internal mbstate_t object, which is
49904 initialized at program start-up to the initial conversion state. Otherwise, the mbstate_t object
49905 pointed to by ps is used to completely describe the current conversion state of the associated
49906 character sequence. The implementation shall behave as if no function defined in this volume of
49907 IEEE Std. 1003.1-200x calls wcsrtombs().

49908 CX If the application uses any of the _POSIX_THREAD_SAFE_FUNCTIONS or _POSIX_THREADS |
49909 functions, the application shall ensure that the wcsrtombs() function is called with a non-NULL |
49910 ps argument.

49911 XSI The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

49912 RETURN VALUE
49913 If conversion stops because a code is reached that does not correspond to a valid character, an
49914 encoding error occurs. In this case, the wcsrtombs() function shall store the value of the macro
49915 [EILSEQ] in errno and return (size_t)−1; the conversion state is undefined. Otherwise, it shall
49916 return the number of bytes in the resulting character sequence, not including the terminating
49917 null (if any).

49918 ERRORS
49919 The wcsrtombs() function may fail if:

49920 CX [EINVAL] ps points to an object that contains an invalid conversion state. |

49921 [EILSEQ] A wide-character code does not correspond to a valid character. |

System Interfaces, Issue 6 2123

wcsrtombs() System Interfaces

49922 EXAMPLES
49923 None.

49924 APPLICATION USAGE
49925 None.

49926 RATIONALE
49927 None.

49928 FUTURE DIRECTIONS
49929 None.

49930 SEE ALSO
49931 mbsinit(), wcrtomb(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49932 CHANGE HISTORY
49933 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
49934 (E).

49935 Issue 6
49936 In the DESCRIPTION, a note on using this function in a threaded application is added.

49937 Extensions beyond the ISO C standard are now marked.

49938 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

49939 The wcsrtombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2124 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcsspn()

49940 NAME
49941 wcsspn — get length of a wide substring

49942 SYNOPSIS
49943 #include <wchar.h>

49944 size_t wcsspn(const wchar_t * ws1, const wchar_t * ws2);

49945 DESCRIPTION
49946 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49947 conflict between the requirements described here and the ISO C standard is unintentional. This
49948 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49949 The wcsspn() function shall compute the length of the maximum initial segment of the wide-
49950 character string pointed to by ws1 which consists entirely of wide-character codes from the
49951 wide-character string pointed to by ws2.

49952 RETURN VALUE
49953 The wcsspn() function shall return the length of the initial substring of ws1; no return value is
49954 reserved to indicate an error.

49955 ERRORS
49956 No errors are defined.

49957 EXAMPLES
49958 None.

49959 APPLICATION USAGE
49960 None.

49961 RATIONALE
49962 None.

49963 FUTURE DIRECTIONS
49964 None.

49965 SEE ALSO
49966 wcscspn(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

49967 CHANGE HISTORY
49968 First released in Issue 4. Derived from the MSE working draft. |

49969 Issue 5
49970 The RETURN VALUE section is updated to indicate that wcsspn() returns the length of ws1
49971 rather that ws1 itself.

System Interfaces, Issue 6 2125

wcsstr() System Interfaces

49972 NAME
49973 wcsstr — find a wide-character substring

49974 SYNOPSIS
49975 #include <wchar.h>

49976 wchar_t *wcsstr(const wchar_t *restrict ws1, const wchar_t *restrict ws2);|

49977 DESCRIPTION |
49978 CX The functionality described on this reference page is aligned with the ISO C standard. Any
49979 conflict between the requirements described here and the ISO C standard is unintentional. This
49980 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

49981 The wcsstr() function shall locate the first occurrence in the wide-character string pointed to by
49982 ws1 of the sequence of wide characters (excluding the terminating null wide character) in the
49983 wide-character string pointed to by ws2.

49984 RETURN VALUE
49985 Upon successful completion, wcsstr() shall return a pointer to the located wide-character string,
49986 or a null pointer if the wide-character string is not found.

49987 If ws2 points to a wide-character string with zero length, the function shall return ws1.

49988 ERRORS
49989 No errors are defined.

49990 EXAMPLES
49991 None.

49992 APPLICATION USAGE
49993 None.

49994 RATIONALE
49995 None.

49996 FUTURE DIRECTIONS
49997 None.

49998 SEE ALSO
49999 wcschr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50000 CHANGE HISTORY
50001 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50002 (E). |

50003 Issue 6 |
50004 The wcsstr() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2126 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstod()

50005 NAME
50006 wcstod, wcstof, wcstold — convert a wide-character string to a double-precision number |

50007 SYNOPSIS
50008 #include <wchar.h>

50009 double wcstod(const wchar_t *restrict nptr , wchar_t **restrict endptr); |
50010 float wcstof(const wchar_t *restrict nptr , wchar_t **restrict endptr); |
50011 long double wcstold(const wchar_t *restrict nptr , |
50012 wchar_t **restrict endptr); |

50013 DESCRIPTION |
50014 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50015 conflict between the requirements described here and the ISO C standard is unintentional. This
50016 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50017 These functions shall convert the initial portion of the wide-character string pointed to by nptr to |
50018 double, float, and long double representation, respectively. First, they decompose the input |
50019 wide-character string into three parts: |

50020 1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
50021 iswspace())

50022 2. A subject sequence interpreted as a floating-point constant or representing infinity or NaN |

50023 3. A final wide-character string of one or more unrecognized wide-character codes, including
50024 the terminating null wide-character code of the input wide-character string

50025 Then it attempts to convert the subject sequence to a floating-point number, and returns the
50026 result.

50027 The expected form of the subject sequence is an optional plus or minus sign, then one of the |
50028 following: |

50029 • A non-empty sequence of decimal digits optionally containing a radix character, then an |
50030 optional exponent part |

50031 • A 0x or 0X, then a non-empty sequence of hexadecimal digits optionally containing a radix |
50032 character, then an optional binary exponent part |

50033 • One of INF or INFINITY, or any other wide string equivalent except for case |

50034 • One of NAN or NAN(n-wchar-sequenceopt), or any other wide string ignoring case in the NAN |
50035 part, where: |

50036 n-wchar-sequence: |
50037 digit |
50038 nondigit |
50039 n-wchar-sequence digit |
50040 n-wchar-sequence nondigit |

50041 The subject sequence is defined as the longest initial subsequence of the input wide string, |
50042 starting with the first non-white-space wide character, that is of the expected form. The subject |
50043 sequence contains no wide characters if the input wide string is not of the expected form. |

50044 If the subject sequence has the expected form for a floating-point number, the sequence of wide |
50045 characters starting with the first digit or the radix character (whichever occurs first) is |
50046 interpreted as a floating constant according to the rules of the C language, except that the radix |
50047 character is used in place of a period, and that if neither an exponent part nor a radix character |
50048 appears in a decimal floating-point number, or if a binary exponent part does not appear in a |

System Interfaces, Issue 6 2127

wcstod() System Interfaces

50049 hexadecimal floating-point number, an exponent part of the appropriate type with value zero is |
50050 assumed to follow the last digit in the string. If the subject sequence begins with a minus sign, |
50051 the sequence is interpreted as negated. A wide-character sequence INF or INFINITY is |
50052 interpreted as an infinity, if representable in the return type, else like a floating constant that is |
50053 too large for the range of the return type. A wide-character sequence NAN or NAN(n-wchar- |
50054 sequenceopt) is interpreted as a quiet NaN, if supported in the return type, else like a subject |
50055 sequence part that does not have the expected form; the meaning of the n-wchar sequences is |
50056 implementation-defined. A pointer to the final wide string is stored in the object pointed to by |
50057 endptr, provided that endptr is not a null pointer.

50058 If the subject sequence has the hexadecimal form and FLT_RADIX is a power of 2, the value |
50059 resulting from the conversion is correctly rounded. |

50060 CX The radix character is defined in the program’s locale (category LC_NUMERIC). In the POSIX |
50061 locale, or in a locale where the radix character is not defined, the radix character shall default to a
50062 period (’.’).

50063 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
50064 accepted.

50065 If the subject sequence is empty or does not have the expected form, no conversion is performed;
50066 the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
50067 pointer.

50068 The wcstod() function shall not change the setting of errno if successful.

50069 Because 0 is returned on error and is also a valid return on success, an application wishing to
50070 check for error situations should set errno to 0, then call wcstod(), then check errno.

50071 RETURN VALUE
50072 Upon successful completion, these functions shall return the converted value. If no conversion |
50073 could be performed, 0 shall be returned and errno may be set to [EINVAL]. |

50074 If the correct value is outside the range of representable values, HUGE_VAL, HUGE_VALF, or |
50075 HUGE_VALL shall be returned (according to the sign of the value), and errno shall be set to |
50076 [ERANGE].

50077 If the correct value would cause underflow, a value whose magnitude is no greater than the |
50078 smallest normalized positive number in the return type shall be returned and errno set to |
50079 [ERANGE].

50080 ERRORS
50081 The wcstod() function shall fail if:

50082 [ERANGE] The value to be returned would cause overflow or underflow. |

50083 The wcstod() function may fail if:

50084 CX [EINVAL] No conversion could be performed. |

2128 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstod()

50085 EXAMPLES
50086 None.

50087 APPLICATION USAGE
50088 If the subject sequence has the hexadecimal form and FLT_RADIX is not a power of 2, the result |
50089 should be one of the two numbers in the appropriate internal format that are adjacent to the |
50090 hexadecimal floating source value, with the extra stipulation that the error should have a correct |
50091 sign for the current rounding direction. |

50092 If the subject sequence has the decimal form and at most DECIMAL_DIG (defined in <float.h>) |
50093 significant digits, the result should be correctly rounded. If the subject sequence D has the |
50094 decimal form and more than DECIMAL_DIG significant digits, consider the two bounding, |
50095 adjacent decimal strings L and U, both having DECIMAL_DIG significant digits, such that the |
50096 values of L, D, and U satisfy "L <= D <= U" . The result should be one of the (equal or |
50097 adjacent) values that would be obtained by correctly rounding L and U according to the current |
50098 rounding direction, with the extra stipulation that the error with respect to D should have a |
50099 correct sign for the current rounding direction. |

50100 RATIONALE
50101 None.

50102 FUTURE DIRECTIONS
50103 None.

50104 SEE ALSO
50105 iswspace(), localeconv (), scanf(), setlocale (), wcstol(), the Base Definitions volume of |
50106 IEEE Std. 1003.1-200x, <float.h>, <wchar.h>, the Base Definitions volume of |
50107 IEEE Std. 1003.1-200x, Chapter 7, Locale |

50108 CHANGE HISTORY
50109 First released in Issue 4. Derived from the MSE working draft. |

50110 Issue 5
50111 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

50112 Issue 6
50113 Extensions beyond the ISO C standard are now marked.

50114 The following new requirements on POSIX implementations derive from alignment with the
50115 Single UNIX Specification:

50116 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
50117 added if no conversion could be performed.

50118 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

50119 • The wcstod() prototype is updated. |

50120 • The wcstof() and wcstold() functions are added. |

50121 • The DESCRIPTION, RETURN VALUE, and APPLICATION USAGE sections are extensively |
50122 updated. |

|

System Interfaces, Issue 6 2129

wcstoimax() System Interfaces

50123 NAME |
50124 wcstoimax, wcstoumax — convert wide-character string to integer type |

50125 SYNOPSIS |
50126 #include <stddef.h> |
50127 #include <inttypes.h> |

50128 intmax_t wcstoimax(const wchar_t *restrict nptr , |
50129 wchar_t **restrict endptr , int base); |
50130 uintmax_t wcstoumax(const wchar_t *restrict nptr , |
50131 wchar_t **restrict endptr , int base); |

50132 DESCRIPTION |
50133 CX The functionality described on this reference page is aligned with the ISO C standard. Any |
50134 conflict between the requirements described here and the ISO C standard is unintentional. This |
50135 volume of IEEE Std. 1003.1-200x defers to the ISO C standard. |

50136 These functions shall be equivalent to the wcstol(), wcstoll (), wcstoul(), and wcstoull() functions, |
50137 respectively, except that the initial portion of the wide string shall be converted to intmax_t and |
50138 uintmax_t representation, respectively. |

50139 RETURN VALUE |
50140 These functions shall return the converted value, if any. |

50141 If no conversion could be performed, zero shall be returned. If the correct value is outside the |
50142 range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or {UINTMAX_MAX} shall |
50143 be returned (according to the return type and sign of the value, if any), and errno shall be set to |
50144 [ERANGE]. |

50145 ERRORS |
50146 These functions shall fail if: |

50147 [EINVAL] The value of base is not supported. |

50148 [ERANGE] The value to be returned is not representable. |

50149 These functions may fail if: |

50150 [EINVAL] No conversion could be performed. |

50151 EXAMPLES |
50152 None. |

50153 APPLICATION USAGE |
50154 None. |

50155 RATIONALE |
50156 None. |

50157 FUTURE DIRECTIONS |
50158 None. |

50159 SEE ALSO |
50160 wcstol(), wcstoul(), the Base Definitions volume of IEEE Std. 1003.1-200x, <inttypes.h>, |
50161 <stddef.h> |

50162 CHANGE HISTORY |
50163 First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard. |

|

2130 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstok()

50164 NAME
50165 wcstok — split wide-character string into tokens

50166 SYNOPSIS
50167 #include <wchar.h>

50168 wchar_t *wcstok(wchar_t *restrict ws1, const wchar_t *restrict ws2, |
50169 wchar_t **restrict ptr); |

50170 DESCRIPTION |
50171 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50172 conflict between the requirements described here and the ISO C standard is unintentional. This
50173 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50174 A sequence of calls to wcstok() breaks the wide-character string pointed to by ws1 into a
50175 sequence of tokens, each of which is delimited by a wide-character code from the wide-character
50176 string pointed to by ws2. The third argument points to a caller-provided wchar_t pointer into
50177 which the wcstok() function stores information necessary for it to continue scanning the same
50178 wide-character string.

50179 The first call in the sequence has ws1 as its first argument, and is followed by calls with a null
50180 pointer as their first argument. The separator string pointed to by ws2 may be different from call
50181 to call.

50182 The first call in the sequence searches the wide-character string pointed to by ws1 for the first
50183 wide-character code that is not contained in the current separator string pointed to by ws2. If no
50184 such wide-character code is found, then there are no tokens in the wide-character string pointed
50185 to by ws1 and wcstok() returns a null pointer. If such a wide-character code is found, it is the start
50186 of the first token.

50187 The wcstok() function then searches from there for a wide-character code that is contained in the
50188 current separator string. If no such wide-character code is found, the current token extends to
50189 the end of the wide-character string pointed to by ws1, and subsequent searches for a token shall
50190 return a null pointer. If such a wide-character code is found, it is overwritten by a null wide-
50191 character, which terminates the current token. The wcstok() function saves a pointer to the
50192 following wide-character code, from which the next search for a token shall start.

50193 Each subsequent call, with a null pointer as the value of the first argument, starts searching from
50194 the saved pointer and behaves as described above.

50195 The implementation shall behave as if no function calls wcstok().

50196 RETURN VALUE
50197 Upon successful completion, the wcstok() function shall return a pointer to the first wide-
50198 character code of a token. Otherwise, if there is no token, wcstok() shall return a null pointer.

50199 ERRORS
50200 No errors are defined.

System Interfaces, Issue 6 2131

wcstok() System Interfaces

50201 EXAMPLES
50202 None.

50203 APPLICATION USAGE
50204 None.

50205 RATIONALE
50206 None.

50207 FUTURE DIRECTIONS
50208 None.

50209 SEE ALSO
50210 The Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50211 CHANGE HISTORY
50212 First released in Issue 4.

50213 Issue 5
50214 Aligned with ISO/IEC 9899: 1990/Amendment 1: 1995 (E). Specifically, a third argument is
50215 added to the definition of this function in the SYNOPSIS. |

50216 Issue 6 |
50217 The wcstok() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2132 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstol()

50218 NAME
50219 wcstol, wcstoll — convert a wide-character string to a long integer |

50220 SYNOPSIS
50221 #include <wchar.h>

50222 long wcstol(const wchar_t *restrict nptr , wchar_t **restrict endptr , |
50223 int base); |
50224 long long wcstoll(const wchar_t *restrict nptr , |
50225 wchar_t **restrict endptr , int base); |

50226 DESCRIPTION |
50227 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50228 conflict between the requirements described here and the ISO C standard is unintentional. This
50229 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50230 These functions shall convert the initial portion of the wide-character string pointed to by nptr to |
50231 long, long long, unsigned long, and unsigned long long representation, respectively. First, they |
50232 decompose the input string into three parts: |

50233 1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
50234 iswspace())

50235 2. A subject sequence interpreted as an integer represented in some radix determined by the
50236 value of base

50237 3. A final wide-character string of one or more unrecognized wide-character codes, including
50238 the terminating null wide-character code of the input wide-character string

50239 Then it attempts to convert the subject sequence to an integer, and returns the result.

50240 If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
50241 or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A decimal
50242 constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
50243 constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
50244 only. A hexadecimal constant consists of the prefix "0x" or "0X" followed by a sequence of the
50245 decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

50246 If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
50247 of letters and digits representing an integer with the radix specified by base, optionally preceded
50248 by a ’+’ or ’ −’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
50249 (or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
50250 than that of base are permitted. If the value of base is 16, the wide-character code representations
50251 of "0x" or "0X" may optionally precede the sequence of letters and digits, following the sign if
50252 present.

50253 The subject sequence is defined as the longest initial subsequence of the input wide-character
50254 string, starting with the first non-white-space wide-character code that is of the expected form.
50255 The subject sequence contains no wide-character codes if the input wide-character string is
50256 empty or consists entirely of white-space wide-character code, or if the first non-white-space
50257 wide-character code is other than a sign or a permissible letter or digit.

50258 If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
50259 starting with the first digit is interpreted as an integer constant. If the subject sequence has the
50260 expected form and the value of base is between 2 and 36, it is used as the base for conversion,
50261 ascribing to each letter its value as given above. If the subject sequence begins with a minus sign,
50262 the value resulting from the conversion is negated. A pointer to the final wide-character string is
50263 stored in the object pointed to by endptr, provided that endptr is not a null pointer.

System Interfaces, Issue 6 2133

wcstol() System Interfaces

50264 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
50265 accepted.

50266 If the subject sequence is empty or does not have the expected form, no conversion is performed;
50267 the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
50268 pointer.

50269 The wcstol() function shall not change the setting of errno if successful.

50270 Because 0, {LONG_MIN} or {LLONG_MIN} and {LONG_MAX} or {LLONG_MAX} are returned |
50271 on error and are also valid returns on success, an application wishing to check for error
50272 situations should set errno to 0, then call wcstol(), then check errno.

50273 RETURN VALUE
50274 Upon successful completion, these functions shall return the converted value, if any. If no |
50275 CX conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If |
50276 the correct value is outside the range of representable values, {LONG_MAX} or {LONG_MIN}
50277 shall be returned (according to the sign of the value), and errno set to [ERANGE].

50278 ERRORS
50279 These functions shall fail if: |

50280 CX [EINVAL] The value of base is not supported. |

50281 [ERANGE] The value to be returned is not representable. |

50282 These functions may fail if: |

50283 CX [EINVAL] No conversion could be performed. |

50284 EXAMPLES
50285 None.

50286 APPLICATION USAGE
50287 None.

50288 RATIONALE
50289 None.

50290 FUTURE DIRECTIONS
50291 None.

50292 SEE ALSO
50293 iswalpha (), scanf(), wcstod(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50294 CHANGE HISTORY
50295 First released in Issue 4. Derived from the MSE working draft. |

50296 Issue 5
50297 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

50298 Issue 6
50299 Extensions beyond the ISO C standard are now marked.

50300 The following new requirements on POSIX implementations derive from alignment with the
50301 Single UNIX Specification:

50302 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
50303 added if no conversion could be performed.

50304 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

2134 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstol()

50305 • The wcstol() prototype is updated. |

50306 • The wcstoll () function is added. |
|

System Interfaces, Issue 6 2135

wcstombs() System Interfaces

50307 NAME
50308 wcstombs — convert a wide-character string to a character string

50309 SYNOPSIS
50310 #include <stdlib.h>

50311 size_t wcstombs(char *restrict s, const wchar_t *restrict pwcs , |
50312 size_t n); |

50313 DESCRIPTION |
50314 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50315 conflict between the requirements described here and the ISO C standard is unintentional. This
50316 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50317 The wcstombs() function shall convert the sequence of wide-character codes that are in the array
50318 pointed to by pwcs into a sequence of characters that begins in the initial shift state and stores
50319 these characters into the array pointed to by s, stopping if a character would exceed the limit of n
50320 total bytes or if a null byte is stored. Each wide-character code is converted as if by a call to
50321 wctomb(), except that the shift state of wctomb() is not affected.

50322 The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

50323 No more than n bytes shall be modified in the array pointed to by s. If copying takes place
50324 CX between objects that overlap, the behavior is undefined. If s is a null pointer, wcstombs() shall
50325 return the length required to convert the entire array regardless of the value of n, but no values
50326 are stored.

50327 The wcstombs() function need not be reentrant. A function that is not required to be reentrant is
50328 not required to be thread-safe.

50329 RETURN VALUE
50330 If a wide-character code is encountered that does not correspond to a valid character (of one or
50331 more bytes each), wcstombs() shall return (size_t)−1. Otherwise, wcstombs() shall return the
50332 number of bytes stored in the character array, not including any terminating null byte. The array
50333 shall not be null-terminated if the value returned is n.

50334 ERRORS
50335 The wcstombs() function may fail if:

50336 CX [EILSEQ] A wide-character code does not correspond to a valid character. |

50337 EXAMPLES
50338 None.

50339 APPLICATION USAGE
50340 None.

50341 RATIONALE
50342 None.

50343 FUTURE DIRECTIONS
50344 None.

50345 SEE ALSO
50346 mblen(), mbtowc(), mbstowcs(), wctomb(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
50347 <stdlib.h>

2136 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstombs()

50348 CHANGE HISTORY
50349 First released in Issue 4. Derived from the ISO C standard. |

50350 Issue 6
50351 The following new requirements on POSIX implementations derive from alignment with the
50352 Single UNIX Specification:

50353 • The DESCRIPTION states the effect of when s is a null pointer.

50354 • The [EILSEQ] error condition is added.

50355 The wcstombs() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 2137

wcstoul() System Interfaces

50356 NAME
50357 wcstoul, wcstoull — convert a wide-character string to an unsigned long |

50358 SYNOPSIS
50359 #include <wchar.h>

50360 long wcstoul(const wchar_t *restrict nptr , wchar_t **restrict endptr , |
50361 int base); |
50362 long long wcstoull(const wchar_t *restrict nptr , |
50363 wchar_t **restrict endptr , int base); |

50364 DESCRIPTION |
50365 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50366 conflict between the requirements described here and the ISO C standard is unintentional. This
50367 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50368 These functions shall convert the initial portion of the wide-character string pointed to by nptr to |
50369 long, long long, unsigned long, and unsigned long long representation, respectively. First, they |
50370 decompose the input wide-character string into three parts: |

50371 1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by
50372 iswspace())

50373 2. A subject sequence interpreted as an integer represented in some radix determined by the
50374 value of base

50375 3. A final wide-character string of one or more unrecognized wide-character codes, including
50376 the terminating null wide-character code of the input wide-character string

50377 Then it attempts to convert the subject sequence to an unsigned integer, and returns the result.

50378 If base is 0, the expected form of the subject sequence is that of a decimal constant, octal constant,
50379 or hexadecimal constant, any of which may be preceded by a ’+’ or ’ −’ sign. A decimal
50380 constant begins with a non-zero digit, and consists of a sequence of decimal digits. An octal
50381 constant consists of the prefix ’0’ optionally followed by a sequence of the digits ’0’ to ’7’
50382 only. A hexadecimal constant consists of the prefix "0x" or "0X" followed by a sequence of the
50383 decimal digits and letters ’a’ (or ’A’) to ’f’ (or ’F’) with values 10 to 15 respectively.

50384 If the value of base is between 2 and 36, the expected form of the subject sequence is a sequence
50385 of letters and digits representing an integer with the radix specified by base, optionally preceded
50386 by a ’+’ or ’ −’ sign, but not including an integer suffix. The letters from ’a’ (or ’A’) to ’z’
50387 (or ’Z’) inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less
50388 than that of base are permitted. If the value of base is 16, the wide-character codes "0x" or "0X"
50389 may optionally precede the sequence of letters and digits, following the sign if present.

50390 The subject sequence is defined as the longest initial subsequence of the input wide-character
50391 string, starting with the first wide-character code that is not white space and is of the expected
50392 form. The subject sequence contains no wide-character codes if the input wide-character string is
50393 empty or consists entirely of white-space wide-character codes, or if the first wide-character
50394 code that is not white space is other than a sign or a permissible letter or digit.

50395 If the subject sequence has the expected form and base is 0, the sequence of wide-character codes
50396 starting with the first digit is interpreted as an integer constant. If the subject sequence has the
50397 expected form and the value of base is between 2 and 36, it is used as the base for conversion,
50398 ascribing to each letter its value as given above. If the subject sequence begins with a minus sign,
50399 the value resulting from the conversion is negated. A pointer to the final wide-character string is
50400 stored in the object pointed to by endptr, provided that endptr is not a null pointer.

2138 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcstoul()

50401 CX In other than the C or POSIX locales, other implementation-defined subject sequences may be |
50402 accepted.

50403 If the subject sequence is empty or does not have the expected form, no conversion is performed;
50404 the value of nptr is stored in the object pointed to by endptr, provided that endptr is not a null
50405 pointer.

50406 The wcstoul() function shall not change the setting of errno if successful.

50407 Because 0, {ULONG_MAX}, and {ULLONG_MAX} are returned on error and 0 is also a valid |
50408 return on success, an application wishing to check for error situations should set errno to 0, then
50409 call wcstoul(), then check errno.

50410 RETURN VALUE
50411 Upon successful completion, these functions shall return the converted value, if any. If no |
50412 CX conversion could be performed, 0 shall be returned and errno may be set to indicate the error. If |
50413 the correct value is outside the range of representable values, {ULONG_MAX} shall be returned
50414 and errno set to [ERANGE].

50415 ERRORS
50416 These functions shall fail if: |

50417 CX [EINVAL] The value of base is not supported. |

50418 [ERANGE] The value to be returned is not representable. |

50419 These functions may fail if: |

50420 CX [EINVAL] No conversion could be performed. |

50421 EXAMPLES
50422 None.

50423 APPLICATION USAGE
50424 None.

50425 RATIONALE
50426 None.

50427 FUTURE DIRECTIONS
50428 None.

50429 SEE ALSO
50430 iswalpha (), scanf(), wcstod(), wcstol(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
50431 <wchar.h>

CHANGE50432 HISTORY
50433 First released in Issue 4. Derived from the MSE working draft. |

50434 Issue 5
50435 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

50436 Issue 6
50437 Extensions beyond the ISO C standard are now marked.

50438 The following new requirements on POSIX implementations derive from alignment with the
50439 Single UNIX Specification:

50440 • The [EINVAL] error condition is added for when the value of base is not supported.

50441 In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
50442 added if no conversion could be performed.

System Interfaces, Issue 6 2139

wcstoul() System Interfaces

50443 The following changes are made for alignment with the ISO/IEC 9899: 1999 standard: |

50444 • The wcstoul() prototype is updated. |

50445 • The wcstoull() function is added. |
|

2140 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcswcs()

50446 NAME
50447 wcswcs — find a wide substring (LEGACY)

50448 SYNOPSIS
50449 XSI #include <wchar.h>

50450 wchar_t *wcswcs(const wchar_t * ws1, const wchar_t * ws2);
50451

50452 DESCRIPTION
50453 The wcswcs() function shall locate the first occurrence in the wide-character string pointed to by
50454 ws1 of the sequence of wide-character codes (excluding the terminating null wide-character
50455 code) in the wide-character string pointed to by ws2.

50456 RETURN VALUE
50457 Upon successful completion, wcswcs() shall return a pointer to the located wide-character string
50458 or a null pointer if the wide-character string is not found.

50459 If ws2 points to a wide-character string with zero length, the function shall return ws1.

50460 ERRORS
50461 No errors are defined.

50462 EXAMPLES
50463 None.

50464 APPLICATION USAGE
50465 This function was not included in the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E).
50466 Application developers are strongly encouraged to use the wcsstr() function instead.

50467 RATIONALE
50468 None.

50469 FUTURE DIRECTIONS
50470 This function may be withdrawn in a future version.

50471 SEE ALSO
50472 wcschr(), wcsstr(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50473 CHANGE HISTORY
50474 First released in Issue 4. Derived from the MSE working draft. |

50475 Issue 5
50476 Marked EX.

50477 Issue 6
50478 This function is marked LEGACY.

System Interfaces, Issue 6 2141

wcswidth() System Interfaces

50479 NAME
50480 wcswidth — number of column positions of a wide-character string

50481 SYNOPSIS
50482 XSI #include <wchar.h>

50483 int wcswidth(const wchar_t * pwcs , size_t n);
50484

50485 DESCRIPTION
50486 The wcswidth() function shall determine the number of column positions required for n wide-
50487 character codes (or fewer than n wide-character codes if a null wide-character code is
50488 encountered before n wide-character codes are exhausted) in the string pointed to by pwcs.

50489 RETURN VALUE
50490 The wcswidth() function either shall return 0 (if pwcs points to a null wide-character code), or
50491 return the number of column positions to be occupied by the wide-character string pointed to by
50492 pwcs, or return −1 (if any of the first n wide-character codes in the wide-character string pointed
50493 to by pwcs is not a printing wide-character code).

50494 ERRORS
50495 No errors are defined.

50496 EXAMPLES
50497 None.

50498 APPLICATION USAGE
50499 This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
50500 return value for a non-printable wide character is not specified.

50501 RATIONALE
50502 None.

50503 FUTURE DIRECTIONS
50504 None.

50505 SEE ALSO
50506 wcwidth(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h>, the Base Definitions |
50507 volume of IEEE Std. 1003.1-200x, Section 3.106, Column Position |

50508 CHANGE HISTORY
50509 First released in Issue 4. Derived from the MSE working draft. |

50510 Issue 6
50511 The Open Group corrigenda item U021/11 has been applied. The function is marked as an
50512 extension.

2142 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcsxfrm()

50513 NAME
50514 wcsxfrm — wide-character string transformation

50515 SYNOPSIS
50516 #include <wchar.h>

50517 size_t wcsxfrm(wchar_t *restrict ws1, const wchar_t *restrict ws2, |
50518 size_t n); |

50519 DESCRIPTION |
50520 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50521 conflict between the requirements described here and the ISO C standard is unintentional. This
50522 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50523 The wcsxfrm() function shall transform the wide-character string pointed to by ws2 and place the
50524 resulting wide-character string into the array pointed to by ws1. The transformation is such that
50525 if wcscmp() is applied to two transformed wide strings, it returns a value greater than, equal to,
50526 or less than 0, corresponding to the result of wcscoll() applied to the same two original wide-
50527 character strings. No more than n wide-character codes are placed into the resulting array
50528 pointed to by ws1, including the terminating null wide-character code. If n is 0, ws1 is permitted
50529 to be a null pointer. If copying takes place between objects that overlap, the behavior is
50530 undefined.

50531 CX The wcsxfrm() function shall not change the setting of errno if successful.

50532 Because no return value is reserved to indicate an error, an application wishing to check for error
50533 situations should set errno to 0, then call wcsxfrm(), then check errno.

50534 RETURN VALUE
50535 The wcsxfrm() function shall return the length of the transformed wide-character string (not
50536 including the terminating null wide-character code). If the value returned is n or more, the
50537 contents of the array pointed to by ws1 are indeterminate.

50538 On error, the wcsxfrm() function may set errno, but no return value is reserved to indicate an
50539 error.

50540 ERRORS
50541 The wcsxfrm() function may fail if:

50542 CX [EINVAL] The wide-character string pointed to by ws2 contains wide-character codes |
50543 outside the domain of the collating sequence.

50544 EXAMPLES
50545 None.

50546 APPLICATION USAGE
50547 The transformation function is such that two transformed wide-character strings can be ordered
50548 by wcscmp() as appropriate to collating sequence information in the program’s locale (category
50549 LC_COLLATE).

50550 The fact that when n is 0 ws1 is permitted to be a null pointer is useful to determine the size of
50551 the ws1 array prior to making the transformation.

50552 RATIONALE
50553 None.

System Interfaces, Issue 6 2143

wcsxfrm() System Interfaces

50554 FUTURE DIRECTIONS
50555 None.

50556 SEE ALSO
50557 wcscmp(), wcscoll(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50558 CHANGE HISTORY
50559 First released in Issue 4. Derived from the MSE working draft. |

50560 Issue 5
50561 Moved from ENHANCED I18N to BASE and the [ENOSYS] error is removed.

50562 The DESCRIPTION is updated to indicate that errno is not changed if the function is successful.

50563 Issue 6
50564 In previous versions, this function was required to return −1 on error.

50565 Extensions beyond the ISO C standard are now marked.

50566 The following new requirements on POSIX implementations derive from alignment with the
50567 Single UNIX Specification:

50568 • In the RETURN VALUE and ERRORS sections, the [EINVAL] optional error condition is
50569 added if no conversion could be performed.

50570 The wcsxfrm() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2144 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wctob()

50571 NAME
50572 wctob — wide-character to single-byte conversion

50573 SYNOPSIS
50574 #include <stdio.h>
50575 #include <wchar.h>

50576 int wctob(wint_t c);

50577 DESCRIPTION
50578 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50579 conflict between the requirements described here and the ISO C standard is unintentional. This
50580 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50581 The wctob() function shall determine whether c corresponds to a member of the extended
50582 character set whose character representation is a single byte when in the initial shift state.

50583 The behavior of this function shall be affected by the LC_CTYPE category of the current locale.

50584 RETURN VALUE
50585 The wctob() function shall return EOF if c does not correspond to a character with length one in
50586 the initial shift state. Otherwise, it shall return the single-byte representation of that character as |
50587 an unsigned char converted to int. |

50588 ERRORS
50589 No errors are defined.

50590 EXAMPLES
50591 None.

50592 APPLICATION USAGE
50593 None.

50594 RATIONALE
50595 None.

50596 FUTURE DIRECTIONS
50597 None.

50598 SEE ALSO
50599 btowc(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50600 CHANGE HISTORY
50601 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50602 (E).

System Interfaces, Issue 6 2145

wctomb() System Interfaces

50603 NAME
50604 wctomb — convert a wide-character code to a character

50605 SYNOPSIS
50606 #include <stdlib.h>

50607 int wctomb(char * s, wchar_t wchar);

50608 DESCRIPTION
50609 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50610 conflict between the requirements described here and the ISO C standard is unintentional. This
50611 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50612 The wctomb() function shall determine the number of bytes needed to represent the character
50613 corresponding to the wide-character code whose value is wchar (including any change in the
50614 shift state). It stores the character representation (possibly multiple bytes and any special bytes
50615 to change shift state) in the array object pointed to by s (if s is not a null pointer). At most
50616 {MB_CUR_MAX} bytes are stored. If wchar is 0, a null byte is stored, preceded by any shift |
50617 sequence needed to restore the initial shift state, and wctomb() is left in the initial shift state. |

50618 CX The behavior of this function is affected by the LC_CTYPE category of the current locale. For a
50619 state-dependent encoding, this function is placed into its initial state by a call for which its
50620 character pointer argument, s, is a null pointer. Subsequent calls with s as other than a null
50621 pointer cause the internal state of the function to be altered as necessary. A call with s as a null
50622 pointer causes this function to return a non-zero value if encodings have state dependency, and
50623 0 otherwise. Changing the LC_CTYPE category causes the shift state of this function to be
50624 indeterminate.

50625 The wctomb() function need not be reentrant. A function that is not required to be reentrant is
50626 not required to be thread-safe.

50627 The implementation shall behave as if no function defined in this volume of
50628 IEEE Std. 1003.1-200x calls wctomb().

50629 RETURN VALUE
50630 If s is a null pointer, wctomb() shall return a non-zero or 0 value, if character encodings,
50631 respectively, do or do not have state-dependent encodings. If s is not a null pointer, wctomb()
50632 shall return −1 if the value of wchar does not correspond to a valid character, or return the
50633 number of bytes that constitute the character corresponding to the value of wchar .

50634 In no case shall the value returned be greater than the value of the {MB_CUR_MAX} macro.

50635 ERRORS
50636 No errors are defined.

50637 EXAMPLES
50638 None.

50639 APPLICATION USAGE
50640 None.

50641 RATIONALE
50642 None.

50643 FUTURE DIRECTIONS
50644 None.

2146 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wctomb()

50645 SEE ALSO
50646 mblen(), mbtowc(), mbstowcs(), wcstombs(), the Base Definitions volume of IEEE Std. 1003.1-200x, |
50647 <stdlib.h>

CHANGE50648 HISTORY
50649 First released in Issue 4. Derived from the ANSI C standard. |

50650 Issue 6
50651 Extensions beyond the ISO C standard are now marked.

50652 In the DESCRIPTION, a note about reentrancy and thread-safety is added.

System Interfaces, Issue 6 2147

wctrans() System Interfaces

50653 NAME
50654 wctrans — define character mapping

50655 SYNOPSIS
50656 #include <wctype.h>

50657 wctrans_t wctrans(const char * charclass);

50658 DESCRIPTION
50659 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50660 conflict between the requirements described here and the ISO C standard is unintentional. This
50661 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50662 The wctrans() function is defined for valid character mapping names identified in the current
50663 locale. The charclass is a string identifying a generic character mapping name for which codeset-
50664 specific information is required. The following character mapping names are defined in all
50665 locales: tolower and toupper.

50666 The function shall return a value of type wctrans_t, which can be used as the second argument
50667 to subsequent calls of towctrans(). The wctrans() function determines values of wctrans_t
50668 according to the rules of the coded character set defined by character mapping information in
50669 the program’s locale (category LC_CTYPE). The values returned by wctrans() are valid until a
50670 call to setlocale () that modifies the category LC_CTYPE.

50671 RETURN VALUE
50672 CX The wctrans() function shall return 0 and may set errno to indicate the errorif the given character
50673 mapping name is not valid for the current locale (category LC_CTYPE); otherwise, it shall return
50674 a non-zero object of type wctrans_t that can be used in calls to towctrans().

50675 ERRORS
50676 The wctrans() function may fail if:

50677 CX [EINVAL] The character mapping name pointed to by charclass is not valid in the current |
50678 locale.

50679 EXAMPLES
50680 None.

50681 APPLICATION USAGE
50682 None.

50683 RATIONALE
50684 None.

50685 FUTURE DIRECTIONS
50686 None.

50687 SEE ALSO
50688 towctrans(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wctype.h> |

50689 CHANGE HISTORY
50690 First released in Issue 5. Derived from ISO/IEC 9899: 1990/Amendment 1: 1995 (E). |

2148 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wctype()

50691 NAME
50692 wctype — define character class

50693 SYNOPSIS
50694 #include <wctype.h>

50695 wctype_t wctype(const char * property);

50696 DESCRIPTION
50697 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50698 conflict between the requirements described here and the ISO C standard is unintentional. This
50699 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50700 The wctype() function is defined for valid character class names as defined in the current locale.
50701 The property is a string identifying a generic character class for which codeset-specific type
50702 information is required. The following character class names are defined in all locales:

50703 alnum
50704 alpha
50705 blank
50706 cntrl

digit
graph
lower
print

punct
space
upper
xdigit

50707 Additional character class names defined in the locale definition file (category LC_CTYPE) can
50708 also be specified.

50709 The function shall return a value of type wctype_t, which can be used as the second argument to
50710 subsequent calls of iswctype(). The wctype() function determines values of wctype_t according
50711 to the rules of the coded character set defined by character type information in the program’s
50712 locale (category LC_CTYPE). The values returned by wctype() are valid until a call to setlocale ()
50713 that modifies the category LC_CTYPE.

50714 RETURN VALUE
50715 The wctype() function shall return 0 if the given character class name is not valid for the current
50716 locale (category LC_CTYPE); otherwise, it shall return an object of type wctype_t that can be
50717 used in calls to iswctype().

50718 ERRORS
50719 No errors are defined.

50720 EXAMPLES
50721 None.

50722 APPLICATION USAGE
50723 None.

50724 RATIONALE
50725 None.

50726 FUTURE DIRECTIONS
50727 None.

50728 SEE ALSO
50729 iswctype(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wctype.h>, <wchar.h> |

50730 CHANGE HISTORY
50731 First released in Issue 4.

System Interfaces, Issue 6 2149

wctype() System Interfaces

50732 Issue 5
50733 The following change has been made in this issue for alignment with
50734 ISO/IEC 9899: 1990/Amendment 1: 1995 (E):

50735 • The SYNOPSIS has been changed to indicate that this function and associated data types are
50736 now made visible by inclusion of the header <wctype.h> rather than <wchar.h>.

2150 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wcwidth()

50737 NAME
50738 wcwidth — number of column positions of a wide-character code

50739 SYNOPSIS
50740 XSI #include <wchar.h>

50741 int wcwidth(wchar_t wc);
50742

50743 DESCRIPTION
50744 The wcwidth() function shall determine the number of column positions required for the wide
50745 character wc. The application shall ensure that the value of wc is a character representable as a
50746 wchar_t, and a wide-character code corresponding to a valid character in the current locale.

50747 RETURN VALUE
50748 The wcwidth() function shall either return 0 (if wc is a null wide-character code), or return the
50749 number of column positions to be occupied by the wide-character code wc, or return −1 (if wc
50750 does not correspond to a printing wide-character code).

50751 ERRORS
50752 No errors are defined.

50753 EXAMPLES
50754 None.

50755 APPLICATION USAGE
50756 This function was removed from the final ISO/IEC 9899: 1990/Amendment 1: 1995 (E), and the
50757 return value for a non-printable wide character is not specified.

50758 RATIONALE
50759 None.

50760 FUTURE DIRECTIONS
50761 None.

50762 SEE ALSO
50763 wcswidth(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wchar.h> |

50764 CHANGE HISTORY
50765 First released as a World-wide Portability Interface in Issue 4. Derived from MSE working draft. |

50766 Issue 6
50767 The Open Group corrigenda item U021/12 has been applied. This function is marked as an
50768 extension.

50769 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2151

wmemchr() System Interfaces

50770 NAME
50771 wmemchr — find a wide character in memory

50772 SYNOPSIS
50773 #include <wchar.h>

50774 wchar_t *wmemchr(const wchar_t * ws, wchar_t wc, size_t n);

50775 DESCRIPTION
50776 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50777 conflict between the requirements described here and the ISO C standard is unintentional. This
50778 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50779 The wmemchr() function shall locate the first occurrence of wc in the initial n wide characters of
50780 the object pointed to by ws. This function is not affected by locale and all wchar_t values are
50781 treated identically. The null wide character and wchar_t values not corresponding to valid
50782 characters are not treated specially.

50783 If n is zero, the application shall ensure that ws is a valid pointer and the function behaves as if
50784 no valid occurrence of wc is found.

50785 RETURN VALUE
50786 The wmemchr() function shall return a pointer to the located wide character, or a null pointer if
50787 the wide character does not occur in the object.

50788 ERRORS
50789 No errors are defined.

50790 EXAMPLES
50791 None.

50792 APPLICATION USAGE
50793 None.

50794 RATIONALE
50795 None.

50796 FUTURE DIRECTIONS
50797 None.

50798 SEE ALSO
50799 wmemcmp(), wmemcpy(), wmemmove(), wmemset(), the Base Definitions volume of |
50800 IEEE Std. 1003.1-200x, <wchar.h> |

50801 CHANGE HISTORY
50802 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50803 (E).

50804 Issue 6
50805 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2152 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wmemcmp()

50806 NAME
50807 wmemcmp — compare wide characters in memory

50808 SYNOPSIS
50809 #include <wchar.h>

50810 int wmemcmp(const wchar_t * ws1, const wchar_t * ws2, size_t n);

50811 DESCRIPTION
50812 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50813 conflict between the requirements described here and the ISO C standard is unintentional. This
50814 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50815 The wmemcmp() function shall compare the first n wide characters of the object pointed to by
50816 ws1 to the first n wide characters of the object pointed to by ws2. This function is not affected by
50817 locale and all wchar_t values are treated identically. The null wide character and wchar_t values
50818 not corresponding to valid characters are not treated specially.

50819 If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
50820 behaves as if the two objects compare equal.

50821 RETURN VALUE
50822 The wmemcmp() function shall return an integer greater than, equal to, or less than zero,
50823 respectively, as the object pointed to by ws1 is greater than, equal to, or less than the object
50824 pointed to by ws2.

50825 ERRORS
50826 No errors are defined.

50827 EXAMPLES
50828 None.

50829 APPLICATION USAGE
50830 None.

50831 RATIONALE
50832 None.

50833 FUTURE DIRECTIONS
50834 None.

50835 SEE ALSO
50836 wmemchr(), wmemcpy(), wmemmove(), wmemset(), the Base Definitions volume of |
50837 IEEE Std. 1003.1-200x, <wchar.h> |

50838 CHANGE HISTORY
50839 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50840 (E).

50841 Issue 6
50842 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2153

wmemcpy() System Interfaces

50843 NAME
50844 wmemcpy — copy wide characters in memory

50845 SYNOPSIS
50846 #include <wchar.h>

50847 wchar_t *wmemcpy(wchar_t *restrict ws1, const wchar_t *restrict ws2, |
50848 size_t n); |

50849 DESCRIPTION |
50850 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50851 conflict between the requirements described here and the ISO C standard is unintentional. This
50852 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50853 The wmemcpy() function shall copy n wide characters from the object pointed to by ws2 to the
50854 object pointed to by ws1. This function is not affected by locale and all wchar_t values are
50855 treated identically. The null wide character and wchar_t values not corresponding to valid
50856 characters are not treated specially.

50857 If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
50858 copies zero wide characters.

50859 RETURN VALUE
50860 The wmemcpy() function shall return the value of ws1.

50861 ERRORS
50862 No errors are defined.

50863 EXAMPLES
50864 None.

50865 APPLICATION USAGE
50866 None.

50867 RATIONALE
50868 None.

50869 FUTURE DIRECTIONS
50870 None.

50871 SEE ALSO
50872 wmemchr(), wmemcmp(), wmemmove(), wmemset(), the Base Definitions volume of |
50873 IEEE Std. 1003.1-200x, <wchar.h> |

50874 CHANGE HISTORY
50875 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50876 (E).

50877 Issue 6
50878 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

50879 The wmemcpy() prototype is updated for alignment with the ISO/IEC 9899: 1999 standard. |

2154 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wmemmove()

50880 NAME
50881 wmemmove — copy wide characters in memory with overlapping areas

50882 SYNOPSIS
50883 #include <wchar.h>

50884 wchar_t *wmemmove(wchar_t * ws1, const wchar_t * ws2, size_t n);

50885 DESCRIPTION
50886 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50887 conflict between the requirements described here and the ISO C standard is unintentional. This
50888 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50889 The wmemmove() function shall copy n wide characters from the object pointed to by ws2 to the
50890 object pointed to by ws1. Copying takes place as if the n wide characters from the object pointed
50891 to by ws2 are first copied into a temporary array of n wide characters that does not overlap the
50892 objects pointed to by ws1 or ws2, and then the n wide characters from the temporary array are
50893 copied into the object pointed to by ws1.

50894 This function is not affected by locale and all wchar_t values are treated identically. The null
50895 wide character and wchar_t values not corresponding to valid characters are not treated
50896 specially.

50897 If n is zero, the application shall ensure that ws1 and ws2 are valid pointers, and the function
50898 copies zero wide characters.

50899 RETURN VALUE
50900 The wmemmove() function shall return the value of ws1.

50901 ERRORS
50902 No errors are defined

50903 EXAMPLES
50904 None.

50905 APPLICATION USAGE
50906 None.

50907 RATIONALE
50908 None.

50909 FUTURE DIRECTIONS
50910 None.

50911 SEE ALSO
50912 wmemchr(), wmemcmp(), wmemcpy(), wmemset(), the Base Definitions volume of |
50913 IEEE Std. 1003.1-200x, <wchar.h> |

50914 CHANGE HISTORY
50915 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50916 (E).

50917 Issue 6
50918 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2155

wmemset() System Interfaces

50919 NAME
50920 wmemset — set wide characters in memory

50921 SYNOPSIS
50922 #include <wchar.h>

50923 wchar_t *wmemset(wchar_t * ws, wchar_t wc, size_t n);

50924 DESCRIPTION
50925 CX The functionality described on this reference page is aligned with the ISO C standard. Any
50926 conflict between the requirements described here and the ISO C standard is unintentional. This
50927 volume of IEEE Std. 1003.1-200x defers to the ISO C standard.

50928 The wmemset() function shall copy the value of wc into each of the first n wide characters of the
50929 object pointed to by ws. This function is not affected by locale and all wchar_t values are treated
50930 identically. The null wide character and wchar_t values not corresponding to valid characters
50931 are not treated specially.

50932 If n is zero, the application shall ensure that ws is a valid pointer, and the function copies zero
50933 wide characters.

50934 RETURN VALUE
50935 The wmemset() functions shall return the value of ws.

50936 ERRORS
50937 No errors are defined.

50938 EXAMPLES
50939 None.

50940 APPLICATION USAGE
50941 None.

50942 RATIONALE
50943 None.

50944 FUTURE DIRECTIONS
50945 None.

50946 SEE ALSO
50947 wmemchr(), wmemcmp(), wmemcpy(), wmemmove(), the Base Definitions volume of |
50948 IEEE Std. 1003.1-200x, <wchar.h> |

50949 CHANGE HISTORY
50950 First released in Issue 5. Included for alignment with ISO/IEC 9899: 1990/Amendment 1: 1995
50951 (E).

50952 Issue 6
50953 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

2156 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wordexp()

50954 NAME
50955 wordexp, wordfree — perform word expansions

50956 SYNOPSIS
50957 #include <wordexp.h>

50958 int wordexp(const char *restrict words , wordexp_t *restrict pwordexp , |
50959 int flags); |
50960 void wordfree(wordexp_t * pwordexp); |

50961 DESCRIPTION
50962 The wordexp() function shall perform word expansions and place the list of expanded words
50963 into pwordexp .

50964 If the implementation supports the utilities defined in the Shell and Utilities volume of |
50965 IEEE Std. 1003.1-200x, the wordexp() function performs word expansions as described in the |
50966 Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.6, Word Expansions, subject to |
50967 quoting as in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.2, Quoting, and |
50968 places the list of expanded words into the structure pointed to by pwordexp. |

50969 The words argument is a pointer to a string containing one or more words to be expanded. The
50970 expansions shall be the same as would be performed by the command line interpreter if words
50971 were the part of a command line representing the arguments to a utility. Therefore, the
50972 application shall ensure that words does not contain an unquoted <newline> or any of the
50973 unquoted shell special characters ’|’ , ’&’ , ’;’ , ’<’ , ’>’ except in the context of command
50974 substitution as specified in the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section 2.6.3, |
50975 Command Substitution. It also shall not contain unquoted parentheses or braces, except in the |
50976 context of command or variable substitution. If the argument words contains an unquoted
50977 comment character (number sign) that is the beginning of a token, wordexp() shall either treat the
50978 comment character as a regular character, or interpret it as a comment indicator and ignore the
50979 remainder of words.

50980 If the implementation does not support the utilities defined in the Shell and Utilities volume of |
50981 IEEE Std. 1003.1-200x, the word expansion is unspecified, but should be the same as that used by |
50982 the command language interpreter used by the system() and popen() functions.

50983 The structure type wordexp_t is defined in the header <wordexp.h> and includes at least the
50984 following members:
50985 __
50986 Member Type Member Name Description__
50987 size_t we_wordc Count of words matched by words.
50988 char ** we_wordv Pointer to list of expanded words.
50989 size_t we_offs Slots to reserve at the beginning of pwordexp->we_wordv.__LL

L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

LL
L
L
L
L

50990 The wordexp() function stores the number of generated words into pwordexp->we_wordc and a |
50991 pointer to a list of pointers to words in pwordexp->we_wordv. If the implementation supports the |
50992 utilities defined in the Shell and Utilities volume of IEEE Std. 1003.1-200x, each individual field |
50993 created during field splitting (see the Shell and Utilities volume of IEEE Std. 1003.1-200x, Section |
50994 2.6.5, Field Splitting) or path name expansion (see the Shell and Utilities volume of |
50995 IEEE Std. 1003.1-200x, Section 2.6.6, Path Name Expansion) is a separate word in the pwordexp- |
50996 >we_wordv list. The words are in order as described in the Shell and Utilities volume of |
50997 IEEE Std. 1003.1-200x, Section 2.6, Word Expansions. The first pointer after the last word pointer |
50998 shall be a null pointer. The expansion of special parameters described in the Shell and Utilities |
50999 volume of IEEE Std. 1003.1-200x, Section 2.5.2, Special Parameters is unspecified. |

System Interfaces, Issue 6 2157

wordexp() System Interfaces

51000 It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The wordexp()
51001 function allocates other space as needed, including memory pointed to by pwordexp->we_wordv. |
51002 The wordfree() function frees any memory associated with pwordexp from a previous call to |
51003 wordexp().

51004 The flags argument is used to control the behavior of wordexp(). The value of flags is the
51005 bitwise-inclusive OR of zero or more of the following constants, which are defined in
51006 <wordexp.h>:

51007 WRDE_APPEND Append words generated to the ones from a previous call to wordexp().

51008 WRDE_DOOFFS Make use of pwordexp->we_offs. If this flag is set, pwordexp->we_offs is used |
51009 to specify how many null pointers to add to the beginning of pwordexp- |
51010 >we_wordv. In other words, pwordexp->we_wordv shall point to pwordexp- |
51011 >we_offs null pointers, followed by pwordexp->we_wordc word pointers, |
51012 followed by a null pointer. |

51013 WRDE_NOCMD If the implementation supports the utilities defined in the Shell and |
51014 Utilities volume of IEEE Std. 1003.1-200x, fail if command substitution, as |
51015 specified in the Shell and Utilities volume of IEEE Std. 1003.1-200x, |
51016 Section 2.6.3, Command Substitution, is requested. |

51017 WRDE_REUSE The pwordexp argument was passed to a previous successful call to
51018 wordexp(), and has not been passed to wordfree(). The result shall be the
51019 same as if the application had called wordfree() and then called wordexp()
51020 without WRDE_REUSE.

51021 WRDE_SHOWERR Do not redirect stderr to /dev/null.

51022 WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

51023 The WRDE_APPEND flag can be used to append a new set of words to those generated by a
51024 previous call to wordexp(). The following rules apply to applications when two or more calls to
51025 wordexp() are made with the same value of pwordexp and without intervening calls to wordfree():

51026 1. The first such call shall not set WRDE_APPEND. All subsequent calls shall set it.

51027 2. All of the calls shall set WRDE_DOOFFS, or all shall not set it.

51028 3. After the second and each subsequent call, pwordexp->we_wordv shall point to a list |
51029 containing the following: |

51030 a. Zero or more null pointers, as specified by WRDE_DOOFFS and pwordexp->we_offs |

51031 b. Pointers to the words that were in the pwordexp->we_wordv list before the call, in the |
51032 same order as before

51033 c. Pointers to the new words generated by the latest call, in the specified order

51034 4. The count returned in pwordexp->we_wordc shall be the total number of words from all of |
51035 the calls.

51036 5. The application can change any of the fields after a call to wordexp(), but if it does it shall
51037 reset them to the original value before a subsequent call, using the same pwordexp value, to
51038 wordfree() or wordexp() with the WRDE_APPEND or WRDE_REUSE flag.

51039 If the implementation supports the utilities defined in the Shell and Utilities volume of |
51040 IEEE Std. 1003.1-200x, and words contains an unquoted character—<newline>, ’|’ , ’&’ , ’;’ , |
51041 ’<’ , ’>’ , ’(’ , ’)’ , ’{’ , ’}’ —in an inappropriate context, wordexp() shall fail, and the number
51042 of expanded words shall be 0.

2158 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wordexp()

51043 Unless WRDE_SHOWERR is set in flags, wordexp() shall redirect stderr to /dev/null for any
51044 utilities executed as a result of command substitution while expanding words. If
51045 WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are detected
51046 while expanding words.

51047 The application shall ensure that if WRDE_DOOFFS is set, then pwordexp->we_offs has the same |
51048 value for each wordexp() call and wordfree() call using a given pwordexp. |

51049 The following constants are defined as error return values:

51050 WRDE_BADCHAR One of the unquoted characters—<newline>, ’|’ , ’&’ , ’;’ , ’<’ , ’>’ ,
51051 ’(’ , ’)’ , ’{’ , ’}’ —appears in words in an inappropriate context.

51052 WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in flags.

51053 WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in flags.

51054 WRDE_NOSPACE Attempt to allocate memory failed.

51055 WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated
51056 string.

51057 RETURN VALUE
51058 Upon successful completion, wordexp() shall return 0. Otherwise, a non-zero value, as described
51059 in <wordexp.h>, shall be returned to indicate an error. If wordexp() returns the value |
51060 WRDE_NOSPACE, then pwordexp->we_wordc and pwordexp->we_wordv shall be updated to |
51061 reflect any words that were successfully expanded. In other cases, they shall not be modified. |

51062 The wordfree() function shall return no value.

51063 ERRORS
51064 No errors are defined.

51065 EXAMPLES
51066 None.

51067 APPLICATION USAGE
51068 The wordexp() function is intended to be used by an application that wants to do all of the shell’s
51069 expansions on a word or words obtained from a user. For example, if the application prompts
51070 for a file name (or list of file names) and then uses wordexp() to process the input, the user could
51071 respond with anything that would be valid as input to the shell.

51072 The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to
51073 prevent a user from executing shell commands. Disallowing unquoted shell special characters
51074 also prevents unwanted side effects, such as executing a command or writing a file.

51075 RATIONALE
51076 This function was included as an alternative to glob(). There had been continuing controversy
51077 over exactly what features should be included in glob(). It is hoped that by providing wordexp()
51078 (which provides all of the shell word expansions, but which may be slow to execute) and glob()
51079 (which is faster, but which only performs path name expansion, without tilde or parameter
51080 expansion) this will satisfy the majority of applications.

51081 While wordexp() could be implemented entirely as a library routine, it is expected that most
51082 implementations run a shell in a subprocess to do the expansion.

51083 Two different approaches have been proposed for how the required information might be
51084 presented to the shell and the results returned. They are presented here as examples.

51085 One proposal is to extend the echo utility by adding a −q option. This option would cause echo to
51086 add a backslash before each backslash and <blank> character that occurs within an argument.

System Interfaces, Issue 6 2159

wordexp() System Interfaces

51087 The wordexp() function could then invoke the shell as follows:

51088 (void) strcpy(buffer, "echo -q");
51089 (void) strcat(buffer, words);
51090 if ((flags & WRDE_SHOWERR) == 0)
51091 (void) strcat(buffer, "2>/dev/null");
51092 f = popen(buffer, "r");

51093 The wordexp() function would read the resulting output, remove unquoted backslashes, and
51094 break into words at unquoted <blank>s. If the WRDE_NOCMD flag was set, wordexp() would
51095 have to scan words before starting the subshell to make sure that there would be no command
51096 substitution. In any case, it would have to scan words for unquoted special characters.

51097 Another proposal is to add the following options to sh:

51098 −w wordlist
51099 This option provides a wordlist expansion service to applications. The words in wordlist
51100 shall be expanded and the following written to standard output:

51101 1. The count of the number of words after expansion, in decimal, followed by a null byte

51102 2. The number of bytes needed to represent the expanded words (not including null
51103 separators), in decimal, followed by a null byte

51104 3. The expanded words, each terminated by a null byte

51105 If an error is encountered during word expansion, sh exits with a non-zero status after
51106 writing the former to report any words successfully expanded

51107 −P Run in ‘‘protected’’ mode. If specified with the −w option, no command substitution shall
51108 be performed.

51109 With these options, wordexp() could be implemented fairly simply by creating a subprocess
51110 using fork () and executing sh using the line:

51111 execl(< shell path >, "sh", "-P", "-w", words , (char *)0);

51112 after directing standard error to /dev/null.

51113 It seemed objectionable for a library routine to write messages to standard error, unless
51114 explicitly requested, so wordexp() is required to redirect standard error to /dev/null to ensure
51115 that no messages are generated, even for commands executed for command substitution. The
51116 WRDE_SHOWERR flag can be specified to request that error messages be written.

51117 The WRDE_REUSE flag allows the implementation to avoid the expense of freeing and
51118 reallocating memory, if that is possible. A minimal implementation can call wordfree() when
51119 WRDE_REUSE is set.

51120 FUTURE DIRECTIONS
51121 None.

51122 SEE ALSO
51123 fnmatch(), glob(), the Base Definitions volume of IEEE Std. 1003.1-200x, <wordexp.h>, the Shell |
51124 and Utilities volume of IEEE Std. 1003.1-200x |

51125 CHANGE HISTORY
51126 First released in Issue 4. Derived from the ISO POSIX-2 standard. |

2160 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wordexp()

51127 Issue 5
51128 Moved from POSIX2 C-language Binding to BASE.

51129 Issue 6
51130 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements. |

51131 The restrict keyword is added to the wordexp() prototype for alignment with the |
51132 ISO/IEC 9899: 1999 standard. |

System Interfaces, Issue 6 2161

wprintf() System Interfaces

51133 NAME
51134 wprintf — print formatted wide-character output

51135 SYNOPSIS
51136 #include <stdio.h>
51137 #include <wchar.h>

51138 int wprintf(const wchar_t * format , ...);

51139 DESCRIPTION
51140 Refer to fwprintf().

2162 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces write()

51141 NAME
51142 pwrite, write, writev — write on a file |

51143 SYNOPSIS
51144 #include <unistd.h>

51145 XSI ssize_t pwrite(int fildes , const void * buf , size_t nbyte ,
51146 off_t offset);
51147 ssize_t write(int fildes , const void * buf , size_t nbyte);

51148 XSI #include <sys/uio.h>

51149 ssize_t writev(int fildes , const struct iovec * iov , int iovcnt);
51150

51151 DESCRIPTION
51152 XSI The pwrite() function performs the same action as write(), except that it writes into a given
51153 position without changing the file pointer. The first three arguments to pwrite() are the same as
51154 write() with the addition of a fourth argument offset for the desired position inside the file. |

51155 Notes to Reviewers |
51156 This section with side shading will not appear in the final copy. - Ed. |

51157 D3, XSH, ERN 676 says that pwrite() (and pread()) need to be limited to seekable devices or have |
51158 an explicit statement that the offset argument is ignored. This item is still open. |

51159 The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf to the |
51160 file associated with the open file descriptor, fildes .

51161 If nbyte is zero and the file is a regular file, the write() function may detect and return errors as
51162 described below. In the absence of errors, or if error detection is not performed, the write()
51163 function shall return zero and have no other results. If nbyte is zero and the file is not a regular
51164 file, the results are unspecified.

51165 On a regular file or other file capable of seeking, the actual writing of data proceeds from the
51166 position in the file indicated by the file offset associated with fildes . Before successful return
51167 from write(), the file offset is incremented by the number of bytes actually written. On a regular
51168 file, if this incremented file offset is greater than the length of the file, the length of the file shall
51169 be set to this file offset.

51170 On a file not capable of seeking, writing always takes place starting at the current position. The
51171 value of a file offset associated with such a device is undefined.

51172 If the O_APPEND flag of the file status flags is set, the file offset shall be set to the end of the file
51173 prior to each write and no intervening file modification operation shall occur between changing
51174 the file offset and the write operation.

51175 XSI If a write() requests that more bytes be written than there is room for (for example, the process’
51176 file size limit or the physical end of a medium), only as many bytes as there is room for shall be
51177 written. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
51178 write of 512 bytes shall return 20. The next write of a non-zero number of bytes shall give a
51179 XSI failure return (except as noted below) and the implementation shall generate a SIGXFSZ signal
51180 for the thread.

51181 If write() is interrupted by a signal before it writes any data, it shall eturn −1 with errno set to
51182 [EINTR].

51183 If write() is interrupted by a signal after it successfully writes some data, it shall return the
51184 number of bytes written.

System Interfaces, Issue 6 2163

write() System Interfaces

51185 If the value of nbyte is greater than {SSIZE_MAX}, the result is implementation-defined. |

51186 After a write() to a regular file has successfully returned:

51187 • Any successful read() from each byte position in the file that was modified by that write shall
51188 return the data specified by the write() for that position until such byte positions are again
51189 modified.

51190 • Any subsequent successful write() to the same byte position in the file shall overwrite that
51191 file data.

51192 Write requests to a pipe or FIFO shall be handled the same as a regular file with the following
51193 exceptions:

51194 • There is no file offset associated with a pipe, hence each write request shall append to the
51195 end of the pipe.

51196 • Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data from other
51197 processes doing writes on the same pipe. Writes of greater than {PIPE_BUF} bytes may have
51198 data interleaved, on arbitrary boundaries, with writes by other processes, whether or not the
51199 O_NONBLOCK flag of the file status flags is set.

51200 • If the O_NONBLOCK flag is clear, a write request may cause the thread to block, but on
51201 normal completion it shall return nbyte.

51202 • If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the
51203 following ways:

51204 — The write() function shall not block the thread. |

51205 — A write request for {PIPE_BUF} or fewer bytes shall have the following effect: if there is
51206 sufficient space available in the pipe, write() shall transfer all the data and return the
51207 number of bytes requested. Otherwise, write() shall transfer no data and return −1 with
51208 errno set to [EAGAIN].

51209 — A write request for more than {PIPE_BUF} bytes shall cause one of the following:

51210 — When at least one byte can be written, transfer what it can and return the number of
51211 bytes written. When all data previously written to the pipe is read, it shall transfer at
51212 least {PIPE_BUF} bytes.

51213 — When no data can be written, transfer no data, and return −1 with errno set to
51214 [EAGAIN].

51215 When attempting to write to a file descriptor (other than a pipe or FIFO) that supports non-
51216 blocking writes and cannot accept the data immediately:

51217 • If the O_NONBLOCK flag is clear, write() shall block the calling thread until the data can be
51218 accepted.

51219 • If the O_NONBLOCK flag is set, write() shall not block the thread. If some data can be |
51220 written without blocking the thread, write() shall write what it can and return the number of |
51221 bytes written. Otherwise, it shall return −1 and set errno to [EAGAIN].

51222 Upon successful completion, where nbyte is greater than 0, write() shall mark for update the
51223 st_ctime and st_mtime fields of the file, and if the file is a regular file, the S_ISUID and S_ISGID
51224 bits of the file mode may be cleared.

51225 XSR If fildes refers to a STREAM, the operation of write() shall be determined by the values of the
51226 minimum and maximum nbyte range (packet size) accepted by the STREAM. These values are
51227 determined by the topmost STREAM module. If nbyte falls within the packet size range, nbyte

2164 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces write()

51228 bytes shall be written. If nbyte does not fall within the range and the minimum packet size value
51229 is 0, write() shall break the buffer into maximum packet size segments prior to sending the data
51230 downstream (the last segment may contain less than the maximum packet size). If nbyte does not
51231 fall within the range and the minimum value is non-zero, write() shall fail with errno set to
51232 [ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0 bytes with 0
51233 returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no
51234 message and 0 is returned. The process may issue I_SWROPT ioctl () to enable zero-length
51235 messages to be sent across the pipe or FIFO.

51236 When writing to a STREAM, data messages are created with a priority band of 0. When writing
51237 to a STREAM that is not a pipe or FIFO:

51238 • If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue is
51239 full due to internal flow control conditions), write() shall block until data can be accepted.

51240 • If O_NONBLOCK is set and the STREAM cannot accept data, write() shall return −1 and set
51241 errno to [EAGAIN].

51242 • If O_NONBLOCK is set and part of the buffer has been written while a condition in which
51243 the STREAM cannot accept additional data occurs, write() shall terminate and return the
51244 number of bytes written.

51245 In addition, write() and writev() shall fail if the STREAM head has processed an asynchronous
51246 error before the call. In this case, the value of errno does not reflect the result of write() or
51247 writev(), but reflects the prior error.

51248 XSI The writev() function is equivalent to write(), but gathers the output data from the iovcnt buffers
51249 specified by the members of the iov array: iov[0], iov[1], . . ., iov[iovcnt−1]. iovcnt is valid if
51250 greater than 0 and less than or equal to {IOV_MAX}, defined in <limits.h>.

51251 Each iovec entry specifies the base address and length of an area in memory from which data
51252 should be written. The writev() function shall always write a complete area before proceeding to
51253 the next.

51254 If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0,
51255 writev() shall return 0 and have no other effect. For other file types, the behavior is unspecified.

51256 If the sum of the iov_len values is greater than {SSIZE_MAX}, the operation fails and no data is
51257 transferred.

51258 SIO If the O_DSYNC bit has been set, write I/O operations on the file descriptor complete as defined
51259 by synchronized I/O data integrity completion.

51260 If the O_SYNC bit has been set, write I/O operations on the file descriptor complete as defined
51261 by synchronized I/O file integrity completion.

51262 SHM If fildes refers to a shared memory object, the result of the write() function is unspecified.

51263 TYM If fildes refers to a typed memory object, the result of the write() function is unspecified.

51264 For regular files, no data transfer shall occur past the offset maximum established in the open |
51265 file description associated with fildes . |

51266 If fildes refers to a socket, write() is equivalent to send() with no flags set.

51267 RETURN VALUE
51268 XSI Upon successful completion, write() and pwrite() shall return the number of bytes actually
51269 written to the file associated with fildes . This number shall never be greater than nbyte.
51270 Otherwise, −1 shall be returned and errno set to indicate the error.

System Interfaces, Issue 6 2165

write() System Interfaces

51271 XSI Upon successful completion, writev() shall return the number of bytes actually written.
51272 Otherwise, it shall return a value of −1, the file-pointer shall remain unchanged, and errno shall
51273 be set to indicate an error.

51274 ERRORS
51275 XSI The write(),pwrite(), and writev()functions shall fail if:

51276 [EAGAIN] The O_NONBLOCK flag is set for the file descriptor and the thread would be |
51277 delayed in the write() operation.

51278 [EBADF] The fildes argument is not a valid file descriptor open for writing. |

51279 [EFBIG] An attempt was made to write a file that exceeds the implementation-defined |
51280 XSI maximum file size or the process’ file size limit. |

51281 [EFBIG] The file is a regular file, nbyte is greater than 0, and the starting position is |
51282 greater than or equal to the offset maximum established in the open file
51283 description associated with fildes . |

51284 [EINTR] The write operation was terminated due to the receipt of a signal, and no data |
51285 was transferred. |

51286 [EIO] The process is a member of a background process group attempting to write
51287 to its controlling terminal, TOSTOP is set, the process is neither ignoring nor
51288 blocking SIGTTOU, and the process group of the process is orphaned. This
51289 error may also be returned under implementation-defined conditions. |

51290 [ENOSPC] There was no free space remaining on the device containing the file. |

51291 [EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by |
51292 any process, or that only has one end open. A SIGPIPE signal shall also be sent |
51293 to the thread. |

51294 XSR [ERANGE] The transfer request size was outside the range supported by the STREAMS |
51295 file associated with fildes .

51296 MAN The write() function shall fail if: |

51297 [EAGAIN] or [EWOULDBLOCK] |
51298 The file descriptor is for a connection-mode socket, is marked |
51299 O_NONBLOCK, and write would block. |

51300 [ECONNRESET] A write was attempted on a connection-mode socket that is not connected. |

51301 [EPIPE] A write was attempted on a connection-mode socket that is shut down for |
51302 writing, or is no longer connected. In the latter case, if the socket is of type |
51303 SOCK_STREAM, the SIGPIPE signal is generated to the calling process. |
51304 |

51305 The writev() function shall fail if: |

51306 XSI [EINVAL] The sum of the iov_len values in the iov array would overflow an ssize_t. |

51307 XSI The write(),pwrite(), and writev()functions may fail if:

51308 XSR [EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or |
51309 indirectly) downstream from a multiplexer. |

51310 MAN [EIO] A physical I/O error has occurred. |

51311 MAN [ENOBUFS] Insufficient resources were available in the system to perform the operation. |

2166 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces write()

51312 [ENXIO] A request was made of a nonexistent device, or the request was outside the |
51313 capabilities of the device. |

51314 XSR [ENXIO] A hangup occurred on the STREAM being written to.

51315 XSR A write to a STREAMS file may fail if an error message has been received at the STREAM head.
51316 In this case, errno is set to the value included in the error message.

51317 MAN The write() function may fail if: |

51318 [EACCES] A write was attempted on a connection-mode socket and the calling process |
51319 does not have appropriate privileges. |

51320 [ENETDOWN] A write was attempted on a connection-mode socket and the local network |
51321 interface used to reach the destination is down. |

51322 [ENETUNREACH] A write was attempted on a connection-mode socket and no route to the |
51323 network is present. |
51324 |

51325 The writev() function may fail and set errno to: |

51326 XSI [EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}. |

51327 XSI The pwrite() function shall fail and the file pointer remain unchanged if:

51328 XSI [EINVAL] The offset argument is invalid. The value is negative. |

51329 XSI [ESPIPE] fildes is associated with a pipe or FIFO. |

51330 EXAMPLES

51331 Writing from a Buffer

51332 The following example writes data from the buffer pointed to by buf to the file associated with
51333 the file descriptor fd .

51334 #include <sys/types.h>
51335 #include <string.h>
51336 ...
51337 char buf[20];
51338 size_t nbytes;
51339 ssize_t bytes_written;
51340 int fd;
51341 ...
51342 strcpy(buf, "This is a test\n");
51343 nbytes = strlen(buf);

51344 bytes_written = write(fd, buf, nbytes);
51345 ...

System Interfaces, Issue 6 2167

write() System Interfaces

51346 Writing Data from an Array

51347 The following example writes data from the buffers specified by members of the iov array to the
51348 file associated with the file descriptor fd .

51349 #include <sys/types.h>
51350 #include <sys/uio.h>
51351 #include <unistd.h>
51352 ...
51353 ssize_t bytes_written;
51354 int fd;
51355 char *buf0 = "short string\n";
51356 char *buf1 = "This is a longer string\n";
51357 char *buf2 = "This is the longest string in this example\n";
51358 int iovcnt;
51359 struct iovec iov[3];

51360 iov[0].iov_base = buf0;
51361 iov[0].iov_len = strlen(buf0);
51362 iov[1].iov_base = buf1;
51363 iov[1].iov_len = strlen(buf1);
51364 iov[2].iov_base = buf2;
51365 iov[2].iov_len = strlen(buf2);
51366 ...
51367 iovcnt = sizeof(iov) / sizeof(struct iovec);

51368 bytes_written = writev(fd, iov, iovcnt);
51369 ...

51370 APPLICATION USAGE
51371 None.

51372 RATIONALE
51373 See also the RATIONALE section in read().

51374 An attempt to write to a pipe or FIFO has several major characteristics:

51375 • Atomic/non-atomic: A write is atomic if the whole amount written in one operation is not
51376 interleaved with data from any other process. This is useful when there are multiple writers
51377 sending data to a single reader. Applications need to know how large a write request can be
51378 expected to be performed atomically. This maximum is called {PIPE_BUF}. This volume of
51379 IEEE Std. 1003.1-200x does not say whether write requests for more than {PIPE_BUF} bytes
51380 are atomic, but requires that writes of {PIPE_BUF} or fewer bytes shall be atomic.

51381 • Blocking/immediate: Blocking is only possible with O_NONBLOCK clear. If there is enough
51382 space for all the data requested to be written immediately, the implementation should do so.
51383 Otherwise, the process may block; that is, pause until enough space is available for writing.
51384 The effective size of a pipe or FIFO (the maximum amount that can be written in one
51385 operation without blocking) may vary dynamically, depending on the implementation, so it
51386 is not possible to specify a fixed value for it.

51387 • Complete/partial/deferred: A write request:

51388 int fildes;
51389 size_t nbyte;
51390 ssize_t ret;
51391 char *buf;

2168 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces write()

51392 ret = write(fildes, buf, nbyte);

51393 may return:

51394 complete ret=nbyte

51395 partial ret<nbyte

51396 This shall never happen if nbyte≤{PIPE_BUF}. If it does happen (with
51397 nbyte>{PIPE_BUF}), this volume of IEEE Std. 1003.1-200x does not guarantee
51398 atomicity, even if ret≤{PIPE_BUF}, because atomicity is guaranteed according
51399 to the amount requested, not the amount written.

51400 deferred: ret=−1, errno=[EAGAIN] |

51401 This error indicates that a later request may succeed. It does not indicate that it
51402 shall succeed, even if nbyte≤{PIPE_BUF}, because if no process reads from the
51403 pipe or FIFO, the write never succeeds. An application could usefully count the
51404 number of times [EAGAIN] is caused by a particular value of
51405 nbyte>{PIPE_BUF} and perhaps do later writes with a smaller value, on the
51406 assumption that the effective size of the pipe may have decreased.

51407 Partial and deferred writes are only possible with O_NONBLOCK set.

51408 The relations of these properties are shown in the following tables:
51409 ___
51410 Write to a Pipe or FIFO with O_NONBLOCK clear___
51411 Immediately Writable: None Some nbyte___
51412 nbyte≤{PIPE_BUF} Atomic blocking Atomic blocking Atomic immediate
51413 nbyte nbyte nbyte___
51414 nbyte>{PIPE_BUF} Blocking nbyte Blocking nbyte Blocking nbyte___L

L
L
L
L
L
L

LL
L
L
L
L

L
L
L
L
L
L
L

51415 If the O_NONBLOCK flag is clear, a write request shall block if the amount writable
51416 immediately is less than that requested. If the flag is set (by fcntl()), a write request shall never
51417 block.
51418 __
51419 Write to a Pipe or FIFO with O_NONBLOCK set__
51420 Immediately Writable: None Some nbyte__
51421 nbyte≤{PIPE_BUF} −1, [EAGAIN] −1, [EAGAIN] Atomic nbyte__
51422 nbyte>{PIPE_BUF} −1, [EAGAIN] <nbyte or −1, ≤nbyte or −1,
51423 [EAGAIN] [EAGAIN]__L

L
L
L
L
L
L

LL
L
L
L
L

L
L
L
L
L
L
L

51424 There is no exception regarding partial writes when O_NONBLOCK is set. With the exception
51425 of writing to an empty pipe, this volume of IEEE Std. 1003.1-200x does not specify exactly when
51426 a partial write is performed since that would require specifying internal details of the
51427 implementation. Every application should be prepared to handle partial writes when
51428 O_NONBLOCK is set and the requested amount is greater than {PIPE_BUF}, just as every
51429 application should be prepared to handle partial writes on other kinds of file descriptors.

51430 The intent of forcing writing at least one byte if any can be written is to assure that each write
51431 makes progress if there is any room in the pipe. If the pipe is empty, {PIPE_BUF} bytes must be
51432 written; if not, at least some progress must have been made.

51433 Where this volume of IEEE Std. 1003.1-200x requires −1 to be returned and errno set to
51434 [EAGAIN], most historical implementations return zero (with the O_NDELAY flag set, which is
51435 the historical predecessor of O_NONBLOCK, but is not itself in this volume of

System Interfaces, Issue 6 2169

write() System Interfaces

51436 IEEE Std. 1003.1-200x). The error indications in this volume of IEEE Std. 1003.1-200x were chosen
51437 so that an application can distinguish these cases from end-of-file. While write() cannot receive
51438 an indication of end-of-file, read() can, and the two functions have similar return values. Also,
51439 some existing systems (for example, Eighth Edition) permit a write of zero bytes to mean that
51440 the reader should get an end-of-file indication; for those systems, a return value of zero from
51441 write() indicates a successful write of an end-of-file indication.

51442 Implementations are allowed, but not required, to perform error checking for write() requests of
51443 zero bytes.

51444 The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can be
51445 written to a pipe in a single operation) was considered, but rejected, because this concept would
51446 unnecessarily limit application writing.

51447 See also the discussion of O_NONBLOCK in read().

51448 Writes can be serialized with respect to other reads and writes. If a read() of file data can be
51449 proven (by any means) to occur after a write() of the data, it must reflect that write(), even if the
51450 calls are made by different processes. A similar requirement applies to multiple write operations
51451 to the same file position. This is needed to guarantee the propagation of data from write() calls
51452 to subsequent read() calls. This requirement is particularly significant for networked file
51453 systems, where some caching schemes violate these semantics.

51454 Note that this is specified in terms of read() and write(). Additional calls, such as the common
51455 readv() and writev(), would want to obey these semantics. A new ‘‘high-performance’’ write
51456 analog that did not follow these serialization requirements would also be permitted by this
51457 wording. This volume of IEEE Std. 1003.1-200x is also silent about any effects of application-
51458 level caching (such as that done by stdio).

51459 This volume of IEEE Std. 1003.1-200x does not specify the value of the file offset after an error is
51460 returned; there are too many cases. For programming errors, such as [EBADF], the concept is |
51461 meaningless since no file is involved. For errors that are detected immediately, such as
51462 [EAGAIN], clearly the pointer should not change. After an interrupt or hardware error, however,
51463 an updated value would be very useful and is the behavior of many implementations.

51464 This volume of IEEE Std. 1003.1-200x does not specify behavior of concurrent writes to a file
51465 from multiple processes. Applications should use some form of concurrency control.

51466 FUTURE DIRECTIONS
51467 None.

51468 SEE ALSO
51469 chmod(), creat(), dup(), fcntl(), getrlimit(), lseek(), open(), pipe(), ulimit(), the Base Definitions |
51470 volume of IEEE Std. 1003.1-200x, <limits.h>, <stropts.h>, <sys/uio.h>, <unistd.h> |

51471 CHANGE HISTORY
51472 First released in Issue 1. Derived from Issue 1 of the SVID. |

51473 Issue 4
51474 The <unistd.h> header is added to the SYNOPSIS section.

51475 Reference to ulimit in the DESCRIPTION is marked as an extension.

51476 Reference to the process’ file size limit and the ulimit() function are marked as extensions in the
51477 description of the [EFBIG] error.

51478 The [ENXIO] error is marked as an extension.

51479 The APPLICATION USAGE section is removed.

2170 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces write()

51480 The description of [EINTR] is amended.

51481 The following changes are incorporated for alignment with the ISO POSIX-1 standard:

51482 • The type of the argument buf is changed from char* to const void*, and the type of the
51483 argument nbyte is changed from unsigned to size_t.

51484 • The DESCRIPTION is changed as follows:

51485 — Writing at end-of-file is atomic.

51486 — {SSIZE_MAX} is now used to determine the maximum value of nbyte.

51487 — The consequences of activities after a call to the write() function are added.

51488 — To improve clarity, the text describing operations on pipes or FIFOs when
51489 O_NONBLOCK is set is restructured.

51490 Issue 4, Version 2
51491 The following changes are incorporated for X/OPEN UNIX conformance:

51492 • The writev() function is added to the SYNOPSIS.

51493 • The DESCRIPTION is updated to describe the writing of data to STREAMS files, an
51494 operational description of the writev() function is included, and a statement is added
51495 indicating that SIGXFSZ is generated if an attempted write operation would cause the
51496 maximum file size to be exceeded.

51497 • The RETURN VALUE section is updated to describe values returned by the writev() function.

51498 • The ERRORS section has been restructured to describe errors that apply to both write() and
51499 writev() apart from those that apply to writev() specifically. The [EIO], [ERANGE], and
51500 [EINVAL] errors are also added.

51501 Issue 5
51502 The DESCRIPTION is updated for alignment with the POSIX Realtime Extension and the POSIX
51503 Threads Extension.

51504 Large File Summit extensions are added.

51505 The pwrite() function is added.

51506 Issue 6
51507 The DESCRIPTION states that the write() function does not block the thread. Previously this
51508 said ‘‘process’’ rather than ‘‘thread’’.

51509 The DESCRIPTION and ERRORS sections are updated so that references to STREAMS are
51510 marked as part of the XSI STREAMS Option Group.

51511 The following new requirements on POSIX implementations derive from alignment with the
51512 Single UNIX Specification:

51513 • The DESCRIPTION now states that if write() is interrupted by a signal after it has
51514 successfully written some data, it returns the number of bytes written. In earlier versions of
51515 this volume of IEEE Std. 1003.1-200x, it was optional whether write() returned the number of
51516 bytes written, or whether it returned −1 with errno set to [EINTR]. This is a FIPS requirement.

51517 • The following changes are made to support large files:

51518 — For regular files, no data transfer occurs past the offset maximum established in the open
51519 file description associated with the fildes .

System Interfaces, Issue 6 2171

write() System Interfaces

51520 — A second [EFBIG] error condition is added.

51521 • The [EIO] error condition is added.

51522 • The [EPIPE] error condition is added for when a pipe has only one end open.

51523 • The [ENXIO] optional error condition is added.

51524 Text referring to sockets is added to the DESCRIPTION.

51525 The following changes were made to align with the IEEE P1003.1a draft standard:

51526 • The effect of reading zero bytes is clarified.

51527 The DESCRIPTION is updated for alignment with IEEE Std. 1003.1j-2000 by specifying that
51528 write() results are unspecified for typed memory objects. |

51529 The following error conditions are added for operations on sockets: [EAGAIN], |
51530 [EWOULDBLOCK], [ECONNRESET], [ENOTCONN], and [EPIPE]. |

51531 The [EIO] error is changed to ‘‘may fail’’. |

51532 The [ENOBUFS] error is added for sockets. |

51533 The following error conditions are added for operations on sockets: [EACCES], [ENETDOWN], |
51534 and [ENETUNREACH]. |

2172 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces wscanf()

51535 NAME
51536 wscanf — convert formatted wide-character input

51537 SYNOPSIS
51538 #include <stdio.h>
51539 #include <wchar.h>

51540 int wscanf(const wchar_t * format , ...);

51541 DESCRIPTION
51542 Refer to fwscanf().

System Interfaces, Issue 6 2173

y0() System Interfaces

51543 NAME
51544 y0, y1, yn — Bessel functions of the second kind

51545 SYNOPSIS
51546 XSI #include <math.h>

51547 double y0(double x);
51548 double y1(double x);
51549 double yn(int n, double x);
51550

51551 DESCRIPTION
51552 The y0(), y1(), and yn() functions shall compute Bessel functions of x of the second kind of
51553 orders 0, 1, and n respectively. The application shall ensure that the value of x is positive.

51554 An application wishing to check for error situations should set errno to 0 before calling y0(),
51555 y1(), or yn(). If errno is non-zero on return, or the return value is NaN, an error has occurred.

51556 RETURN VALUE
51557 Upon successful completion, y0(), y1(), and yn() shall return the relevant Bessel value of x of
51558 the second kind.

51559 If x is NaN, NaN shall be returned and errno may be set to [EDOM].

51560 If the x argument to y0(), y1(), or yn() is negative, −HUGE_VAL or NaN shall be returned, and
51561 errno may be set to [EDOM].

51562 If x is 0.0, −HUGE_VAL shall be returned and errno may be set to [ERANGE] or [EDOM].

51563 If the correct result would cause underflow, 0.0 shall be returned and errno may be set to
51564 [ERANGE].

51565 If the correct result would cause overflow, −HUGE_VAL or 0.0 shall be returned and errno may
51566 be set to [ERANGE].

51567 ERRORS
51568 The y0(), y1(), and yn() functions may fail if:

51569 [EDOM] The value of x is negative or NaN. |

51570 [ERANGE] The value of x is too large in magnitude, or x is 0.0, or the correct result would |
51571 cause overflow or underflow.

51572 No other errors shall occur.

51573 EXAMPLES
51574 None.

51575 APPLICATION USAGE
51576 None.

51577 RATIONALE
51578 None.

51579 FUTURE DIRECTIONS
51580 None.

51581 SEE ALSO
51582 isnan(), j0(), the Base Definitions volume of IEEE Std. 1003.1-200x, <math.h> |

2174 Technical Standard (2000) (Draft July 31, 2000)

System Interfaces y0()

51583 CHANGE HISTORY
51584 First released in Issue 1. Derived from Issue 1 of the SVID. |

51585 Issue 4
51586 References to matherr() are removed.

51587 The RETURN VALUE and ERRORS sections are substantially rewritten to rationalize error
51588 handling in the mathematics functions.

51589 Issue 5
51590 The DESCRIPTION is updated to indicate how an application should check for an error. This
51591 text was previously published in the APPLICATION USAGE section.

51592 Issue 6
51593 The DESCRIPTION is updated to avoid use of the term ‘‘must’’ for application requirements.

System Interfaces, Issue 6 2175

System Interfaces

51594 |

2176 Technical Standard (2000) (Draft July 31, 2000)

	XSH
	1. Introduction
	2. General Information
	2.1 Use and Implementation of Functions
	2.2 The Compilation Environment
	2.3 Error Numbers
	2.4 Signal Concepts
	2.5 Standard I/O Streams
	2.6 STREAMS
	2.7 XSI Interprocess Communication
	2.8 Realtime
	2.9 Threads
	2.10 Sockets
	2.11 Tracing
	2.12 Data Types

	3. System Interfaces
	a64l
	basename
	cabs
	daylight
	ecvt
	fabs
	fileno
	gai_strerror
	h_errno
	iconv
	j0
	kill
	l64a
	makecontext
	mq_close
	nan
	open
	pathconf
	posix_fadvise
	posix_spawn
	posix_trace_attr_destroy
	pthread_atfork
	pthread_detach
	pthread_rwlock_destroy
	ptsname
	qsort
	raise
	scalb
	sigaction
	stat
	tan
	ualarm
	va_arg
	wait
	write
	y0

